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Abstract. If H is a flat group of automorphisms of finite rank n of a totally disconnected,
locally compact group G, then each orbit of H in the metric space B.G/ of compact, open
subgroups of G is quasi-isometric to n-dimensional Euclidean space. In this note we prove
the following partial converse: Assume that G is a totally disconnected, locally compact group
such that B.G/ is a proper metric space and let H be a group of automorphisms of G such that
some (equivalently every) orbit of H in B.G/ is quasi-isometric to n-dimensional Euclidean
space, then H has a finite index subgroup which is flat of rank n. We can draw this conclusion
under weaker assumptions. We also single out a naturally defined flat subgroup of such groups
of automorphisms.
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1. Introduction

In this article all automorphisms of topological groups are assumed to be contin-
uous with continuous inverse. Flat groups of automorphisms of a totally discon-
nected, locally compact group were introduced and studied in [Wil04]. A group
of automorphisms, H say, of a totally disconnected, locally compact group G is
flat if there exists a compact, open subgroup, O say, of G, called minimizing for
H , that minimizes all the displacement functions of elements in H on the metric
space, .B.G/; d/, of compact, open subgroups of G relative to the distance function
d.V; W / ´ log.jV W V \W j � jW W W \V j/. One can rephrase this condition by say-
ing that for every ' 2 H the integer j'.O/ W '.O/ \ Oj attains the value of the scale
function, sG , at ', where sG is defined by sG.'/ ´ minfj'.V / W '.V / \ V j W V 2
B.G/g.

Flat groups are, in a sense, generalizations of split tori in semisimple algebraic
groups over nonarchimedian local fields. They admit a dynamically defined ‘root
system’ ˆH , which governs the decomposition of any minimizing subgroup for H

�Authors were supported by Australian Research Council grant DP0556017.
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into a product of associated ‘eigenfactors’ on which every element of H is either
expanding or contracting.

In this article we study the question of the extent to which flat groups are character-
ized by their geometric properties. These properties are summarized in the following
theorem.

Theorem 1.1 (Geometric properties of flat groups of automorphisms). Let H be a
flat group of automorphisms of a totally disconnected, locally compact group G and
let O be minimizing for H . Put H .1/ ´ f' 2 H W sG.'/ D 1 D sG.'�1/g. Then

(1) HO D H .1/ E H and H=H .1/ is a free abelian group, whose Z-rank is
called the rank of H ;

(2) there is a set ˆH � Hom.H ; Z/ of surjective homomorphisms (which is inde-
pendent of O) such that

T
�2ˆH

ker.�/ D H .1/ and such that for each ' 2 H

we have �.'/ ¤ 0 for only finitely many � in ˆH ;

(3) there are positive integers t� for � 2 ˆH (which are independent of O) such that
the function k�kH defined on H=H .1/ by the rule k'H .1//kH ´ d.'.O/; O/

takes the value
P

�2ˆH
log.t�/ j�.'/j at 'H .1/ for ' 2 H .

Hence the function k � kH extends to a norm on the vector space R ˝ H=H .1/ and
each orbit of a flat group of automorphisms of finite rank in B.G/ is quasi-isometric
to R ˝ H=H .1/.

Theorem 1.1 follows from results proven in the paper [Wil04]; the reader may
consult the survey article [Bau07] for a compact exposition, with only short hints of
proofs; the statement on all orbits of H in B.G/ is obtained by applying the following
lemma with B ´ B.G/ and the natural action of H on B. The proof of the lemma
is left to the reader.

Lemma 1.2 (Distances on orbits under isometric actions differ by a constant). Let a
group H act by isometries on a metric space B. Then any two orbits of H in B are
.1; "/-quasi-isometric, with " only depending on the pair of orbits. In particular all
orbits of H in B have the same type of growth.

In this paper we address the question whether flat groups are virtually characterized
by the rough isometry class of their orbits in the space of compact, open subgroups;
more precisely, we study the following problem.

Problem 1.3 (Question whether flatness can be characterized geometrically). Let G

be a totally disconnected, locally compact group and let H be a group of automor-
phisms of G such that some (equivalently, any) orbit of H in the metric space of
compact, open subgroups of G is quasi-isometric to Rn for some n in N. Does it
follow that H has a finite index subgroup which is a flat group of automorphisms of
G of rank n?
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Under the conditions described in Problem 1.3, the group H itself need not be
flat; two examples illustrating this will be given in Section 5.

A geometric characterization as formulated in Problem 1.3 can be expected to
be useful in the detection and classification of flat subgroups of totally disconnected,
locally compact groups that are automorphism groups of a geometric structure because
for such groups the space of compact, open subgroups will often be related to that
geometric structure. An example is presented in Theorem 5.3.

While we can not solve Problem 1.3 in full generality, Theorem 1.4 below solves it
affirmatively in the important case where the metric space of compact, open subgroups
is proper; we are actually able to obtain the same conclusion as in Theorem 1.4 under
weaker hypotheses, see Theorem 2.3.

We also have quite strong control over the flat group of finite index whose existence
we guarantee; compare Theorem 2.5. However, there is probably no way to describe
a minimizing subgroup for that flat subgroup of finite index.

Abstract flatness criteria that do not effectively produce a minimizing subgroup
have been proved before: a purely algebraic criterion by Willis in [Wil04] and several
‘algebraic-bounded’ criteria by Shalom and Willis in [SW07], one of which, restated
here as Theorem 2.2, we use in the proof of Theorems 1.4 and 2.3.

Theorem 1.4 (Geometric characterization of flatness in the proper case). Let G be a
totally disconnected, locally compact group and let H be a group of automorphisms
of G such that some (equivalently, any) orbit of H in the metric space of compact,
open subgroups of G is quasi-isometric to Rn for some n in N. Assume that the
metric space B.G/ of compact, open subgroups of G is proper. Then H has a finite
index subgroup which is a flat group of automorphisms of G of rank n.

We now discuss known results that are similar to and, it turns out, also related to
Theorem 1.4. These results illustrate why one might expect to obtain such a result in
the first place.

If we ignore the special form of the group H that acts on the quasi-flat orbits,
what we seek may be called a ‘quasi-isometric version’of Bieberbach’s First Theorem
on space groups. (A statement of Bieberbach’s First Theorem can be found e.g. in
[Aus65], Bieberbach Theorem 1).

We are not aware of the existence of such a ‘quasi-isometric version’ of Bieber-
bach’s First Theorem, but several well-known results have similar conclusions. For
example, by Théorème 17 in [GdlH90], Zn is quasi-isometrically rigid for every n,
that is, a finitely generated group that is quasi-isometric to a free abelian group of
rank n has a subgroup of finite index that is a free abelian group of rank n. The latter
result relied until Shalom’s paper [Sha04] (Theorem 1.1, proven on p. 126; see also
Corollary 1.5 in [dCTV07], proven in §4.3) on Gromov’s characterization of finitely
generated groups of polynomial growth, which will also play a prominent role in this
paper.
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A graph-theoretic analogue of Bieberbach’s First Theorem may be seen in Theo-
rem 1 of Trofimov’s paper [Tro84] (cited as Theorem 2.1 in the survey paper [IS91]).
Trofimov’s work [Tro84] implies Bieberbach’s First and Third Theorem as noted on
p. 417 of that article and also implies Gromov’s characterization of finitely generated
groups of polynomial growth (but note that the main result in the paper [Gro81] that
shows Gromov’s result is used in Trofimov’s work). In the graph-theoretic context
the papers [LS01], [Sei91] also discuss interesting aspects. The above examples and
our own success in proving an analogue of Bieberbach’s First Theorem in our, ad-
mittedly restricted, context suggest that it might be possible and worthwhile to prove
a ‘quasi-isometric version’ of Bieberbach’s Theorems on space groups.

It would also be of interest to determine whether our Main Theorem can alterna-
tively be derived using Theorem 1 in Trofimov’s paper [Tro84], thus avoiding the use
of Losert’s result [Los01], Proposition 1 (Losert’s result is used on p. 6 in the middle
of the proof of Theorem 2.1).

2. Outline of the proof of the Main Theorem and statement of further results

As our first step, we use a structure result on compactly generated, locally compact
groups of polynomial growth due to Losert together with Gromov’s theorem on finitely
generated groups of polynomial growth to show Theorem 2.1 below.

We now recall terminology used in the statement of that theorem. Let d > 0.
A metric space is called d -connected if and only if for any ordered pair .x; y/ of
points in the space one can find a finite sequence of points beginning with x and
ending with y, whose consecutive terms are at most d apart. A metric space is called
coarsely connected if and only if it is d -connected for some positive number d . The
image of a coarsely connected space under a quasi-isometric embedding as well as
any "-neighborhood of a coarsely connected space is itself coarsely connected; in par-
ticular, the property of being coarsely connected is invariant under quasi-isometry.
Further, call a set of automorphisms B of a totally disconnected, locally compact
group G bounded if and only if the set B:V has bounded diameter for some (equiva-
lently, every) V in B.G/.

If in Theorem 2.1 the group H is flat of finite rank, then any minimizing subgroup
for H satisfies the conditions on the group O in that theorem by part 3 of Theorem 1.1.
Later in the paper we will use this observation. In Section 5, we will give examples
of groups of automorphisms whose orbits are quasi-flats which are not flat.

Theorem 2.1 (Automorphism groups with a proper, coarsely connected orbit of poly-
nomial growth are virtually bounded-by-finitely-generated-nilpotent). Let G be a to-
tally disconnected, locally compact group and H 6 Aut.G/. Assume that there is an
O in B.G/ such that the orbit H :O is proper, coarsely connected and of polynomial
growth. Then there is a subgroup H0 of finite index in H , N0 E H0 and V 2 B.G/

such that N0 stabilizes V and H0=N0 is a finitely generated nilpotent group.
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We then apply a flatness criterion from [SW07], restated here as Theorem 2.2.

Theorem 2.2 (Bounded-by-finitely-generated-nilpotent groups are flat). Let N0 E
H0 6 Aut.G/ and suppose that N0 stabilizes some compact, open subgroup V of G

and that H0=N0 is a finitely generated nilpotent group. Then H0 is flat of finite rank.

Combining Theorems 2.1 and 2.2 we conclude that the subgroup H0 found in
Theorem 2.1 is flat. Thus, we derive the following theorem, modulo the claim con-
tained therein on the rank of H0. That theorem delivers the same conclusion as
our desired result from weaker hypotheses and will thus prove our Main Theorem,
Theorem 1.4.

Theorem 2.3 (Geometric characterization of flatness if there is a proper orbit). Let
G be a totally disconnected, locally compact group and H 6 Aut.G/. Assume that
there is an O in B.G/ such that the orbit H :O is proper, coarsely connected and of
polynomial growth of degree n but not n � 1. Then H has a subgroup H0 of finite
index that is flat of rank n.

The strong form of our main theorem, Theorem 2.3, and the remark in the para-
graph preceding Theorem 2.1 imply the following corollary.

Corollary 2.4. Let G be a totally disconnected, locally compact group. A group
of automorphisms of G whose orbits in B.G/ are quasi-flats of finite dimension is
virtually flat if and only if it has a proper orbit in B.G/.

The proof of the existence of the flat subgroup H0 in Theorem 2.3 is not con-
structive. Nevertheless, H has a maximal normal flat subgroup, whose elements are
characterized intrinsically in the next theorem.

Theorem 2.5. Suppose that H is a group of automorphisms of a totally disconnected,
locally compact group that is virtually flat of finite rank. Then the subset of bounded
conjugacy classes of H , defined by HFCd

´ f' 2 H W 'H is boundedg is a flat,
normal subgroup of H of finite index that contains each flat subgroup of finite index.

3. Proof of the geometric flatness criterion if there is a proper orbit

We follow the outline of the proof given in the last section.

Proof of Theorem 2.1. In the first step of the proof, the assumptions on the orbit
H :O are used to define a locally compact completion, H , of H .

Choose d > 0 such that H :O is d -connected and let X be the metric graph
whose set of vertices is H :O and whose edges connect precisely those pairs of points
in H :O whose mutual distance is at most d . The choice of d guarantees that the
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graph X is connected; since H :O is proper X is also locally finite. The group H

acts by graph-automorphisms on X and the induced action on the set of vertices is
transitive.

Denote by H the closure of the group of automorphisms of X induced by H in
the group of all graph-automorphisms of X . Since the graph X is connected and
locally finite, the group Aut.X/ and its closed subgroup H are totally disconnected
and locally compact in the topology of pointwise convergence; indeed, the stabilizer
of any vertex is a compact, open subgroup, which is profinite.

Furthermore, because both H and H act transitively on the set of vertices of X ,
these groups are generated by their respective subsets, HE respectively HE , consist-
ing of those automorphisms that map O to any of its neighbors in X . Now the set of
elements that map O to another vertex, O 0 say, is a left coset of the stabilizer of O;
within the group H , the latter subset is compact. Since HE is a finite union of such
sets, we conclude that it is compact also. Hence the group H is totally disconnected,
locally compact and compactly generated.

We claim next that H has polynomial growth. This is seen as follows. The growth
of H with respect to HE equals the growth of the combinatorial graph X . For any
radius, r say, the ball of radius r around O in H :O with respect to the metric of B.G/

contains the ball with radius r=d with respect to the metric of X . Since the former
balls grow polynomially, the latter do also and thus H has polynomial growth.

Since H has been seen to be a compactly generated, totally disconnected, locally
compact group of polynomial growth, we may apply [Los01], Proposition 1, to H

to conclude that it has a maximal compact normal subgroup C such that H=C is a
Lie group. As a quotient of a totally disconnected, compactly generated group of
polynomial growth, H=C is then a discrete, finitely generated group of polynomial
growth.

By Gromov’s theorem on finitely generated groups of polynomial growth (that
is, the Main Theorem in [Gro81] or Corollary 1.6 in [Kle07]) H=C is virtually
nilpotent. Let H0 be the inverse image of a nilpotent subgroup, N say, of finite index
in H=C under the canonical projection H ! H=C , let H0 be the inverse image
of H0 \ H under the map H ! H and let N0 be the kernel of the composite map
H0 ,! H ! H ! H=C .

Then H0 has finite index in H , N0 is normal in H0 and H0=N0 is a subgroup
of the finitely generated, nilpotent group N . Every subgroup of a finitely generated
nilpotent group is finitely generated; see e.g. [Bro73], Lemma 2. Therefore H0=N0

is a finitely generated nilpotent group.
The proof of Theorem 2.1 will therefore be complete, once we show that there

exists V 2 B.G/ such that N0 stabilizes V . To see this, we use that the group of
automorphisms of the graph X induced by the subgroup N0 of H is contained in C

by the definition of N0. Since the group C is compact, the set of images of the vertex
O 2 X under C is finite. The same conclusion can be drawn for the subgroup N0 of
C . Therefore the subgroup V ´ T

n02N0
n0.O/ is a compact, open subgroup of G.

By the definition of V , the group N0 stabilizes V , and our proof is complete.
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Proof of Theorem 2.3. As already noted in Section 2, modulo the claim contained
therein on the rank of H0, Theorem 2.3 follows from Theorems 2.1, using Theo-
rem 2.2.

To determine the rank of the subgroup H0 of H we argue as follows. Applying
Lemma 1.2 with B ´ B.G/ and the natural action of H on B we see that all orbits
of H in B.G/ have the same type of growth, which, by assumption, is polynomial of
degree n but not of degree n � 1. Since H0 has finite index in H , the type of growth
of the orbits of H0 in B.G/ is the same as the type of growth of the orbits of H in
B.G/. If we choose a minimizing subgroup, V say, for the flat group H0, whose
rank is r say, then Theorem 1.1 implies that the metric space H0:V has polynomial
growth of degree r but not of degree r � 1. We conclude that r equals n as claimed.
This concludes the proof of Theorem 2.3.

4. Subgroup of bounded conjugacy classes and the proof of Theorem 2.5

As already noticed in Section 2, the proof of the existence of the flat subgroup H0 in
Theorem 2.3 is not constructive. To find H0, we relied on Proposition 1 in [Los01]
and on Gromov’s Theorem, both of which are non-constructive.

Nevertheless Theorem 2.5 gives a useful characterization of the maximal, normal
flat subgroup of a virtually flat group H of automorphisms and in this section we
prove that theorem. The first step towards that result is the following Lemma. Its
proof is left to the reader.

Lemma 4.1 (Bornological group structure on the automorphism group). Let G be a
totally disconnected, locally compact group and H a group of automorphisms of G.
Then the collection of bounded subsets of H is a bornological group structure on H ;
that is, singleton sets are bounded, subsets of bounded sets are bounded, finite unions
of bounded sets are bounded and products and inverses of bounded sets are bounded.

The following proposition is a consequence of Lemma 4.1; its proof is straight-
forward and is left to the reader.

Proposition 4.2 (Bounded conjugacy classes form a normal subgroup). Let G be a
totally disconnected, locally compact group and H a group of automorphisms of G.
Then the set HFCd

´ f' 2 H W 'H is boundedg is a normal subgroup of H and for
any such H we have .HFCd

/FCd
D HFCd

.

The next proposition explains why one should expect the subgroup of bounded
conjugacy classes of a group of automorphisms to be related to flat subgroups.

Proposition 4.3 (A flat group has bounded conjugacy classes). Suppose that H is a
flat group of automorphisms of a totally disconnected, locally compact group. Then
H D HFCd

.
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Proof. Let ' be an arbitrary element of H . Choose a compact, open subgroup O

which is minimizing for H . Then, by part 1 of Theorem 1.1, we have

'H :O D ' � Œ'�1; H �:O � ' � H .1/:O D ' � HO :O D '.O/ ;

and hence 'H is bounded.

We now turn to the proof of Theorem 2.5. That proof will consist of two steps;
(Step 1) under the assumptions of Theorem 2.5 it will be shown in Lemma 4.4 that
HFCd

is a normal subgroup of H that contains every flat subgroup of finite index;
(Step 2) Lemma 4.5 applied with Hfcd ´ HFCd

shows that HFCd
is flat.

Lemma 4.4. Suppose that H is a group of automorphisms of a totally disconnected,
locally compact group that is virtually flat. Then HFCd

is a normal subgroup of H

that contains every flat subgroup of finite index. In particular, HFCd
has finite index

in H .

Proof. Taking Proposition 4.2 into account, we only need to show that HFCd
contains

every flat subgroup of finite index. Let H0 be one such subgroup of H and '0

an arbitrary element of H0. The argument of Proposition 4.3 shows that the set
'

H0

0 is a bounded subset of H0 and hence of H . Write H as
Sk

iD1 ˛iH0. Then

'H
0 D Sk

iD1 ˛i'
H0

0 ˛�1
i is a finite union of bounded subsets of H , and hence is

bounded. We conclude that '0 is contained in HFCd
, which proves the claim.

Lemma 4.5. Let G be a totally disconnected, locally compact group and Hfcd 6
Aut.G/. Assume that there is an O in B.G/ such that the orbit Hfcd:O is proper
and coarsely connected (this holds e.g. if Hfcd is virtually flat of finite rank). Assume
further that Hfcd D .Hfcd/FCd

. Then there is N0 E Hfcd and V 2 B.G/ such that
N0 stabilizes V and Hfcd=N0 is a finitely generated abelian group. In particular,
Hfcd is flat of finite rank.

Proof. We first verify that the condition that Hfcd is virtually flat of finite rank implies
that there is an O in B.G/ such that the orbit Hfcd:O is proper and coarsely connected.
Let Hf be a flat subgroup of finite index in Hfcd and O a minimizing subgroup for
Hf . By the remark in the paragraph preceding Theorem 2.1, the orbit Hf :O is proper
and coarsely connected. Since Hf has finite index in Hfcd, the analogous statement
holds for the orbit Hfcd:O .

Define a graph X as in the proof of Theorem 2.1. Recall that an element whose
conjugacy class has compact closure is called an FC-element, while a group consisting
of FC-elements is called an FC-group. Denote by H the subgroup of FC-elements in
the closure, Hfcd, of the group of automorphisms of X induced by Hfcd in the group
of all graph-automorphisms of X . As in the proof of Theorem 2.1 we conclude that
the group Hfcd is totally disconnected and locally compact. Theorem 2 in [Möl03]
implies that H is a closed subgroup of Hfcd. Note that by our assumption Hfcd equals
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.Hfcd/FCd
and by the definition of the topology on Aut.X/, H contains the image

of Hfcd in Aut.X/ and hence equals Hfcd. Thus H is a totally disconnected, locally
compact, compactly generated FC-group.

Using Theorem 3.20 in [GM71], and remembering that H is totally disconnected,
we conclude that the group H has a compact, normal subgroup P with discrete,
torsion free, finitely generated abelian quotient A.

Put H0 ´ Hfcd and let N0 be equal to the kernel of the composite homomorphism
Hfcd ! H ! A. Then N0 is a normal subgroup of H0 and H0=N0 is a finitely
generated, nilpotent (in fact, abelian) group.

Using that N0 is contained in the compact subgroup P of Aut.X/ we conclude
as in the proof of Theorem 2.1 that there exists V 2 B.G/ such that N0 stabilizes V .
Applying Theorem 2.2 we conclude that the group H0 D Hfcd is flat of finite rank.
We have shown all parts of our claim.

As explained in the paragraph preceding Lemma 4.4, Theorem 2.5 follows from
what we have just shown.

From Lemmas 4.4 and 4.5 we now obtain, in the ‘proper case’, another charac-
terization of virtually flat groups of automorphisms in terms of their elements with
bounded conjugacy class.

Theorem 4.6. Let G be a totally disconnected, locally compact group and let H be
a group of automorphisms of G. Assume that there is an O in B.G/ such that H :O

is proper and coarsely connected. Then the following conditions are equivalent:

(1) H is virtually flat of finite rank.

(2) jH W HFCd
j is finite.

Proof. That (1) implies (2) follows from Lemma 4.4. Assume conversely that (2)
holds. Then the subgroup HFCd

of H satisfies the conditions on the group Hfcd in
Lemma 4.5. Applying Lemma 4.5 we conclude that the group HFCd

is flat of finite
rank. Since HFCd

is a subgroup of finite index in H by assumption, H is virtually
flat of finite rank, which is the content of statement (1).

5. An example and an application

A group of automorphisms of a totally disconnected, locally compact group whose
orbits in the space of compact, open subgroups are quasi-flats need not be a flat
group as the following example illustrates. Conjecture 16 in the paper [BRW07]
is therefore false as stated; the first and third author of the current paper should
have known this while being involved in writing the paper [BRW07], because they
obtained Theorem 5.3 below, which also illustrates this point, by different methods
in unpublished work done in the year 2000.
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Example 5.1. Let p be a prime number and G the additive group of the 2-dimen-
sional vector space over Qp . The metric space of compact, open subgroups of G is
proper. Let H be the group of automorphisms of G that is generated by the following
two linear transformations:

s1 ´
�

0 1

1 0

�
; s2 ´

�
0 p�1

p 0

�
D

�
0 1

1 0

�
�
�

p 0

0 p�1

�
μ s1u:

We will show that the orbits of compact, open subgroups under H are quasi-isometric
to R, but that the group H is not flat.

Proof. The group H is isomorphic to the infinite dihedral group with canonical
generators s1 and s2.

The group T ´ hui has index 2 in H . Since T is generated by one element, it
is a flat group whose rank is either 0 or 1; this may be seen for example by applying
Lemma 2 in [BW06] with u ´ ˛. The group T has unbounded orbits in B.G/;
hence the rank of T must be larger than 0 and hence is 1. Using Theorem 1.1 we
conclude the orbits of the group T in B.G/ are quasi-isometric to R. Since T has
finite index in H the same is true of the orbits of the group H in B.G/, as claimed.

We now show by contradiction that the group H is not flat. For suppose it were.
Then the elements s1 and s2 are contained in the subgroup H .1/, because they have
finite order. Since s1 and s2 generate H , we then must have H D H .1/, the rank of
H would be 0 and all orbits of H in B.G/ would be bounded. This is a contradiction
to what we have shown to be the case above and we conclude that H is not flat, as
claimed.

Remark 5.2. The phenomenon illustrated in the above example does not occur with
groups of automorphisms whose orbits in B.G/ are bounded. Under this condition
one need not even impose a condition on B.G/. That is, any group of automorphisms
with bounded orbits in B.G/ is flat of rank 0. This statement is Proposition 5 in
[BW06]. It is a consequence of the main result of Schlichting’s paper [Sch80]; the
latter result has been generalized in [BL89] and [Wag98].

This stronger form of the geometric flatness criterion in the rank-0-case has played
an important role in the recent study, by Y. Shalom and G. Willis, of almost normal
subgroups of arithmetic groups via suitable completions.

We now show how the results of this paper lead to a remarkably simple and
straightforward proof of the following result, which again illustrates the problem of
using virtual notions when dealing with flatness. The following notions are used: A
flat subgroup is a subgroup that is flat as a group of inner automorphisms; the flat
rank of a totally disconnected, locally compact group is the supremum of the ranks
of its flat subgroups.
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Theorem 5.3. Let k be a nonarchimedean local field and G a connected semisimple
group that is defined over k. Then for any maximal k-split torus S of G the group
ZG .S /.k/ is a maximal flat subgroup of G .k/ of maximal rank, equal to the k-rank
of G . In particular, the group NG .S /.k/ is not flat; however the orbits of this group
in B.G .k// are quasi-flats of dimension k -rank.G / D flat-rank.G .k//.

Proof. It will be obvious from the proof, that an analogous result may be obtained in
other cases also. The action of the group G .k/ on the Bruhat–Tits building X.G ; k/

of G over k will be used.
Let S be a maximal k-split torus of G . The apartment AS associated to S is

an affine subspace of X.G ; k/ of maximal dimension. The group N ´ NG .S /.k/

stabilizes AS and acts there by affine isometries. The subgroup of N that acts by
translations on AS is T ´ ZG .S /.k/. Since X.G ; k/ is also the building defined
by a saturated BN-pair (namely .B; N /, where B is a suitable Iwahori subgroup) the
group N D NG .S /.k/ is the full stabilizer of AS in G .k/.

We next use Theorem 7 from [BRW07] to turn the statements of the previous
paragraph into statements about the action of G .k/ on B.G .k//. We conclude that
the orbits of N and T in B.G .k// are quasi-flats of dimension k -rank.G /. That
k -rank.G / D flat-rank.G .k// follows from Corollary 19 in [BRW07].

The orbits of the stabilizer of a chamber in AS under N and T are proper; in fact,
the metric space B.G .k// is proper. From either Theorem 2.3 or Theorem 1.4 we
infer that N and T are virtually flat subgroups of G .k/ of maximal rank. We claim
next that the subgroup of bounded conjugacy classes NFCd

of N equals T . Applying
Theorem 2.5 to this statement yields that T is flat; since we know that N is the full
stabilizer of AS , every flat subgroup containing T must be contained in N and we
will obtain our remaining claims.

We are therefore reduced to proving that NFCd
D T . The group T is contained

in NFCd
because it acts by translations on AS and any conjugate of a translation is a

translation which displaces points by the same amount as the original translation. The
set N X T consists of elements which act as reflections or rotations on AS ; no such
element can be contained in NFCd

, because given a fixed point of AS that point will
be displaced by an arbitrarily large amount by a conjugate of such a transformation
by a translation of sufficiently large displacement. Thus NFCd

D T , concluding our
proof.

It is uncertain whether one can also find a minimizing subgroup for the group
ZG .S /.k/ in the previous result along the same lines. After all, our approach avoided
the task of finding a minimizing subgroup.

A minimizing subgroup for the group ZG .S /.k/ is known; compare Theorem 5.4
below. We omit the proof of this result, hoping to find a simpler approach to it which
might also apply in more general situations.

Theorem 5.4. Let k be a nonarchimedean local field and G a connected semisimple
group that is defined over k. Then for any maximal k-split torus S of G the stabilizer
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of any chamber of the affine apartment corresponding to S is minimizing for the group
ZG .S /.k/.
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