Profinite completions of orientable Poincaré duality groups of dimension four and Euler characteristic zero

Dessislava H. Kochloukova*

Abstract. Let p be a prime number, \mathcal{T} a class of finite groups closed under extensions, subgroups and quotients, and suppose that the cyclic group of order p is in \mathcal{T} .

We find some sufficient and necessary conditions for the pro- \mathcal{T} completion of an abstract orientable Poincaré duality group G of dimension 4 and Euler characteristic 0 to be a profinite orientable Poincaré duality group of dimension 4 at the prime p with Euler p-characteristic 0. In particular we show that the pro-p completion \hat{G}_p of G is an orientable Poincaré duality pro-p group of dimension 4 and Euler characteristic 0 if and only if G is p-good.

Mathematics Subject Classification (2000). 20E18, 20J05.

Keywords. Poincaré duality group, profinite completion, *p*-good group.

Introduction

In this paper we study pro- \mathcal{T} completions of abstract Poincaré duality groups of dimension 4 with Euler characteristic 0, where \mathcal{T} is a class of finite groups that is subgroup, extension and quotient closed and the cyclic group of order p is in \mathcal{T} for a fixed prime p. This paper can be considered as a natural continuation of an earlier paper where profinite and pro-p completions of an abstract orientable Poincaré duality group G of dimension 3 were studied [6].

One of the results obtained in [6] is an algebraic proof of the Reznikov's claim that the pro-p completion of the fundamental group of a closed orientable hyperbolic 3-manifold that violates the Thurston Conjecture is an orientable pro-p Poincaré duality group provided the pro-p completion is infinite [11]. A quite different proof of the same claim was independently discovered by T. Weigel [16].

We call a profinite group a strong PD_n group at p if it is a profinite Poincaré duality group of dimension n at p according to the definition of [15] and keep the name of profinite PD_n group at p for groups satisfying the original Tate's definition [10], [14]. We discuss in details both definitions in the preliminaries.

^{*}Partially supported by "bolsa de produtividade de pesquisa" from CNPq, Brazil.

In the case of pro-p groups both definitions are equivalent, but it is not known whether they are equivalent in general.

Theorem 1. Let p be a prime number and G be an abstract orientable Poincaré duality group of dimension 4 and Euler characteristic $\chi(G) = 0$.

Let T be a class of finite groups closed under subgroups, extensions and quotients, let the cyclic group of order p be in T and let C be a directed set of normal subgroups of finite index in G such that C induces the pro-T topology of G.

Then

$$\widehat{G}_{\mathcal{C}} = \lim_{\longleftarrow U \in \mathcal{C}} G/U$$

is an orientable profinite Poincaré duality group of dimension 4 at the prime p with Euler p-characteristic $\chi_p(\hat{G}_{\mathcal{C}}) = 0$ if and only if all of the following conditions hold:

- a) $\operatorname{cd}_p(\hat{G}_{\mathcal{C}})$ is finite and the Sylow p-subgroups of $\hat{G}_{\mathcal{C}}$ are not free or trivial, i.e., $2 \leq \operatorname{cd}_p(\hat{G}_{\mathcal{C}}) < \infty$;
- b) for every $U \in \mathcal{C}$ we have $\sum_{0 \le i \le 4} (-1)^i \dim_{\mathbb{F}_p} H_i(\hat{U}_{\mathcal{C}}, \mathbb{F}_p) = 0$;
- c) for every $U \in \mathcal{C}$ we have $2\dim_{\mathbb{F}_p} H_1(\hat{U}_{\mathcal{C}}, \mathbb{F}_p) \dim_{\mathbb{F}_p} H_2(\hat{U}_{\mathcal{C}}, \mathbb{F}_p) = 2$.

Furthermore, if the conditions a), b) and c) hold, then $\hat{G}_{\mathcal{C}}$ is a strong profinite orientable Poincaré duality group of dimension 4 at p.

Remarks. 1. Since $\infty > \operatorname{cd}_p(\widehat{G}_{\mathcal{C}}) \ge 1$ every Sylow *p*-subgroup of $\widehat{G}_{\mathcal{C}}$ is infinite.

- 2. If condition a) is substituted with $2 \le \operatorname{cd}_p(\widehat{G}_{\mathcal{C}}) \le 4$ condition b) can be substituted with $\chi_p(\widehat{G}_{\mathcal{C}}) = 0$, since $0 = \chi_p(\widehat{U}_{\mathcal{C}}) = \sum_{0 \le i \le 4} (-1)^i \dim_{\mathbb{F}_p} H_i(\widehat{U}_{\mathcal{C}}, \mathbb{F}_p)$.
- 3. Theorem 1 implies that if conditions a), b) and c) hold then the only possibility for $\operatorname{cd}_p(\widehat{G}_p)$ is 4.

An abstract group G is said to be good if the natural map between continuous and abstract cohomology $H^i(\hat{G}, M) \to H^i(G, M)$ is an isomorphism for every finite discrete G-module M, where \hat{G} is the profinite completion of G. The group G is p-good if $H^i(\hat{G}_p, M) \to H^i(G, M)$ is an isomorphism for every p-primary finite discrete \hat{G}_p - module M, where \hat{G}_p is the pro-p completion of G.

Theorem 1 easily implies that the pro-p completion \hat{G}_p of an abstract orientable PD₄ group G of Euler characteristic 0 is an orientable pro-p PD₄ group of Euler characteristic 0 if and only if G is p-good (see Corollary 2 c)).

It would be interesting to find out whether this generalizes to any dimension, i.e., whether for G an abstract orientable PD_n group of Euler characteristic 0 the pro-p completion \hat{G}_p is an orientable pro-p PD_n group of Euler characteristic 0 if and only if G is p-good.

In section 4 we show that when pro-p completions are considered the first of the conditions of Theorem 1 can be substituted with \hat{G}_p is not virtually procyclic. The new ingredient in the proofs of the following theorems is the application of some results

about virtually Poincaré duality pro-p groups and the number of higher dimensional ends of a pro-p group [7], [8].

Theorem 2. Let p be a prime number and G be an abstract orientable Poincaré duality group of dimension 4 and Euler characteristic $\chi(G) = 0$ with pro-p completion \hat{G}_p . Let \mathcal{C} be a directed set of normal subgroups of p-power index in G such that \mathcal{C} induces the pro-p topology of G.

Then \hat{G}_p is an orientable pro-p Poincaré duality group of dimension 4 with Euler characteristic $\chi(\hat{G}_p) = 0$ if and only if all of the following conditions hold:

- a) \hat{G}_p is not virtually procyclic;
- b) for every $U \in \mathcal{C}$ we have $\sum_{0 \le i \le 4} (-1)^i \dim_{\mathbb{F}_p} H_i(\widehat{U}_p, \mathbb{F}_p) = 0$;
- c) for every $U \in \mathcal{C}$ we have $2\dim_{\mathbb{F}_p} H_1(\hat{U}_p, \mathbb{F}_p) \dim_{\mathbb{F}_p} H_2(\hat{U}_p, \mathbb{F}_p) = 2$.

Finally we show that if condition c) from Theorem 1 is slightly modified then the only possibility for the pro-p completion of G that is not an orientable PD₄ pro-p group is to be virtually \mathbb{Z}_p -by- \mathbb{Z}_p .

Theorem 3. Let p be a prime number and G be an abstract orientable Poincaré duality group of dimension 4 and Euler characteristic $\chi(G) = 0$ with pro-p completion \hat{G}_p . Let \mathcal{C} be a directed set of normal subgroups of p-power index in G such that \mathcal{C} induces the pro-p topology of G. Suppose that:

- a) \hat{G}_p is not virtually procyclic and is not an orientable pro-p Poincaré duality group of dimension 4;
- b) for every $U \in \mathcal{C}$ we have $\sum_{0 < i < 4} (-1)^i \dim_{\mathbb{F}_p} H_i(\hat{U}_p, \mathbb{F}_p) = 0$;
- c) $\sup_{U \in \mathcal{C}} (2 \dim_{\mathbb{F}_p} H_1(\hat{U}_p, \mathbb{F}_p) \dim_{\mathbb{F}_p} H_2(\hat{U}_p, \mathbb{F}_p)) = m < \infty.$

Then \hat{G}_p is virtually \mathbb{Z}_p -by- \mathbb{Z}_p .

In [5], examples of orientable PD₃ groups M with pro-p completion \widehat{M}_p procyclic (both cases of finite or infinite occur) were constructed. Then the group $G = \mathbb{Z} \times M$ is an orientable PD₄ group with $\chi(G) = 0$ and the pro-p completion \widehat{G}_p is either virtually \mathbb{Z}_p or \mathbb{Z}_p -by- \mathbb{Z}_p . The group M is a double of a knot group and so M and G are not soluble, though in both cases \widehat{G}_p is soluble.

1. Preliminaries on abstract and profinite Poincaré duality groups

1.1. Basic definitions and properties. Let G be an abstract group and S be a commutative ring. A S[G]-module V is of type FP_m for some $0 \le m \le \infty$ if there exists a projective S[G]-resolution of V

$$\mathcal{R}: \cdots \to R_i \to R_{i-1} \to \cdots \to R_0 \to V \to 0$$

with R_i finitely generated for $i \leq m$. The group G is said to be of type FP_m if the trivial $\mathbb{Z}[G]$ -module \mathbb{Z} is of type FP_m .

For a profinite group H, a profinite ring R and a profinite R[[H]]-module W we say that W is of type FP_m over R if there is a profinite projective R[[H]]- resolution of W

$$Q: \cdots \to Q_i \to Q_{i-1} \to \cdots \to Q_0 \to W \to 0$$

with Q_i finitely generated for $i \leq m$. The profinite group H is of homological type FP_m over R if the trivial R[[H]]-module R is of type FP_m .

An abstract group G is a Poincaré duality group of dimension n, provided that G is a group of cohomological dimension $\operatorname{cd}(G)=n$ of type $\operatorname{FP}_{\infty}$ and $H^*(G,\mathbb{Z}[G])=\operatorname{Ext}_{\mathbb{Z}[G]}^*(\mathbb{Z},\mathbb{Z}[G])$ is concentrated in dimension n, where it is \mathbb{Z} . If the G-action on $H^n(G,\mathbb{Z}[G])$ is the trivial one, G is orientable; otherwise G is called non-orientable. There is an equivalent definition of abstract Poincaré duality group of dimension n, i.e., there is an isomorphism $H^i(G,M) \simeq H_{n-i}(G,D\otimes_{\mathbb{Z}}M)$ for all G-modules M and all i, where the dualizing module D is $H^n(G,\mathbb{Z}[G]) \simeq \mathbb{Z}$ [2], Ch. 8, Prop. 10.1.

There are two definitions of a profinite Poincaré duality group H of dimension n at a prime p [10], 3.4.6, [15]. The definitions differ at the point whether H should be of type $\operatorname{FP}_{\infty}$ over \mathbb{Z}_p . As mentioned in the introduction, we call the groups satisfying the definition of [15] strong profinite PD_n groups at p and the groups satisfying the original Tate's definition [10], 3.4.6, [14] we call profinite PD_n groups at p. A strong PD_n group at p has cohomological p-dimension $\operatorname{cd}_p(H) = n$, has type $\operatorname{FP}_{\infty}$ over \mathbb{Z}_p and $H^k(H, \mathbb{Z}_p[[H]]) = \operatorname{Ext}_{\mathbb{Z}_p[[H]]}^k(\mathbb{Z}_p, \mathbb{Z}_p[[H]])$ is 0 for $k \neq n$ and is \mathbb{Z}_p for k = n. If the action of H on $H^n(H, \mathbb{Z}_p[[H]])$ is trivial H is called orientable.

By [15], strong profinite PD_n groups at p are profinite PD_n groups at p. For a profinite PD_n group H at p and A an arbitrary p-primary finite discrete H-module the groups $H^i(H,A)$ are finite for all i [10], 3.4.6, [14]. The precise definition of a profinite PD_n group H at p can be found in [10], Chapter 3. Some important properties of such a group H are $\operatorname{cd}_p(H) = n$ and $\dim_{\mathbb{F}_p} H^i(H,\mathbb{F}_p) = \dim_{\mathbb{F}_p} H^{n-i}(H,\mathbb{F}_p)$ for all $0 \le i \le n$. A profinite PD_n group H at p is a strong profinite PD_n group at p if it is of type FP $_\infty$ over \mathbb{Z}_p . In [6] the definition of strong profinite PD_n groups at p was adopted (though the name strong was not used). Note that p-ro-p-PD_n groups are always of type FP $_\infty$ over \mathbb{Z}_p and over \mathbb{F}_p , hence are strong p-ro-p-PD_n groups.

Let G be an abstract group of finite cohomological dimension and of type FP_{∞} . The Euler characteristic $\chi(G)$ as defined in [2], Ch. IX, Sec. 6, is

$$\begin{split} \sum_{i} (-1)^{i} \operatorname{rk}_{\mathbb{Z}} H_{i}(G, \mathbb{Z}) &= \sum_{i} (-1)^{i} \dim_{\mathbb{F}_{p}} H_{i}(G, \mathbb{F}_{p}) \\ &= \sum_{i} (-1)^{i} \dim_{\mathbb{F}_{p}} H^{i}(G, \mathbb{F}_{p}). \end{split}$$

If *U* is a subgroup of finite index in *G* by [2], Ch. 9, Thm. 6.3, $\chi(U) = (G:U)\chi(G)$. For a profinite group *H* of finite cohomological *p*-dimension $\operatorname{cd}_p(H)$ and type

 $\operatorname{FP}_{\infty}$ over \mathbb{Z}_p the Euler p-characteristic $\chi_p(H)$ of H is

$$\begin{split} \sum_{i} (-1)^{i} \operatorname{rk}_{\mathbb{Z}_{p}} H_{i}(H, \mathbb{Z}_{p}) &= \sum_{i} (-1)^{i} \operatorname{dim}_{\mathbb{F}_{p}} H_{i}(H, \mathbb{F}_{p}) \\ &= \sum_{i} (-1)^{i} \operatorname{dim}_{\mathbb{F}_{p}} H^{i}(H, \mathbb{F}_{p}), \end{split}$$

where $H_i(H, \cdot)$ and $H^i(H, \cdot)$ are the continuous homology and cohomology.

1.2. Korenev's results. Recently more homological properties of pro-p PD $_n$ groups were discovered in [7] and [8]. As shown in [8], if a pro-p group H of type FP_n over \mathbb{F}_p has the property that $H^i(H,\mathbb{F}_p[[H]]) = 0$ for all $0 \le i < n$ and $0 < \dim_{\mathbb{F}_p} H^n(H, \mathbb{F}_p[[H]]) < \infty$, then H is virtually a pro-p PD_n group. In particular, $\dim_{\mathbb{F}_p} H^n(H, \mathbb{F}_p[[H]]) = 1$ and H is of type FP_{∞} . An earlier version of the above result was proved in [7], where the case n = 1 was considered.

Note that for pro-p groups it is still not known whether Stalling's type theorem holds, i.e., if H is a pro-p group with $\dim_{\mathbb{F}_p} H^1(H, \mathbb{F}_p[[H]]) > 0$, then H splits as a free product with amalgamation or an HNN extension over a finite subgroup.

2. Profinite completions of abstract Poincaré duality groups

Let G be an abstract group of type FP_{∞} and of finite cohomological dimension and let

$$\mathcal{R} \colon 0 \to R_m \xrightarrow{\partial_m} R_{m-1} \xrightarrow{\partial_{m-1}} \cdots \xrightarrow{\partial_2} R_1 \xrightarrow{\partial_1} R_0 \xrightarrow{\partial_0} \mathbb{Z} \to 0 \tag{1}$$

be a projective resolution of the trivial (right) $\mathbb{Z}[G]$ -module \mathbb{Z} with all projectives finitely generated. Let \mathcal{C} be a directed set of normal subgroups of finite index in G, i.e., for $U_1, U_2 \in \mathcal{C}$ there is $U \in \mathcal{C}$ such that $U \subseteq U_1 \cap U_2$. Define

$$\widehat{G}_{\mathcal{C}} = \lim_{\longleftarrow U \in \mathcal{C}} G/U$$

and for $U \in \mathcal{C}$ we define $\hat{U}_{\mathcal{C}}$ as the inverse limit U/M over those $M \in \mathcal{C}$ such that $M\subseteq U$.

Consider the complex $\mathcal{R}_U = \mathcal{R} \otimes_{\mathbb{Z}[U]} \mathbb{F}_p$ for $U \in \mathcal{C}$. Let

$$\widehat{\mathcal{R}} : 0 \to \widehat{R}_m \xrightarrow{\widehat{\partial}_m} \widehat{R}_{m-1} \xrightarrow{\widehat{\partial}_{m-1}} \cdots \xrightarrow{\widehat{\partial}_2} \widehat{R}_1 \xrightarrow{\widehat{\partial}_1} \widehat{R}_0 \xrightarrow{\widehat{\partial}_0} \mathbb{Z} \to 0$$
 (2)

be the inverse limit of the complexes \mathcal{R}_U over $U \in \mathcal{C}$. Thus by [6], (1),

$$\widehat{\mathcal{R}} \simeq \mathcal{R} \otimes_{\mathbb{Z}[G]} \mathbb{F}_p[[\widehat{G}_{\mathcal{C}}]]$$

and by [6], Lemma 2.1,

$$H_i(\widehat{\mathcal{R}}) \simeq \lim_{\stackrel{\longleftarrow}{U \in \mathcal{C}}} H_i(\mathcal{R}_U) \simeq \lim_{\stackrel{\longleftarrow}{U \in \mathcal{C}}} H_i(U, \mathbb{F}_p).$$
 (3) In the following lemma Tor denotes the left derived functor of \otimes in the category

of abstract modules.

Lemma 1 ([6], Thm. 2.5). Suppose that G is an abstract group of type FP_{∞} and finite cohomological dimension, \mathcal{C} a directed set of normal subgroups U of finite index in G. Suppose further that for a fixed prime p and for all $i \geq 1$,

$$\lim_{U\in\mathcal{C}}H_i(U,\mathbb{F}_p)=0.$$

Then

$$\operatorname{Tor}_i^{\mathbb{Z}[G]}(\mathbb{Z},(\mathbb{Z}/p^m\mathbb{Z})[[\widehat{G}_{\mathcal{C}}]]) = 0 \quad and \quad \operatorname{Tor}_i^{\mathbb{Z}[G]}(\mathbb{Z},\mathbb{Z}_p[[\widehat{G}_{\mathcal{C}}]]) = 0$$

for all $m \geq 1$ and $i \geq 1$. In particular $\hat{G}_{\mathcal{C}}$ is of type FP_{∞} over \mathbb{Z}_p .

Lemma 2 ([6], Cor. 2.7). Suppose that G is an abstract group of finite cohomological dimension cd(G) = m and type FP_{∞} . Let \mathcal{C} be a directed set of normal subgroups U of finite index in G. Suppose further that

$$\lim_{\longleftarrow U \in \mathcal{C}} H_i(U, \mathbb{F}_p) = 0$$

for a fixed prime p and for all $1 \le i \le m$.

Then the profinite group $\widehat{G}_{\mathcal{C}}$ is of finite cohomological p-dimension $\operatorname{cd}_p(\widehat{G}_{\mathcal{C}}) \leq m$. Further, it is of type $\operatorname{FP}_{\infty}$ over \mathbb{F}_p and over \mathbb{Z}_p , and its Euler p-characteristic $\chi_p(\widehat{G}_{\mathcal{C}}) = \chi(G)$.

Theorem 4. Let G be an abstract Poincaré duality group of dimension m and let C be a directed set of normal subgroups of finite index in G. Suppose further that there is a subgroup G_0 of finite index in G such that G_0 is orientable, that there is some $U_0 \in C$ with $U_0 \subseteq G_0$ and that, for all $i \ge 1$,

$$\lim_{U\in\mathcal{V}}H_i(U,\mathbb{F}_p)=0.$$

Then $\widehat{G}_{\mathcal{C}}$ is a strong profinite Poincaré duality group of dimension m at p, $(\widehat{G}_0)_{\mathcal{C}}$ is a strong orientable profinite Poincaré duality group of dimension m at p and $\chi_p(\widehat{G}_{\mathcal{C}}) = \chi(G)$.

Proof. Let

$$\mathcal{R} \colon 0 \to R_m \xrightarrow{\partial_m} R_{m-1} \xrightarrow{\partial_{m-1}} \cdots \xrightarrow{\partial_2} R_1 \xrightarrow{\partial_1} R_0 \xrightarrow{\partial_0} \mathbb{Z} \to 0 \tag{4}$$

be a projective resolution of the trivial $\mathbb{Z}[G_0]$ -module \mathbb{Z} with all projectives finitely generated.

Then $H^i(S) = H^i(G_0, \mathbb{Z}[G_0])$ is 0 for $i \neq m$ and \mathbb{Z} for i = m, where $S = \operatorname{Hom}_{\mathbb{Z}[G_0]}(\mathcal{R}^{\operatorname{del}}, \mathbb{Z}[G_0])$ is the dual complex. Thus S is a complex of left $\mathbb{Z}[G_0]$ -modules. Define \mathcal{T} the complex obtained from S by adding its unique non-trivial cohomology

$$\mathcal{T}: 0 \to S^0 \to S^1 \to S^2 \to \cdots \to S^m \to H^m(S) = \mathbb{Z} \to 0.$$

In particular, the complex \mathcal{T} is a projective resolution of the trivial left $\mathbb{Z}[G_0]$ -module \mathbb{Z} . By Lemma 1, $\operatorname{Tor}_i^{\mathbb{Z}[G_0]}(\mathbb{Z}, \mathbb{Z}_p[[(\widehat{G_0})_{\mathcal{C}}]]) = 0$ and similarly we get that $\operatorname{Tor}_i^{\mathbb{Z}[G_0]}(\mathbb{Z}_p[[(\widehat{G_0})_{\mathcal{C}}]], \mathbb{Z}) = 0$ for $i \geq 1$. Thus

$$\widehat{\mathcal{T}} = \mathbb{Z}_p[[(\widehat{G_0})_{\mathcal{C}}]] \otimes_{\mathbb{Z}[G_0]} \mathcal{T} : 0 \to T^0 \to T^1 \to T^2 \to \cdots \to T^m \to \mathbb{Z}_p \to 0$$

is a projective resolution of the trivial abstract left $\mathbb{Z}_p[[(\widehat{G}_0)_{\mathcal{C}}]]$ -module \mathbb{Z}_p with all projectives finitely generated, and hence is a profinite projective resolution of \mathbb{Z}_p over $\mathbb{Z}_p[[(\widehat{G}_0)_{\mathcal{C}}]]$.

Let \widehat{T}^{del} be the complex obtained from \widehat{T} by deleting the term \mathbb{Z}_p .

Note that $\widehat{\mathcal{T}}^{\text{del}}$ is obtained from the complex \mathcal{R}^{del} of projective finitely generated $\mathbb{Z}[G_0]$ -modules by applying first the functor $\text{Hom}_{\mathbb{Z}[G_0]}(\cdot,\mathbb{Z}[G_0])$ and then the functor $\mathbb{Z}_p[[(\widehat{G_0})_{\mathcal{C}}]] \otimes_{\mathbb{Z}[G_0]}$. The composition of these functors is the same as the composition of the functor $\otimes_{\mathbb{Z}[G_0]}\mathbb{Z}_p[[(\widehat{G_0})_{\mathcal{C}}]]$ and the functor $\text{Hom}_{\mathbb{Z}_p[[(\widehat{G_0})_{\mathcal{C}}]]}(\cdot,\mathbb{Z}_p[[(\widehat{G_0})_{\mathcal{C}}]])$ if applied on a complex of finitely generated, projective $\mathbb{Z}[G_0]$ -modules. Thus

$$\widehat{\mathcal{T}}^{\mathrm{del}} \simeq \mathrm{Hom}_{\mathbb{Z}_p[[(\widehat{G}_0)_{\mathcal{C}}]]}(\mathcal{P}^{\mathrm{del}}, \mathbb{Z}_p[[(\widehat{G}_0)_{\mathcal{C}}]]),$$

where $\mathcal{P} = \mathcal{R} \otimes_{\mathbb{Z}[G_0]} \mathbb{Z}_p[[(\widehat{G_0})_{\mathcal{C}}]] \simeq \widehat{\mathcal{R}}$ is an exact complex of right $\mathbb{Z}_p[[(\widehat{G_0})_{\mathcal{C}}]]$ -modules by Lemma 1. Then

$$\begin{split} H^{i}((\widehat{G_{0}})_{\mathcal{C}}, \mathbb{Z}_{p}[[(\widehat{G_{0}})_{\mathcal{C}}]]) &= \operatorname{Ext}^{i}_{\mathbb{Z}_{p}[[(\widehat{G_{0}})_{\mathcal{C}}]]}(\mathbb{Z}_{p}, \mathbb{Z}_{p}[[(\widehat{G_{0}})_{\mathcal{C}}]]) \\ &\simeq H^{i}(\operatorname{Hom}_{\mathbb{Z}_{p}[[(\widehat{G_{0}})_{\mathcal{C}}]]}(\mathcal{P}^{\operatorname{del}}, \mathbb{Z}_{p}[[(\widehat{G_{0}})_{\mathcal{C}}]])) \simeq H^{i}(\widehat{\mathcal{T}}^{\operatorname{del}}) \end{split}$$

is 0 for $i \neq m$ and is \mathbb{Z}_p otherwise. Thus $(\widehat{G_0})_{\mathcal{C}}$ is a strong profinite PD_m group at p and is orientable since in the complex $\widehat{\mathcal{T}}$ the module \mathbb{Z}_p is the trivial one, i.e., $(\widehat{G_0})_{\mathcal{C}}$ acts trivially on \mathbb{Z}_p .

Note that $(\widehat{G_0})_{\mathcal{C}}^{\nu}$ is a subgroup of finite index in $\widehat{G}_{\mathcal{C}}$ and, by Lemma 2, $\widehat{G}_{\mathcal{C}}$ is FP_{∞} over \mathbb{Z}_p and $cd_p(\widehat{G}_{\mathcal{C}}) \leq m$. By [15], 4.2.9,

$$H^{i}((\widehat{G_0})_{\mathcal{C}}, \mathbb{Z}_p[[(\widehat{G_0})_{\mathcal{C}}]]) \simeq H^{i}(\widehat{G}_{\mathcal{C}}, \mathbb{Z}_p[[\widehat{G}_{\mathcal{C}}]]).$$

Then $H^*(\hat{G}_{\mathcal{C}}, \mathbb{Z}_p[[\hat{G}_{\mathcal{C}}]])$ is concentrated in dimension m, where it is \mathbb{Z}_p , so $\hat{G}_{\mathcal{C}}$ is a strong profinite PD_m group at p.

3. Profinite completions of Poincaré duality groups of dimension 4 and Euler characteristic 0

Lemma 3. Let G be an abstract orientable Poincaré duality group of dimension 4 and Euler characteristic $\chi(G) = 0$. Then

$$2 \dim_{\mathbb{F}_p} H_1(G, \mathbb{F}_p) - \dim_{\mathbb{F}_p} H_2(G, \mathbb{F}_p)$$

= 2 = 2 \dim_{\mathbb{F}_p} H^1(G, \mathbb{F}_p) - \dim_{\mathbb{F}_p} H^2(G, \mathbb{F}_p).

Proof. Indeed $\chi(G) = 0$ together with $H_{4-i}(G, \mathbb{F}_p) \simeq H^i(G, \mathbb{F}_p) \simeq H_i(G, \mathbb{F}_p)$ for i = 0 and i = 1 gives

$$0 = \chi(G) = \sum_{0 \le i \le 4} (-1)^i \dim_{\mathbb{F}_p} H_i(G, \mathbb{F}_p)$$

= $1 - \dim_{\mathbb{F}_p} H_1(G, \mathbb{F}_p) + \dim_{\mathbb{F}_p} H_2(G, \mathbb{F}_p)$
 $- \dim_{\mathbb{F}_p} H^1(G, \mathbb{F}_p) + \dim_{\mathbb{F}_p} H^0(G, \mathbb{F}_p)$
= $2 - 2 \dim_{\mathbb{F}_p} H_1(G, \mathbb{F}_p) + \dim_{\mathbb{F}_p} H_2(G, \mathbb{F}_p).$

The proof is completed by the isomorphisms $H^1(G, \mathbb{F}_p) \simeq G/[G, G]G^p \simeq H_1(G, \mathbb{F}_p)$ and $H^2(G, \mathbb{F}_p) \simeq H_2(G, \mathbb{F}_p)$.

Lemma 4. Let H be a profinite orientable Poincaré duality group of dimension 4 at p with Euler p-characteristic $\chi_p(H) = 0$.

Then

$$2 \dim_{\mathbb{F}_p} H_1(H, \mathbb{F}_p) - \dim_{\mathbb{F}_p} H_2(H, \mathbb{F}_p)$$

= $2 = 2 \dim_{\mathbb{F}_p} H^1(H, \mathbb{F}_p) - \dim_{\mathbb{F}_p} H^2(H, \mathbb{F}_p).$

Proof. Note that for $0 \le i \le 4$ we have $\dim_{\mathbb{F}_p} H_i(H, \mathbb{F}_p) = \dim_{\mathbb{F}_p} H^i(H, \mathbb{F}_p)$ by Pontryagin duality and $\dim_{\mathbb{F}_p} H^i(H, \mathbb{F}_p) = \dim_{\mathbb{F}_p} H^{4-i}(H, \mathbb{F}_p)$ by Tate's definition of Poincaré duality. Then the proof is completed as the proof of Lemma 3.

Proof of Theorem 1. Suppose now that the conditions a), b) and c) hold.

Since G is an abstract orientable PD₄ group every subgroup of finite index in G is an abstract orientable PD₄ group. In particular this holds for any $U \in \mathcal{C}$ and we have $H_4(U, \mathbb{F}_p) \simeq H^0(U, \mathbb{F}_p) \simeq \mathbb{F}_p$. Then the inverse limit of $H_4(U, \mathbb{F}_p)$ over $U \in \mathcal{C}$ is either \mathbb{F}_p or 0. It cannot be \mathbb{F}_p otherwise there exists an ideal in $\mathbb{F}_p[[\hat{G}_\mathcal{C}]]$ isomorphic to \mathbb{F}_p and this easily contradicts the fact that $\hat{G}_\mathcal{C}$ has an infinite Sylow p-subgroup (note that $\mathrm{cd}_p(H) = \mathrm{cd}_p(\hat{G}_\mathcal{C}) \leq 4 < \infty$ for H a Sylow p-subgroup of $\hat{G}_\mathcal{C}$). Indeed if the inverse limit is \mathbb{F}_p by (3) $H_4(\hat{\mathcal{R}}) \simeq \mathbb{F}_p$ and by going down to a subgroup of finite index if necessary, we can assume that $\hat{G}_\mathcal{C}$ acts trivially on $H_4(\hat{\mathcal{R}}) \subseteq \hat{R}_4$. Note that \hat{R}_4 is a finite rank projective $\mathbb{F}_p[[\hat{G}_\mathcal{C}]]$ -module, hence a direct summand of the finite rank free $\mathbb{F}_p[[\hat{G}_\mathcal{C}]]$ -module F. Thus the trivial $\mathbb{F}_p[[\hat{G}_\mathcal{C}]]$ -module \mathbb{F}_p is a submodule of F and projecting to one of the free factors $\mathbb{F}_p[[\hat{G}_\mathcal{C}]]$ of F, we see that $\mathbb{F}_p[[\hat{G}_\mathcal{C}]]$ contains the trivial $\mathbb{F}_p[[\hat{G}_\mathcal{C}]]$ -module \mathbb{F}_p as a submodule, a contradiction. A different argument using restriction and corestriction can be used as in the proof of [6], Prop. 3.1.

Note that we have shown that

$$H_4(\widehat{\mathcal{R}}) \simeq \lim_{\longleftarrow U \in \mathcal{C}} H_4(U, \mathbb{F}_p) = 0.$$

As tensor product is a right exact functor $H_0(\hat{\mathcal{R}}) = 0$. The condition that \mathcal{T} is subgroup, extension and quotient closed and contains the cyclic group with p

elements implies that \mathcal{T} contains all finite p-groups. Then, since \mathcal{C} induces the pro- \mathcal{T} topology of G, we obtain that for every $U \in \mathcal{C}$ there is a subgroup $U_1 \in \mathcal{C}$ with $U_1 \subseteq [U, U]U^p$. Hence the canonical map

$$\varphi_{1,U}: H_1(U, \mathbb{F}_p) \to H_1(\widehat{U}_{\mathcal{C}}, \mathbb{F}_p)$$

is an isomorphism and

$$H_{1}(\widehat{\mathcal{R}}) \simeq \varprojlim_{U \in \mathcal{C}} H_{1}(U, \mathbb{F}_{p}) \simeq \varprojlim_{U \in \mathcal{C}} H_{1}(\widehat{U}_{\mathcal{C}}, \mathbb{F}_{p})$$

$$= H_{1}(\varprojlim_{U \in \mathcal{C}} \widehat{U}_{\mathcal{C}}, \mathbb{F}_{p}) = H_{1}(1, \mathbb{F}_{p}) = 0.$$

We claim that the canonical map

$$\varphi_{2,U}: H_2(U, \mathbb{F}_p) \to H_2(\hat{U}_{\mathcal{C}}, \mathbb{F}_p)$$
 (5)

is an isomorphism.

Indeed $H_2(U, \mathbb{F}_p) \simeq H_2(\mathcal{R} \otimes_{\mathbb{Z}[U]} \mathbb{F}_p) \simeq H_2(\widehat{\mathcal{R}} \otimes_{\mathbb{F}_p[[\widehat{U}_{\mathcal{C}}]]} \mathbb{F}_p)$. The partial profinite projective $\mathbb{F}_p[[\widehat{U}_{\mathcal{C}}]]$ -resolution $\widehat{R}_2 \xrightarrow{\widehat{\partial}_2} \widehat{R}_1 \xrightarrow{\widehat{\partial}_1} \widehat{R}_0 \to \mathbb{F}_p \to 0$ of \mathbb{F}_p can be extended to a partial profinite projective $\mathbb{F}_p[[\widehat{U}_{\mathcal{C}}]]$ -resolution

$$S: S \xrightarrow{\nu} \widehat{R}_2 \xrightarrow{\widehat{\partial}_2} \widehat{R}_1 \xrightarrow{\widehat{\partial}_1} \widehat{R}_0 \to \mathbb{F}_p \to 0,$$

where S contains \hat{R}_3 as a closed submodule and ν is an extension of $\hat{\partial}_3$ from (2). Thus $H_2(\hat{U}_{\mathcal{C}}, \mathbb{F}_p) \simeq H_2(\mathcal{S} \otimes_{\mathbb{F}_p[[\hat{U}_{\mathcal{C}}]]} \mathbb{F}_p)$ is a quotient of $H_2(\hat{\mathcal{R}} \otimes_{\mathbb{F}_p[[\hat{U}_{\mathcal{C}}]]} \mathbb{F}_p)$, and $\varphi_{2,U}$ is surjective.

Then by Lemma 3, Lemma 4 and condition c) of the theorem, it follows that

$$\dim_{\mathbb{F}_p} \ker(\varphi_{2,U}) = \dim_{\mathbb{F}_p} H_2(U,\mathbb{F}_p) - \dim_{\mathbb{F}_p} H_2(\widehat{U}_{\mathcal{C}},\mathbb{F}_p)$$
$$= (2\dim_{\mathbb{F}_p} H_1(U,\mathbb{F}_p) - 2) - (2\dim_{\mathbb{F}_p} H_1(\widehat{U}_{\mathcal{C}},\mathbb{F}_p) - 2) = 0.$$

In particular (5) holds and we have

$$H_{2}(\widehat{\mathcal{R}}) \simeq \varprojlim_{U \in \mathcal{C}} H_{2}(U, \mathbb{F}_{p}) \simeq \varprojlim_{U \in \mathcal{C}} H_{2}(\widehat{U}_{\mathcal{C}}, \mathbb{F}_{p})$$

$$= H_{2}(\varprojlim_{U \in \mathcal{C}} \widehat{U}_{\mathcal{C}}, \mathbb{F}_{p}) = H_{2}(1, \mathbb{F}_{p}) = 0.$$

Note that we have proved by now that

$$H_i(\hat{\mathcal{R}}) = 0 \quad \text{for } i \neq 3.$$
 (6)

Let

$$\mathcal{P} \colon P \xrightarrow{\mu} \widehat{R}_3 \xrightarrow{\widehat{\theta}_3} \widehat{R}_2 \xrightarrow{\widehat{\theta}_2} \widehat{R}_1 \xrightarrow{\widehat{\theta}_1} \widehat{R}_0 \xrightarrow{\widehat{\theta}_0} \mathbb{F}_p \to 0$$

be a partial profinite projective resolution of the trivial $\mathbb{F}_p[[\hat{G}_{\mathcal{C}}]]$ -module \mathbb{F}_p with \hat{R}_4 a closed submodule of P and μ an extension of $\hat{\partial}_4$. Hence \mathcal{P} is a partial profinite

projective resolution of the trivial $\mathbb{F}_p[[\hat{U}_{\mathcal{C}}]]$ -module \mathbb{F}_p for every $U \in \mathcal{C}$. Then the natural embedding of the 4-skeleton $\hat{\mathcal{R}}^{(4)}$ in \mathcal{P} induces an epimorphism

$$H_3(U, \mathbb{F}_p) \simeq H_3(\widehat{\mathcal{R}} \, \widehat{\otimes}_{\mathbb{F}_p[[\widehat{U}_{\mathcal{C}}]]} \, \mathbb{F}_p) \to H_3(\mathcal{P} \, \widehat{\otimes}_{\mathbb{F}_p[[\widehat{U}_{\mathcal{C}}]]} \, \mathbb{F}_p) \simeq H_3(\widehat{U}_{\mathcal{C}}, \mathbb{F}_p).$$

Consequently the canonical map

$$\varphi_{3,U}: H_3(U,\mathbb{F}_p) \to H_3(\widehat{U}_{\mathcal{C}},\mathbb{F}_p)$$

is an epimorphism, hence

$$\dim_{\mathbb{F}_p} H_3(U, \mathbb{F}_p) - \dim_{\mathbb{F}_p} H_3(\widehat{U}_{\mathcal{C}}, \mathbb{F}_p) \ge 0. \tag{7}$$

Note that by condition b),

$$\sum_{0 \le i \le 4} (-1)^i \dim_{\mathbb{F}_p} H_i(\widehat{U}_{\mathcal{C}}, \mathbb{F}_p)$$

$$= 0 = \chi(G) = \chi(U) = \sum_{0 < i < 4} (-1)^i \dim_{\mathbb{F}_p} H_i(U, \mathbb{F}_p)$$
(8)

and since $\varphi_{i,U}$ is an isomorphism for i=1,2 it follows that $\dim_{\mathbb{F}_p} H_i(U,\mathbb{F}_p)=\dim_{\mathbb{F}_p} H_i(\hat{U}_{\mathcal{C}},\mathbb{F}_p)$ for i=1,2. Then by $H_4(U,\mathbb{F}_p)\simeq H^0(U,\mathbb{F}_p)\simeq \mathbb{F}_p$, (7) and (8) we get

$$0 \leq \dim_{\mathbb{F}_p} H_3(U, \mathbb{F}_p) - \dim_{\mathbb{F}_p} H_3(\widehat{U}_{\mathcal{C}}, \mathbb{F}_p)$$

$$= \sum_{0 \leq i \neq 3 \leq 4} (-1)^i (\dim_{\mathbb{F}_p} H_i(U, \mathbb{F}_p) - \dim_{\mathbb{F}_p} H_i(\widehat{U}_{\mathcal{C}}, \mathbb{F}_p))$$

$$= \dim_{\mathbb{F}_p} H_4(U, \mathbb{F}_p) - \dim_{\mathbb{F}_p} H_4(\widehat{U}_{\mathcal{C}}, \mathbb{F}_p)$$

$$\leq \dim_{\mathbb{F}_p} H_4(U, \mathbb{F}_p) = 1$$

and so

$$\dim_{\mathbb{F}_p} \ker(\varphi_{3,U}) = \dim_{\mathbb{F}_p} H_3(U,\mathbb{F}_p) - \dim_{\mathbb{F}_p} H_3(\widehat{U}_{\mathcal{C}},\mathbb{F}_p) \le 1. \tag{9}$$

Consider the short exact sequence

$$0 \to \ker(\varphi_{3,U}) \to H_3(U,\mathbb{F}_n) \to H_3(\widehat{U}_{\mathcal{C}},\mathbb{F}_n) \to 0$$

and the corresponding exact sequence

$$0 \to \lim_{\longleftarrow U \in \mathcal{C}} \ker(\varphi_{3,U}) \to \lim_{\longleftarrow U \in \mathcal{C}} H_3(U, \mathbb{F}_p)$$

$$\to \lim_{\longleftarrow U \in \mathcal{C}} H_3(\hat{U}_{\mathcal{C}}, \mathbb{F}_p) \simeq H_3(\lim_{\longleftarrow U \in \mathcal{C}} \hat{U}_{\mathcal{C}}, \mathbb{F}_p) = 0 \to \cdots.$$

Then by (9),

$$H_3(\hat{\mathcal{R}}) \simeq \lim_{U \in \mathcal{C}} H_3(U, \mathbb{F}_p) \simeq \lim_{U \in \mathcal{C}} \ker(\varphi_{3,U})$$

is either zero or \mathbb{F}_p .

Define $V = H_3(\widehat{\mathcal{R}})$ and suppose that $V \neq 0$, consequently $V \simeq \mathbb{F}_p$. Let $U \in \mathcal{C}$ be such that U acts trivially on V. We claim that since $2 \leq \operatorname{cd}_p(\widehat{G}_{\mathcal{C}}) = t < \infty$, the projective dimension of V as a profinite $\mathbb{F}_p[[\widehat{U}_{\mathcal{C}}]]$ -module is $\max\{t-4,0\}$.

Indeed if $0 \to W_1 \to W \to W_2 \to 0$ is a short exact sequence of profinite modules with W projective, then either the projective dimension of W_1 is the projective dimension of W_2 minus 1 or W_1 and W_2 are projective, i.e., both have projective dimension 0 (this follows from the fact that the projective dimension k of a profinite $\mathbb{F}_p[[\widehat{U}_{\mathcal{C}}]]$ -module M is the minimal non-negative integer k such that $\widehat{\operatorname{Ext}}_{\mathbb{F}_p[[\widehat{U}_{\mathcal{C}}]]}^{k+1}(M,S)=0$ for every discrete finite p-primary $\mathbb{F}_p[[\widehat{U}_{\mathcal{C}}]]$ -module S, where $\widehat{\operatorname{Ext}}$ is the derived functor of continuous Hom). Since the trivial $\mathbb{F}_p[[\widehat{G}_{\mathcal{C}}]]$ -module \mathbb{F}_p has profinite projective dimension t over $\mathbb{F}_p[[\widehat{G}_{\mathcal{C}}]]$, by (6) we get that $\ker(\widehat{\partial}_3)$ has projective dimension $s=\max\{t-4,0\}$ as a profinite $\mathbb{F}_p[[\widehat{G}_{\mathcal{C}}]]$ -module.

Hence $\ker(\widehat{\partial}_3)$ has projective dimension $s = \max\{t-4, 0\}$ as a profinite $\mathbb{F}_p[[\widehat{U}_{\mathcal{C}}]]$ -module.

Consider the short exact sequence of profinite $\mathbb{F}_p[[\hat{U}_{\mathcal{C}}]]$ -modules

$$A: 0 \to A_1 = \hat{R}_4 \xrightarrow{\hat{\partial}_4} A_0 = \ker(\hat{\partial}_3) \to V \to 0, \tag{10}$$

where $V \simeq \mathbb{F}_p$ is the trivial module. Since A_1 is projective, for every discrete finite p-primary $\mathbb{F}_p[[\hat{U}_{\mathcal{C}}]]$ -module S and $i \geq 2$, there is an isomorphism

$$\widehat{\operatorname{Ext}}^i_{\mathbb{F}_p[[\widehat{U}_{\mathcal{C}}]]}(V,S) \simeq \widehat{\operatorname{Ext}}^i_{\mathbb{F}_p[[\widehat{U}_{\mathcal{C}}]]}(A_0,S).$$

In particular if $\widehat{\operatorname{Ext}}^i_{\mathbb{F}_p[[\widehat{U}_{\mathcal{C}}]]}(V,S) \neq 0$ for some $i \geq 2$ (i.e., $\operatorname{pd}_{\mathbb{F}_p[[\widehat{U}_{\mathcal{C}}]]}(V) \geq 2$) we get that $\operatorname{pd}_{\mathbb{F}_p[[\widehat{U}_{\mathcal{C}}]]}(V) = \operatorname{pd}_{\mathbb{F}_p[[\widehat{U}_{\mathcal{C}}]]}(A_0)$. Finally since

$$\operatorname{pd}_{\mathbb{F}_p[[\widehat{U}_{\mathcal{C}}]]}(V) = \operatorname{pd}_{\mathbb{F}_p[[\widehat{U}_{\mathcal{C}}]]}(\mathbb{F}_p) = \operatorname{cd}_p(\widehat{U}_{\mathcal{C}}) = \operatorname{cd}_p(\widehat{G}_{\mathcal{C}}) = t \ge 2,$$

we obtain that

$$t = \mathrm{pd}_{\mathbb{F}_p[[\widehat{U}_{\mathcal{C}}]]}(V) = \mathrm{pd}_{\mathbb{F}_p[[\widehat{U}_{\mathcal{C}}]]}(A_0) = s = \max\{t - 4, 0\} < t,$$

a contradiction.

Thus

$$H_3(\widehat{\mathcal{R}}) = 0$$

and we have shown that

$$H_i(\hat{R}) = 0$$
 for all $i \ge 1$.

Then by (3) we can apply Theorem 4 to deduce that $\hat{G}_{\mathcal{C}}$ is a strong profinite orientable PD₄ group at p.

Finally we observe that if $\hat{G}_{\mathcal{C}}$ is a profinite orientable PD₄ group at p, then obviously all conditions a), b) and c) hold.

Corollary 1. Let p be a prime number and G be an abstract orientable Poincaré duality group of dimension 4 and Euler characteristic $\chi(G) = 0$. Let T be a class of finite groups closed under subgroups, extensions and quotients, let the cyclic group of order p be in T and let C be a directed set of normal subgroups of finite index in G such that C induces the pro-T topology of G.

Then the following conditions are equivalent:

- a) $\hat{G}_{\mathcal{C}}$ is an orientable profinite Poincaré duality group of dimension 4 at the prime p with Euler p-characteristic $\chi_p(\hat{G}_{\mathcal{C}}) = 0$;
- b) $\hat{G}_{\mathcal{C}}$ is a strong orientable profinite Poincaré duality group of dimension 4 at the prime p with Euler p-characteristic $\chi_p(\hat{G}_{\mathcal{C}}) = 0$;
- c) $\operatorname{Tor}_{i}^{\mathbb{Z}[G]}(\mathbb{Z}, \mathbb{F}_{p}[[\widehat{G}_{\mathcal{C}}]]) = 0 \text{ for every } i \geq 1;$
- d) $\operatorname{Tor}_{i}^{\mathbb{Z}[G]}(\mathbb{Z}, \mathbb{Z}_{p}[[\widehat{G}_{\mathcal{C}}]]) = 0 \text{ for every } i \geq 1.$

Proof. By Theorem 1 item a) is equivalent with item b). Using again Theorem 1, $\hat{G}_{\mathcal{C}}$ is an orientable profinite PD₄ group at p with $\chi_p(\hat{G}_{\mathcal{C}})=0$ if and only if the conditions a), b) and c) from Theorem 1 hold. The proof of Theorem 1 shows that if these three conditions hold, then $\hat{\mathcal{R}}$ is an exact complex.

Conversely, if $\hat{\mathcal{R}}$ is an exact complex, that is,

$$0 = H_i(\widehat{\mathcal{R}}) \simeq \lim_{\longleftarrow U \in \mathcal{C}} H_i(U, \mathbb{F}_p)$$
(11)

for $i \ge 1$, we get by Theorem 4 that $\hat{G}_{\mathcal{C}}$ is a strong orientable profinite PD₄ group at p with $\chi_p(\hat{G}_{\mathcal{C}}) = 0$, hence is a profinite orientable PD₄ group at p.

Thus item a) is equivalent with $H_i(\widehat{\mathcal{R}}) = 0$ for all $i \geq 1$.

Since $H_i(\hat{\mathcal{R}}) \simeq \operatorname{Tor}_i^{\mathbb{Z}[G]}(\mathbb{Z}, \mathbb{F}_p[[\hat{G}_{\mathcal{C}}]])$ for $i \geq 1$ we see that a) and c) are equivalent. Furthermore, by Lemma 1, if (11) holds then d) holds, i.e., a) implies d).

If item d) holds then $S = \mathcal{R} \otimes_{\mathbb{Z}[G]} \mathbb{Z}_p[[\hat{G}_{\mathcal{C}}]]$ is an abstract projective resolution of \mathbb{Z}_p over $\mathbb{Z}_p[[\hat{G}_{\mathcal{C}}]]$ of finite length and finitely generated projectives in any dimension, so S is a profinite projective resolution of \mathbb{Z}_p as a profinite $\mathbb{Z}_p[[\hat{G}_{\mathcal{C}}]]$ -module, hence as a profinite \mathbb{Z}_p -module.

Since $S \otimes_{\mathbb{Z}_p} \mathbb{F}_p \simeq S \ \widehat{\otimes}_{\mathbb{Z}_p} \mathbb{F}_p$ we have

$$\begin{aligned} \operatorname{Tor}_{i}^{\mathbb{Z}[G]}(\mathbb{Z}, \mathbb{F}_{p}[[\widehat{G}_{\mathcal{C}}]]) &= H_{i}(\mathcal{R} \otimes_{\mathbb{Z}[G]} \mathbb{F}_{p}[[\widehat{G}_{\mathcal{C}}]]) \\ &\simeq H_{i}(\mathcal{S} \otimes_{\mathbb{Z}_{p}} \mathbb{F}_{p}) \\ &\simeq H_{i}(\mathcal{S} \otimes_{\mathbb{Z}_{p}} \mathbb{F}_{p}) &= \widehat{\operatorname{Tor}}_{i}^{\mathbb{Z}_{p}}(\mathbb{Z}_{p}, \mathbb{F}_{p}) = 0 \quad \text{for } i \geq 1, \end{aligned}$$

where $\widehat{\text{Tor}}$ denotes the left derived functor of $\widehat{\otimes}$ in the category of profinite modules, i.e., d) implies c).

Corollary 2. Let p be a prime number and G be an abstract orientable Poincaré duality group of dimension 4 and Euler characteristic $\chi(G) = 0$. Let \mathcal{T} be a class of

finite groups closed under subgroups, extensions and quotients, let the cyclic group of order p be in T and let C be a directed set of normal subgroups U of finite index in G such that C induces the pro-T topology of G.

Then for the pro- \mathcal{T} completion $\hat{G}_{\mathcal{C}}$ of G the following results hold:

a) $\hat{G}_{\mathcal{C}}$ is an orientable profinite Poincaré duality group of dimension 4 at p with Euler p-characteristic $\chi_p(\hat{G}_{\mathcal{C}}) = 0$ if and only if, for every $U \in \mathcal{C}$, the canonical maps between abstract and continuous homology

$$\varphi_{i,U}: H_i(U, \mathbb{F}_p) \to H_i(\widehat{U}_{\mathcal{C}}, \mathbb{F}_p)$$

are isomorphisms for all i;

b) $\hat{G}_{\mathcal{C}}$ is an orientable Poincaré duality group of dimension 4 at p with Euler p-characteristic $\chi_p(\hat{G}_{\mathcal{C}}) = 0$ if and only if, for every $U \in \mathcal{C}$, the canonical maps between continuous and abstract cohomology

$$\mu_{i,U}: H^i(\widehat{U}_{\mathcal{C}}, \mathbb{F}_p) \to H^i(U, \mathbb{F}_p)$$

are isomorphisms for all i;

c) the pro-p completion of G is an orientable Poincaré duality pro-p group of dimension 4 and Euler characteristic 0 if and only if G is p-good.

Proof. 1. If $\varphi_{i,U}$ is an isomorphism for every $U \in \mathcal{C}$

$$\underbrace{\lim_{U \in \mathcal{C}} H_i(U, \mathbb{F}_p)}_{U \in \mathcal{C}} \simeq \underbrace{\lim_{U \in \mathcal{C}} H_i(\hat{U}_{\mathcal{C}}, \mathbb{F}_p)}_{U \in \mathcal{C}}$$

$$= H_i(\underbrace{\lim_{U \in \mathcal{C}} \hat{U}_{\mathcal{C}}, \mathbb{F}_p)}_{\hat{U} \in \mathcal{C}} = H_i(1, \mathbb{F}_p) = 0 \quad \text{for } i \ge 1,$$

and by Theorem 4, $\hat{G}_{\mathcal{C}}$ is an orientable profinite PD₄ group at p.

2. Suppose now that $\hat{G}_{\mathcal{C}}$ is an orientable profinite PD₄ group at p with $\chi_p(\hat{G}_{\mathcal{C}}) = 0$ and \mathcal{R} is the complex (1) for m = 4.

By Corollary 1, $\mathcal{R} \otimes_{\mathbb{Z}[G]} \mathbb{Z}_p[[\hat{G}_{\mathcal{C}}]]$ is exact and the same holds for G substituted with any $U \in \mathcal{C}$ and any projective resolution of finite type and length at most 4 of the trivial $\mathbb{Z}[U]$ -module \mathbb{Z} . In particular, $\mathcal{Q} = \mathcal{R} \otimes_{\mathbb{Z}[U]} \mathbb{Z}_p[[\hat{U}_{\mathcal{C}}]]$ is exact. We can use the exactness of \mathcal{Q} to show that the natural maps $H_i(U, M) \to H_i(\hat{U}_{\mathcal{C}}, M)$ and $H^i(\hat{U}_{\mathcal{C}}, M) \to H^i(U, M)$ are isomorphisms for every p-primary finite discrete \hat{G}_p -module M. In particular, $\varphi_{i,U}$ and $\mu_{i,U}$ are isomorphisms. Indeed

$$H_i(\widehat{U}_{\mathcal{C}}, M) \simeq H_i(\mathcal{Q} \mathbin{\widehat{\otimes}}_{\mathbb{Z}_n[[\widehat{U}_{\mathcal{C}}]]} M) \simeq H_i(\mathcal{R} \mathbin{\otimes}_{\mathbb{Z}[U]} M) \simeq H_i(U, M)$$

and

$$H^{i}(\widehat{U}_{\mathcal{C}}, M) \simeq H^{i}(\widehat{\operatorname{Hom}}_{\mathbb{Z}_{p}[[\widehat{U}_{\mathcal{C}}]]}(\mathcal{Q}, M)) \simeq H^{i}(\operatorname{Hom}_{\mathbb{Z}[U]}(\mathcal{R}, M)) \simeq H^{i}(U, M),$$

where $\widehat{\text{Hom}}$ denotes continuous homomorphisms. In particular, if \mathcal{T} is the class of all finite p-groups and U = G, then (12) implies that G is p-good.

3. Now suppose that $\mu_{i,U}$ is an isomorphism for all $i \geq 1$ and $U \in \mathcal{C}$.

We show that all three conditions a), b) and c) of Theorem 1 hold. Indeed, $H^5(\hat{U}_{\mathcal{C}}, \mathbb{F}_p) \simeq H^5(U, \mathbb{F}_p) = 0$ for all $U \in \mathcal{C}$ and consequently by [14], Prop. 21', $\operatorname{cd}_p(\hat{G}_{\mathcal{C}}) \leq 4$. Furthermore $H^4(\hat{U}_{\mathcal{C}}, \mathbb{F}_p) \simeq H^4(U, \mathbb{F}_p) \simeq \mathbb{F}_p \neq 0$, in particular $\operatorname{cd}_p(\hat{U}_{\mathcal{C}}) \geq 4$ and so $4 \leq \operatorname{cd}_p(\hat{U}_{\mathcal{C}}) \leq \operatorname{cd}_p(\hat{G}_{\mathcal{C}}) \leq 4$. Finally $\dim_{\mathbb{F}_p} H^i(\hat{U}_{\mathcal{C}}, \mathbb{F}_p) = \dim_{\mathbb{F}_p} H_i(\hat{U}_{\mathcal{C}}, \mathbb{F}_p)$ for all i by Pontryagin duality. Thus

$$\sum_{0 \le i \le 4} (-1)^i \dim_{\mathbb{F}_p} H_i(\widehat{U}_{\mathcal{C}}, \mathbb{F}_p) = \sum_{0 \le i \le 4} (-1)^i \dim_{\mathbb{F}_p} H^i(\widehat{U}_{\mathcal{C}}, \mathbb{F}_p)
= \sum_{0 \le i \le 4} (-1)^i \dim_{\mathbb{F}_p} H^i(U, \mathbb{F}_p) = \chi(U) = 0$$

and

$$2 \dim_{\mathbb{F}_p} H_1(\widehat{U}_{\mathcal{C}}, \mathbb{F}_p) - \dim_{\mathbb{F}_p} H_2(\widehat{U}_{\mathcal{C}}, \mathbb{F}_p)$$

$$= 2 \dim_{\mathbb{F}_p} H^1(\widehat{U}_{\mathcal{C}}, \mathbb{F}_p) - \dim_{\mathbb{F}_p} H^2(\widehat{U}_{\mathcal{C}}, \mathbb{F}_p)$$

$$= 2 \dim_{\mathbb{F}_p} H^1(U, \mathbb{F}_p) - \dim_{\mathbb{F}_p} H^2(U, \mathbb{F}_p) = 2.$$

4. Finally, if G is p-good, then $\mu_{i,U}$ is the composition of the maps

$$H^{i}(\widehat{U}_{\mathcal{C}}, \mathbb{F}_{p}) \to H^{i}(\widehat{G}_{\mathcal{C}}, \mathbb{F}_{p}[G/U]) \to H^{i}(G, \mathbb{F}_{p}[G/U]) \to H^{i}(U, \mathbb{F}_{p}),$$

where \mathcal{T} is the class of all finite p-groups, the first and the last map are Shapiro's isomorphisms and the middle one is an isomorphism since G is p-good. Therefore, $\mu_{i,U}$ is an isomorphism.

4. More on pro-p completions

Our first result is a more general version of Theorem 1 in the case of pro-p completions. The new ingredient is the use of cohomology with coefficients in $\mathbb{F}_p[[\hat{G}_p]]$ together with some results from [7] and [8].

Proof of Theorem 2. The conditions of Theorem 2 include the last two of the conditions of Theorem 1 but not the first one, i.e., we are not assuming that $2 \le \operatorname{cd}(\hat{G}_p)$. Note that the proof of Theorem 2 needed $2 \le \operatorname{cd}(\hat{G}_p)$ in order to show $H_3(\hat{\mathcal{R}}) \not\simeq \mathbb{F}_p$ (the only other possibility for $H_3(\hat{\mathcal{R}})$ is 0), where $\hat{\mathcal{R}}$ is the complex (2) for m=4 and \hat{G}_p is infinite (the last holds since \hat{G}_p is not virtually procyclic, hence is not virtually trivial). Then $H_i(\hat{\mathcal{R}}) = 0$ for $i \ne 3$ and $H_i(\hat{\mathcal{R}})$ is either 0 or \mathbb{F}_p .

Let \mathcal{R}^{op} be a resolution as in (1) for m=4 but of the trivial left $\mathbb{Z}[G]$ -module \mathbb{Z} (recall that in (1) all modules are right $\mathbb{Z}[G]$ - modules). Then exchanging left with right modules we get similar results for the complex $\widehat{\mathcal{R}^{\text{op}}} \simeq \mathbb{F}_p[[\widehat{G}_{\mathcal{C}}]] \otimes_{\mathbb{Z}[G]} \mathbb{Z}$, i.e., $H_i(\widehat{\mathcal{R}^{\text{op}}}) = 0$ for $i \neq 3$ and $H_i(\widehat{\mathcal{R}^{\text{op}}}) = 0$ is either 0 or \mathbb{F}_p .

We claim that

$$H_3(\widehat{\mathcal{R}}^{\text{op}}) \simeq H^1(\widehat{G}_p, \mathbb{F}_p[[\widehat{G}_p]]).$$
 (13)

Suppose that (13) holds and that $H_3(\widehat{\mathcal{R}^{\text{op}}}) \simeq \mathbb{F}_p$. Then $\dim_{\mathbb{F}_p} H^1(\widehat{G}_p, \mathbb{F}_p[[\widehat{G}_p]]) = 1$ and by [7], Thm. 3, \widehat{G}_p is virtually \mathbb{Z}_p , a contradiction to condition a). Thus $\widehat{\mathcal{R}^{\text{op}}}$ is an exact complex and the proof of the dual version of Theorem 4 (exchanging left with right modules) completes the proof of Theorem 2.

Finally we prove (13). Let

$$\mathcal{R} \colon 0 \to R_4 \xrightarrow{\partial_4} R_3 \xrightarrow{\partial_3} R_2 \xrightarrow{\partial_2} R_1 \xrightarrow{\partial_1} R_0 \xrightarrow{\partial_0} \mathbb{Z} \to 0 \tag{14}$$

be the complex (1) for m = 4.

Then $H^i(\mathcal{S}) = H^i(G, \mathbb{Z}[G])$ is 0 for $i \neq 4$ and \mathbb{Z} for i = 4, where $\mathcal{S} = \text{Hom}_{\mathbb{Z}[G]}(\mathcal{R}^{\text{del}}, \mathbb{Z}[G])$ is the dual complex, i.e., \mathcal{S} is a complex of left $\mathbb{Z}[G]$ -modules. Define \mathcal{T} the complex obtained from \mathcal{S} by adding its unique non-trivial cohomology:

$$\mathcal{T}: 0 \to S^0 \to S^1 \to S^2 \to S^3 \to S^4 \to H^4(S) = \mathbb{Z} \to 0.$$

In particular the complex $\mathcal T$ is a projective resolution of the trivial left $\mathbb Z[G]$ -module $\mathbb Z$. Consequently for

$$\widehat{\mathcal{T}} = \mathbb{F}_p[[\widehat{G}_p]] \otimes_{\mathbb{Z}[G]} \mathcal{T} : 0 \to T^0 \to T^1 \to T^2 \to T^3 \to T^4 \to \mathbb{F}_p \to 0$$

we have

$$H^{i}(\widehat{\mathcal{T}}) = \operatorname{Tor}_{4-i}^{\mathbb{Z}[G]}(\mathbb{F}_{p}[[\widehat{G}_{p}]], \mathbb{Z}) \text{ for } i \neq 4 \text{ and } H^{4}(\widehat{\mathcal{T}}) = 0.$$
 (15)

By the proof of Theorem 1,

$$H_i(\widehat{\mathcal{R}}) = 0 \quad \text{for } i \neq 3,$$
 (16)

so $\hat{R}_3 \to \hat{R}_2 \to \hat{R}_1 \to \hat{R}_0 \to \mathbb{F}_p \to 0$ is exact, i.e., a partial projective resolution of the trivial $\mathbb{F}_p[[\hat{G}_p]]$ -module \mathbb{F}_p .

The deleted complex $\widehat{\mathcal{T}}^{\text{del}}$ is the complex obtained from \mathcal{T} by deleting the term \mathbb{F}_p . As in the proof of Theorem 4, we have

$$\widehat{\mathcal{T}}^{\mathrm{del}} \simeq \mathrm{Hom}_{\mathbb{F}_p[[\widehat{G}_p]]}(\widehat{\mathcal{R}}^{\mathrm{del}}, \mathbb{F}_p[[\widehat{G}_p]]).$$

Then by (16),

$$\begin{split} H^{1}(\widehat{G}_{p}, \mathbb{F}_{p}[[\widehat{G}_{p}]]) &= \operatorname{Ext}^{1}_{\mathbb{F}_{p}[[\widehat{G}_{p}]]}(\mathbb{F}_{p}, \mathbb{F}_{p}[[\widehat{G}_{p}]]) \\ &\simeq H^{1}(\operatorname{Hom}_{\mathbb{F}_{p}[[\widehat{G}_{p}]]}(\widehat{\mathcal{R}}^{\operatorname{del}}, \mathbb{F}_{p}[[\widehat{G}_{p}]])) \\ &\simeq H^{1}(\widehat{\mathcal{T}}^{\operatorname{del}}) \simeq \operatorname{Tor}_{3}^{\mathbb{Z}[G]}(\mathbb{F}_{p}[[\widehat{G}_{p}]], \mathbb{Z}) \simeq H_{3}(\widehat{\mathcal{R}^{\operatorname{op}}}), \end{split}$$

as required. \Box

Proof of Theorem 3. As in the proof of Theorem 1, we have

$$H_i(\hat{\mathcal{R}}) = 0 \quad \text{for } i = 0, 1, 4,$$
 (17)

where $\hat{\mathcal{R}} \simeq \mathcal{R} \otimes_{\mathbb{Z}[G]} \mathbb{F}_p[[\hat{G}_p]]$, \mathcal{R} is the complex (1) for m=4 and again as in the proof of Theorem 1 for $U \in \mathcal{C}$ the map

$$\varphi_{2,U}: H_2(U, \mathbb{F}_p) \to H_2(\widehat{U}_p, \mathbb{F}_p)$$

is surjective.

Then by Lemma 3,

$$0 \leq \dim_{\mathbb{F}_p} \ker(\varphi_{2,U}) = \dim_{\mathbb{F}_p} H_2(U, \mathbb{F}_p) - \dim_{\mathbb{F}_p} H_2(\widehat{U}_p, \mathbb{F}_p)$$

$$\leq 2 \dim_{\mathbb{F}_p} H_1(U, \mathbb{F}_p) - 2 + m - 2 \dim_{\mathbb{F}_p} H_1(\widehat{U}_p, \mathbb{F}_p)$$

$$= m - 2,$$
(18)

and hence

$$\dim_{\mathbb{F}_p} \varprojlim_{U \in \mathcal{C}} \ker(\varphi_{2,U}) \le m - 2. \tag{19}$$

Using the exact sequence

$$0 \to \lim_{\longleftarrow U \in \mathcal{C}} \ker(\varphi_{2,U}) \to \lim_{\longleftarrow U \in \mathcal{C}} H_2(U, \mathbb{F}_p) \to (\lim_{\longleftarrow U \in \mathcal{C}} H_2(\widehat{U}_p, \mathbb{F}_p)) = 0 \to \cdots,$$

(3) and (19) we obtain that

$$\dim_{\mathbb{F}_p} H_2(\widehat{\mathcal{R}}) = \dim_{\mathbb{F}_p} \operatorname{Tor}_2^{\mathbb{Z}[G]}(\mathbb{Z}, \mathbb{F}_p[[\widehat{G}_{\mathcal{C}}]])$$

$$= \dim_{\mathbb{F}_p} H_2(\widehat{\mathcal{R}})$$

$$= \dim_{\mathbb{F}_p} \lim_{\longleftarrow U \in \mathcal{C}} H_2(U, \mathbb{F}_p)$$

$$= \dim_{\mathbb{F}_p} \lim_{\longleftarrow U \in \mathcal{C}} \ker(\varphi_{2,U}) \le m - 2 < \infty.$$
(20)

By (18), $\sum_{0 \le i \le 4} (-1)^i \dim_{\mathbb{F}_p} H_i(U, \mathbb{F}_p) = 0 = \sum_{0 \le i \le 4} (-1)^i \dim_{\mathbb{F}_p} H_i(\widehat{U}_p, \mathbb{F}_p)$ and $H_1(U, \mathbb{F}_p) \simeq H_1(\widehat{U}_p, \mathbb{F}_p)$ we obtain that $\dim_{\mathbb{F}_p} H_3(U, \mathbb{F}_p) - \dim_{\mathbb{F}_p} H_3(\widehat{U}_p, \mathbb{F}_p)$ equals

$$\sum_{0 \leq i \leq 4, i \neq 3} (-1)^{i} (\dim_{\mathbb{F}_{p}} H_{i}(U, \mathbb{F}_{p}) - \dim_{\mathbb{F}_{p}} H_{i}(\widehat{U}_{p}, \mathbb{F}_{p}))$$

$$= \sum_{i=2,4} (\dim_{\mathbb{F}_{p}} H_{i}(U, \mathbb{F}_{p}) - \dim_{\mathbb{F}_{p}} H_{i}(\widehat{U}_{p}, \mathbb{F}_{p}))$$

$$\leq \dim_{\mathbb{F}_{p}} H_{4}(U, \mathbb{F}_{p}) - \dim_{\mathbb{F}_{p}} H_{4}(\widehat{U}_{p}, \mathbb{F}_{p}) + m - 2$$

$$= m - 1 - \dim_{\mathbb{F}_{p}} H_{4}(\widehat{U}_{p}, \mathbb{F}_{p})$$

$$\leq m - 1 < \infty.$$
(21)

Lemma 5. For $U \in \mathcal{C}$ and for the canonical map

$$\varphi_{3,U}: H_3(U, \mathbb{F}_p) \to H_3(\widehat{U}_p, \mathbb{F}_p)$$

we have

$$\dim_{\mathbb{F}_p} \operatorname{coker}(\varphi_{3,U}) = \dim_{\mathbb{F}_p} H_3(\widehat{U}_p, \mathbb{F}_p) - \dim_{\mathbb{F}_p} \operatorname{im}(\varphi_{3,U}) \le \dim_{\mathbb{F}_p} H_2(\widehat{\mathcal{R}})$$
(22)

Proof. In order to prove (22) consider a short exact sequence of complexes of $\mathbb{F}_p[[\hat{U}_p]]$ -modules

$$0 \to \hat{\mathcal{R}} \to \mathcal{Q} \to \mathcal{S} \to 0, \tag{23}$$

where all modules in \mathcal{S} positioned in dimension ≤ 2 are 0, \mathcal{S} is a shifted profinite deleted projective resolution of the $\mathbb{Z}_p[[\widehat{U}_p]]$ -module $H_2(\widehat{\mathcal{R}})$, i.e., the first non-zero projective in \mathcal{S} is in dimension 3 and

$$H_i(\mathcal{Q}) = 0$$
 for $i \leq 2$.

Furthermore there is a short exact sequence of profinite $\mathbb{F}_p[[\hat{U}_p]]$ - complexes

$$0 \to \mathcal{Q} \to \mathcal{V} \to \mathcal{W} \to 0, \tag{24}$$

where all modules in W positioned in dimension ≤ 3 are zero, W is a shifted profinite deleted projective resolution of $H_3(\mathcal{Q})$, i.e., the first non-zero projective is in dimension 4 and

$$H_i(\mathcal{V}) = 0$$
 for $i \leq 3$.

Since $\widehat{\mathcal{R}} \, \widehat{\otimes}_{\mathbb{F}_p[[\widehat{U}_p]]} \, \mathbb{F}_p = \mathcal{R} \, \otimes_{\mathbb{Z}[G]} \, \mathbb{F}_p[[\widehat{G}_p]] \, \otimes_{\mathbb{F}_p[[\widehat{U}_p]]} \, \mathbb{F}_p \simeq \mathcal{R} \, \otimes_{\mathbb{Z}[G]} \, \mathbb{F}_p[G/U]$ we have $H_3(\widehat{\mathcal{R}} \, \widehat{\otimes}_{\mathbb{F}_p[[\widehat{U}_p]]} \, \mathbb{F}_p) \simeq H_3(G, \mathbb{F}_p[G/U]) \simeq H_3(U, \mathbb{F}_p)$, and since $\mathcal{V}^{(4)}$ is a partial profinite projective resolution of \mathbb{F}_p over $\mathbb{F}_p[[\widehat{U}_p]]$ there is an isomorphism $H_3(\mathcal{V} \, \widehat{\otimes}_{\mathbb{F}_p[[\widehat{U}_p]]} \, \mathbb{F}_p) \simeq H_3(\widehat{U}_p, \mathbb{F}_p)$. Under these isomorphisms the map $\varphi_{3,U} \colon H_3(U, \mathbb{F}_p) \to H_3(\widehat{U}_p, \mathbb{F}_p)$ is the map

$$f_U: H_3(\widehat{\mathcal{R}} \mathbin{\widehat{\otimes}}_{\mathbb{F}_p[[\widehat{U}_p]]} \mathbb{F}_p) \to H_3(\mathcal{V} \mathbin{\widehat{\otimes}}_{\mathbb{F}_p[[\widehat{U}_p]]} \mathbb{F}_p),$$

induced by the inclusion of $\widehat{\mathcal{R}}$ in \mathcal{V} .

Since the complexes S and W from (23) and (24) contain only projectives, we get exact sequences of complexes

$$0 \to \widehat{\mathcal{R}} \, \widehat{\otimes}_{\mathbb{F}_p[[\widehat{U}_p]]} \, \mathbb{F}_p \to \mathcal{Q} \, \widehat{\otimes}_{\mathbb{F}_p[[\widehat{U}_p]]} \, \mathbb{F}_p \to \mathcal{S} \, \widehat{\otimes}_{\mathbb{F}_p[[\widehat{U}_p]]} \, \mathbb{F}_p \to 0$$

and

$$0 \to \mathcal{Q} \, \widehat{\otimes}_{\mathbb{F}_p[[\widehat{U}_p]]} \, \mathbb{F}_p \to \mathcal{V} \, \widehat{\otimes}_{\mathbb{F}_p[[\widehat{U}_p]]} \, \mathbb{F}_p \to \mathcal{W} \, \widehat{\otimes}_{\mathbb{F}_p[[\widehat{U}_p]]} \, \mathbb{F}_p \to 0$$

and the associated exact sequences in homology

$$\cdots \to H_3(\widehat{\mathcal{R}} \ \widehat{\otimes}_{\mathbb{F}_p[[\widehat{U}_p]]} \mathbb{F}_p) \xrightarrow{f_{1,U}} H_3(\mathcal{Q} \ \widehat{\otimes}_{\mathbb{F}_p[[\widehat{U}_p]]} \mathbb{F}_p)$$

$$\to H_3(\mathcal{S} \ \widehat{\otimes}_{\mathbb{F}_p[[\widehat{U}_p]]} \mathbb{F}_p) = \operatorname{Tor}_0^{\mathbb{F}_p[[\widehat{U}_p]]} (H_2(\widehat{\mathcal{R}}), \mathbb{F}_p) \simeq H_2(\widehat{\mathcal{R}}) \otimes_{\mathbb{F}_p[[\widehat{U}_p]]} \mathbb{F}_p \to \cdots$$
and

$$\cdots \to H_3(\mathcal{Q} \, \widehat{\otimes}_{\mathbb{F}_p[[\widehat{U}_p]]} \, \mathbb{F}_p) \xrightarrow{f_{2,U}} H_3(\mathcal{V} \, \widehat{\otimes}_{\mathbb{F}_p[[\widehat{U}_p]]} \, \mathbb{F}_p)$$

$$\longrightarrow H_3(\mathcal{W} \, \widehat{\otimes}_{\mathbb{F}_p[[\widehat{U}_p]]} \, \mathbb{F}_p) = 0 \to \cdots$$

Finally (22) follows from $f_U = f_{2,U} f_{1,U}$, $f_{2,U}$ is surjective and so

$$\dim_{\mathbb{F}_p} \operatorname{coker}(f_U) \leq \dim_{\mathbb{F}_p} \operatorname{coker}(f_{1,U})
\leq \dim_{\mathbb{F}_p} (H_2(\widehat{\mathcal{R}}) \otimes_{\mathbb{F}_p[[\widehat{U}_p]]} \mathbb{F}_p)
\leq \dim_{\mathbb{F}_p} H_2(\widehat{\mathcal{R}}). \qquad \square$$

Lemma 6. For all $i \geq 1$,

$$\operatorname{Tor}_{i}^{\mathbb{Z}[G]}(\mathbb{Z}, \mathbb{F}_{p}[[\widehat{G}_{p}]]) \simeq H_{i}(\widehat{\mathcal{R}}) = H_{i}(\mathcal{R} \otimes_{\mathbb{Z}[G]} \mathbb{F}_{p}[[\widehat{G}_{p}]])$$
 (25)

is finite.

Proof. By (20), (21) and (22)

$$\dim_{\mathbb{F}_p} \ker(\varphi_{3,U}) = \dim_{\mathbb{F}_p} H_3(U,\mathbb{F}_p) - \dim_{\mathbb{F}_p} \operatorname{im}(\varphi_{3,U})
\leq \dim_{\mathbb{F}_p} H_3(\widehat{U}_p,\mathbb{F}_p) + (m-1) - \dim_{\mathbb{F}_p} \operatorname{im}(\varphi_{3,U})
\leq \dim_{\mathbb{F}_p} H_2(\widehat{\mathcal{R}}) + (m-1) < \infty.$$
(26)

Then using the exact sequences

$$0 \to \varprojlim_{U \in \mathcal{C}} \operatorname{im}(\varphi_{3,U}) \to (\varprojlim_{U \in \mathcal{C}} H_3(\widehat{U}_p, \mathbb{F}_p)) = 0 \to \cdots$$

and

$$0 \to \varprojlim_{U \in \mathcal{C}} \ker(\varphi_{3,U}) \to \varprojlim_{U \in \mathcal{C}} H_3(U, \mathbb{F}_p) \to (\varprojlim_{U \in \mathcal{C}} \operatorname{im}(\varphi_{3,U})) = 0 \to \cdots,$$
 and by (26) we deduce that

$$\dim_{\mathbb{F}_p} H_3(\widehat{\mathcal{R}}) = \dim_{\mathbb{F}_p} \operatorname{Tor}_3^{\mathbb{Z}[G]}(\mathbb{Z}, \mathbb{F}_p[[\widehat{G}_p]])$$

$$= \dim_{\mathbb{F}_p} H_3(\widehat{\mathcal{R}})$$

$$= \dim_{\mathbb{F}_p} \lim_{\longleftarrow U \in \mathcal{C}} H_3(U, \mathbb{F}_p)$$

$$= \dim_{\mathbb{F}_p} \lim_{\longleftarrow U \in \mathcal{C}} \ker(\varphi_{3,U})$$

$$\leq \dim_{\mathbb{F}_p} H_2(\widehat{\mathcal{R}}) + (m-1) < \infty.$$
(27)

Finally (17), (20) and (27) complete the proof.

Consider the dual complex $\mathcal{M} = \operatorname{Hom}_{\mathbb{Z}[G]}(\mathcal{R}^{\operatorname{del}}, \mathbb{Z}[G])$. Define \mathcal{T} the complex obtained from \mathcal{M} by adding its unique non-trivial cohomology:

$$\mathcal{T}: 0 \to M^0 \to M^1 \to M^2 \to M^3 \to M^4 \to H^4(\mathcal{M}) = \mathbb{Z} \to 0.$$

In particular the complex \mathcal{T} is a projective resolution of the trivial left $\mathbb{Z}[G]$ -module \mathbb{Z} and as before we define $\widehat{\mathcal{T}} = \mathbb{F}_p[[\widehat{G}_p]] \otimes_{\mathbb{Z}[G]} \mathcal{T}$. Then

$$\widehat{\mathcal{T}}^{\text{del}} \simeq \text{Hom}_{\mathbb{F}_p[[\widehat{G}_p]]}(\widehat{\mathcal{R}}^{\text{del}}, \mathbb{F}_p[[\widehat{G}_p]]), \tag{28}$$

$$H^{i}(\operatorname{Hom}_{\mathbb{F}_{p}[[\widehat{G}_{p}]]}(\widehat{\mathcal{R}}^{\operatorname{del}}, \mathbb{F}_{p}[[\widehat{G}_{p}]])) \simeq H^{i}(\widehat{\mathcal{T}}^{\operatorname{del}}).$$
 (29)

As in the proof of Theorem 2, let $\widehat{\mathcal{R}^{op}}$ be the version of $\widehat{\mathcal{R}}$ exchanging right with left modules. Then by the dual version of (25) (i.e., exchanging left with right modules)

$$H^{i}(\widehat{\mathcal{T}}^{\mathrm{del}}) \simeq \mathrm{Tor}_{4-i}^{\mathbb{Z}[G]}(\mathbb{F}_{p}[[\widehat{G}_{p}]], \mathbb{Z}) \simeq H_{4-i}(\widehat{\mathcal{R}^{\mathrm{opdel}}})$$

is finite for all $i \neq 4$ and

$$H^4(\widehat{\mathcal{T}}^{\text{del}}) = 0. \tag{30}$$

Since the complex \mathcal{S} in (23), considered for U=G, contains only projectives, we get a short exact sequence of complexes

$$\operatorname{Hom}_{\mathbb{F}_{p}[[\widehat{G}_{p}]]}(\mathcal{S}, \mathbb{F}_{p}[[\widehat{G}_{p}]]) \to \operatorname{Hom}_{\mathbb{F}_{p}[[\widehat{G}_{p}]]}(\mathcal{Q}, \mathbb{F}_{p}[[\widehat{G}_{p}]])$$
$$\to \operatorname{Hom}_{\mathbb{F}_{p}[[\widehat{G}_{p}]]}(\widehat{\mathcal{R}}, \mathbb{F}_{p}[[\widehat{G}_{p}]])$$

and the corresponding long exact sequence in cohomology

$$\begin{split} & \cdots \to H^1(\operatorname{Hom}_{\mathbb{F}_p[[\hat{G}_p]]}(\mathcal{S},\mathbb{F}_p[[\hat{G}_p]])) = 0 \to H^1(\operatorname{Hom}_{\mathbb{F}_p[[\hat{G}_p]]}(\mathcal{Q},\mathbb{F}_p[[\hat{G}_p]])) \\ & \to H^1(\operatorname{Hom}_{\mathbb{F}_p[[\hat{G}_p]]}(\hat{\mathcal{R}},\mathbb{F}_p[[\hat{G}_p]])) \to H^2(\operatorname{Hom}_{\mathbb{F}_p[[\hat{G}_p]]}(\mathcal{S},\mathbb{F}_p[[\hat{G}_p]])) = 0 \\ & \to H^2(\operatorname{Hom}_{\mathbb{F}_p[[\hat{G}_p]]}(\mathcal{Q},\mathbb{F}_p[[\hat{G}_p]])) \to H^2(\operatorname{Hom}_{\mathbb{F}_p[[\hat{G}_p]]}(\hat{\mathcal{R}},\mathbb{F}_p[[\hat{G}_p]])) \\ & \to H^3(\operatorname{Hom}_{\mathbb{F}_p[[\hat{G}_p]]}(\mathcal{S},\mathbb{F}_p[[\hat{G}_p]])) \simeq \operatorname{Ext}^0_{\mathbb{F}_p[[\hat{G}_p]]}(H_2(\hat{\mathcal{R}}),\mathbb{F}_p[[\hat{G}_p]]) \to \cdots \end{split}$$

Note that $\operatorname{Ext}^0_{\mathbb{F}_p[[\widehat{G}_p]]}(\mathbb{F}_p,\mathbb{F}_p[[\widehat{G}_p]]) \simeq H^0(\widehat{G}_p,\mathbb{F}_p[[\widehat{G}_p]]) = 0$ since \widehat{G}_p is infinite (remember that \widehat{G}_p is not virtually procyclic, hence is not virtually trivial), where \mathbb{F}_p is the trivial $\mathbb{F}_p[[\widehat{G}_p]]$ -module. Then since $H_2(\widehat{\mathcal{R}})$ is finite, it has a filtration of $\mathbb{F}_p[[\widehat{G}_p]]$ -modules with simple quotients, and up to isomorphism there is a unique simple $\mathbb{F}_p[[\widehat{G}_p]]$ -module that is the trivial $\mathbb{F}_p[[\widehat{G}_p]]$ -module \mathbb{F}_p , we obtain that $\operatorname{Ext}^0_{\mathbb{F}_p[[\widehat{G}_p]]}(H_2(\widehat{\mathcal{R}}),\mathbb{F}_p[[\widehat{G}_p]]) = 0$.

The inclusion map $\widehat{\mathcal{R}} \to \mathcal{Q}$ induces isomorphisms

$$H^{i}(\operatorname{Hom}_{\mathbb{F}_{p}[[\widehat{G}_{p}]]}(\mathcal{Q}, \mathbb{F}_{p}[[\widehat{G}_{p}]])) \to H^{i}(\operatorname{Hom}_{\mathbb{F}_{p}[[\widehat{G}_{p}]]}(\widehat{\mathcal{R}}, \mathbb{F}_{p}[[\widehat{G}_{p}]])) \quad \text{for } i = 1, 2,$$

$$(31)$$

and by (29), (30), (31) and the fact that the 3-skeleton $Q^{(3)}$ is a partial profinite projective resolution of \mathbb{F}_p over $\mathbb{F}_p[[\hat{G}_p]]$ it follows that

$$H^{i}(\widehat{G}_{p}, \mathbb{F}_{p}[[\widehat{G}_{p}]]) \simeq H^{i}(\operatorname{Hom}_{\mathbb{F}_{p}[[\widehat{G}_{p}]]}(\mathcal{Q}, \mathbb{F}_{p}[[\widehat{G}_{p}]]))$$

$$\simeq H^{i}(\operatorname{Hom}_{\mathbb{F}_{p}[[\widehat{G}_{p}]]}(\widehat{\mathcal{R}}, \mathbb{F}_{p}[[\widehat{G}_{p}]]))$$
(32)

is finite for i = 1, 2.

Furthermore by [7], Thm. 3, and (32) either $H^1(\widehat{G}_p, \mathbb{F}_p[[\widehat{G}_p]]) = 0$ or \widehat{G}_p is virtually \mathbb{Z}_p ; the latter cannot hold by assumption. Thus $H^1(\widehat{G}_p, \mathbb{F}_p[[\widehat{G}_p]]) = 0$, and since \widehat{G}_p has type FP_2 over \mathbb{F}_p (remember G is $\operatorname{FP}_{\infty}$) by [8], Thm. 1, Cor. 1, and (32) it follows that

either
$$H^2(\hat{G}_p, \mathbb{F}_p[[\hat{G}_p]]) = 0$$
 or \hat{G}_p is virtually a pro- p PD₂ group. (33)

In the first case we obtain by (29), (32) and (30) that

$$H_{i}(\widehat{\mathcal{R}}^{\text{op}}) \simeq H^{4-i}(\widehat{\mathcal{T}})$$

$$\simeq H^{4-i}(\text{Hom}_{\mathbb{F}_{p}[[\widehat{G}_{p}]]}(\widehat{\mathcal{R}}, \mathbb{F}_{p}[[\widehat{G}_{p}]]))$$

$$\simeq H^{4-i}(\widehat{G}_{p}, \mathbb{F}_{p}[[\widehat{G}_{p}]]) = 0$$
(34)

for i = 2, 3.

By the dual version of (17) obtained after exchanging left with right modules we have $H_i(\widehat{\mathcal{R}^{\mathrm{op}}})=0$ for i=0,1,4. This combined with (34) implies that $\widehat{\mathcal{R}^{\mathrm{op}}}$ is exact, i.e., $\mathrm{Tor}_i^{\mathbb{Z}[G]}(\mathbb{F}_p[[\widehat{G}_p]],\mathbb{Z})=0$ for all $i\geq 1$. After exchanging left with right modules in the proof of Corollary 1 we get that condition c) of Corollary 1 can be substituted with $\mathrm{Tor}_i^{\mathbb{Z}[G]}(\mathbb{F}_p[[\widehat{G}_p]],\mathbb{Z})=0$ for all $i\geq 1$. Thus \widehat{G}_p is an orientable pro-p PD₄ group, a contradiction, and by (33), \widehat{G}_p is virtually a pro-p PD₂ group.

Finally for some $V \in \mathcal{C}$ the pro-p group \widehat{V}_p is a pro-p PD₂ group, hence a Demushkin group. For such a group, we have that $\dim_{\mathbb{F}_p} H_2(\widehat{V}_p, \mathbb{F}_p) = 1$. Since $2\dim_{\mathbb{F}_p} H_1(\widehat{V}_p, \mathbb{F}_p) - \dim_{\mathbb{F}_p} H_2(\widehat{V}_p, \mathbb{F}_p) \leq m$ there is an upper bound on $\dim_{\mathbb{F}_p} H_1(\widehat{V}_p, \mathbb{F}_p)$, i.e., \widehat{V}_p is a finite rank Demushkin group. The classification of all infinite Demushkin groups can be found in [3], [4], [9] and [13] and this classification implies that \widehat{V}_p has infinite abelianization. In particular there is a normal closed subgroup N of \widehat{V}_p such that $\widehat{V}_p/N \simeq \mathbb{Z}_p$. Because every subgroup of infinite index in a Demushkin group is a free pro-p group, N is a free pro-p group and a pro-p group of finite rank, so $N = \mathbb{Z}_p$. Thus \widehat{V}_p is \mathbb{Z}_p -by- \mathbb{Z}_p .

References

[1] R. Bieri, *Homological dimension of discrete groups*. 2nd ed., Queen Mary College Mathematical Notes, Queen Mary College, London 1981. Zbl 0357.20027 MR 0715779

- [2] K. S. Brown, Cohomology of groups. Graduate Texts in Math. 87, Springer-Verlag, New York 1994. Zbl 0584.20036 MR 1324339
- [3] S. P. Demuškin, The group of a maximal *p*-extension of a local field. *Izv. Akad. Nauk SSSR Ser. Mat.* **25** (1961), 329–346. Zbl 0100.03302 MR 0123565
- [4] S. P. Demuškin, On 2-extensions of a local field. Sibirsk. Mat. Zh. 4 (1963), 951–955;
 English transl. Amer. Math. Soc. Transl. (2) 50 (1966), 178–182. Zbl 0131.27001
 MR 0161854
- [5] D. H. Kochloukova, Pro-C completions of orientable PD³-pairs. Preprint, Campinas 2007.
- [6] D. H. Kochloukova and P. A. Zalesskii, Profinite and pro-p completions of Poincaré duality groups of dimension 3. Trans. Amer. Math. Soc. 360 (2008), 1927–1949. Zbl 1143.20016 MR 2366969
- [7] A. A. Korenev, Pro-p groups with a finite number of ends. *Mat. Zametki* **76** (2004), 531–538; English transl. *Math. Notes* **76** (2004), 490–496. Zbl 1080.20024 MR 2112069
- [8] A. A. Korenev, Cohomology groups of pro-*p*-groups with coefficients in a group ring and the virtual Poincaré duality. *Mat. Zametki* **78** (2005), 853–863; English transl. *Math. Notes* **78** (2005), 791–800. Zbl 1129.20032 MR 2249035
- [9] J. P. Labute, Classification of Demushkin groups. *Canad. J. Math.* 19 (1967), 106–132.Zbl 0153.04202 MR 0210788
- [10] J. Neukirch, A. Schmidt, and K. Wingberg, Cohomology of number fields. Grundlehren Math. Wiss. 323, Springer-Verlag, Berlin 2000. Zbl 0948.11001 MR 1737196
- [11] A. Reznikov, Three-manifolds class field theory (homology of coverings for a nonvirtually b_1 -positive manifold). *Selecta Math.* (*N.S.*) **3** (1997), 361–399. Zbl 0892.57012 MR 1481134
- [12] L. Ribes and P. Zalesskii, *Profinite groups*. Ergeb. Math. Grenzgeb. (3) 40, Springer-Verlag, Berlin 2000. Zbl 0949.20017 MR 1775104
- [13] J.-P. Serre, Structure de certains pro-*p*-groupes (d'après Demuškin). Sém. Bourbaki 15 (1962/63), Exp. No. 252; Sém. Bourbaki, Vol. 8, Exp. No. 252, 145–155, Soc. Math. France, Paris 1995. Zbl 0121.04404 MR 1611538
- [14] J.-P. Serre, Galois cohomology. Springer-Verlag, Berlin 1997. Zbl 0902.12004 MR 1466966
- [15] P. Symonds and T. Weigel, Cohomology of p-adic analytic groups. In New horizons in pro-p groups, Progr. Math. 184, Birkhäuser, Boston 2000, 349–410. Zbl 0973.20043 MR 1765127
- [16] T. Weigel, On profinite groups with finite abelianizations. *Selecta Math. (N.S.)* 13 (2007), 175–181. Zbl 2330590 MR 2330590

Received September 24, 2007; revised April 9, 2008

D. H. Kochloukova, Department of Mathematics, State University of Campinas (UNICAMP), Cx. P. 6065, 13083-970 Campinas, SP, Brazil E-mail: desi@ime.unicamp.br