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Square-free words as products of commutators

Andrew Duncan and Alina Vdovina

Abstract. Elements of the commutator subgroup of a free group F can be presented as values
of canonical forms, called Wicks forms. We show that, starting from sufficiently high genus g,
there is a sequence of words wg which can be presented by f .g/ distinct Wicks forms, where
f .g/ > gŠ. Moreover we may choose these words wg to be square-free.
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Introduction

Let F be a free group and let ŒF ; F � be its commutator subgroup. We define the genus
of a word w 2 ŒF ; F � to be the least positive integer g such that w is a product of
g commutators in F . Every element of genus g in ŒF ; F � can be presented by non-
cancelling substitution in a Wicks form of genus g ([cf. [4], [3]]) as described below.
In genus one there is only one Wicks form but for g � 2 there are finitely many
Wicks forms and their number grows quite fast (factorially) with g. Thus a natural
question (posed by E. Rips at the geometric group theory conference in Anogia in
1996) is whether it is possible to find a word of genus g which can be presented by
non-cancelling substitution in “many” Wicks forms. We show that there is a sequence
of words w2, w3, … such that wg has genus g and the number of Wicks forms from
which it can be obtained by non-cancelling substitution is bounded below by gŠ, when
g is sufficiently large.

Wicks forms are not affected by Dehn twists. Since, by a classical result of
M. Dehn ([5]), the modular group is generated by Dehn twists, Wicks forms are
invariant under the action of Mod.Sg/. In [2] Bestvina and Feighn consider genus g

representations (defined below) of words of genus g. They describe an equivalence
relation on representations in terms of partial Dehn twists, which are a generalisation
of Dehn twists. They show that for certain types of word wg the number of distinct
equivalence classes of representations of wg grows exponentially with g. It would be
interesting to know what happens to our Wicks form representations under fractional
Dehn twists.
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1. Wicks forms

An alphabet consists of a countably enumerable set S equipped with a fixed-point
free involution � and a fixed set of representatives SC of the orbits of � . We shall
consider words in a fixed alphabet A D fa˙1

1 ; a˙1
2 ; : : : g of letters a1; a2; : : : and their

inverses a�1
1 ; a�1

2 ; : : : , where �.ai / D a�1
i and �.a�1

i / D ai and AC D fa1; a2; : : : g.
Alphabets B , A0 are defined analogously, replacing ai by bi or a0

i , in the obvious way.
A word (over A) is an element of the free monoid A� on A. A cyclic word (over A)
is the set of cyclic permutations Œw� of a word w. Words w and w0 are said to define
the same cyclic word if Œw� D Œw0�. A word u is said to be a factor of the cyclic
word Œw� if u is a subword of some element of Œw�. A word is said to be reduced
if it has no factor of the form aa�1 or a�1a, where a 2 AC. A word is said to be
cyclically reduced if every element of Œw� is reduced. An element a� , where a 2 AC
and � D ˙1, is said to occur n-times in the word w if w D u1a�u2 : : : una�unC1,
for some elements u1; : : : ; unC1 of .Anfa�g/�: we count the number of occurrences
of aC1 and a�1 separately.

Definition 1. An orientable Wicks form is a cyclic word Œw� over A such that

(i) if a� 2 A occurs in w (for a 2 AC and � 2 f˙1g) then a�� occurs exactly once
in w;

(ii) w is cyclically reduced, and
(iii) if a�

i aı
j is a factor of Œw� then a�ı

j a��
i is not a factor of Œw�.

We shall abuse notation by referring to aWicks form Œw� as w when convenient. An
orientableWicks form Œw� D Œw1w2 : : : �, over A, is isomorphic to Œw0� D Œw0

1w0
2 : : : �,

over the alphabet A0, if there exists a bijection ' W A ! A0 with '.a�1/ D '.a/�1

such that Œ'.w/� D Œw0� (where '.w/ D '.w1/'.w2/ : : : ). The relation “is isomor-
phic to” is an equivalence relation on the orientable Wicks forms over A.

If Œw� is an orientable Wicks form then w, when considered as an element of the
free group F generated by a1; a2; : : : , is an element of the commutator subgroup. We
define the algebraic genus ga.w/ of Œw� to be the least positive integer ga such that
w is a product of ga commutators in F .

The topological genus gt .w/ of an orientable Wicks form w D w1 : : : w2e�1w2e

is defined to be the topological genus of the orientable compact connected surface
obtained by labelling and orienting the edges of a 2e�gon (which we consider as a
subset of the oriented plane) according to w and then identifying edges with the same
labels (respecting orientation).

Proposition (cf. [4], [3]). The algebraic genus and the topological genus of an
orientable Wicks form coincide.

We define the genus g.w/ of an orientable Wicks form Œw� to be g.w/ D ga.w/ D
gt .w/.
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Consider the orientable compact surface S associated to an orientable Wicks form
w D w1 : : : w2e . This surface carries an embedded graph � � S such that S n� is an
open polygon with 2e sides (and hence connected and simply connected). Moreover,
conditions (ii) and (iii) on the Wicks form imply that � contains no vertices of degree 1

or 2 (or equivalently that the dual graph of � � S contains no faces which are 1-gons
or 2-gons). This construction also works in the opposite direction: given a graph
� � S with e edges and no vertices of degree 1 or 2 on an orientable compact
connected surface S of genus g such that S n � is connected and simply connected,
we get an orientable Wicks form of genus g and length 2e by labelling and orienting
the edges of � and by cutting S open along the graph � . The associated orientable
Wicks form is defined as the word which appears in this way on the boundary of
the resulting polygon with 2e sides. Henceforth we identify orientable Wicks forms
with their associated embedded graphs � � S , speaking of vertices and edges of
orientable Wicks forms.

The formula for the Euler characteristic

�.S/ D 2 � 2g D v � e C 1

(where v denotes the number of vertices and e the number of edges in � � S ) shows
that an orientable Wicks form of genus g has length at least 4g (the associated graph
has then a unique vertex of degree 4g and 2g edges) and length at most 6.2g �1/ (the
associated graph has then 2.2g � 1/ vertices of degree three and 3.2g � 1/ edges).

We call an orientable Wicks form of genus g maximal if it has length 6.2g �1/. It
is convenient to interpret a genus g Wicks form as an oriented circuit in the graph �;
that is a circuit which traverses every edge of the graph exactly twice, once in each
direction, but contains no instance of an edge followed by its reverse (for more details
concerning oriented circuits see [9]). The dual graph of a Wicks form is an ideal
triangulation, as defined by L. Mosher [6]. It is shown in [6] that ideal triangulations
are invariant under Dehn twists.

Let g be a positive integer, A D fa˙1
1 ; : : : ; a˙1

6g�3g and B D fb˙1
1 ; : : : ; b˙1

n g
be alphabets and let A� and B� be the free monoids on A and B , respectively.
Define .a�1

i /�1 D ai and for a word w D x1 : : : xn 2 A� with xi 2 A define
w�1 D x�1

n : : : x�1
1 . Let ˆ be a map from A to B�, such that ˆ.ai / is freely reduced

and ˆ.a�1
i / D ˆ.ai /

�1, for all i . Then ˆ induces a map, also denoted ˆ, from A�
to B�. Let u 2 A� and w be the word obtained from ˆ.u/ by free reduction. Then
we say that .ˆ; u/ is a representation of w. If ˆ.u/ is cyclically reduced then .ˆ; u/

is said to be a non-cancelling representation of w.
Given a Wicks form Œu� of genus g we say that .ˆ; u/ is a genus g Wicks repre-

sentation of w 2 B� if there is u0 2 Œu� such that .ˆ; u0/ is a representation of w.
If u and v are isomorphic genus g Wicks forms then there exists a genus g Wicks
representation .ˆ; u/ of w if and only if there exists a genus g Wicks representation
.‰; v/ of w. If there exists a genus g Wicks representation of w then there also exists
a non-cancelling genus g representation of w (see [3]).
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Definition 2. For w 2 B� we define M.g; w/ to be the number of isomorphism
classes I of maximal Wicks forms over A, of genus g, such that there exists a non-
cancelling Wicks representation .ˆ; u/ of w, for some u 2 I .

We shall say a word w 2 B� has genus g if w has a genus g Wicks representation
but no Wicks representation of genus less than g. If w does not have a Wicks
representation, of any genus, we define its genus to be 1. A cyclically reduced
word w has genus g < 1 if and only if it represents an element of the commutator
subgroup of the free group on fb1; : : : ; bng (see [3]).

2. Words with many representations

In the sequel, if u 2 A� and w 2 B�, for alphabets A and B , and there exists a
non-cancelling representation .ˆ; u/ of w then we shall say that w is obtained from
u by non-cancelling substitution.

Theorem. There is a sequence w2, w3, w4, … of words over an alphabet B of size 24

such that

(i) wg has genus g and

(ii) M.g; wg/ > gŠ, for g > 1010.

Proof. Consider a maximal Wicks form w of genus g and length 12g � 6. We colour
vertices of the graph � of w so that no edge is incident to two vertices of the same
colour. A straightforward induction on the number of vertices shows that, for a simple
graph whose vertices have degree at most d , vertices may be coloured in this way
using at most d C 1 colours. In our case � has no vertex of degree more than 3 (in
fact is regular of degree 3) so four colours 1, 2, 3, 4 are sufficient.

We construct a new labelled oriented graph � 0 on the surface S associated to w,
as follows. The underlying graph of � 0 is the barycentric subdivison of � . Thus � 0
has two types of vertex; the original vertices of � which are of degree 3, and new
vertices of degree 2 corresponding to edges of G. All edges of G0 join a vertex of
degree 3 to a vertex of degree 2 and we orient each edge from the degree 3 vertex
to the degree 2 vertex. The vertices of � 0 of degree 3 inherit a colouring from the
corresponding vertices of � . Now let B D f˛˙1

j ; ˇ˙1
j ; �˙1

j j j D 1; 2; 3; 4g be an
alphabet disjoint from A. Let u be a vertex of � 0 of degree 3 and colour j . Choose
one of the 3 edges emanating from u and call it e1. Choose one of the other edges
and call it e2 and call the third e3. Label the oriented edges e1, e2 and e3 coming out
of u with j̨ , ǰ by �j , respectively, as shown in Figure 1. Repeat this for all degree 3

vertices of � 0. Now reading the oriented circuit C with this labelling we obtain a
word v 2 B�. Moreover, the condition on the colouring of vertices of � means that
v is obtained from w by non-cancelling substitution.
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j̨ǰ

�j

Figure 1. Labelling of edges of � 0.

To simplify the estimation of the lower bound below we now make a further
adjustment to the current labelling of � 0. Let u be a vertex of degree 3 with outgoing
edges labelled j̨ ; ǰ ; �j 2 B . Then either ˛�1

j ǰ or ˇ�1
j j̨ is a factor of w00.

Moreover, if ˛�1
j ǰ is a factor of w00 then so are ˇ�1

j �j and ��1
j j̨ , whereas if ˇ�1

j j̨

is a factor then so are ˛�1
j �j and ��1

j ǰ . In the latter case we alter the labelling on the
edges incident to u by interchanging labels �j and ǰ : as shown in Figure 2, where
the curved arcs indicate the direction in which the boundary of Sn� 0 is read. The

j̨ j̨ǰ

ǰ�j

�j

Figure 2. Adjustment of labels on � 0.

result is that ˛�1
j ǰ , ˇ�1

j �j and ��1
j j̨ are subwords of the (altered) word w00. We

perform this alteration, if necessary, on every vertex, of degree 3, of � 0. By reading
the circuit C with these altered labels we obtain a new word v; also obtained from w

by non-cancelling substitution. Furthermore this word v 2 B� satisfies the following
conditions.

(i) Every letter of v from BC of colour j is followed by a letter of colour k ¤ j

from BnBC.
(ii) Every letter of v from BnBC is followed by a letter of the same colour from

BC.
(iii) None of ˇ�1

j j̨ , ˛�1
j �j or ��1

j ǰ occur as subwords of v.
(iv) The length of v is 24g � 12.

An example of this construction is given after the proof.
Let us show that v cannot be obtained by a non-cancelling substitution from

a Wicks form of genus k, where k < g. Suppose that .ˆ; u/ is a genus k non-
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cancelling representation of v. Since a Wicks form of genus k has length at most
12k � 6 � 12.g � 1/ � 6 and v has length 24g � 12 there must be some letter a

occurring in u such that ˆ.a/ > 2. Let a be such a letter. Then ˆ.a/ contains a
subword xyz, where x; y; z 2 B . As a�1 also occurs in u both xyz and z�1y�1x�1

must be subwords of v. However, from (i) and (ii) above, positive and negative powers
of letters of v alternate. Moreover, if j is fixed and x; y 2 f j̨ ; ǰ ; �j g then v may
have subword x�1y but does not have subword xy�1. This means that a subword
of v of length three always has form x�1

i yiz
�1
j or xiy

�1
j zj , where x˙1

i ; y˙1
i ; y˙1

j

and z˙1
j are elements of B . Therefore v cannot contain both subwords xyz and

z�1y�1x�1, and the result follows. Hence the genus of v is g.
Now we wish to count the number of words v that may arise in this way. First

note that we may read the word v starting from any vertex of � 0 and so we may
choose v so that it begins with j̨ , for some j 2 f1; 2; 3; 4g. Let V.g/ denote the
set of all freely reduced words of B� which satisfy (i) to (iv) above and which begin
with j̨ , for some j ; so v 2 V.g/. If u belongs to V.g/ and x 2 f˛s; ˇs; �sg occurs
in u then the letter following x belongs to

S
i¤sf˛�1

i ; ˇ�1
i ; ��1

i g; so there are nine
possibilities for this letter. If y is a letter of BnBC occurring in u then the letter
following y is completely determined by conditions (ii) and (iii) above. Given that
there are 4 choices for the first letter j̨ of u and that u has length 24g �12 this means
that jV.g/j D 4 � 912g�7.

Let M.g/ D maxfM.g; v/ j v is a reduced word of genus gand length 24g�12g
and let W.g/ be the number of isomorphism classes of maximal oriented Wicks forms
of genus g. Then jV.g/jM.g/ � W.g/. However it follows from [1] that W.g/ grows
faster than gŠ; in fact setting

m.g/ D
�

1

12

�g .6g � 4/Š

gŠ.3g � 2/

we have W.g/ � m.g/. (In [1] m.g/ D m
g
1 .) Using upper and lower bounds for nŠ,

from [8], straightforward calculations give

M.g/ � W.g/=M.g/ � m.g/=.4 � 912g�7/ > gŠ

for g > 1010, and the statement of the theorem follows.

Example. The quadratic word

w D a1a2a3a4a5a�1
1 a6a�1

2 a�1
5 a7a8a�1

3 a�1
6 a9a�1

7 a�1
4 a�1

8 a�1
9

gives rise to the labelled graph of Figure 3, embedded on an orientable surface of
genus 2; so this word is a maximal Wicks form of genus 2. (The small curved arrows
indicate the direction to be taken at each vertex in reading the circuit C .) A colouring
of the graph with colours 1, 2 and 3 is also shown in the figure.

The barycentric subdivision of this graph with its new orientation and a choice of
new labelling is shown in Figure 4.
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3

31

2

2 1
a1

a3

a4a5

a6

a7

a8a9

Figure 3. A maximal Wicks form.
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31

2

2 1

˛1

˛1

˛2

˛2

˛3

˛3 ˇ1

ˇ1

ˇ2

ˇ2

ˇ3

ˇ3

�1

�1

�2

�2

�3

�3

Figure 4. Barycentric subdivision and new labelling.

Starting by reading the edge labelled ˛1 coming out of the rightmost vertex we
obtain the word

v D ˛1˛�1
3 ˇ3��1

1 ˛1˛�1
3 ˇ3˛�1

2 ˇ2ˇ�1
1 �1ˇ�1

3 �3˛�1
2 ˇ2ˇ�1

1 �1��1
2

˛2ˇ�1
3 �3��1

2 ˛2��1
3 ˛3˛�1

1 ˇ1ˇ�1
2 �2��1

3 ˛3˛�1
1 ˇ1ˇ�1

2 �2��1
1 :

No adjustment of the labels is required as v contains none of the forbidden subwords.

As mentioned in the introduction the objects counted in [2] are equivalence classes
of representations of particular words wg ; whereas here we count (isomorphism
classes of) representations themselves. It seems plausible that by choosing the words
wg carefully the size of equivalence classes could be made small, but we have no
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proof of any such claim. We can however offer some evidence that it is possible, by
making a moderate increase in the size of the alphabet, to choose the words wg from
a much more limited set than V.g/ above. A word in B� is said to be square-free if
it contains no subword of the form uu, where u is a non-trivial element of B�. Such
square-free words exist (see for example [7], Chapter 4).

Corollary. In the theorem above, replacing B with an alphabet of size 80, the words
wg may be chosen to be square-free and the conclusion of the theorem then holds for
g > 1017.

Proof. Let w of be a maximal Wicks form of genus g and length 12g � 6 and, as
in the proof of the theorem, let v be the label of the oriented circuit C on the sur-
face corresponding to w with the labelling constructed in the proof. Now for each
letter xj 2 f j̨ ; ǰ ; �j g � B , where j D 1; 2; 3 or 4, define a set EC.xj / D
fxj;1; xj;2; xj;3g and define E.xj / D EC.xj / [ fx�1jx 2 EC.xj /g and E DS4

j D1.E. j̨ / [ E. ǰ / [ E.�j //. Further let ES D fx˙1
1;0 ; x˙1

2;0; x˙1
3;0 ; x˙1

4;0g and let
OE D E [ ES .

Fix some element xC1
i 2 B which occurs in v. If xi occurs s times in v, then v can

be written as v D u1xiu2xiu3 : : : xiusxiusC1 where the words u1; u2; : : : ; us; usC1

do not contain xi (they contain x�1
i , of course, but we are interested in positive powers

of xi only). Now v is transformed as follows. Choose a square-free word t1 : : : ts�1

of length s � 1 in E.xi /
�. Replace the first occurrence of xi with xi;0 and replace the

j th occurrence of xi with tj �1, for j D 2; : : : ; s. Reading the oriented circuit C each
occurrence of xi is paired to an occurrence of x�1

i in v; as each edge is read in both
directions. The occurrence x�1

i paired to the j th occurrence of xi is now replaced by
x�1

i;0 if j D 1, and by t�1
j �1 otherwise. (The special letter xi;0 is introduced to ensure

that all cyclic permutations of the resulting word are square-free, as we are dealing
with cyclic words.) Repeat this transformation with respect to every letter of positive
exponent occurring in v and denote the resulting word by z. Then z 2 OE� is obtained
by non-cancelling substitution from w.

It is easy to see that z is square-free as follows. Suppose not: then z has a
subword uu. Let u D r1r2 : : : rp , where ri 2 E. Set j1 D 1 if r1 is an element of
E of exponent C1 and set j1 D 2 otherwise. Since z consists of alternating positive
and negative powers then rj1

will be a positive power. Then rj1
D ei 2 E.xi /, for

some i . Suppose that there are p occurrences of ei in u, namely rj1
; : : : ; rjp

, with
j1 < � � � < jp . Since uu is a subword of z the word rj1

: : : rjp
rj1

: : : rjp
is a subword

of the word t D t1 : : : ts�1 used to construct z, above. This contradicts the choice of
t as a square-free word. Hence z is square-free as claimed.

The argument of the proof of the theorem shows that z has genus g. As v begins
with j̨ the first letter of z is xj;0 and so there are 4 possibilities for this letter. Each
other letter of z of positive exponent is obtained by substitution of one of the three
elements of E.xj / for xj , for some xj 2 BC; or is the first letter of its kind in z in
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which case it is a uniquely determined element of ES . It follows that there are at
most 4 � 2712g�7 possibilities for z. The result now follows.

Acknowledgements. The authors are indebted to A. G. Miasnikov for his useful
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