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Abstract. We compute the virtual cohomological dimension of the group of partially symmetric
outer automorphisms of a free group. We use this to obtain new upper and lower bounds on
the VCD of the outer automorphism group of a 2-dimensional right-angled Artin group. In the
case of a right-angled Artin group with defining graph a tree, the bounds agree.
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1. Introduction

This article continues the study of outer automorphism groups of right-angled Artin
groups begun in [CCV] and [ChVo]. It was shown in [ChVo] that, for any finite
simplicial graph � and associated right-angled Artin group A� , the group Out.A�/

has finite virtual cohomological dimension (VCD). In the two-dimensional case, i.e.,
when � is connected and has no triangles, upper and lower bounds on this dimension
were given in [CCV]. In the present article we reconsider the two-dimensional case
and improve both the upper and the lower bounds. If � is a tree these bounds agree,
giving:

Theorem 9. If � is a tree, the VCD of Out.A�/ is equal to e C 2` � 3, where e is
the number of edges of the tree and ` is the number of leaves.

One reason the tree case is of particular interest is that right-angled Artin groups
based on trees are fundamental groups of irreducible 3-manifolds; in fact, by a theorem
of Droms a right-angled Artin group is the fundamental group of an irreducible 3-
manifold if and only if it is based on a graph which is a tree or a triangle [Dro].

Recall that a graph is 2-connected if it has no separating nodes. If � has no cycles
of length less than 5 but is not a tree, the upper and lower bounds differ by the Euler
characteristic of �:

�R. Charney was partially supported by NSF grant DMS 0705396. K.Vogtmann was partially supported
by NSF grant DMS 0705960.
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Theorem 10. If � is connected with no triangles or squares but is not a tree, the
VCD of Out.A�/ satisfies

� C 2` � 1 � vcd.Out.A�// � � C 2` � 1 � 2�.�/;

where ` is the number of leaves of � , � is the number of maximal 2-connected
subgraphs, and �.�/ is the Euler characteristic of � .

In particular, if � is connected with Euler characteristic 0, this gives the exact
VCD of Out.A�/. Bounds on the VCD for graphs � with no triangles are given in
full generality in Theorems 2 and 6.

We find our lower bound by constructing a free abelian subgroup of Out.A�/. For
the upper bound, we reduce the problem to that of finding the VCD of the subgroup
P †.n; k/ of Out.Fn/ generated by automorphisms which send the first k generators
to conjugates of themselves. If n D k, this is known as the pure symmetric group
and was shown by Collins [Col] to have virtual cohomological dimension equal to
n � 2. We determine the exact VCD for any k � 1 as follows:

Theorem 14. For any k � 1, the group P †.n; k/ has VCD equal to 2n � k � 2.

P †.n; k/ has an obvious free abelian subgroup of rank 2n�k �2, giving a lower
bound on its VCD. We show that this is equal to the VCD by finding a contractible
complex of dimension 2n � k � 2 on which P †.n; k/ acts properly. This complex
is a natural deformation retract of the minimal subcomplex KW of the spine of outer
space associated to the set of cyclic words W D fx1; : : : ; xkg. These minimal
subcomplexes were defined and shown to be contractible for any set W of cyclic
words in [CuVo].

The authors would like to thank Adam Piggott for helpful conversations.

2. Two-dimensional right-angled Artin groups

A right-angled Artin group A� is two-dimensional if the maximal rank of an abelian
subgroup is two, or equivalently, if the defining graph � has no triangles. In this
article, we assume, in addition, that � is a connected graph and is not the star of a
single vertex. (If � is a star, then A� is the direct product of Z and a free group and
the VCD of Out.A�/ is easily computed directly.)

In this section, we establish upper and lower bounds for the VCD of Out.A�/.

2.1. Lower bound for triangle-free � . We find a lower bound on the VCD of
Out.A�/ by constructing a free abelian subgroup. This subgroup generally has larger
rank than the one constructed in [CCV].

We begin by recalling from [CCV] the construction of a subgraph �0 of � . Nodes
of � are partially ordered by the relation v � w if lk.v/ � lk.w/ and two nodes are
equivalent if they have the same link. Choose a node in each maximal equivalence
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class, and let �0 be the (connected) subgraph of � spanned by these nodes. For
example, if � has no squares as well as no triangles, then every interior node of � is
maximal, and �0 is the graph obtained from � by pruning off all of its leaves. More
generally, the assumption that � is not a star guarantees that leaves of � never lie
in �0.

We will now describe a method of finding a large collection of commuting au-
tomorphisms; these will be partial conjugations by nodes in �0 and transvections of
nodes in �0 onto nodes in � � �0.

Fix an edge e0 of �0, with endpoints v0 and w0, and let T0 be a maximal tree in
�0 containing e0. Orient each edge of T0 � e0 towards e0. For each node v of �0,
let Ov denote the (unique) node of T0 which is adjacent to v and is not on an incoming
edge. For the endpoints of e0, we have Ov0 D w0 and yw0 D v0.

For nodes v of � � �0, choose a node Ov 2 �0 with v � Ov.
Let G.e0; T0/ be the subgroup of Out.A�/ generated by the following automor-

phisms:

(1) For each v 2 �0, partial conjugations by Ov on a component of � � fvg which
does not contain Ov.

(2) For each leaf u, right transvections u 7! uv and u 7! u Ov, where v is the (unique)
node adjacent to u.

(3) For each v 2 � � �0 which is not a leaf, right and left transvections v 7! v Ov
and v 7! Ovv.

The left transvection u 7! Ovu for u a leaf is the right transvection composed with
a partial conjugation of type (1), so these are not included in our list. We remark
that the only nodes of � which produce non-trivial automorphisms of type (1) are
those which separate � . Note also that if � has no squares, then there are no type (3)
transvections.

Lemma 1. The generators of G.e0; T0/ all commute.

Proof. Transvections affecting different nodes commute, since they are transvections
by nodes in �0 onto nodes not in �0. The two transvections affecting an interior node
of � � �0 also commute since they operate on different sides of the node. The
transvections affecting a single leaf are by commuting generators, so all of these
transvections commute.

If v1 and v2 are separating nodes, partial conjugations by Ov1 and Ov2 have disjoint
support if Ov1 and Ov2 are not comparable in the tree T0, i.e., if the arc between them
is not totally oriented. If Ov1 and Ov2 are comparable, then the supports of the related
partial conjugations are nested, so by composing with an inner automorphism of the
larger one, their supports can be made disjoint, and they commute.

Since v and Ov commute, transvections by v or Ov onto a leaf u at v commute with
partial conjugation by v or Ov. For partial conjugations by yw ¤ v; Ov, either u, v and
Ov are all in the support of the partial conjugation or none of them are. If they are all
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in the support, we can compose the partial conjugation by an inner automorphism to
make the support disjoint.

If v is an interior node of � ��0, then no vertex of � separates v from Ov, so either
both are affected by one of the partial conjugations on our list or neither is.

The maximal 2-connected subgraphs of � decompose � into subgraphs, any two
of which intersect at most in a single node. These subgraphs are called the pieces
of � . (This terminology comes from the theory of tree-graded spaces [DrSa]; the
graph � is tree-graded with respect to its pieces.)

Let v be a node of � , and �.v/ the union of all pieces of � containing v. If every
node of �.v/ is either adjacent to v or is � v, we say v is a hub (see Figure 1). If �

is a tree, then �.v/ D st.v/ for all interior nodes, so both endpoints of e0 are hubs
regardless of the choice of e0.

v

�.v/

Figure 1. A hub v.

Theorem 2. Let � be the number of pieces of � , � the number of nodes in � and �0

the number of nodes in �0. Then

vcd.Out.A�// � .� � 1/ C 2.� � �0/ � 2:

If some node of �0 is not a hub, then

vcd.Out.A�// � .� � 1/ C 2.� � �0/ � 1:

If some edge of �0 has no endpoints which are hubs, then

vcd.Out.A�// � .� � 1/ C 2.� � �0/:

Proof. The rank of G D G.T0; e0/ gives a lower bound for the VCD of Out.A�/. In
general, the generators are linearly independent so G has rank .� � 1/ C 2.� � �0/,
where � is the number of pieces of � , � is the number of nodes in � and �0 the number
of nodes in �0. However, in certain circumstances G may contain as many as two
independent inner automorphisms. Note that every generator of G acts trivially on
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the endpoints v0 and w0 of e0. Thus, the only inner automorphisms which can occur
are conjugations by an element of hv0; w0i.

Suppose that an endpoint v0 of e0 is a hub. Then the generators of G include
conjugation of any component of � � �.v0/ by v0, as well as left and right transvec-
tions of v0 onto any node of �.v0/ which is not adjacent to v0. Thus the subgroup
generated by these automorphisms includes conjugation by v0. If v0 is not a hub,
then some piece containing v0 also contains a node which cannot be conjugated in G

by v0.

We record some special cases as corollaries:

Corollary 3. If � is a tree, then vcd.Out.A�// � e C 2` � 3, where e is the number
of edges and ` is the number of leaves.

Proof. If � is a tree, then the pieces are the edges of � and �0 is obtained by removing
the leaves of � , so the first estimate in Theorem 2 gives the result.

If �0 contains a cycle, then no node in that cycle can be a hub, so the third estimate
in Proposition 2 applies. If � has no triangles or squares but is not a tree, then �0

is obtained from � by pruning off all leaves, and we are in this situation. More
generally, we have:

Corollary 4. If �0 is obtained from � by pruning its leaves, but � is not a tree, then
vcd.Out.A�// � � C 2` � 1, where � is the number of pieces and ` is the number
of leaves.

Corollary 5. If �.�/ D 0 and the unique simple cycle C of � has length k � 5,
then vcd.Out.A�// � e � k C 2`, where e is the number of edges of � and ` is the
number of leaves.

Proof. Since � has Euler characteristic 0, it contains a unique simple cycle C with k

sides, which constitutes one of its pieces. The other pieces are single edges, contained
in trees attached to the nodes of C , so the number of pieces is e � k C 1. Plugging
this into Corollary 4 gives the result.

2.2. Upper bound. To get an upper bound on the VCD, we will use the projection
homomorphisms defined in [CCV]. As above, we assume � is connected and triangle-
free. Let Aut0.A�/ be the subgroup of Aut.A�/ generated by inversions, partial
conjugations and transvections, and let Out0.A�/ be its image in Out.A�/. Then for
each node v of �0, there is a homomorphism Pv W Out0.A�/ ! Out.F.Lv// where
F.Lv/ is the free group on the nodes adjacent to v. These are assembled to give a
homomorphism

P W Out0.A�/ ! Q
v2V0

Out.F.Lv//;

where V0 is the set of nodes in �0.
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The homomorphism P is not onto; in fact the image of each Pv lies in a subgroup
of Out.F.Lv// which we now describe.

Definition. If N is a finite set and K is a subset, we denote by P †.N; K/ the
subgroup of Out.F hN i/ generated by automorphisms which send each element of
K to a conjugate of itself.

We will prove in the following section that if K has cardinality k > 0, then
the VCD of P †.N; K/ is equal to 2n � k � 2, where n is the cardinality of N

(Theorem 14). If K D ;, then P †.N; ;/ D Out.F hN i/, which has VCD equal to
2n � 3 [CuVo].

Let U � V0 be the set of nodes of � which are maximal and unique in their
equivalence class. For each node v, set jvj D jLvj D the valence of v, and jvjU D
jLv \ U j.

Theorem 6. For any connected graph � with no triangles,

vcd.Out.A�// � .� � 1/ C P
v2V0

.2jvj � 3 � maxfjvjU � 1; 0g/;

where � is the number of pieces in � .

Proof. By Proposition 3.11 of [CCV], the kernel KP of P is free abelian of rankP
v2V0

.ıC .v/ � 1/;

where ıC .v/ denotes the number of connected components of ��fvg, or equivalently,
the number of pieces containing v. An easy induction argument on the number of
pieces in � then shows that this sum equals � � 1.

If v 2 U , there are no transvections onto v, so any automorphism of Aut0.A�/

sends v to a conjugate of itself. Thus the image of P lies in the product of the
groups P †.Lv; Lv \ U /, v 2 V0. By Theorem 14, these groups have VCD equal to
2jvj � jvjU � 2 if Lv \ U is not empty, and 2jvj � 3 if Lv \ U is empty. Adding
these to the VCD of the kernel of P gives the upper bound of the theorem.

If U D V0, the statement simplifies as follows:

Corollary 7. Let � be connected with no triangles, and assume that U D V0, i.e.,
every maximal vertex is unique in its equivalence class. Then

vcd.Out.A�// � .� � 1/ C 2.
P

v2V0

jvj/ � 2jV0j � 2jE0j;

where V0 and E0 are the sets of nodes and edges in �0 and � is the number of pieces
in � .
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Proof. Let jvj0 denote the valence of v in �0. Because U D V0 and �0 is connected,
Lv \ U is non-empty for all v 2 V0. Thus, the latter terms in the formula from
Theorem 6 becomeP

v2V0

.2jvj � 3 � maxfjvjU � 1; 0g/ D P
v2V0

.2jvj � 3 � jvj0 C 1/

D 2
� P

v2V0

jvj� � 2jV0j � 2jE0j: �

If �0 is obtained from � by pruning leaves, then U D V0 since V0 contains only
one representative from each maximal equivalence class. This holds, for instance,
if � has no cycles of length less than 5. The statement in this case becomes even
simpler.

Corollary 8. Let � be connected with no triangles. Assume �0 is obtained from �

by pruning all leaves. Then

vcd.Out.A�// � .� � 1/ C 2.` � �.�//;

where ` is the number of leaves in � and � is the number of pieces.

Proof. Since all vertices not in �0 are leaves, the latter terms in the formula in
Corollary 7 become

2
P

v2V0

jvj � 2jV0j � 2jE0j D 2
P

v2V0

.jvj � 1/ � 2jE0j

D 2
P

v2V

.jvj � 1/ � 2jE0j
D 2.jEj � �.�/ � jE0j/
D 2.` � �.�//: �

If � is a tree, then � D e and � has Euler characteristic 1, so our upper bound
agrees with the lower bound given in Corollary 3:

Theorem 9. If � is a tree, then vcd.Out.A�// D e C 2` � 3, where e is the number
of edges of the tree and ` is the number of leaves.

If � is not a tree, but has no cycles of length less than 5, the lower bound from
Corollary 4 and upper bound from Corollary 8 combine to give:

Theorem 10. If � is connected with no triangles or squares but is not a tree, the
VCD of Out.A�/ satisfies

� C 2` � 1 � vcd.Out.A�// � � C 2` � 1 � 2�.�/;

where ` is the number of leaves of � , � is the number of maximal 2-connected
subgraphs, and �.�/ is the Euler characteristic of � .
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We remark that intermediate values in the theorem can be realized. In particular,
for any m � 0, and any k with 0 � k � 2m, there exists a graph � with one piece,
no leaves, and Euler characteristic �m, such that vcd.Out.A�// D k.

If � has Euler characteristic 0, this gives:

Theorem 11. If �.�/ D 0 and the unique simple cycle C of � has length k � 5,
then

vcd.Out.A�// D e � k C 2`:

Theorems 10 and 11 also hold if the no squares condition is replaced by the
requirement that �0 be obtained by pruning leaves. For example, Theorem 11 holds
for a square with a tree attached to each of its vertices.

2.3. Further finiteness properties for tree-based RAAGs. In the case that � is a
tree, we can identify the image of P precisely:

Theorem 12. Assume that � is a tree and hence V0 is the set of non-leaf nodes of � .
Then the image of P is the productQ

v2V0

P †.Lv; Lv \ V0/:

Proof. It follows from [CCV], Proposition 3.2, that an element of Out0.A�/ must
preserve every element of V0 up to conjugacy. Therefore the image of P lies inQ

P †.Lv; Lv \ V0/.
Let � be an element of P †.Lv; Lv \ V0/. To prove surjectivity, we will show

that � lifts to an element y� in Out0.A�/ whose image under P is � in the v-factor
and the identity in every other factor.

Fix a representative automorphism for � (which by abuse of notation we also
denote �). For each w 2 Lv , � acts on w as conjugation by some gw 2 F.Lv/.
Define y� 2 Out0.A�/ as follows. Set y�.v/ D v and for w 2 Lv , set y�.w/ D
�.w/ D gwwg�1

w . For u … Lv , let w 2 Lv be the (unique) vertex of Lv at minimum
distance from u. (Equivalently, w is the unique element of Lv such that w and u lie
in the same connected component of � � fvg.) Define y�.u/ D gwug�1

w .
It is not difficult to see that y� is an automorphism. For suppose � is the inverse of

� in Aut.Lv; Lv \ V0/ and say �.w/ D hwwh�1
w , hw 2 F.Lv/, for w 2 Lv . Then

� B �.w/ D �.gwwg�1
w / D �.gw/hwwh�1

w �.g�1
w / D w;

hence we must have �.gw/hw D ws for some s. It follows that for any u in the same
connected component of � � fvg, y� B y�.u/ D wsuw�s . This composite is clearly an
automorphism.

Finally, consider P.y�/. By definition, it agrees with � on the v-factor. For any
other node u 2 V0, there is a component C of � � fvg such that Lu lies entirely in
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C [ fvg. If w is the unique element of C \ Lv , then y� acts on every element of Lu

as conjugation by gw . (Here we use the fact that gw lies in F.Lv/ hence commutes
with v.) Hence its image in P †.Lu; Lu \ V0/ is the identity.

Corollary 13. If � is a tree, then Out0.A�/ is virtually torsion free and every torsion
free finite index subgroup has a finite Eilenberg–MacLane complex. In particular,
Out0.A�/ is finitely presented, and has finitely generated homology in all dimensions.

Proof. Recall from [CCV] that the kernel KP of P is a finitely generated abelian
group. The corollary follows from the same statements for P †.n; k/ (proved in
[CuVo]) and KP , since the class of groups with finite Eilenberg–MacLane complexes
is closed under extensions.

3. Partially symmetric automorphisms of free groups

Let Fn be a free group with a fixed set of generators x1; : : : ; xn, and let P †.n; k/

be the subgroup of the outer automorphism group of Fn consisting of outer automor-
phisms which send the first k generators to conjugates of themselves. For k D n

this is known as the pure symmetric (outer) automorphism group, and Collins [Col]
showed that it has virtual cohomological dimension equal to n � 2. The full outer
automorphism group Out.Fn/ has virtual cohomological dimension 2n�3. We show
that the virtual cohomological dimension of P †.n; k/ varies linearly with k between
these two values.

Theorem 14. For k � 1, P †.n; k/ has VCD equal to 2n � k � 2.

A lower bound for this VCD is given by the rank of the free abelian subgroup of
P †.n; k/ generated by automorphisms 	i (for 1 < i � k) and 
i ; �i (for k < i � n),
where

	i W
´

xi 7! x�1
1 xix1;

xj 7! xj ; j ¤ i;

and


i W
´

xi 7! x1xi ;

xj 7! xj ; j ¤ i;
�i W

´
xi 7! xix1;

xj 7! xj ; j ¤ i:

These automorphisms generate a free abelian subgroup of Aut.Fn/ of rank 2n �
k�1. This subgroup contains conjugation by x1, so projects to a free abelian subgroup
of P †.n; k/ of rank 2n � k � 2.

To determine the upper bound, we will find a contractible .2n�k�2/-dimensional
simplicial complex on which P †.n; k/ acts with finite stabilizers. We first recall
some background about the spine of Outer space and its minimal subcomplexes.
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3.1. Background on the spine of outer space and minimal subcomplexes. Recall
that the spine of Outer space is a simplicial complex K of dimension 2n�3 on which
Out.Fn/ acts with finite stabilizers and compact quotient [CuVo]. Vertices of K are
marked graphs .g; �/, where � is a graph with all nodes of valence at least 3 and g is
a homotopy equivalence from a fixed rose Rn to � . Marked graphs .g; �/ and .g0; � 0/
are equivalent if there is a graph isomorphism h W � ! � 0 with hBg homotopic to g0.
Note that we are allowing separating edges in the graphs � , i.e., we are considering
the full Outer space, as opposed to reduced Outer space.

Vertices .g; �/ and .g0; � 0/ span an edge if .g0; � 0/ can be obtained from .g; �/

by collapsing each tree in a forest F � � to a point, and K is the associated flag
complex. In other language, forest collapse is a poset relation on the vertices of K,
and K is the geometric realization of this poset. Height in the poset is given by the
number of nodes of � . The minimal elements of the poset are marked roses, and K is
the union of the stars of these roses. The maximal elements are marked graphs with
all nodes of valence 3. Such a graph has 2n-2 nodes, hence the dimension of K is
2n � 3.

(Ideal edges). The upper link of a vertex .g; �/ in the poset consists of marked
graphs .g0; � 0/ which collapse to .g; �/. Such marked graphs are said to be obtained
by blowing up nodes of � 0 into trees. We recall from [CuVo] that a convenient way of
describing blow-ups at a node v is in terms of partitions of the set H.v/ of half-edges
terminating at v. An edge of the blow-up tree partitions the tree, and therefore H.v/,
into two sets, each with at least two elements. For this reason, such a partition is
called an ideal edge at v. A set of ideal edges is compatible if it corresponds to a tree.
Since blowing up can be done independently at different nodes of � , the upper link of
.g; �/ is the join of subcomplexes B 0.v/. Each B 0.v/ is the barycentric subdivision
of the complex B.v/ whose vertices are ideal edges at v and whose i -simplices are
sets of i C 1 compatible ideal edges.

(Norm and minimal subcomplexes). Given a set W of conjugacy classes in Fn,
we can define a norm on roses as follows. Represent each w 2 W by a cyclically
reduced edge-path in Rn, and define jg.w/j to be the length of the (cyclically reduced)
edge-path g.w/ in � . Then

k�k D P
w2W

jg.w/j:

Stars of roses of minimal norm with respect to W form a subcomplex of K which we
denote KW . The main theorem of [CuVo] is:

Theorem (Culler–Vogtmann). Let W be a set of cyclic words in Fn. Then the as-
sociated subcomplex KW of K is contractible, the action is proper and the quotient
KW =Stab.W / is finite.

Recall that Out.Fn/ acts on K as follows. Realize � 2 Out.Fn/ by a homotopy
equivalence f W Rn ! Rn; then .g; �/ � � D .g B f; �/. In particular, the stabilizer
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of W in Out.Fn/ preserves the norm, so that KW is invariant under the action of this
stabilizer.

3.2. A complex for P†.n; k/. We now fix W to be the conjugacy classes of
fx1; : : : ; xkg. Let Kn;k D KW denote the minimal subcomplex for W and Out.n; k/

the stabilizer of W in Out.Fn/. Since P †.n; k/ has finite index in Out.n; k/ it has
the same VCD, and we will use the action of Out.n; k/ on Kn;k to compute this.

We first record some simple observations about the vertices of Kn;k . For a vertex
.g; �/ in Kn;k , define a forest F � � to be admissible if the marked graph .gBcF ; �F /

obtained by collapsing each tree in F to a point is also in Kn;k .

Lemma 15. Let .g; �/ be a vertex of Kn;k , and let Ci be the reduced edge path
representing g.xi /, for 1 � i � k. Then the following holds:

(1) Ci is a simple cycle in � , for each i D 1; : : : ; k.

(2) Ci \ Cj is either empty, a point or a connected arc.

(3) ˆ D [.Ci \ Cj / is a forest in � .

(4) If F is an admissible forest in � , then F [ ˆ is an admissible forest.

Proof. Let � be any marked rose in Kn;k with .g; �/ in its star. These statements
all follow from the observation that, in �, the image of xi is a single petal. Since
.g; �/ is obtained from � by blowing up the node of � into a tree T , the intersection
of any two C 0

i s is contained in T , so the union of all such intersections is a forest in
T (see Figure 2). Since this is true for any choice of �, this union is in all maximal
admissible forests.

C1

C2

C3

C4

C1

C2

C3

C4

Figure 2. The cycles Ci in a blowup of �.

The dimension of Kn;k is equal to 2n�3 for any k. This is the dimension we need
for k D 1, but is too big for k > 1. Instead we consider the following subcomplexes.

Definition. Let Pn;k be the subcomplex Kn;k spanned by vertices .g; �/ in which
any two of the cycles C1; : : : ; Ck intersect at most in a point.
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Definition. Let Dn;k be the subcomplex Kn;k spanned by vertices .g; �/ in which
all of the cycles C1; : : : ; Ck are disjoint.

Any marked graph in Dn;k has at least k vertices (one on each Ci ), and at most
2n � 2, so dim.Dn;k/ D 2n � k � 2 (for k D n, dim.Pn;k/ is also equal to n � 2).
This dimension is equal to our lower bound on the VCD of Out.n; k/, so it remains
only to prove the following two propositions.

Proposition 16. There is an Out.n; k/-equivariant deformation retraction of Kn;k

onto Pn;k .

Proof. Let .g; �/ be any vertex in Kn;k . We perform the deformation retraction of
Kn;k to Pn;k by collapsing each component of ˆ D [.Ci \ Cj / to a point (see
Figure 3). If .g0; � 0/ in Kn;k is obtained from .g; �/ by collapsing a forest F , then

C1

C1

C2 C2

C3
C3

C4

C4

Figure 3. Deforming Kn;k to Pn;k .

F [ ˆ is also a forest in � by part (3) of Lemma 15; thus collapsing ˆ is a poset
map, so gives a deformation retraction onto its image.

C1C1

C2C2
C3

C3

C4

C4

Figure 4. Deforming Pn;k to Dn;k .
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Proposition 17. There is an Out.n; k/-equivariant deformation retraction of Pn;k

onto Dn;k .

Proof. We build Pn;k from Dn;k by adding vertices .g; �/ in order of decreasing
height in the poset, i.e., decreasing number of nodes n.�/. Thus at each stage, we are
attaching .g; �/ along its entire upper link in Pn;k , so it suffices to show this upper
link is contractible. Note that all trivalent marked graphs in Pn;k already belong
to Dn;k .

We use the description of the upper link as the join of complexes B.v/ of ideal
edges at nodes v of � , but we are only interested in blow-ups which result in vertices
of Pn;k , so we define an ideal edge to be legal if blowing it up results in a vertex of
Pn;k . Note that an ideal edge is legal if and only if it separates at most one pair of
half-edges contained in a cycle Ci , since if it separates two pairs xi ; Nxi and xj ; Nxj , it
blows up to an edge in Ci \ Cj . Define L.v/ to be the subcomplex of B.v/ spanned
by legal ideal edges.

Let .g; �/ be a vertex of Pn;k � Dn;k . Then � contains a node v which is in at
least two cycles, so to prove that the upper link of .g; �/ in Pn;k is contractible, it
suffices to prove the following.

Claim. If v is contained in at least 2 cycles, then the complex L.v/ of legal ideal
edges at v is contractible.

Proof. First note that the set of half-edges H.v/ at v is the union of half-edges
A D fa1; Na1; : : : ; ar ; Narg contained in some Ci and B D fb1; : : : ; bsg not contained
in any Ci . Fix an element a 2 A and define the inside of an ideal edge to be the side
containing a, and the size to be the number of half-edges on the inside.

We are assuming r � 2. We prove the claim by induction on s, starting with
s D 0.

If s D 0, consider the ideal edge ˛0 which separates a and Na from all other half-
edges. Let C.˛0/ denote the star of ˛0 in L.v/. We show that L.v/ deformation
retracts onto C.˛0/, and is therefore contractible, by adding vertices of L.v/�C.˛0/

in order of increasing size. We may think of size as a Morse function on L.v/�C.˛0/,
and extend it to C.˛0/ by setting it equal to 0 on vertices of C.˛0/. We need to show
that the descending link with respect to this Morse function is contractible, for each
vertex of L.v/ � C.˛0/.

A vertex ˛ of L.v/ which is not in C.˛0/ is a legal ideal edge which separates a

from Na. Note that ˛ must have odd size at most 2r � 3. Let I be the inside of ˛, and
let ˛C be the ideal edge with inside I [ Na. Then ˛C is still legal, and the descending
link of ˛ is a (contractible) cone with cone point ˛C, since any ideal edge of smaller
size which is compatible with ˛ is also compatible with ˛C.

Now consider the case s � 1, and write L.r; s/ for L.v/. Choose b 2 B , and
let ˇ0 be the ideal edge separating a and b from all other half-edges. As before, let
C.ˇ0/ be the star of ˇ0 in L.r; s/ and use size to define a Morse function. If J is the
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inside of ˇ, let ˇC be the ideal edge with inside J [ b. As before, the descending
link is a cone with cone point ˇC. The only difference comes at the very end, since
maximal ˇ have size 2r C s � 2, in which case ˇC has a singleton on one side, so is
not an ideal edge.

This is where induction is used. Let ˇ be a vertex in L.r; s/ � C.ˇ0/ of size
2r C s � 2. The outside of ˇ is either fb; b0g (b0 ¤ b), fb; Nag or fb; a0g (a0 ¤ a; Na),
and its descending link is its entire link. In each case, this link can be identified with
L.r; s � 1/, so is contractible by induction, which proves the claim.

This completes the proof of the proposition.
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[DrSa] C. Druţu and M. Sapir, Tree-graded spaces and asymptotic cones of groups. Topology
44 (2005), 959–1058. Zbl 1101.20025 MR 2153979

Received May 29, 2008; revised June 23, 2008

K.-U. Bux, Department of Mathematics, University of Virginia, Charlottesville, VA 22903,
U.S.A.

E-mail: kb2ue@virginia.edu

R. Charney, Department of Mathematics, Brandeis University,Waltham, MA 02454, U.S.A.

E-mail: charney@brandeis.edu

K. Vogtmann, Department of Mathematics, Cornell University, Ithaca, NY 14853, U.S.A.

E-mail: vogtmann@math.cornell.edu

http://www.emis.de/MATH-item?1152.20032
http://www.ams.org/mathscinet-getitem?mr=MR2372847
http://www.emis.de/MATH-item?05530801
http://www.ams.org/mathscinet-getitem?mr=MR2481994
http://www.emis.de/MATH-item?0669.20027
http://www.ams.org/mathscinet-getitem?mr=982561
http://www.emis.de/MATH-item?0589.20022
http://www.ams.org/mathscinet-getitem?mr=830040
http://www.emis.de/MATH-item?0692.05035
http://www.ams.org/mathscinet-getitem?mr=880971
http://www.emis.de/MATH-item?1101.20025
http://www.ams.org/mathscinet-getitem?mr=2153979

	Introduction
	Two-dimensional right-angled Artin groups
	Lower bound for triangle-free 
	Upper bound
	Further finiteness properties for tree-based RAAGs

	Partially symmetric automorphisms of free groups
	Background on the spine of outer space and minimal subcomplexes
	A complex for PΣ(n,k)

	References

