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Abstract. We give a subexponential upper bound and a superpolynomial lower bound on the
growth function of the Fabrykowski–Gupta group.

As a consequence, we answer negatively a question by Longobardi, Maj and Rhemtulla
about characterizing groups containing no free subsemigroups on two generators.
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1. Introduction

Fabrykowski and Gupta constructed in 1985 a group of intermediate word growth,
producing in this way a new example after Grigorchuk’s original construction [Gri83].

This group appears originally in [FG85], and is studied further in [FG91]; some of
its algebraic properties are explained in [BG02]. A proof of its intermediate growth
was first given in [FG85], with an upper bound of the form en˛

. The proof was not
considered altogether complete, and the authors gave a second proof, in [FG91], this
time with no upper bound.

In this paper, we simplify and expand somewhat this last proof, introducing the
general notion of “incompressible group elements”. We also derive explicit lower
and upper bounds for the growth function.

Let us say that two functions f; g satisfy the relation f . g if there is a constant
C > 0 such that f .n/ � g.Cn/. We prove the

Theorem 1. The growth of the Fabrykowski–Gupta group is intermediate. More
precisely, if �.n/ denote the number of elements expressible as a product of at most
n generators of the Fabrykowski–Gupta group, then

en
log 3
log 6 . �.n/ . e

n.log log n/2

log n :
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We then apply this result to a question by Longobardi, Maj and Rhemtulla. LetG
be a group with an exact sequence 1 ! N ! G ! P ! 1, where N is locally
nilpotent and P is periodic. ThenG has no free subsemigroup. Indeed, let x; y 2 G.
Then xn; yn 2 N for some n large enough, so that hxn; yni is nilpotent. Hence, nei-
ther hxn; yni nor hx; yi are free as semigroups. (Note that, without loss of generality,
one may assume that G is finitely generated.)

In [LMR95], Longobardi, Maj and Rhemtulla asked whether the converse were
true:

Question 2. Let G be a finitely generated group with no free subsemigroups. Is G
a periodic extension of a locally nilpotent group?

The answer turns out to be negative; indeed, Ol’shanskii and Storozhev construct
in [OS96] a semigroup identity whose free group is not even a periodic extension of
a locally soluble group.

We remark that a very simple answer can be given to Question 2, knowing that the
Fabrykowski–Gupta group has intermediate growth, and that locally nilpotent groups
are elementary amenable whence have locally polynomial growth:

Theorem 3. The Fabrykowski–GuptaG group is generated by two elements, contains
no free subsemigroup, and is not a periodic extension of an elementary amenable
group.

Proof. Consider a short exact sequence 1 ! N ! G ! P ! 1, with P periodic.
Since G is not periodic (as it contains the element at of infinite order), we have
N 6D 1. Since G is just infinite by Proposition 6.2 in [BG02], the index of N in G
is finite, so N is finitely generated. Therefore, since G has intermediate growth, so
does N . In particular, N is not elementary amenable.

(Actually, the Fabrykowski–Gupta group has a torsion-free subgroup of index 3,
see Theorem 6.4 in [BG02].)

This example is quite different from the Ol’shanskii–Storozhev example: it is a
group constructed by a concrete action on a regular rooted tree (while Ol’shanskii–
Storozhev’s group is constructed by its presentation); accordingly, much more infor-
mation can be gathered on G, for instance that it is a residually-3 group which does
not satisfy any identity.

2. Settings

2.1. The Fabrykowski–Gupta group. Consider the cyclic group of order three
A D Z=3Z D f0; 1; 2g with generator a, and the 3-regular rooted tree T3 D A�, with
root ;. We shall write A� D f1; 2g. The automorphism group of A� is recursively
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defined by Aut.A�/ D Aut.A�/ o Sym.A/, and every automorphism decomposes via
the map

� W Aut.A�/ ! Aut.A�/ o Sym.A/I f 7! hhf0; f1; f2 ii�

where fi 2 A� and � 2 Sym.A/. Thus, a acts on T3 as a cyclic permutation of the
first level A of the tree. Define the automorphism t recursively by t D hh a; 1; t ii.
Note that both a and t are of order 3. The group G generated by a and t , introduced
in [FG85], is called the Fabrykowski–Gupta group. It is known to be a just infinite
group, regular branched over G0 (see [BG02], Proposition 6.2).

Note that �.G/ is a subgroup ofG oA; we still call � the decomposition map ofG

� W G ,! G o AI g 7! hhgi iii2A �:

Let Stab.n/ be the subgroup of G that fixes the nth level An of A�. Then G D
Stab.1/ Ì hai. Furthermore, Stab.1/ D htihai. Let t0 D t D hh a; 1; t ii, t1 D ta D
hh t; a; 1 ii and t2 D ta

2 D hh 1; t; a ii be the generators of Stab.1/. Clearly a, t ,
t1, t2 all have order 3; so G is a quotient of Z=3 � Z=3 and Stab.1/ is a quotient
of Z=3 � Z=3 � Z=3. We call words elements of these free products. Every word
w D w.a˙1; t˙1/ uniquely decomposes as

w D t�1
c1
t�2
c2
: : : t�n

cn
�; with �i 2 A�; ci 2 A; ci 6D ciC1; and � 2 A; (1)

so that the decomposition map � is defined without ambiguity as a mapW ! W 3�A
on the set of words.

We define a word metric on G and on W by assigning the following weights on
the generators ofG: `.t˙1/ D 1 and `.a˙1/ D 0. Then the length of a wordw 2 W ,
decomposed as in (1), is `.w/ D n. That is, the length of w is the number of letters
“t˙1” that appear in w. The induced metric on G is

`.g/ D minf`.w/ j w DG gg;

for every � 2 G. We then fix a minimal-length normal form G ! W ; g 7! w on G.
Note that

P
i2A `.gi / � `.g/ for every g 2 G. We will say that g 2 G admits

length reduction if there is a d such that

X
i2Ad

`.gi / < `.g/;

where the gi ’s are the states of g on the d th level of the tree (i.e., the components of
�d .g/).
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3. Subexponential growth of self-similar groups

We call a group “self-similar” if it comes equipped with an embedding � W G !
G o Sym.d/; this definition covers the Fabrykowski–Gupta example1.

A “traditional” way (introduced by Grigorchuk in [Gri84]) to prove that a self-
similar groupG has subexponential growth is to show that every group element admits
a fixed proportion of length reduction. More explicitly,

Proposition 4 ([BP06]). Let G be a self-similar group acting on a d -regular tree,
with a word metric `. If there exist constants 0 � � < 1 and k � 0 such that, for the
natural embedding � W Stab.1/ ,! Gd W g 7! hhg1; : : : ; gd ii,

dX
iD1

`.gi / � �`.g/C k

for every g 2 Stab.1/, then G has subexponential growth.

3.1. Length reduction and subexponential growth. Let G be a finitely generated
self-similar group acting on a d -regular rooted tree, and let ` be a proper seminorm

onG. Suppose that for everyg D hhg1; : : : ; gd ii� inG, we have
Pd

iD1 `.gi / � `.g/.
Let �n be the subset of G of elements that have no length reduction up to the nth

level of the tree. It is defined recursively by �0 D G and

�n D ˚
g D hhg1; : : : ; gd ii� 2 G ˇ̌ Pd

iD1 `.gi / D `.g/ and

gi 2 �n�1 for every 1 � i � d
�
:

Then �1 ´ T
n�0 �n is the set of elements that have no length reduction on any

level of the tree.

Proposition 5. LetG D hXi be a group as above, withX finite, andX � �1. If there
exists some m such that �m has subexponential growth, then G has subexponential
growth.

Moreover, if �m has linear growth, then the growth ofG is bounded in the following
way:

�.n/ . e
n

.log log n/2

log n ;

where �.n/ D #fg 2 G j `.g/ � ng.

Remark. The idea behind this result is the following: if �m grows subexponentially,
then, expressing any group element g of length n as a word in �k

m for some k, either
k is much smaller than n, and thus the set of such words grows slowly; or k is not

1According to this definition, every group admits a (trivial) self-similarity structure; though that struc-
ture will usually not satisfy the additional conditions of Proposition 4, for example.
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negligible compared to n and, in that case, g behaves as in Proposition 4. This kind
of argument was used (among other works) in [Bar03]. Anna Erschler has obtained
in [Ers04] some similar upper bounds.

In order to prove Proposition 5, we find it useful to state two lemmas.

Lemma 6. Let F be a map such that logF is concave. Then, for every n1; : : : ; nk ,

kY
iD1

F.ni / � F

�Pk
iD1 ni

k

�k

: (2)

In particular, if F is subexponential, then there is a subexponential mapG � F such
that logG is concave, and hence G satisfies Equation (2).

Proof. By hypothesis,
Pk

iD1 logF.ni / � k logF
�Pk

iD1 ni

k

�
. Exponentiating this

last equation, the desired inequality follows.
Suppose now that F is subexponential, that is, limn!1 log F .n/

n
D 0. Let ."i /i�1

be strictly decreasing to zero and .ni /i�1 be strictly increasing, such that n1 D 1 and
log F .n/

n
� "i for every n � ni . Define then logG.n/ D "in C ıi on the interval

ni � n � niC1, with ı1 D 0 and ıi D ."i�1 � "i /ni C ıi�1. Then logG � logF is
continuous and concave by definition and limn!1 log G.n/

n
D 0.

Lemma 7. Consider the maps

�.n/ D n log logn

logn

and for some d;m > 0,

f .n/ D logn

n .log logn/2
C dm.logn/2

n.log logn/2

C n � �.n/
n

logn

log
�

n��.n/
dm

�
0
@ log log

�
n��.n/

dm

�
log logn

1
A

2

:

Then, there exists an integer N such that f .n/ � 1 for every n � N .

Proof. We write

f .n/ D 1

log log.n/2
� logn

n
.1C A logn/C log log.n0/2

log log.n/2
� A n0 logn

n log.n0/
;

with A D dm and n0 D .n � �.n//=A. Since 1
log log.n/2 < 1 and log log.n0/2

log log.n/2 < 1 for n
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large enough, it suffices to prove the stronger inequality

logn

n
.1C A logn/C A

n0 logn

n logn0 < 1 (3)

for all n large enough.
Now this amounts to

logn

n
.1C A logn/ < 1 � logn

logn0 C log logn

logn0 I

if we multiply this last inequality by log n0

log log n
, we get

logn logn0

n log logn
.1C A logn/ < 1 � log.n=n0/

log logn
:

Then the left-hand side is bounded above by .A C 1/
log.n/3

n log log n
, which tends to 0 as

n ! 1; and log.n=n0/
log log n

also tends to 0 as n ! 1 because n=n0 tends to A, so the
right-hand side tends to 1. It follows that (3) holds for n large enough.

Proof of Proposition 5. We first suppose that �m has subexponential growth. Let
us write every g 2 G as a product g D g1 : : : gN.g/ with gi 2 �m and where
N.g/ D minfk j g D g1 : : : gk; gi 2 �mg.

For any � � n
2

, the sphere of radius n in G is the union of

W <
� .n/ ´ fg j `.g/ D n;N.g/ � �g and W >

� .n/ ´ fg j `.g/ D n;N.g/ > �g:
Let �m.ni / be the sphere of radius ni in �m and ı.ni / D #�m.ni /. Then the

cardinality of �k
m \ fg 2 G j `.g/ D ng is at most

P
n1C���CnkDn

Qk
iD1 ı.ni / for

any k � �. Hence,

#W <
� .n/ �

�X
kD1

X
n1C���CnkDn

kY
iD1

ı.ni /:

We may replace ı.n/ by a possibly larger function, still written ı.n/, which is in-
creasing and, by Lemma 6, satisfies Equation (2). Hence,

#W <
� .n/ �

�X
kD1

X
n1C���CnkDn

ı
�n
k

�k

�
�X

kD1

X
.n�1

k�1/

ı
�n
�

�� � �

�
n � 1
� � 1

�
ı

�n
�

��

:
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As

�
n

�

�
� . en

�
/� by Stirling’s formula, it follows that

#W <
� .n/ � e�

�n
�

���1

ı
�n
�

��

: (4)

On the other hand,

#W >
� .n/ � ŒG W Stab.m/	

X
n1C���Cndm �n��

�.n1/ : : : �.ndm/:

If � D limn!1 �.n/1=n is the growth rate of G, then there is a constantK > 0 such
that K� � �.n/1=n for every n � 1. Hence,

#W >
� .n/ � ŒG W Stab.m/	

X
n1C���Cndm �n��

Kdm

�n��

and

#W >
� .n/ � p.n/�n�� (5)

where p.n/ D ŒG W Stab.m/	Kdm

�
n � �
dm

�
is a polynomial (of degree dm).

Set " D �
n

. From Equations (4) and (5) we get

� � lim
n!1

�
#W >

� .n/C #W <
� .n/

�1=n

� max
n

lim
n!1 #W >

� .n/
1=n; lim

n!1 #W <
� .n/

1=n
o

� max
˚
"�"ı."�1/"; �1�"

�
:

As lim"!0 "
�"ı."�1/" D 1, we obtain in all cases � D 1.

Suppose next that �m grows linearly. We have to show that there exist constants
A;B > 0 such that

�.n/ � exp

�
AC B

n.log logn/2

logn

�
;

for n large enough.

Consider the subexponential map F.n/ D e
n.log log n/2

log n . Then, for n � c ´ ee2
,

.logF.n//00 D 1

n.logn/3
� � logn.log logn/2 C 2 logn log logn

C 2.log logn/2 � 6 log lognC 2
� � 0

so that logF.n/ is concave for n � c.
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Define A D log �.N /, where N is as in Lemma 7. Consider also the constants

M D .dm C 1/ŒG W Stab.m/	� .c/d
m

� e

dm

�dm

and

B D max
˚
2C log ı

�
n
�

�
; logM C .dm � 1/AC log 2

�
:

Define then the map

F.n/ D

8̂<
:̂

exp
�
AC B

n.log log n/2

log n

�
if n � c;

exp
�
AC B

c.log log c/2

log c

�
if 0 � n < c;

so that �.k/ � F.k/ for every k � N . For n > N , let us show by induction that
�.n/ � F.n/.

As before, we have

#W >
� .n/ � ŒG W Stab.m/	

X
n1C���Cndm �n��

�.n1/ : : : �.ndm/

� ŒG W Stab.m/	
X

n1C���Cndm �n��

F.n1/ : : : F .ndm/:

Developing this last sum and thanks to Lemma 6, we get

#W >
� .n/ � ŒG W Stab.m/	

�
n � �
dm

� �
F .c/d

m C
dmX
kD1

F .c/d
m�k F

�
n � �
k

�k �
:

Hence,

#W >
� .n/ � .dm C 1/ ŒG W Stab.m/	 F .c/d

m

�
n � �
dm

�
F

�
n � �
dm

�dm

:

Thus, as

�
n � �
dm

�
�

�
e.n��/

dm

�dm

<
�

e
dm

�dm

ndm
, we get

#W >
� .n/ � M ndm

F

�
n � �
dm

�dm

:

Together with (4), this gives

�.n/ � #W <
� .n/C #W >

� .n/ �
�n
�

���1

ı
�n
�

�� CMndm

F

�
n � �
dm

�dm

:

For� D n log log n
log n

, we see that .��1/ log
�

n
�

�C� log ı
�

n
�

� � A�log 2CB n.log log n/2

log n
,

and hence �n
�

���1

ı
�n
�

�� � 1

2
F.n/:
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It remains to verify that

Mndm

F

�
n � �
dm

�dm

� 1

2
F.n/I

but this is equivalent to

.logM C .dm � 1/AC log 2/ logn

Bn.log logn/2
C dm.logn/2

Bn.log logn/2

C n � �
n

logn

log
�

n��
dm

�
0
@ log log

�
n��
dm

�
log logn

1
A

2

� 1:

(6)

As the left side of (6) is smaller than f .n/ by definition ofB , this holds by Lemma 7.

4. Growth of the Fabrykowski–Gupta group

In the remainder,Gwill denote the Fabrykowski–Gupta group, as defined in Section 2.
We first reduce Theorem 1 to a statement on “incompressible” words �1.

Proof of Theorem 1. The lower bound is easily computed. Indeed, consider the mor-
phism  W G0 ! G0 induced by a 7! t and t 7! ta, whereG0 D ht˙ai

t�aj
; i 6D j i.

Since  .t˙ai
t�aj

/ D hh t˙ai
t�aj

; 1; 1 ii, there is an injective map

�
BG.n/ \G0�3

,! BG.6n/ \G0I .g1; g2; g3/ 7!  .g1/ .g2/
a .g3/

a2

where BG.n/ is the ball of radius n in G. Hence, ˇ.6n/ � ˇ.n/3, with ˇ.n/ D
# .BG.n/\G0/. Iterating this inequality, one get ˇ.2 � 6n/ � ˇ.2/3

n D 123n
, so that

�.t/ � ˇ.t/ � 12.t=2/
log 3
log 6
:

On the other hand, the upper bound follows directly from the following result and
Proposition 5.

Proposition 8. (1) If w … �1, then w has length reduction up to the third level.
Equivalently, �1 D �3.

(2) The growth of �1 is linear.

Before we prove Proposition 8, let us give some definitions and lemmas. It will
also be more convenient to work with reduced words R than with group elements;
by definition, a reduced word is a word over the alphabet A� [ ft; t�1g, with no two
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consecutive elements ofA; reduction amounts to replacing two consecutive elements
of A by their product, and deleting 1 2 A.

With this definition, `.w/ counts the number of t˙1 in w; there is again a decom-
position map � W R ! RA � Sym.A/, written w 7! hhw0; w1; w2 ii� ; and

�1 D fw 2 R j there are no consecutive t˙1 in the wi ’sg:

4.1. Length reduction of words. Consider the subsets of A�

� D fs j s is a subword of .: : : 2 1 0 2 1 0 1 2 0 1 2 : : :/� ; for some � 2 Ag
and

@� D fs j s is a subword of .: : : 1 1 1 2 2 2 : : :/g:
Note that

s D .si /
n
iD1 2 A@� if and only if †s ´

�
�

iX
kD1

sk

�n

iD1
2 � : (7)

For sequences c D .ci /
n
iD1 2 � and � D .�i /

n
iD1 2 @� , consider the maps

m.c/ D

8̂<
:̂
1 if c is a subword of .012/1;
k if ck�1 D ckC1;

n if c is a subword of .021/1;

and

@m.�/ D

8̂<
:̂
1 if � is a subword of 21;
k if �k D 1 and �kC1 D 2;

n if � is a subword of 11;

so that, obviously,
@m.�/ D m.†�/: (8)

Consider a wordw overA� [ft; t�1g. Up to reduction, it may uniquely be written
as

w D t�1
c1
: : : t�n

cn
� with ci 2 A; �i 2 f˙1g; and � 2 A; (9)

where ti D a�i tai . Define the exponent sequence of w as �.w/ D .�i /
n
iD1, and the

index sequence of w as c.w/ D .ci /
n
iD1.

As t�.i/ D t�i for any i; � 2 A, the following remark holds.

Lemma 9. Let s D t
�1
c1
: : : t

�n
cn
� D hh s0; s1; s2 ii� be any word and its first level

decomposition, and let � 2 A. Then

s� ´ t
�1

�.c1/
: : : t

�n

�.cn/
� D hh s0; s1; s2 ii��:

In particular, s and s� have the same first level decompositions up to a permutation
of the components.
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We may now characterize �1 in the following way.

Lemma 10. The set �1 is exactly the set of words (9) such that

(a) c.w/ 2 �;

(b) denoting m D m.c.w//, if 2 < m < n � 1, then �.w/m�1 D �.w/mC1.

Proof. Suppose first that w satisfies (a). Then all t ’s in the wj are separated by
precisely one element in A�, so that two t˙1’s are adjacent; except possibly for the
t coming from t

�m
cm

. Locally, we see there

w D : : : t
�m�1

�.1/
t
�m

�.0/
t
�mC1

�.1/
: : :

D : : : hh t�m�1a�m t�mC1 ; a�m�1C�mC1 ; t�m ii� : : : ;

and since �m�1 C �mC1 2 A� by (b) there are no adjacent t˙1’s there either.
Conversely, suppose that w does not satisfy (a). Then either ci D ciC1 for some

i , or w contains a subword

u D t˛�.0/t
ˇ

�.1/
t
�

�.0/

D hh a˛; 1; t˛ ii� hh tˇ ; aˇ ; 1 ii� hh a� ; 1; t� ii�

D hh a˛tˇa� ; aˇ ; t˛t� ii� ;

and in both cases there are neighbouring t˙1’s in some uj .
Finally, suppose that w satisfies (a) but not (b); then 2 < m < n � 1 and w

contains a subword

v D t˛�.2/t
ˇ

�.1/
t
�

�.0/
t
�ˇ

�.1/
tı�.2/ D hh tˇa� t�ˇ ; t˛tı ; a˛t�aı ii� ;

and again there are neighbouring t˙1’s in some vj .

Consider now a word w 2 � as in (9), with m.c.g// D m and 2 < m < n � 1.
Developing w on the first level, we get

hhw0; w1; w2 ii
D : : : hh 1; t�m�2 ; a�m�2 iiacm hh t�m�1 ; a�m�1 ; 1 iiacm

hh a�m ; 1; t�m iiacm hh t�mC1 ; a�mC1 ; 1 iiacm hh 1; t�mC2 ; a�mC2 iiacm
: : : :

By Lemma 9, up to a permutation of the components, we may suppose cm D 0. We
may also suppose that c1 D 2, as the other two cases behave similarly, and we will
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do so for the remainder of the section. Hence we get

w0 D t�2 a�3 t�5 a�6 : : : a�m�3 t�m�1 a�m t�mC1 a�mC3 t�mC4 : : :

D t
�2

0 t�5��3
: : : t�m�4� t�m�1���m�3

t
�mC1���m�3��m

t
�mC4���m�3��m��mC3

: : :

w1 D t�1a�2 t�4 a�5 : : : a�m�4 t�m�2 a�m�1C�mC1 t�mC2 a�mC4 t�mC5 : : :

D t
�1

0 t�4��2
: : : t�m�5� t�m�2���m�4

t
�mC2

���m�4�.�m�1C�mC1/
t
�mC5

���m�4�.�m�1C�mC1/��mC4
: : :

w2 D a�1 t�3 a�4 t�6 : : : a�m�5 t�m�3 a�m�2 t�m a�mC2 t�mC3 : : :

D t�3��1
t�6��1��4

: : : t�m�3� t�m���m�2
t
�mC3���m�2��mC2

t
�mC6���m�2��mC2��mC5

: : : :

Note that our assumptions cm D 0, c1 D 2 imply m 	 0 .mod 3/. We also have
`.wi / D b.nC 2 � i/=3c. We get

�.w0/ D .�2 �5 : : : �m�4 �m�1 �mC1 �mC4 : : : /;

�.w1/ D .�1 �4 : : : �m�5 �m�2 �mC2 �mC5 : : : /; (10)

�.w2/ D .�3 �6 : : : �m�3 �m �mC3 �mC6 : : : /;

and, writing Q�.w0/ D .�2 : : : �m�4 .�m�1 C �mC1/ �mC4 : : : /,

c.w0/ D †.0 �3 : : : �m�3 �m �mC3 : : : /; a prefix of †.0 �.w2//;

c.w1/ D †.0 �2 : : : �m�4 .�m�1 C �mC1/ �mC4 : : : /; a prefix of †.0 Q�.w0//;

(11)

c.w2/ D †.�1 �4 : : : �m�2 �mC2 �mC5 : : : /; a prefix of †.�.w1//:

If Q�.w0/, �.w1/, �.w2/ 2 A@� , then c.w0/, c.w1/, c.w2/ 2 � , and conversely.
Furthermore, in this case, the following hold by (8):

m0 ´ m.c.w0// D @m.�.w2//C 1;

m1 ´ m.c.w1// D @m. Q�.w0//C 1; (12)

m2 ´ m.c.w2// D @m.�.w1//:

Lemma 11. The following are equivalent:

(1) w 2 �1;

(2) c.wx/ 2 � for all x 2 A�;

(3) �.wxi / 2 A@� and Q�.wx0/ 2 A@� for all x 2 A�; i 2 A�.

Proof. (1) H) (2) follows from Lemma 10, because w 2 �1 implies wx 2 �1
for all x 2 A�.

For (2) H) (1), we show that wx 2 �1 for all x 2 A�; in view of Lemma 10, it
suffices to show that ifwx D t

�1
c1
: : : t

�n
cn
� , andm.c.wx// D m 2 f3; : : : ; n�2g, then

�m�1 D �mC1. But if not, we would have c.wxi / D : : : j j : : : for some i 2 A, so
c.wxi / 62 � .

The equivalence (2) () (3) follows from comparing (10) and (11).
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Lemma 12. Let w 2 �1 be such that �.w/ 2 A@� , say @m.�.w// D p. Then
p � 11 or p � n � 10.

Proof. As above, we assume that cm D 0 and c1 D 2, and derive from these assump-
tions that p � 9 or p � n� 8; the general case follows by adding up to two symbols
t� at the head or tail of w.

Assume for contradiction that 9 < p < n� 8. From the assumptionw 2 �1, we
know that c.wi / 2 � for all i 2 A; so m0; m1; m2 are defined. Now that means that
both sequences Q�.w0/ and �.w0/ belong toA@� , the latter because it is a subsequence
of �.w/. Therefore, m � 4 � p � mC 3; and furthermore p 62 fm � 1;mg because
�m�1 ¤ �mC1. We may then explicitly compute:

p m0 m1 m2

m � 4 m
3

� 1 m
3

C 1 m
3

� 1
m � 3 m

3
m
3

C 1 m
3

� 1
m � 2 m

3
m
3

C 1 m
3

mC 1 m
3

C 1 m
3

m
3

mC 2 m
3

C 1 m
3

m
3

C 1

mC 3 m
3

C 2 m
3

m
3

C 1:

By our assumptions, 2 < m0 < n � 1; but we may check, in each of the cases,
that �.w0/m0�1 ¤ �.w0/m0C1. By Lemma 10, this implies that w0 62 �1; so
w 62 �1.

Proof of Proposition 8. We first consider w D t
�1
c1
: : : t

�m
cm

: : : t
�n
cn
� 2 �3, with

m.c.w// D m. For every i 2 A and j 2 A�, we know by Lemma 11 that �.wi /,
�.wij /, Q�.w0/, Q�.wi0/ 2 A@� .

Again by Lemma 11, all we have to show is that�.wxj / 2 A@� and Q�.wx0/ 2 A@�
for all j 2 A� and x 2 A� of length at least 2. Now, for j 2 A�, as �.w0j / 2 A@� ,
the index sequence �.w0/ is of one of the following types:

: : : �m�7 �m�4 �m�1 �mC1 �mC4 �mC7 : : :

: : : 1 2 1 1 2 2 : : :

: : : 1 1 1 1 2 2 : : :

: : : 1 1 2 2 2 2 : : :

: : : 1 1 2 2 1 2 : : :

which means that

@m . Q�.w0// 2
	
m

3
� 2; m

3
� 1; m

3
;
m

3
C 1



: (13)

In any of those cases, note that we also have �.w00/ 2 A@� . Altogether, this implies
that �.w0y/ 2 A@� for every y 2 A�. Hence, �.w0xi / 2 A@� for i 2 A� and
Q�.w0x0/ 2 A@� for every x 2 A�.



538 L. Bartholdi and F. Pochon

Next, for i 2 A�, since �.wi / 2 A@� , we have �.wiy/ 2 A@� for every y 2 A�.
Hence, �.wixj / 2 A@� for j 2 A� and Q�.wix0/ 2 A@� for every x 2 A�.

Moreover, �.wij / 2 A@� for all i 2 A� and j 2 A imply that

m.c.w1// � @m.�.w1// 2 f�3;�2;�1; 2; 3; 4g; (14)

m.c.w2// � @m.�.w2// 2 f�3;�2;�1; 2; 3; 4g: (15)

Using relations (12), (13), (14) and (15), we see that, given one of m.c.w//,
m.c.w0//, m.c.w1// or m.c.w2//, the number of possibilities of choosing the three
others (so that w remains in �1) is bounded by a constant K, independent of the
length of w.

We are now ready to show that ı.n/ D #�1.n/ is bounded by a constant, inde-
pendent of n. Indeed consider w 2 �1.n/. There are a priori n possibilities for
c.w/, according to Lemma 10. Furthermore, for i 2 A�, we know by Lemma 11 that
�.wi / 2 A@� . Hence, by Lemma 12, we havem.c.wi // � 11 orm.c.wi // � n�10.
Therefore, there is at most 20 choices for m.c.wi // (to be chosen between 1 and n).
Now, by the previous paragraph, there are at most 20L choices for all other c.wi /,
and in particular for c.w/.

There are also only boundedly many possibilities (say K) for �.wi /; indeed
�.w1/; �.w2/ and Q�.w0/ are determined by the c.wi /, and there are at most six
possibilities for �.wi / once Q�.w0/ is known.

All in all, we have obtained ı.n/ � 6 � 20K, independently of n.
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