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Flag-no-square triangulations and Gromov boundaries
in dimension 3
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Abstract. We describe an infinite family of 3-dimensional topological spaces, which are
homeomorphic to boundaries of certain word-hyperbolic groups. The groups are right-angled
hyperbolic Coxeter groups, whose nerves are flag-no-square triangulations of 3-dimensional
manifolds. We prove that any 3-dimensional polyhedral complex (in particular, any 3-manifold)
can be triangulated in a flag-no-square way.
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1. Introduction

The Gromov boundary of a word-hyperbolic group is known to be a compact finite
dimensional metrizable space. It is connected unless the group essentially splits (as
an amalgamated free product or as an HNN-extension) over a finite subgroup. When
the boundary is connected and distinct from S, it has no local cut points unless the
group essentially splits over a two-ended subgroup [1].

Not many explicit topological spaces are known to be homeomorphic to the bound-
ary of a word-hyperbolic group. Restricting to the case of indecomposable groups,
we may ask for such spaces that are connected and have no local cut points. In di-
mension 1 there are precisely two possibilities: the Sierpifiski carpet M > and the
Menger curve M; 3 [16]. Surprisingly little is known in dimensions larger than 1.
The only known examples, apart from spheres S” and Sierpifiski compacta My, 41,
are the Menger universal compacta M5 s and M3 7 [8], and certain 2-dimensional
compacta IT, called Pontriagin surfaces [7].

Spheres (and Sierpiniski compacta) occur as boundaries of fundamental groups of
hyperbolic manifolds (with totally geodesic boundary). The Menger compacta M5 s
and M3 7 occur as boundaries of right-angled hyperbolic buildings of dimension 3
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and 4, respectively. Consequently, they are the boundaries of discrete cocompact
automorphism groups of such buildings. Pontriagin surfaces I1, (where p is a prime)
are characterized by dimg (I1,) = dimg, (I1,) = 1 for any prime g distinct from p,
anddimz, (IT,) = 2, where dimg is the cohomological dimension for coefficients G.
They are the boundaries of certain right-angled hyperbolic Coxeter groups.

Dranishnikov’s method [7] combined with a recent result of Fischer [9] yields
also the Pontriagin sphere (which is different from the Pontriagin surfaces II,). It
occurs as the boundary of all right-angled hyperbolic Coxeter groups whose nerves
are closed orientable surfaces (see Remarks 3.6 and 4.4 (1)).

In this paper we describe another family of topological spaces, in dimension 3,
that are the boundaries of right-angled hyperbolic Coxeter groups. These are some of
the trees of manifolds (named so in [10]) introduced by Jakobsche in [12]. Apart from
being connected, these spaces are homogeneous, and thus have no local cut points.
Moreover, they are (examples of) Cantor manifolds, which means that no subset of
codimension 2 or more (i.e., of dimension < 1) separates them.

Trees of manifolds are defined as inverse limits of appropriate systems of iterated
connected sums of manifolds; see Section 3. They generalize the Pontriagin sphere
which is obtained in this way out of 2-dimensional tori. By the already mentioned
result of Fischer [9], certain trees of manifolds occur as boundaries of those right-
angled hyperbolic Coxeter groups whose nerves are manifolds, PL-triangulated in
a flag-no-square way. An essential part of this paper is the construction of flag-no-
square triangulations for any 3-dimensional polyhedral complex, in particular for any
3-dimensional PL-manifold. This construction uses certain properties of the 600-cell,
and occupies Section 2.

Our approach cannot be widely extended to higher dimensions. It is known for
example that 4-dimensional homology spheres do not admit flag-no-square triangula-
tions (see Section 2.2 in [14] and Theorem 5.6 in the appendix). As a consequence, no
manifold in dimension above 4 has a flag-no-square PL-triangulation. The question
of which 4-manifolds admit flag-no-square triangulations is (according to our knowl-
edge) an open problem. We describe a class of such 4-manifolds in Remark 4.4 (2).

On the other hand, our construction of flag-no-square triangulations in dimen-
sion 3 waits for other applications. For example, it might be useful for constructing
word-hyperbolic groups whose boundaries have exotic cohomological dimensions
for various coefficients, in the spirit of [7].

We close the paper with an appendix containing the summary of what is known
about flag-no-square triangulations.

We are grateful to Tadeusz Januszkiewicz for posing the problem of flag-no-square
subdivision of 3-dimensional simplicial complexes and for motivating us. We thank
Pawet Krupski for pointing out to us various topological references.
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2. Flag-no-square subdivision in dimension 3

In this section we show that any simplicial complex of dimension < 3 can be sub-
divided so as to satisfy the flag-no-square property. We recall the definition of the
flag-no-square property, and briefly outline its geometric role, in the appendix to this
paper.

Consider the 600-cell, the convex regular 4-polytope with Schlifli symbol {3, 3, 5}
(see, e.g., [3]). Denote by Xeoo the boundary of the 600-cell, a 3-dimensional sim-
plicial polyhedron homeomorphic to the 3-dimensional sphere. It consists of 600
3-simplices and has 120 vertices. Its vertex links are icosahedra and edge links are
pentagons. We will only exploit the combinatorial simplicial structure of X¢go-

A starting point for our construction of flag-no-square subdivisions is the follow-
ing.

Lemma 2.1. X satisfies the flag-no-square property.

Proof. We present an argument that refers to Moussong’s characterization of word-
hyperbolicity for right-angled Coxeter groups (see Corollary 5.3 in the appendix).
Consider the 120-cell P;39, which is a convex regular 4-dimensional polytope that
is simple and whose 3-dimensional faces are dodecahedra (see, e.g., [3]). Realize
P120 as a right-angled convex polytope in the hyperbolic space H* (see [2], the tile
of the honeycomb {5, 3, 3, 4}), and consider the group W generated by reflections
with respect to the 3-dimensional faces of P. W is then a right-angled Coxeter group
which acts properly discontinuously and cocompactly on H* (compare Theorem 6.4.3
in [6]), and hence it is word-hyperbolic. Moreover, the nerve of W is the simplicial
complex dual to the boundary complex X159 = 9P120 (Example 7.14 in [6]), and
thus it is isomorphic to Xgo¢ (see [3]). By the above mentioned Moussong’s charac-
terization, Xggo is flag-no-square, and the lemma follows.

The lemma can be also proved in an elementary way, by the direct inspection of
the combinatorial ball of radius 2 around a vertex in Xgg9. We omit the details. [

Before constructing flag-no-square subdivisions in dimension 3, we recall the
analogous construction in dimension 2, due to Dranishnikov [7]. Let Z;o be the
subcomplex of the boundary triangulation of the icosahedron which is the span of the
vertices at distance at most 1 (in the 1-skeleton) from a fixed 2-dimensional simplex.
Clearly, Z ¢ is topologically a 2-dimensional disc. We call true vertices of Z those
vertices which belong to exactly two different 2-dimensional simplices of Z¢. There
are three such vertices and they lie on the boundary of Z .

Definition 2.2. The special subdivision of a 2-simplex A is the subdivision isomor-
phic to Z1o, where vertices of A correspond to true vertices of Z19. We denote it
by A*. For any 2-dimensional simplicial complex Y, the special subdivision Y * is
obtained by taking the first barycentric subdivision of the 1-skeleton of Y, followed
by the special subdivision of every 2-simplex of Y.
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We recall from [7] the following.

Lemma 2.3. Let Y be a 2-dimensional simplicial complex. Then its special subdivi-
sion Y * satisfies the flag-no-square property.

Now we turn to looking closely at the combinatorial ball around a 3-simplex in
Xe00- Its properties together with the flag-no-square property of Xeggo are crucial
for the later construction in this section. Fix a 3-dimensional simplex A in Xggg-
Consider the subcomplex

B1(Ag) = span {v € Xégz) sdist(v, Ag) < 1}.
Denote by dB1(Ap) the subcomplex of B;(Ag) spanned by the vertices not in Ay.
Lemma 2.4. Every simplex in 0B1(Ag) is contained in a simplex intersecting A.

Proof. 1f the simplex of dB1(Ag) is a vertex, the assertion is trivial. If the simplex
is an edge xy and x’, y’ are neighbors in Ag of x, y respectively, then the flag-no-
square property of Xeoo implies, without loss of generality, that xy’ is an edge, so
xy belongs to a triangle xyy’ intersecting Ay.

Now if xyz is a triangle in dB1(Ay) then let x’, ¥’ denote vertices in A forming
triangles zxx’, zyy’ guaranteed by the previous step. If x’ = y’ then the assertion
follows by flagness of Xggo. If not, consider the cycle xyy’x’x and note that the
flag-no-square condition yields, without loss of generality, that xy’ is an edge, so
xyzy'is a simplex.

Finally, we need to show that dB;(A¢) contains no 3-simplex. If not, let x, y,
z, t be vertices spanning a 3-simplex of dB1(Ag). Let u, w be the vertices in Ag
forming 3-simplices xyzu and yztw guaranteed by the previous step. If u = w
then flagness of X0 yields that xyzruw is a 4-simplex of X090, a contradiction. If
u # w, consider the cycle uwtxu and note that the flag-no-square condition yields,
without loss of generality, that xw is an edge, so xyzuw is a 4-simplex of X¢oo0,
which gives again a contradiction. O

The above lemma allows one to describe both complexes B1(Ag) and dB1(Ag)
more precisely.

Lemma 2.5. (1) B{(Ayg) is topologically a 3-ball, and 0B1(Ag) is its boundary
sphere.

(2) 0B1(Ao) is simplicially isomorphic to the special subdivision (00>)* of the
boundary of a 3-simplex.

(3) Under the canonical identification of 0B1(Ag) with (003)*, if vertices
wy,wy € dB1(Ag) are contained in the same proper face t of o, then there is
a vertex vy € Ay at distance 1 from both w; and w,.
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Proof. By Lemma 2.4 and the fact that in Xgo9 each simplex is contained in a
3-simplex, dB1(Ap) is the union of the faces disjoint with Ay of the 3-simplices
intersecting Ag. Thus B1(Ay) is the union of the 3-simplices that intersect Ag. We
describe it gradually, starting from the position of the 3-simplices with 2-dimensional
intersection with A and ending with the ones with 0-dimensional intersection.

Denote the vertices of Ag by v;,i = 1,2, 3, 4. First consider four 3-dimensional
simplices A;,i = 1,2, 3, 4, of X¢o0, Which have 2-dimensional intersection with A
(vi ¢ Ag N A;j). Denote by a;,i = 1,2, 3,4, the vertices in corresponding A; not
contained in Ay, thus being vertices in dB1(Ag). Observe that for i # j we have
a; # aj. Otherwise a; would be a neighbor of all vertices of A, and by flagness we
would have a 4-simplex, contradiction.

Now consider twelve 3-dimensional simplices A;;,i, j = 1,2,3,4, i # j, such
that A;; N Ag is 1-dimensional, A;; N Ag = A; N A, A;; N A; is 2-dimensional.
In each A;; there is one edge disjoint with Ag, whose one vertex is a; and second
is a common vertex with A ;. Denote this common vertex by a;; (i < j). Observe
that for {7, j} # {k,!} (and any m) we have a;; # ax; (a;j # am). Otherwise, if
aij = agj, then a;; is a neighbor of at least three different vertices of Ao and by
flagness it is one of the a,,. If a;; = a,,, thenm ¢ {i, j}, hence a;; is a neighbor of
all vertices of A, and by flagness we have a 4-simplex, contradiction.

Altogether, the union Ag U | J A; U A;; is homeomorphic to the 3-ball, and its
intersection with dB1(Ag) is simplicially isomorphic to the first barycentric subdivi-
sion of the 1-skeleton of the 3-dimensional simplex.

Finally, consider the rest of the 3-dimensional simplices of X having non-empty
intersection with Ay, grouped into the following four complexes. Let

Ci = U{A : A is a 3-dimensional simplex of B1(Ag), AN Ay = v;},

fori = 1,2, 3, 4. Recall that the star of the vertex v; is the cone over the icosahedron.
Observe that C; consists of exactly half of the 3-dimensional simplices of this star.
To see this, we check which simplices of this star do not belong to C;. First, C;
does not contain A. It also does not contain any of A;, j # i, since these have
2-dimensional intersection with Ag. Finally, C; does not contain the simplices Ay,
k,l # i, since they have 1-dimensional intersection with Ag. It particular, the
triangles corresponding to these 3-simplices in the link of v; are the triangles which
have a nonempty intersection with the triangle corresponding to Ag. Thus the link of
v; in C; (which is isomorphic to the intersection of C; with dB1(Ag)) is simplicially
isomorphic to Z1g. It is glued to the previously constructed part of dB1(Ag) in such
a way that true vertices of the new part are glued to the vertices a;, j # 1.

To complete the proof of part (2) we now only need the following observation. A
vertex ¢; € Cl.(o) different from v;, from a,, for m # i and from ag; fori ¢ {k,[}
does not coincide with any a,,, ax; or other ¢; € Cj(o) \ {v;}. Otherwise, if ¢; = ¢;,
then (since i # j) ¢; is a neighbor of two different vertices of Ay. Hence by flagness
it is contained in a 3-simplex with at least 1-dimensional intersection with Ay, and
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thus it is one of a,, or ag;. If ¢; = ay; then (since i ¢ {k,[}) it is actually a neighbor
of three different vertices of A, hence by flagness it one of the a,,. If ¢; = a,
then m = i, hence ¢; is a neighbor of all vertices of Ay and again flagness yields a
contradiction. This completes the proof of part (2).

Part (1) follows by observing that each C; is topologically a 3-ball, glued to
the previously constructed part of Bj(Ag) (which is itself a 3-ball) along a 2-disc
contained in the boundary dC;. The subcomplex dB1(Ap) is the boundary sphere of
the so obtained 3-ball.

Part (3) easily follows from the above description of dB;(Ag). O

In order to extend special subdivisions to dimension 3, we use the complement
of the ball B1(Ap) in Xe¢oo. More precisely, denote by Xs43 the 3-dimensional
subcomplex of X¢o9 Which is the closure of X\ B1(Ap). In other words, X543 is the
union of all 3-simplices of Xggo not contained in B1(Ag). (The number 543 in the
subscript is the number of 3-simplices in this subcomplex.)

Remark 2.6. It follows from Lemma 2.5 that X543 is a 3-ball and its boundary sphere
is simplicially isomorphic to (d53)*.

Lemma 2.7. (1) X543 is a full subcomplex of Xeoo.
(2) X543 satisfies the flag-no-square property.

Proof. To prove (1), consider a collection of vertices in X543 spanning a simplex
T of Xgoo. If at least one of those vertices is interior in Xs43 then clearly 7 is a
simplex of Xs43. Otherwise, suppose that all simplices in the collection belong to
the boundary sphere dB1(Ag). Since, by definition, the subcomplex dB;(Ay) is full
in Xeg0, assertion (1) follows.

Since the flag-no-square property is inherited by full subcomplexes (Lemma 5.1
in the appendix), assertion (2) follows from Lemma 2.1. O]

Now we are ready to define special subdivision for 3-dimensional complexes.

Definition 2.8. Given a simplicial complex W with dim W < 3, its special subdivi-
sion W* is the simplicial complex obtained by taking the special subdivision of the
2-skeleton W ) followed by subdividing each 3-simplex o3 of W so that it becomes
isomorphic to X543 and its subdivided boundary (do3)* canonically identifies with
dB1(Ao).

To prove that special subdivision yields simplicial complexes that satisfy the flag-
no-square property, we need some preparatory results.

Lemma 2.9. Let A be a simplex of dimension 1, 2 or 3, and let xy be an edge of
the special subdivision A*. If the vertices x, y are not both contained in a common
proper face of A, then at least one of them lies in the interior of A.
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Proof. For dimension 1 and 2 the proof goes by inspection. For dimension 3, suppose
that both x and y are contained in the boundary of A. Identify A* with X543 C Xe00,
and recall that its boundary dB;(Ag) is by definition full in Xggg. Thus the edge xy
is contained in the boundary too. Let © be a proper face of A containing the edge xy.
Then both x and y are contained in 7, contradiction. O

Lemma 2.10. Let W be a simplicial complex with dim W < 3 and let U be a
subcomplex of W. Then U™ is a full subcomplex of W*.

Proof. Let the vertices x, y € U* form an edge xy of W*. Denote by A € W the
simplex of the lowest possible dimension such that xy C A*. By Lemma 2.9, at
least one of the vertices, say y, belongs to the interior of A. This implies that A C U
and xy C A* Cc U*.

For a triangle or a 3-simplex o of W* with vertices in U * the argument is the same.
If A is a minimal simplex of W such that ¢ C A*, then, by a version of Lemma 2.9
for 2-simplices and 3-simplices, at least one of the vertices y of o belongs to the
interior of A, so A C U ando C A* C U*. O

Lemma 2.11. Let A be a 3-dimensional simplex. Let w, w1, wy be vertices of A* and
suppose w is interior in A. Suppose also that wq, wy lie on the same 2-dimensional
face of A, and that there are edges in A* between w and w1y and between w and w.
Then there is an edge between wy and wy in A*.

Proof. View A* as Xs43, the subcomplex of Xgo9. By Lemma 2.5 (3), there is a
vertex vg in Ay whose distance from both w; and w, is equal to one. If w; and w,
were not connected by an edge, then the opposite vertices of the cycle wjvowaww;
would not be connected by edges, contradicting the flag-no-square property of Xego.

O

Lemma 2.12. Let A be a 3-simplex and © a simplex of dimension < 3 such that
A N t is a nonempty proper face in both A and t. Then the special subdivision
Y = (A U 1t)* satisfies the flag-no-square property.

Proof. To prove flagness, consider any collection of vertices in Y pairwise connected
by edges. We claim that all these vertices belong to a single subdivided simplex A*
or t*. Indeed, if one of the vertices, say v, is not in the intersection A N t then all
vertices in the collection belong to the same subdivided simplex as v. Now, since
each of the subdivided simplices A* and t* is full in ¥ (Lemma 2.10) and flag
(Lemma 2.7 (2) or Lemma 2.3), the vertices from the collection span a simplex of Y.

To prove the flag-no-square property, suppose that we have a cycle of length four
in Y. If the cycle is contained in A* or in 7*, then we use the flag-no-square property
of X543 (Lemma 2.7 (2)), or Lemma 2.3. Otherwise, suppose that a vertex x of the
cycle does not belong to A*, and that a vertex y does not belong to t*. This means
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that x and y are opposite in the cycle and that the other two vertices, u and w, of the
cycle belong to A N t. By Lemma 2.11, u and w are connected by an edge, which
finishes the proof. O

We are now ready to prove the main result of this section:

Proposition 2.13. Let W be a 3-dimensional simplicial complex. Then its special
subdivision W* is flag-no-square.

Proof. To prove flagness, consider a collection of vertices of W * pairwise connected
by edges. If all these vertices are in (W(z))*, the special subdivision of the 2-skeleton
of W, then they are pairwise connected by edges in (W ®)* by the fact that (W ®)* is
full in W* (Lemma 2.10). They span a simplex because (W ®)* is flag (Lemma 2.3).
Otherwise, there is a vertex in the collection contained in the interior of a 3-simplex A
of W. Consequently, all vertices in the collection are the vertices of A*. Now, since
A* is full in W* (Lemma 2.10), the vertices in the collection are pairwise connected
by edges in A*. Since the latter is flag (Lemma 2.7 (2)), the vertices span a simplex
of A*, which is also a simplex of W*.

To prove the flag-no-square property, consider a cycle of length 4 in W*. If all
vertices of the cycle are in (W ®))* then, by Lemma 2.10, the whole cycle is contained
in (W®@)*. Since the latter is flag-no-square (Lemma 2.3), there is an edge between
some opposite vertices in the cycle.

If one vertex, say vy, in the cycle vivov3v4v1 in W* is interior in a 3-simplex A
of W, then v, and v4 are together with vy in A*. If v3 is also in A*, the whole cycle
isin A* (by fullness of A* in W*, see Lemma 2.10). Since A* is flag-no-square, the
cycle is as required. If v is not contained in A, it belongs to some simplex t which
is not a face of but shares a face with A. Moreover, the whole cycle is contained in
the union A U 7 (Lemma 2.10 again). Since the special subdivision of the latter is
flag-no-square (Lemma 2.12), this finishes the proof. O

Corollary 2.14. Every 3-dimensional polyhedron can be triangulated in a flag-no-
square fashion.

Proof. Consider any triangulation of the polyhedron and take its special subdivision.
O

3. Trees of manifolds

In this section we recall from [12] Jakobsche’s definition of a family of spaces that
we call (after Fischer and Guilbault [10]) trees of manifolds. We include an extension
to the case of non-orientable manifolds due to P. Stallings [21]. We recall and/or
derive some useful topological properties of these spaces. We also recall a theorem
of Fischer [9] who proved that some trees of manifolds are CAT(0) boundaries of the
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Davis—Vinberg complexes of certain right-angled Coxeter groups. We focus only on
trees of manifolds, which appear in Fischer’s theorem.

Theorem 3.1 (Jakobsche [12], [9], Stallings [21]). Let Lo < L <= L, <= ...
be an inverse sequence of connected closed n-manifolds (n > 2) and Dy, finite
collections of disjoint collared discs in Ly such that

(a) each Ly is a connected sum of finitely many copies of Ly;

(b) each ay 41 is a homeomorphism over the set Ly \ | {int D | D € Dy };

(c) each 0‘1241-1 (D) (D € Dy) is homeomorphic to a copy of Lo with the interior of
a collared disc removed;

(d) {ajq100jqp0---00;(D)| D € D, i > j}isnull and dense in L; forall j;
(e) ajy10Qjqp0--oa;(D)yNbdy D' =@ forall D € D;, D' € D, i > j.

Then the inverse limit
. ] an a3
l(in(L() «— L <— Ly < )
depends only on Lo . This space is denoted by X (Lo, {Lo}).

The spaces X(Lo,{Lo}) are clearly connected and locally connected compact
metric spaces. Jakobsche and Stallings show in [13], [12] and [21] the following
less immediate properties of these spaces. Recall that, given a positive integer m, a
topological space X is m-homogeneous if for any two m-element subsets of X there
is a homeomorphism of this space which maps one set to the other.

Theorem 3.2 (Jakobsche, Stallings). (1) The topological dimension dim X (Lo, {L¢})
is equal to dim L.

(2) For every positive integer m the space X (Lo, {Lo}) is m-homogeneous.
(3) If Lg is a homology n-sphere, then X (Lo, {Lo}) is a cohomology n-manifold.

The above properties of trees of manifolds have the following further conse-
quences, especially interesting in the context of boundaries of word-hyperbolic groups.
Recall that a topological space X is a Cantor manifold if no subset of X of dimension
< dim X — 2 separates X.

Corollary 3.3. Ifdim L > 2, then the spaces X(Lg, {Lo})

(1) have no local cut points, and
(2) are Cantor manifolds.

Proof. Let X = X(Lo,{Lo}). By homogeneity, either X has no local cut point or
every point of X is alocal cut point. Suppose the latter holds. Since in any continuum
the set of local cut points which are not of order 2 is countable ([22], (9.2), p. 61), it
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follows that each point of X is of order 2, and hence it is homeomorphic to S ([18],
Theorem 6, p. 294). This contradiction proves (1).

Since any homogeneous continuum is a Cantor manifold [17], (2) follows from
Theorem 3.2 (2). Ll

It turns out that sometimes the spaces X (L, {Lo}) are homeomorphic for different
manifolds L. On the other hand, Jakobsche [12] shows how to distinguish certain
trees of manifolds, up to homeomorphism, in dimension 3. We recall briefly some
details concerning these two issues. We denote by M # N the connected sum of
manifolds M and N.

Lemma34. If M' = M# N and M = L # N, then the spaces X(M',{M’}) and
X(M,{M?}) are homeomorphic.

Proof. Both spaces are easily seen to be homeomorphic to Jakobsche’s space
X(L,{L,N}) (see [12] for the definition). O

In dimension 2, in view of the classification of surfaces, Lemma 3.4 implies the
following.

Corollary 3.5. Let Fy, F, be closed surfaces different from the 2-sphere. If either
both Fy, F, are orientable or both are non-orientable, then the spaces X (Fy,{F1})
and X (F,,{F,}) are homeomorphic.

Remark 3.6. Note that if F' is an orientable closed surface, then the space X (F, {F'})
is the well-known Pontriagin sphere. If F is a non-orientable closed surface then
X(F,{F}) is the Pontriagin surface I1, mentioned in the introduction (see [23]).
The Pontriagin sphere is not homeomorphic to any of the Pontriagin surfaces I1,, as
its cohomological dimension for coefficients Q equals 2.

In the case of 3-manifolds, Lemma 3.4 and the argument as in the proof of Theo-
rem 11.1 in [12] imply the following.

Proposition 3.7. (1) If Lo, Ly are closed 3-manifolds different from the sphere, and
the summands appearing in their prime decompositions coincide (the numbers of their
occurrences do not have to match) then the spaces X(Lo,{Lo}) and X(Ly,{L{})
are homeomorphic.

(2) Let Lo, Ly, be closed orientable 3-manifolds. Suppose that, in their prime
decompositions, a certain summand of Lo has different fundamental group from all
summands of Ly,. Then the spaces X(Lo,{Lo}) and X(Ly,{Ly}) are not homeomor-
phic.

Now let us state the announced theorem of Fischer. For the definition of the
Davis—Vinberg complex of a Coxeter group see [4]. By bdy(I") we denote the CAT(0)
boundary of the Davis—Vinberg complex of the group I'.
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Theorem 3.8 (Fischer [9]). If the nerve N of a right-angled Coxeter group I is a
connected closed (orientable or not) PL-manifold, then bdy(I") is homeomorphic to
Jakobsche’s X(|N |, {|N|}) space.

4. The main theorem

In this section we formulate and prove the main result of the paper, Theorem 4.1.
We comment on the algebraic consequences for groups appearing in Theorem 4.1,
implied by topological properties of 3-dimensional trees of manifolds. Finally, we
show the consequences of arguments similar to ours for dimensions different than 3.

Recall that all 3-manifolds are triangulable, all their triangulations are PL, and
any two triangulations of a fixed 3-manifold are PL-equivalent [19].

Theorem 4.1. Let N be a connected, closed 3-dimensional manifold. Then there
exists a right-angled Coxeter group T" which is word-hyperbolic and its Gromov
boundary is homeomorphic to Jakobsche’s X(N,{N }) space.

Proof. Take any PL-triangulation of N. Let N * be its special subdivision, as defined
in Section 2. Since N* is flag-no-square (Proposition 2.13), the right-angled Coxeter
group I whose nerve is N* is word-hyperbolic (Lemma 5.3 in the appendix). The
Gromov boundary of I' is homeomorphic to the CAT(0) boundary of the Davis—
Vinberg complex of I'. Thus, due to Fischer’s Theorem 3.8, the Gromov boundary
of I is homeomorphic to Jakobsche’s X(N, {N }) space. O

Remark 4.2. Since the space X(N,{N}) is connected and has no local cut point
(Lemma 3.3 (1)), it follows from a result of Bowditch [1] that I" as in Theorem 4.1
is JSJ-indecomposable (i.e., it does not split as an amalgamated free product or an
HNN extension over a finite or 2-ended subgroup). Moreover, since X(N,{N})is a
Cantor manifold of topological dimension 3 (Corollary 3.3 (2) and Theorem 3.2 (1)),
it is not separated by a Cantor set or a circle. Consequently, the corresponding group
I" does not split over an undistorted virtually free or virtually surface subgroup.

The argument as in the proof of Theorem 4.1 clearly gives the following.

Corollary 4.3. If N is a connected closed manifold (of arbitrary dimension greater
than 1) which admits a flag-no-square PL-triangulation, then the space X(N,{N}) is
homeomorphic to the Gromov boundary of a word-hyperbolic right-angled Coxeter
group.

Remark 4.4. (1) The above corollary, together with Dranishnikov’s Lemma 2.3,
shows that there are word-hyperbolic groups whose boundaries are homeomorphic
to the Pontriagin sphere.
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(2) In dimension 4 the only examples known to us of manifolds N as in Corol-
lary 4.3 are the following. Consider the regular simplicial tesselation of the hyperbolic
space H* with all vertex links isomorphic to Xggo — the boundary complex of the
600-cell. It is not hard to show (using Lemma 2.1) that this tesselation is flag-no-
square. The automorphism group G of this tesselation is a Coxeter group, hence it
is residually finite. In particular, G contains torsion-free subgroups G’ for which
the quotients have arbitrarily large injectivity radius. If the injectivity radius is large
enough, the quotient (viewed as a simplicial manifold) is flag-no-square. It is PL
regardless of the injectivity radius.

(3) It follows from a result of Januszkiewicz and Swiatkowski [14] (see also
Corollary 5.7 (2) in the appendix) that no closed manifold of dimension > 5 admits
a flag-no-square triangulation. Thus Corollary 4.3 gives no trees of manifolds in
dimensions above 4 as Gromov boundaries of word-hyperbolic groups.

5. Appendix: Flag-no-square triangulations

The aim of this appendix is to survey the subject of flag-no-square triangulations, and
to formulate some open questions. All we know about this we have learnt from or
discovered together with Tadeusz Januszkiewicz.

For completeness, we start with definitions.

A simplicial complex X is flag if any finite subset of its vertices pairwise connected
by edges spans a simplex of X.

A cycle in X is a subcomplex homeomorphic to the circle S!. The length of a
cycle is the number of edges in this cycle. A diagonal of a cycle is an edge connecting
any two non-consecutive vertices in this cycle.

A simplicial complex X is said to satisfy the flag-no-square condition if X is flag
and any cycle of length 4 in X has a diagonal (equivalently, there is no full cycle of
length 4 in X). For brevity we say that X is flag-no-square. The same condition is
also known as “no empty square” condition.

The following two properties of the flag-no-square condition are immediate but
useful consequences of the definition. The second property follows from the first by
the fact that links in a flag simplicial complex are full subcomplexes of it.

Lemma 5.1. Let X be a flag-no-square simplicial complex. Then

(1) any full subcomplex of X is flag-no-square;
(2) links of X are flag-no-square.

The flag-no-square condition was introduced and studied in the context of cubical
structures on 3-manifolds by L. Siebenmann. Its importance for the geometry of
cubical complexes comes from the following observation by Gromov ([11], p. 123).
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Proposition 5.2. Let X be a cubical complex with flag-no-square links. Then X ad-
mits a negatively curved piecewise hyperbolic metric. In particular, the fundamental
group of X is word-hyperbolic.

This proposition implies in particular the following (see [20] or [5]).

Corollary 5.3. A right-angled Coxeter group is word-hyperbolic iff its nerve is a
flag-no-square simplicial complex.

In [15] the flag-no-square condition has been reintroduced under the name
5-largeness and put in the wider context of combinatorial “metric” conditions for
simplicial complexes. In this approach, we say that a simplicial complex X is
k-large (for an integer k > 4) if X is flag and any cycle y in X, with length || satis-
fying 3 < |y| < k, has a diagonal (equivalently, any full cycle in X has length > k).

It turns out that 6-largeness of links (called briefly local 6-largeness) is a condition
that resembles nonpositive curvature, sharing many consequences with the latter.
For example, any compact locally 6-large simplicial complex is aspherical and its
fundamental group is semi-hyperbolic. Furthermore, the fundamental group of any
compact locally 7-large simplicial complex is word-hyperbolic.

Local 5-largeness is a weaker condition and does not lead to phenomena related
to nonpositive curvature. For example, boundaries of the icosahedron and the 600-
cell are 5-large (and thus also locally 5-large) triangulations of the spheres S2 and
S3. However, this condition may be still viewed as a kind of upper curvature bound.
There are reasons to expect topological consequences of local 5-largeness similar to
those of nonpositive curvature, in higher dimensions.

In the remaining part of this appendix we will use the term “5-large” instead of
“flag-no-square”.

In low dimensions there are no topological restrictions for 5-largeness. Namely,
the following fact was observed by Dranishnikov [7].

Proposition 5.4. Any 2-dimensional polyhedron admits a 5-large triangulation.
In this paper we have strengthened this result by showing:

Proposition 5.5 (Corollary 2.14). Any polyhedron of dimension < 3 admits a 5-large
triangulation.

Starting from dimension 4, there are topological obstructions for 5-largeness.
They concern, among others, the so-called generalized homology spheres (GHS).

A simplicial complex N is a generalized homology sphere of dimension k if it
has the same homology as the sphere S¥ and if the link of each simplex in N is a
generalized homology sphere of appropriate dimension. Along the lines of Section 2.2
in [14] the following result is proved.
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Theorem 5.6. A generalized homology sphere of dimension k > 4 is never 5-large.

Recall that links of PL-triangulations of manifolds are spheres. Links of other
triangulations of manifolds may be not spheres, but they are generalized homology
spheres. In particular, all triangulations of spheres and homology spheres are GHS.
Moreover, links in any triangulation of a manifold are GHS. In view of these facts
Theorem 5.6 has the following consequences.

Corollary 5.7. (1) No triangulation of a 4-dimensional homology sphere is 5-large.
In particular, no triangulation of the sphere S* is 5-large.

(2) No triangulation of a manifold of dimension n > 5 is 5-large.

In contrast with the above result, constructions in [14] and [15] give many ex-
amples of compact 5-large pseudomanifolds, in arbitrary dimensions. In fact, the
examples constructed there are 6-large, and thus aspherical. Taken as nerves, those
examples yield word-hyperbolic right-angled Coxeter groups with arbitrarily large
virtual cohomological dimension [14].

Coming back to manifolds, the only examples known to us of closed simplicial
flag-no-square 4-manifolds are those described in Remark 4.4 (2) in this paper.

We finish by posing some open problems that we find intriguing in the perspective
of viewing local 5-largeness as a certain kind of upper curvature bound.

Questions 5.8. (1) Is every 5-large (or locally 5-large) 4-dimensional simplicial
manifold aspherical?

(2) Is every 5-large (or locally 5-large) n-dimensional simplicial pseudomanifold,
for n > 4, aspherical?

(3) Find any restrictions for polyhedra in dimensions > 4 to admit a 5-large or
locally 5-large triangulation.
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