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Enumerating limit groups

Daniel Groves and Henry Wilton

Abstract. We prove that the set of limit groups is recursively enumerable, answering a question
of Delzant. One ingredient of the proof is the observation that a finitely presented group with
local retractions (à la Long and Reid) is coherent and, furthermore, there exists an algorithm
that computes presentations for finitely generated subgroups. The other main ingredient is the
ability to algorithmically calculate centralizers in relatively hyperbolic groups. Applications
include the existence of recognition algorithms for limit groups and free groups.
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A limit group is a finitely generated, fully residually free group. Recent research
into limit groups has been motivated by their role in the theory of the set of homo-
morphisms from a finitely presented group to a free group, and in the logic of free
groups. This research has culminated in the independent solutions to Tarski’s prob-
lems on the elementary theory of free groups by Z. Sela (see [19], [20] et seq.) and
O. Kharlampovich and A. Miasnikov (see [12], [13] et seq.). Sela’s work extends to
the elementary theory of hyperbolic groups [21].

We will be entirely concerned with finitely presentable groups. A class of groups
G is recursively enumerable if there exists a Turing machine that outputs a list of
presentations for every group G . T. Delzant asked if the class of limit groups is
recursively enumerable [22, I.13].

Theorem A (Corollary 3.7). The class of limit groups is recursively enumerable.

Addendum. In [4] and [9], [8] it is shown that the isomorphism problem is solvable
for the class of limit groups. Therefore, one can improve the above to a list in which
each (isomorphism class of) limit group appears once and only once (Delzant [22]
calls this property recursive).

On the other hand, using Tietze transformations, one can easily adapt the list so
that it contains each finite presentation of a limit group once and only once.
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To enumerate limit groups, our approach is to use the structure theory of limit
groups developed in [13]. An equivalent structure theory is described in [19], which
could also be used. Either way, two problems need to be solved. First, one needs
to be able to compute presentations for finitely generated subgroups of limit groups.
We call this property effective coherence. Secondly, one needs to be able to compute
centralizers of elements in limit groups. To solve the second problem we use the
relatively hyperbolic structure on limit groups found in [5] and [1]. Our solution to
the first problem relies on local retractions.

D. Long andA. Reid [14] defined a group to have local retractions, or property LR,
if every finitely generated subgroup is a retract of a finite-index subgroup. A finitely
presented group with local retractions is coherent. Furthermore, one can compute
presentations for subgroups.

Theorem B (Theorem 2.4). There exists an algorithm that, given a finite presenta-
tion for a group G with local retractions and a finite set of elements S , outputs a
presentation for the subgroup generated by S .

It is a remarkable fact that limit groups are finitely presented. It was proved in [24]
that limit groups have local retractions. There is a lengthier proof that limit groups are
effectively coherent using the theorem, also proved in [24], that iterated centralizer
extensions are coset separable with respect to their vertex groups.

As an application of Theorem A, in Section 4 we prove the following theorem.

Theorem C (Theorem 4.1). There exists an algorithm that, given as input a presen-
tation for a group G and a solution to the word problem in G, determines whether or
not G is a limit group.

In Corollary 4.3, we deduce the existence of a similar recognition algorithm for
free groups (pointed out to us by Gilbert Levitt).

This paper is the first of a series, in which we intend to prove algorithmic ver-
sions of Sela’s results. Specifically, enumerating limit groups will be useful in the
algorithmic construction of Makanin–Razborov diagrams over free groups.
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1. Effective coherence

A finitely generated group is coherent if all of its finitely generated subgroups are
finitely presented. We will be interested in the following algorithmic version of
coherence.

Definition 1.1. A coherent group G is effectively coherent if there exists an algorithm
that, given a finite subset S as input, outputs a presentation for the subgroup generated
by S .

A class G of coherent groups is uniformly effectively coherent if there exists an
algorithm that, given as input a presentation of a group G 2 G and a finite set S of
elements of G, outputs a presentation for the subgroup of G generated by S .

An appealing consequence of this property is that, under mild hypotheses, one
can determine if a homomorphism to an effectively coherent group is injective.

Lemma 1.2. If a group G is effectively coherent then there exists an algorithm that,
given a presentation for a group H , a solution to the word problem in H , and a
homomorphism f W H ! G, determines whether f is injective.

Proof. Given a presentation for the image of f and a solution to the word problem
in H , it is easy to check whether or not f has a well-defined inverse and hence
if f is injective. Therefore, if G is effectively coherent it is easy to check if f is
injective.

Remark 1.3. Even without a solution to the word problem in H , there is a Turing
machine that will confirm in finite time if the homomorphism f is injective. Indeed, if
f is injective then we know what the inverse to f must be. By effective coherence, it is
possible to compute a presentation for the image of f , and the inverse homomorphism
exists if and only if the relations for f .H/ hold in H (under the supposed inverse
map). Even though the word problem for H may be unsolvable, the words which are
equal to 1 in H are recursively enumerable. If there is an inverse homomorphism then
the relations for f .H/ (interpreted as words in the generators for H ) will eventually
appear on this list.

Of course, if the word problem in H is unsolvable then there will in general be
no Turing machine which terminates if the map f is not injective. For example, one
cannot tell in general if the group H is the trivial group.

It is immediate that a finitely generated subgroup of an effectively coherent group
is effectively coherent. If G is a class of groups, denote by �.G / the class of finitely
generated subgroups of groups in G . We are interested in effective coherence be-
cause it allows the property of being recursively enumerable to pass from G to �.G /.
Furthermore, uniform effective coherence also passes to subgroups.
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Lemma 1.4. If G is recursively enumerable and uniformly effectively coherent then
�.G / is recursively enumerable and uniformly effectively coherent.

Proof. Enumerating the presentations of groups G 2 G and finite subsets S � G,
then using uniform effective coherence to compute presentations for hSi, one enu-
merates presentations for every group in �.G /. So �.G / is recursively enumerable.

Given a presentation for a group G 2 �.G / and a finite subset S of G, enumerate
groups K 2 G and homomorphisms f W G ! K.1 Moreover, given a homomorphism
f W G ! K, wait to see if the Turing machine described in Remark 1.3 shows that f

is injective. Since G 2 �.G /, running the above tests in parallel one will eventually
find such an injection f . Using the effective coherence of K, one can now compute
a presentation for hf .S/i. So �.G / is uniformly effectively coherent.

We approach effective coherence through local retractions.

2. Local retractions

A group G retracts onto a subgroup H if the inclusion map H ,! G admits a left-
inverse � W G ! H . The subgroup H is called a retract and the map � is a retraction.
Following [14], a group has local retractions if every finitely generated subgroup is a
retract of a finite-index subgroup. This has immediate consequences for coherence.
Denote by FX the free group on a set X .

Lemma 2.1 ([23], Lemma 1.3). Let G D hX jRi be a finitely presented group, and
suppose that � is a retraction from G onto a subgroup H . Fix a lift of the retraction
� to a map �0 W FX ! FX . Then a ( finite) presentation for H is

hX jR; fx�1�0.x/ j x 2 Xgi:
Proof. Let p W FX ! G be the natural epimorphism and let q D � B p W FX ! H .
Denote the inclusion H ,! G by i and note that p B �0 D i B q. The lemma follows
directly from the claim that

ker q D ker phhfx�1�0.x/ j x 2 Xgii:
Because q D � B p it follows that ker p � ker q. For any x 2 X we have

q B �0.x/ D � B p B �0.x/ D � B i B q.x/ D q.x/

and hence q.x�1�0.x// D 1. So ker phhfx�1�0.x/ j x 2 Xgii � ker q.
For the reverse inclusion, note that if g 2 ker q then p B �0.g/ D 1 and hence

�0.g/ 2 ker p. But it is clear that g�1�0.g/ 2 hhfx�1�0.x/ j x 2 Xgii and hence
g D �0.g/.g�1�0.g//�1 2 ker phhfx�1�0.x/ j x 2 Xgii as required.

1One does not need a solution to the word problem for K here: in parallel enumerate all maps of the
generators of G to K and all possible proofs that a given map extends to a homomorphism. This will
eventually find all homomorphisms.
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Corollary 2.2. Let G be a finitely presented group. There is an algorithm that takes
as input a finite presentation for G and a collection of words which are the images
of the generators under a homomorphism � W G ! G that is a retraction onto �.G/,
and outputs a presentation for �.G/.

We would like to thank the referee for pointing out that Lemma 2.1 was already
proved by Wall in [23], and that a stronger version of Corollary 2.2 holds than we
had in the previous version. We include a proof of Lemma 2.1 for completeness.

Since finite-index subgroups of finitely presented groups are finitely presented,
coherence for finitely presented groups with local retractions follows immediately.

Proposition 2.3. If a finitely presented group G has local retractions then G is
coherent.

By [14, Theorem 2.4], groups with local retractions are residually finite and hence
have (uniformly) solvable word problem. Let LR be the class of finitely presented
groups with local retractions.

Theorem 2.4. The class LR is uniformly effectively coherent.

Proof. Suppose we are given a finite presentation for a group G 2 LR and a finite
collection of elements S � G . Using the Reidemeister–Schreier Process (see, for
instance, [15]), we can enumerate finite presentations for all finite-index subgroups
K of G. Since G 2 LR, there is a finite-index subgroup K of G so that hSi � K

and so that there exists a retraction � W K ! hSi.
We find such a retraction as follows. In parallel, consider each of the finite-

index subgroups of G. Given such a finite-index subgroup K, look for the ele-
ments of S as words in the generators for K. Suppose we have found a finite-
index subgroup K so that hSi � K, and a finite presentation hX jR.X/i of K, with
S D fs1.X/; : : : ; sn.X/g written as words in X˙. Now search for a collection of
words Y in S˙ with a bijection � W X ! Y so that each of the relations of the form
R.Y / holds and so that for each i we have si .Y / D si .X/. Then the map � extends
to a retraction � W K ! hSi. Since there is a retraction, we will eventually find such
a K and Y .

The algorithm of Corollary 2.2 now computes a presentation for hSi.

3. Enumerating � and L

The class of iterated extensions of centralizers is defined inductively. If G is a group,
g 2 G and Z.g/ is the centralizer of g then an amalgamated free product

G0 D G �Z.g/ .Z.g/ � Zn/

is said to be obtained from G by extension of centralizers.
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Definition 3.1. The class � of iterated extensions of centralizers is the smallest class
of groups containing all finitely generated free groups which is closed under extension
of centralizers. The class of limit groups is defined to be

L D �.�/;

the class of finitely generated subgroups of iterated extensions of centralizers.

The usual definition of limit groups is as finitely generated fully residually free
groups.

Definition 3.2. A group G is fully residually free if, for every finite subset X � G n1,
there exists a homomorphism f W G ! F , for a free group F , such that 1 … f .X/.

A finitely generated group is fully residually free if and only if it is in L, by a
theorem of [13]. Fully residually free groups are residually finite (since free groups
are) and so have solvable word problem. Using the fact that limit groups are fully
residually free, the following fact is well known and easy to prove.

Lemma 3.3. If G is a limit group and g 2 G then Z.g/ is a free abelian group.

By Theorem B of [24], limit groups have local retractions. It is clear that all
groups in � are finitely presented.

Corollary 3.4. The class � is uniformly effectively coherent.

By Lemma 1.4, to enumerate limit groups it remains only to enumerate �. The
crucial step is the ability to calculate centralizers.

For this we use the relatively hyperbolic structure of limit groups (found inde-
pendently by E. Alibegović [1] and F. Dahmani [5]). See [11] for an introduction
to relatively hyperbolic groups (where in Farb’s language we mean ‘relatively hy-
perbolic with BCP’). Limit groups are torsion-free and hyperbolic relative to a finite
collection of maximal noncyclic abelian subgroups. Dahmani [6] provides an algo-
rithm which takes as input a finite presentation of such a relatively hyperbolic group
and outputs a basis for a representative of each conjugacy class of noncyclic maximal
abelian subgroup (Dahmani’s algorithm takes as input an arbitrary finite presentation,
and does not need to be given the ‘relatively hyperbolic structure’ of the group).

Another important tool will be the universal theory of a group. The elementary
theory of a group G is the set of all sentences in first-order predicate logic (possibly
with coefficients) that hold in G. For example, G is abelian if and only if the sentence

8x; y 2 G Œx; y� D 1

is in the elementary theory of G. A universal sentence is a sentence in the elementary
theory with a single universal quantifier. The universal theory of G is the set of
universal sentences in the elementary theory of G.
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In [16], Makanin proved that the universal theory of a free group F is decidable –
that is, there exists an algorithm that, given as input a universal sentence, determines
whether or not it lies in the universal theory of F . The universal theory of torsion-free
relatively hyperbolic groups with abelian parabolic subgroups is also decidable, by
another algorithm of Dahmani [7] (again the input is any finite presentation for the
group, along with the universal sentence).

There is an alternative approach to calculating centralizers using biautomatic struc-
tures. It follows from work of Rebbechi [18] that limit groups are biautomatic, and the
algorithm for finding automatic structures described in [10] can be adapted to find bi-
automatic structures [3]. In particular, one can calculate the fellow-traveller constant
of the bicombing. Using the ideas of [2], it is then easy to compute a presentation
for the centralizer of an arbitrary finite subset.

Theorem 3.5. There exists an algorithm that, given as input a presentation for a
group G 2 � and an element g 2 G, outputs a minimal set of generators for Z.g/.

Proof. Apply Dahmani’s algorithm from [6] to find a basis for a representative of
each conjugacy class of maximal noncyclic abelian subgroup.

Let g 2 G. There are two cases to consider: either g is parabolic (which means
conjugate into a noncyclic abelian subgroup) or else g is hyperbolic (which means g

is not parabolic).
It is possible to decide whether or not g is parabolic. This is because the universal

theory of G is decidable [7]. The element is parabolic if and only if there exists an
element h 2 G so that hgh�1 commutes with each element of one of the above bases
for the noncyclic abelian subgroups. This is a existential sentence over G, which we
can determine the truth of by Dahmani’s algorithm from [7].

If g is parabolic, then we will find such an element h, and the conjugates by h�1

of the basis for the maximal noncyclic abelian subgroup generates the centralizer of
g. In this case we have found a minimal generating set for Z.g/.

If g is hyperbolic then its centralizer is generated by a maximal root of g. Ac-
cording to D. Osin [17], Theorem 1.16 (3), it is possible to algorithmically extract
roots from hyperbolic elements of G. On the face of it, Osin’s algorithm needs to be
given as input the relatively hyperbolic structure of the group. However, Dahmani’s
algorithm from [6] will find this structure, so we can make Osin’s algorithm take only
the finite presentation as input. Therefore, if g is hyperbolic we can find a maximal
root of g, and this maximal root is a minimal generating set for Z.g/.

Corollary 3.6. The set � is recursively enumerable.

Combining this with Corollary 3.4 it follows that the set of limit groups L is
recursively enumerable, by Lemma 1.4.

Corollary 3.7. The set of limit groups L is recursively enumerable and uniformly
effectively coherent.
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4. Recognition algorithms

Theorem 4.1. There exists an algorithm that, given as input a presentation for a
group G and a solution to the word problem in G, determines whether or not G is a
limit group.

Proof. Let P D hX jRi be the finite presentation defining G. We have already noted
that it is possible to enumerate all finite presentations of limit groups. Thus if G is a
limit group then P will eventually appear on this list.

Suppose then that G is not a limit group. Then G is not fully residually free, so
there is a finite set fg1; : : : ; grg of nontrivial elements of G so that for any homomor-
phism � from G to a free group F , at least one of the gi is in ker.�/. This property
of G can easily be translated into a system of equations and inequations over F as
follows. Consider both the elements of R and each gi as a word in X˙, and write
R D fr1; : : : ; rkg. Then the following sentence encodes the fact that at least one of
fg1; : : : ; grg is in the kernel of any homomorphism from G to F :

8X � F .r1.X/ D 1 ^ � � � ^ rk.X/ D 1/ ) .g1.X/ D 1 _ � � � _ gr.X/ D 1/: (1)

By Makanin’s algorithm [16], it is possible to decide whether or not universal sen-
tences are true in a free group. Enumerate finite sets of nontrivial elements of G

(the solution to the word problem allows us to know that the elements are nontrivial).
Now, for each such finite set fg1; : : : ; grg, decide whether the sentence (1) is true or
not. If G is not a limit group, we will eventually find a finite set for which (1) is true.

Of course, one cannot recognize limit groups amongst arbitrary finitely presented
groups.

A cyclically pinched group is an amalgamated free product of two free groups with
cyclic amalgamated subgroup. Some, but not all, of these groups are limit groups.
In [22], I.3, Sela asks for necessary or sufficient conditions for a cyclically pinched
group to be a limit group. We do not have an answer to this question. However,
Theorem 4.1 implies that (at least in principle) one can decide whether or not a
specific cyclically pinched group is a limit group. The following result was pointed
out to us by François Dahmani and Vincent Guirardel (its proof contains the core of
the proof of Theorem 4.1).

Corollary 4.2. There is an algorithm that takes as input a finite presentation of a
cyclically pinched group and decides whether or not the defined group is a limit group.

It does not matter whether the input presentation exhibits the cyclically pinched
nature of the group, since by applying some finite number of Tietze transformations it
is possible to find such a presentation. Such a presentation gives an explicit solution to
the word problem. Therefore Corollary 4.2 follows immediately from Theorem 4.1.



Enumerating limit groups 397

As remarked above, limit groups are torsion-free and hyperbolic relative to their
maximal abelian subgroups. There is an algorithm to distinguish free groups among
such relatively hyperbolic groups; indeed, it is proved in [8], Theorem 1.4, that there
exists an algorithm that computes the Grushko decomposition from a presentation
of such a group. Combining this with Theorem 4.1, we obtain a similar recognition
algorithm for free groups. This corollary was pointed out to us by Gilbert Levitt.

Corollary 4.3. There exists an algorithm that, given as input a presentation for a
group G and a solution to the word problem in G, determines whether or not G is
free.

One can also deduce a similar result for surfaces. In [9], Theorem D, it is shown
that there exists an algorithm that computes a JSJ decomposition for a torsion-free,
freely indecomposable group that is hyperbolic relative to its maximal abelian sub-
groups. In particular, combining this with the algorithm from [8], one can decide
whether or not a limit group is a surface group. It follows as before that there exists an
algorithm that, given as input a presentation for a group G and a solution to the word
problem in G, determines whether or not G is a (fully) residually free surface group.
(The only surface groups that are not residually free are the fundamental groups of
the non-orientable surfaces of Euler characteristic 1, 0 and �1.)
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