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Stable commutator length in word-hyperbolic groups

Danny Calegari and Koji Fujiwara

Abstract. In this paper we obtain uniform positive lower bounds on the stable commutator
length of elements in word-hyperbolic groups and certain groups acting on hyperbolic spaces
(namely the mapping class group acting on the complex of curves, and an amalgamated free
product acting on an associated Bass–Serre tree). If G is a word-hyperbolic group that is
ı-hyperbolic with respect to a symmetric generating set S , then there is a positive constant
C depending only on ı and on jS j such that every element of G either has a power which is
conjugate to its inverse, or else the stable commutator length of the element is at least equal to
C . By Bavard’s theorem, these lower bounds on stable commutator length imply the existence
of quasimorphisms with uniform control on the defects; however, we show how to construct
such quasimorphisms directly.

We also prove various separation theorems on families of elements in such groups, con-
structing homogeneous quasimorphisms (again with uniform estimates) which are positive
on some prescribed element while vanishing on some family of independent elements whose
translation lengths are uniformly bounded.

Finally, we prove that the first accumulation point for stable commutator length in a torsion-
free word-hyperbolic group is contained between 1=12 and 1=2. This gives a universal sense of
what it means for a conjugacy class in a hyperbolic group to have a small stable commutator
length, and can be thought of as a kind of “homological Margulis lemma”.
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1. Introduction

Let G be a group, and let ŒG; G� denote the commutator subgroup. Given g 2 ŒG; G�

the commutator length of g, denoted cl.g/, is the least number of commutators in G

whose product is equal to g. The stable commutator length, denoted scl.g/, is the
limit of cl.gn/=n as n goes to infinity. If gn 2 ŒG; G� for some least positive integer
n, define scl.g/ D scl.gn/=n, and define scl.g/ D 1 if no power of g is contained
in ŒG; G�; see § 2 for precise definitions. For a general introduction to the theory of
stable commutator length, see [6].
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Informally, if G D �1.X/ for some topological space X , commutator length
is the smallest genus of a surface in X whose boundary represents a given loop
in X , and stable commutator length “rationally” measures the same quantity. At the
homological level, stable commutator length is an L1 filling norm with Q coefficients,
in the sense of Gersten [18] or Gromov [20].

This paper is concerned with obtaining uniform positive lower bounds on stable
commutator length in (word-) hyperbolic groups and groups acting on (ı-) hyperbolic
spaces. Morally, (ı-) hyperbolic spaces are those whose geometry can be efficiently
probed by maps of triangles and other surfaces into the space, so it should not be sur-
prising that they can be studied effectively with stable commutator length. However,
there is a sense in which our results are counterintuitive, which we briefly explain.

It is a widely observed fact that in the presence of (coarse) negative curvature,
one can obtain upper bounds on the “size” of a surface which is efficient in some
sense. Here size is measured with respect to some kind of norm; for instance area,
Whitney [-norm, L1 norm on homology etc. Efficiency might vary from context to
context (e.g. harmonic, minimal, normal) and will depend on the way in which we
measure the size of the surface. Our main results say that in the presence of (coarse)
negative curvature, there is a uniform (positive) lower bound on the (homological)
size of certain surfaces.

We concentrate on worst-case behavior, rather than typical behavior, and our
results are frequently sharp. Other authors have studied commutator length and its
relation with negative curvature, especially Gromov [22], § 6.C2. In our language,
Gromov observes that in a word-hyperbolic group, if g 2 ŒG; G� is not torsion and
does not have a power conjugate to its inverse, then scl.g/ > 0 (actually, Gromov
neglects to mention the second possibility). The key innovation in our paper is that
our bounds are uniform, and depend only on macroscopic features of the group,
specifically ı and number of generators. Note that any hyperbolic group may be
made ı-hyperbolic for some universally small ı (say ı < 10) just by increasing the
number of generators, so our results in this sense are best possible.

Perhaps our most striking theorem is Theorem B, a kind of “spectral gap” the-
orem, which says that in a non-elementary torsion-free word-hyperbolic group, the
first accumulation point for stable commutator length as a function from conjugacy
classes to positive real numbers is between 1=12 and 1=2. These bounds imply that
there is a universal sense of what it means for an element in a word-hyperbolic group
to have a small stable commutator length. This should perhaps be compared with
Margulis’ Lemma, which says that there is a universal sense of what it means for a
closed geodesic in a hyperbolic manifold to be short. The difficulty in transporting
Margulis’ Lemma to geometric group theory is that geometric notions in a group are
typically only defined up to a certain ambiguity (e.g. quasi-isometry) which obscures
small scale geometric phenomena. The advantage of working with stable commu-
tator length, and the power of our theorem, is precisely that it captures such small
scale phenomena. This comparison is more than superficial – the key to obtaining
the sharp lower bound is to use estimates due to Mineyev which reproduce, in a gen-
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eral ı-hyperbolic space, geometric phenomena which are strictly analogous to C 1

phenomena in Lie groups.
We are able to give similar uniform lower bounds on the stable commutator length

of certain elements in two other important classes of groups: mapping class groups of
surfaces (hereafter denoted MCG.S/), and amalgamated free products. In general,
neither kind of group is ı-hyperbolic, but each acts naturally on a certain ı-hyperbolic
space: the complex of curves, and the Bass–Serre tree respectively. Obtaining lower
bounds on stable commutator length in mapping class groups is intimately tied to
important problems in 4-dimensional symplectic geometry; for example, estimating
the complexity of a symplectic 4-manifold filling a given contact 3-manifold, or con-
trolling the ratios of characteristic numbers (e.g. Euler characteristic and signature).
This point of view has been pioneered by D. Kotschick, sometimes in collaboration
with H. Endo, in a series of papers which include [25], [12], [26] and [13]. From
another point of view, there are relations between symplectic geometry and stable
commutator length which are more intimately connected with invariants like Hofer
length and subgroup distortion; see work of Polterovich, especially [33].

The Bavard Duality Theorem (see Theorem 2.5) gives a duality between stable
commutator length, and certain kinds of functions on a group, called homogeneous
quasimorphisms. A function f W G ! R is a homogeneous quasimorphism if it is
homogeneous (i.e. if it satisfies f .gn/ D nf .g/ for all g 2 G and n 2 Z) and if there
is a least real number D.f / called the defect, for which jf .gh/ � f .g/ � f .h/j �
D.f / for all g; h 2 G. The Duality Theorem says that obtaining lower bounds for
stable commutator length is equivalent to constructing homogeneous quasimorphisms
with small defects (see § 2). Bavard’s theorem is non-constructive, and uses theAxiom
of Choice (in the form of the Hahn–Banach Theorem); however in our paper we are
able to construct explicit quasimorphisms with small defects directly. We are also
able to prove various separation theorems, constructing quasimorphisms with small
defects that take big values on prescribed elements and vanish on others. This is a
quantitative improvement on the kinds of separation theorems proved or conjectured
by various people in the past, and we expect it to have a number of applications.

Let us stress that this paper is concerned more with developing foundations, and
understanding what (to us) seems like a fundamental algebraic/geometric inequal-
ity, manifested in several important group theoretic contexts, than with deducing
topological or other corollaries.

1.1. Statement of results. We now give a brief summary of the contents of the paper.
In § 2 we give definitions, standardize notation, and recall some basic elements of
the theory of ı-hyperbolic groups and spaces, and bounded cohomology. We spend
some time discussing Mineyev’s geodesic flow space, which is a technical tool that
we find useful for establishing uniform bounds on stable commutator length directly
by means of geometry rather than using quasimorphisms (see § 2 for definitions).

There are other versions of the geodesic flow space of a word-hyperbolic group or
space, and that of Gromov [21] is probably best known. However, Mineyev’s space
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has some features that make it technically easier to use for our purposes.
In § 3 we give the first version of our first main result, the Gap Theorem:

TheoremA (Gap Theorem, weak version). Let G be a word-hyperbolic group that is
ı-hyperbolic with respect to a symmetric generating set S with jS j generators. Then
there is a constant C.ı; jS j/ > 0 such that for every a 2 G, either scl.a/ � C or
else there is some positive integer n and some b 2 G such that ba�nb�1 D an.

Note that if ba�nb�1 D an then scl.a/ D 0.
It is easy to produce examples of word-hyperbolic groups which contain elements

with arbitrarily small (positive) stable commutator length, so the dependence on ı

and jS j is necessary.
In § 4 and § 5 we introduce so-called counting quasimorphisms, and use them to

prove the second (stronger) version of the Gap Theorem. In the following theorem,
we use the notation �.a/ to denote the translation length of an element a 2 G, as
measured in the Cayley graph �S .G/ of G with respect to a fixed generating set S .
It is worth keeping in mind that if a is not torsion, there is a positive lower bound on
�.a/ that depends only on ı and jS j.

Theorem A0 (Gap Theorem, strong version). Let G be a word-hyperbolic group that
is ı-hyperbolic with respect to a symmetric generating set S with jS j generators. Let
a 2 G be a (non-torsion) element. Assume that there is no n > 0 and no b 2 G with
ba�nb�1 D an. Then there is a homogeneous quasimorphism h on G such that

(1) h.a/ D 1,

(2) the defect of h is � C.ı; jS j/.
Moreover, let ai 2 G be a collection of elements for which T D supi �.ai / is finite.
Suppose that for all integers n; m ¤ 0 and all elements b 2 G and indices i there is
an inequality

banb�1 ¤ am
i :

Then there is a homogeneous quasimorphism h on G such that

(1) h.a/ D 1, and h.ai / D 0 for all i ,

(2) the defect of h is � C 0.ı; jS j; T /.

The weak version of the Gap Theorem follows from the strong version. Moreover,
the first part of the strong version follows from the weak version together with an
application of Bavard’s theorem, but the implication in this direction uses the Axiom
of Choice. Note that the constants C appearing in the two versions are different in
either case but related.

The second part of this strong version of the Gap Theorem can be thought of as a
kind of separation theorem, which can be summarized in words as follows: given an
element a and a finite set of elements ai 2 G whose nontrivial powers are never equal
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to a conjugate of a nontrivial power of a, one can (explicitly) construct a homogeneous
quasimorphism that vanishes on all the ai and is positive on a; moreover, the defect
of this quasimorphism can be uniformly controlled just in terms of the translation
lengths of the ai , and in terms of ı and jS j.

Such separation theorems have been pursued by several authors. For exam-
ple, Polterovich and Rudnick [34] proved such a separation theorem for the group
SL.2; Z/, and asked if one can generalize it to hyperbolic groups; our work gives a
quantitative positive answer to their question.

In § 6 we state and prove the Accumulation Theorem:

Theorem B (Accumulation Theorem). Let G be a torsion free non-elementary word-
hyperbolic group. Then the first accumulation point ı1 for stable commutator length
satisfies

1

12
� ı1 � 1

2
:

Here ı1 is the first accumulation point for the values (with multiplicity) of the
function scl on the set of conjugacy classes in G, thought of as an ordered subset of
R. As mentioned above, we think of this theorem as a kind of “homological Margulis
Lemma”. One can obtain similar theorems for groups with torsion, but the statement
is not so clean or universal.

In § 7 and § 8 we discuss two important examples of groups acting on ı-hyperbolic
spaces: the action of the mapping class group on the complex of curves, and the action
of an amalgamated free product on its associated tree.

Our main theorem about the mapping class group is:

Theorem C (Mapping Class Theorem). Let S be a compact orientable surface of
hyperbolic type and MCG.S/ its mapping class group. Then there is a positive
integer P depending on S such that for any pseudo-Anosov element a, either there is
an 0 < n � P and an element b 2 MCG.S/ with ba�nb�1 D an, or else there exists
a homogeneous quasimorphism h on MCG.S/ such that h.a/ D 1 and the defect of
h is � C.S/, where C.S/ depends only on S .

Moreover, let ai 2 MCG.S/ be a collection of elements for which T D supi �.ai /

is finite. Suppose that for all integers n; m ¤ 0 and all elements b 2 MCG.S/ and
indices i there is an inequality

banb�1 ¤ am
i :

Then there is a homogeneous quasimorphism h on MCG.S/ such that

(1) h.a/ D 1, and h.ai / D 0 for all i ,

(2) the defect of h is � C 0.S; T /.

Note that if b is not pseudo-Anosov, then �.b/ D 0. Moreover, for any surface S ,
there are infinitely many conjugacy classes of elements b with �.b/ � O.1=g log.g//

where g D genus.S/ (see [15], especially Theorem 1.5).
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In the case of the mapping class group, one knows that not all the quasimorphisms
are of the kind promised by this theorem. Along completely different lines, Endo
and Kotschick [12] managed to obtain lower bounds on stable commutator length for
elements a 2 S which are products of positive Dehn twists in disjoint curves. Such
elements are reducible, and therefore fix a simplex in the complex of curves C.S/; by
contrast, our methods do not give any information about elements with fixed points.

Note that our arguments make use of a key acylindricity property proved by
Bowditch, which is something like a bicombing in the context of C.S/. Our lower
bounds do depend on the surface S . There is some evidence that this dependence
is necessary: a forthcoming paper by Kotschick [27] shows that stable commutator
length goes to zero under stabilizing genus by adding handles.

Note that as in Theorem A0, Theorem C includes a separation theorem. Endo and
Kotschick gave examples that set some limits on how far such a theorem might be
generalized. Firstly, they show that there are elements a 2 MCG.S/ which are not
pseudo-Anosov, but nevertheless for which there are homogeneous quasimorphisms
which do not vanish on a. Secondly and conversely, they show that there are elements
b 2 MCG.S/ of infinite order, for which no power of b is conjugate to its inverse,
but for which h.b/ D 0 for any homogeneous quasimorphism h on MCG.S/. These
examples indicate the subtlety of the function scl on MCG.S/, and suggest that a
multiplicity of approaches are necessary to appreciate its full richness.

See [12] and [13] respectively for details.
Our main theorem about amalgamated free products is:

Theorem D (Amalgamation Theorem). Let G D A �C B . Let w be a word on
A; B which is reduced and cyclically reduced such that jwj > 1, and let xw denote
the corresponding element in G. Suppose that the double coset C xwC does not
contain the element corresponding to any cyclic conjugate of w�1. Then there exists
a homogeneous quasimorphism h on G such that h. xw/ D 1, and the defect of h

is � 312.

One can make a similar statement about HNN extensions.
Here a word w is said to be cyclically reduced if w is not equal to v1v2v�1

1 .v1 6D ;/

as a word. The double coset condition is at first glance somewhat odd. We examine a
particular example (of essential slopes in knot complements in 3-manifolds) in some
detail and show why it is natural and unavoidable.
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Thurston. The second author appreciates the hospitality of the department of Math-
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2. Background Material

2.1. ı-hyperbolic groups and spaces. We assume that the reader is familiar with
basic elements of the theory of ı-hyperbolic groups and spaces: quasi-isometries,
quasigeodesics, word-hyperbolicity, ı-thin triangles, translation length, etc. For a
reference, see [21].

Let G be a ı-hyperbolic group with a fixed generating set S . We denote the
translation length of an element g 2 G on the Cayley graph �S .G/ by �.g/. This
length is defined by

�.g/ D lim
n!1

dist.id; gn/

n
;

where distance is measured in the usual way in �S .G/. Observe that � is a class
function.

If g is torsion, �.g/ D 0. Otherwise, recall that there is a constant N.jS j; ı/ and
an integer n < N such that a power gn of g leaves invariant a bi-infinite geodesic
axis and acts on this axis as translation through a distance n�.g/. Since this distance
is necessarily a positive integer, this implies that there is a positive constant B.jS j; ı/

such that �.g/ � B for every non-torsion element g. See e.g. Theorem 5.1 of [14].

2.2. Stable commutator length

Definition 2.1. Let G be a group, and a 2 G. The commutator length of a, denoted
cl.a/, is the minimum number of commutators whose product is equal to a. If a is
not in ŒG; G�, we set cl.a/ D 1. The stable commutator length, denoted scl.a/, is
the lim inf

scl.a/ D lim inf
n!1

cl.an/

n
:

Notice that scl.a/ D 1 if and only if the order of Œa� in H1.GI Z/ is infinite.

The functions cl and scl, like � , are class functions. Observe that cl and scl are
monotone under homomorphisms. That is, if � W G ! H is a homomorphism, then

scl.�.a// � scl.a/

for all a 2 G, and similarly for cl.

Example 2.2 (Mirror Condition). Let G be a group and suppose that there are ele-
ments a; b 2 G and integers n ¤ m such that banb�1 D am. Then

n � scl.a/ D scl.an/ D scl.banb�1/ D scl.am/ D m � scl.a/

and therefore scl.a/ D 0. (Note that the defining property of a means that an�m 2
ŒG; G�, so scl.a/ ¤ 1.)
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Such elements can be found in Baumslag–Solitar groups. We compute

jnj � �.a/ D �.an/ D �.banb�1/ D �.am/ D jmj � �.a/;

so if �.a/ is not zero (which can only happen for a torsion element when G is
hyperbolic), this is only possible if n D ˙m. The group

ha; b j ba�1b�1 D a; b2 D idi
may be thought of as the (orbifold) fundamental group of the interval with mirrored
endpoints, which is sometimes just called a mirror interval. In a hyperbolic manifold,
an element of �1 conjugate to its inverse is represented by a geodesic which “double
covers” a geodesic segment with both endpoints on an orbifold stratum of order 2

(i.e., it double covers a mirror interval). Thus we will sometimes say that an element
a 2 G for which there is no b 2 G and no integer n ¤ 0 for which banb�1 D a�n

satisfies the no mirror condition.
Analogues of this condition will occur in the hypotheses of all our main theorems

throughout this paper.

Example 2.3. Let K be a knot complement in S3 with genus g, and let Mp;q be
the result of .p; q/ Dehn filling on K. If a 2 �1.Mp;q/ represents the core of the
added solid torus, then scl.a/ � g=p (in fact, by taking covers and tubing boundary
components together, one can actually obtain scl.a/ � .g �1=2/=p; see [5]). If K is
not a satellite knot or a torus knot, for all but finitely many pairs .p; q/ the resulting
manifold Mp;q is hyperbolic, and its fundamental group is word-hyperbolic. (See
e.g. [35]).

2.3. Quasimorphisms

Definition 2.4. Let G be a group. A quasimorphism is a function

� W G ! R

for which there is a least constant D.�/ � 0, called the defect, such that

j�.a/ C �.b/ � �.ab/j � D.�/

for all a; b 2 G. In words, a quasimorphism fails to be linear by a bounded amount.
A quasimorphism is homogeneous if �.an/ D n�.a/ for all integers n and all

a 2 G.

If � is a quasimorphism on G, then one can obtain a homogeneous quasimorphism
x� by the formula

x�.a/ D lim
n!1

�.an/

n
:
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Note that the defining property of a quasimorphism (that it is “almost linear”) implies
that the limit exists. A homogeneous quasimorphism is a class function.

The defect D.x�/ is related to D.�/ by

D.x�/ � 2 � D.�/I
see e.g. [6], Corollary 2.59. Homogeneous quasimorphisms are often easier to work
with than ordinary quasimorphisms, but ordinary quasimorphisms are easier to con-
struct. We use this averaging procedure to move back and forth between the two
concepts.

We denote the vector space of all homogeneous quasimorphisms on G by Q.G/.
Observe that for any commutator Œa; b� 2 G and any � 2 Q.G/ we have

j�.Œa; b�/j � D.�/:

It turns out that there is an equality

sup
a;b

j�.Œa; b�/j D D.�/I

see [1], Lemma 3.6.
Quasimorphisms and stable commutator length are related by Bavard’s Duality

Theorem (c.f. [1]):

Theorem2.5 (Bavard’s Duality Theorem). LetG be a group. Then for anya 2 ŒG; G�

we have an equality

scl.a/ D 1

2
sup

�2Q.G/

j�.a/j
D.�/

:

Note that one must take the supremum over � 2 Q.G/ with �.a/ ¤ 0 (and
therefore D.�/ > 0) for this to make sense; also, if Q.G/ D H 1.G/ then scl.a/ D 0

for a 2 ŒG; G�. Note further that the theorem makes sense and is true for a satisfying
an 2 ŒG; G� for some positive n.

Bavard’s theorem depends on the Hahn–Banach theorem and L1-L1 duality.
Note that the Hahn–Banach theorem is equivalent to the Axiom of Choice. In par-
ticular, the quasimorphisms promised by Bavard’s theorem are typically not con-
structible. Therefore we take explicit note in the sequel of when our arguments make
use of Bavard’s theorem and when they do not.

Example 2.6. For non-elementary hyperbolic groups G, the space Q.G/ has an
uncountable dimension ([14]). But for certain groups, one can completely understand
Q.G/. For example, let G denote the universal central extension of the group of all
orientation-preserving homeomorphisms of S1. Then Q.G/ D R, generated by
Poincaré’s rotation number. In particular, every non-negative real number is equal to
scl of some conjugacy class in this group. Similarly, let yT denote the universal central
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extension of Thompson’s group T of dyadic piecewise linear homeomorphisms of
S1. Then yT is a finitely presented group which realizes every non-negative rational
number as scl. See [19] for more about the group T and its bounded cohomology.

2.4. Mineyev’s geodesic flow space. To understand stable commutator length in
word-hyperbolic groups, one needs to control the geometry of maps of surfaces into
ı-hyperbolic spaces. Naively, following the usual practice in hyperbolic manifolds,
one triangulates a surface and “straightens” the simplices, and then appeals to the
Gauss–Bonnet theorem to control area and therefore diameter in terms of injectivity
radius. In a ı-hyperbolic space, the straightening must be done in a careful way.
There are at least three technical approaches to this straightening:

(1) Gromov’s geodesic flow space ([21], chapter 8),
(2) Mineyev–Monod–Shalom’s homological ideal bicombing ([30]),
(3) Mineyev’s geodesic flow space ([29]).

The approach in [21] is not entirely fleshed out, and the “geodesic flow” is really
a quasigeodesic flow; therefore for our applications, Mineyev’s flow space is best
suited.

Mineyev constructs from a hyperbolic complex X (for instance, a Cayley graph
for a word-hyperbolic group) a geodesic flow space F .X/, which consists of a union
of parameterized lines joining ordered pairs of distinct points in the ideal boundary
@X . The space F .X/ admits a number of metrics and pseudo-metrics, of which the
pseudo-metric d � is most important to us.

The following summarizes some of the main properties of F .X/ which we use.

Theorem 2.7 (Mineyev). Let X; dX be a ı-hyperbolic complex with valence � n.
Then there exists a pseudo-metric space F .X/; d � called the flow space of X with
the following properties:

(1) F .X/ is homeomorphic to .@X � @X � �/ � R. The factors .p; q; � / under this
homeomorphism are called the flowlines.

(2) There is an R-action on F .X/ (the geodesic flow) which acts as an isometric
translation on each flowline .p; q; � /.

(3) There is a Z=2Z action x ! x� which anti-commutes with the R action, which
satisfies d �.x; x�/ D 0, and which interchanges the flowlines .p; q; � / and
.q; p; � /.

(4) There is a natural action of Isom.X/ on F .X/ by isometries. If g 2 Isom.X/

is hyperbolic with fixed points p˙ in @X then g fixes the flowline .p�; pC; � / of
F .X/ and acts on it as a translation by a distance which we denote �.g/. This
action of Isom.X/ commutes with the R and Z=2Z actions.

(5) There are constants M � 0 and 0 � � < 1 such that for all triples a; b; c 2 @X ,
there is a natural isometric parameterization of the flowlines .a; c; � /, .b; c; � /
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for which there is exponential convergence

d �..a; c; t/; .b; c; t// � M�t :

(6) If X admits a cocompact isometric action, and G � Isom.X/ is torsion free,
then there is a G-equivariant .K; 	/ quasi-isometry between F .X/, d � and
X , dX .

Moreover, all constants as above depend only on ı and n.

Note that although F .X/ is homeomorphic to .@X � @X � �/ � R, this topology
is not induced by the pseudo-metric d �, since this pseudo-metric fails to separate
pairs of points interchanged by the Z=2Z action.

This is a conflation of several results in [29]. The pseudo-metric d � is defined
in Section 3.2 and Section 8.6 on a slightly larger space which Mineyev calls the
symmetric join. The flow space, defined in Section 13, is a natural subset of this. The
basic properties of the R, Z=2Z and Isom.X/ action are proved in Section 2. The
remaining properties are subsets of Theorem 44 (p. 459) and Theorem 57 (p. 468).
There is another natural metric d� on F .X/ which induces the topology on F .X/,
and for which the R action is by bi-Lipschitz homeomorphisms.

For our applications, the key points are that the action of hyperbolic isometries
on the flowlines is by translations, and the exponential convergence of flowlines with
common endpoints at infinity.

Remark 2.8. Since the flowlines .p; q; � / and .q; p; � / are distance 0 apart in d�,
we may think of them as different parameterizations of the same lines in a suitable
quotient on which d � is a metric (and not just a pseudo-metric).

Remark 2.9. In bullet (5), the synchronous parameterizations of .a; c; t/ and .b; c; t/

for which exponential convergence holds are precisely those for which .a; c; 0/ is the
point on the flowline .a; c; � / closest to b, and .b; c; 0/ is the point on the flowline
.b; c; � / closest to a (interpreted in terms of suitable horofunctions). In particular,
for every triple a; b; c of distinct points in F .X/, if � is a triangle obtained from the
union of three flowlines joining these points in pairs, the edges of � are exponentially
close to each other away from a compact subset of � of uniformly bounded diameter
(i.e., the diameter of the “thick part” of � is bounded independently of the choice of
a, b, c).

3. The Gap Theorem, first version

The Gap Theorem, to be proved below in its first version, says that in a word-
hyperbolic group G, if a is an element which satisfies the no mirror condition (from
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Example 2.2) and has a sufficiently long translation length, then the stable commuta-
tor length of a can be uniformly bounded from below. Example 2.2 and Example 2.3
together point to the necessity of both hypotheses.

TheoremA (Gap Theorem, weak version). Let G be a word-hyperbolic group that is
ı-hyperbolic with respect to a symmetric generating set S with jS j generators. Then
there is a constant C.ı; jS j/ > 0 such that for every a 2 G, either scl.a/ � C or
else there is some positive integer n and some b 2 G such that ba�nb�1 D an.

Remark 3.1. By Bavard’s theorem, the uniform lower bound on scl.a/ is equivalent
to the existence of a homogeneous quasimorphism � with �.a/ D 1 for which there
is a uniform upper bound on the defect D.�/ depending only on ı and jS j.

Remark 3.2. If ba�nb�1 D an for some b and positive integer n, then b2 and an

commute, and since G is hyperbolic, suitable powers of a and b generate an infinite
dihedral group.

It follows that if G is torsion free, no such element b can exist. Conversely, note
that every torsion element a satisfies an D a�n D id for some positive n. It follows
that the no mirrors condition is vacuously satisfied in a torsion-free hyperbolic group.

The following proof uses properties of Mineyev’s geodesic flow space. We prove a
stronger theorem in § 5, by directly constructing sufficiently many quasimorphisms.
The second proof is logically superior to the first, since the construction is direct,
and moreover the existence of these quasimorphisms does not depend on Bavard’s
Theorem and the Axiom of Choice. However, the first proof is more “geometric”.

Proof. Let �S .G/ denote the Cayley graph of G with respect to the generating set
S . For any element a 2 G recall that �.a/ denotes the translation length of a. As
observed in § 2.1, every element a 2 G is either torsion, or has a power an where
n � C2.jS j; ı/ that fixes an axis la, and therefore has �.a/ � C1.jS j; ı/. For the
remainder of the proof we replace a by a suitable power an, and assume that a fixes
an axis la.

For convenience, we let K be a 2-complex coming from a finite presentation for
G with generating set S . Observe that �S .G/ is the 1-skeleton of the universal cover
zK. Suppose that scl.a/ is very small so that there is an expression

an D
mQ

iD1

Œbi ; ci �

for some bi ; ci 2 G such that m=n is small. Let † be a surface of genus m, and

 W † ! K a simplicial map which takes the boundary to the immersed circle � D
la=an. We would like to choose a representative surface whose area and geometry
can be controlled by �.†/ and length.�/. Since we need to control constants, this
must be done carefully.
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We appeal to Mineyev’s Theorem 2.7. Using this theorem, one proceeds as fol-
lows. One picks a 1-vertex triangulation of †, and spins the vertex along @† thereby
producing an ideal triangulation whose edges can be realized as a subset in the quo-
tient space F .�S .G//=G. This is covered by a �1.†/ equivariant map from the
1-skeleton of z† to F .�S .G//, where �1.†/ acts on F .�S .G// by its image in G.
Each ideal triangle in z† corresponds to a union of three flowlines in F .�S .G//.

In F , as pointed out in Remark 2.9, each triangle consists of a thick core of diam-
eter at most C3 (depending only on ı and jS j) together with thin regions consisting
of pairs of geodesic rays whose distance converges exponentially fast to zero. The
image of † consists of 2j�.†/j D 4m � 2 triangles. Because of the exponential con-
vergence of geodesics in F , we can give † a hyperbolic metric of constant curvature
� in such a way that the triangles are totally geodesic, and the map to F .�S .G//

is distance decreasing on the 1-skeleton, where  > 0 depends only on ı and jS j. It
follows from the Gauss–Bonnet theorem that away from a thick part consisting of at
most .4m�2/ regions whose diameters sum to at most .4m�2/C3 for some constant
C3, the thickness of † is bounded by a constant C4, where C3 and C4 depend only
on jS j and ı. In fact, by choosing C3 sufficiently large, we may assume that C4 is as
small as we like, a fact which we will not use.

After composing with a quasi-isometry

� W F .X/ ! zK
and filling in the map on triangles, we get an induced map

Q
1 W z† ! zK:

It does not really matter how the map is filled in on triangles, since we are ultimately
only interested in the distances between points contained in the image of @z†. Again,
by Theorem 2.7, we can assume that the quasi-isometry constants of � depend only
on ı and jS j.

Under this quasi-isometry, the constants C3 and C4 for the diameter of the core and
the thickness of the complementary region must be replaced by analogous constants
C 0

3 and C 0
4 which still depend only on ı and jS j. The image of every boundary

component is a quasigeodesic which is within a bounded distance of some translate
of the axis la; it follows that for a suitable choice of �, without changing the constants
involved, we can assume that z†1 takes @z† in a �1.†/-equivariant way to a union of
translates of la.

By abuse of notation, we denote the image of this map as z†1. Let ˛ be a funda-
mental domain for the action of an on la. By our estimates, away from a subset of ˛

of length at most .4m � 2/C 0
3, every point p 2 ˛ can be joined by an arc Q̌

p in the
image of z†1, such that the endpoints of Q̌

p are a distance at most C 0
4 apart in zK, and

lie on distinct components la and l i
a of z†1.@z†1/. Pulling back by z†1 and projecting

to †1, we obtain a homotopically essential proper arc p̌ 2 †1. If p1, p2 are at least
distance 2C 0

4 apart in ˛, we see that the pulled-back arcs p̌1
, p̌2

can be isotoped to
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be disjoint in †1. A surface of genus m with one boundary component contains at
most 6m � 3 disjoint nonparallel proper essential arcs, and each arc has 2 endpoints.
It follows that there are at most 12m � 6 components l i

a which are joined by arcs Q̌
p

with nearby endpoints to points in ˛.
For a fixed component l i

a, the set of points where l i
a is close to la is (coarsely)

connected, by convexity of quasigeodesics in ı-hyperbolic spaces. Consequently
there is a connected arc 
 0 � ˛ satisfying

length.
 0/ � length.˛/ � .4m � 2/.C 0
3 C C 0

4/

12m � 6
;

which cobounds a strip R0 of z†1 of width � C 0
4 with some fixed l i

a.
By convexity of quasigeodesics, there is a connected subinterval 
 � 
 0 satisfying

length.
/ � length.
 0/ � 2C 0
4

such that 
 cobounds a strip R of z†1 of width C5 depending only on ı with some
fixed l i

a. The strip R is much longer than it is wide, and it makes sense to say that a
choice of orientations on the la and l i

a agree or disagree (see Figure 1):

Figure 1. The orientations on la and l i
a might agree or disagree along R.

Now, since †1 is oriented, the induced orientations on la and l i
a disagree. There-

fore l i
a is a nontrivial translate of the axis la. That is, there is some c with l i

a D c.la/.
Then e D ca�1c�1 stabilizes l i

a, and moves points in (roughly) the same direction
as a.

Let p be the midpoint of 
 . Suppose that length.�/ D �.a/ is big compared to the
constant C5 (e.g., length.�/ � 2C5 will do). We consider the translates e�waw.p/

for

jwj � length.
/

3 � length.�/
� n

36m
C 1;

where the last inequality follows from our assumptions about length.�/.
Then by our estimate on the width of the strip R, we have

d.p; e�waw.p// � 4C5:

There are at most jS j4C5 elements in the group which move the point p a distance
� 4C5, and therefore if

n

36m
C 1 > jS j4C5

then by the pigeonhole principle there are w1 ¤ w2 such that

e�w1aw1 D e�w2aw2
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and therefore
caw1�w2c�1 D ew2�w1 D aw2�w1 :

In words: if scl.a/ is too small, a nontrivial power of a is conjugate to its inverse.
It follows contrapositively that when �.a/ � 2C5 and no power of a is conjugate

to its inverse, we have scl.a/ � 1
36

jS j�4C5 . If a is not torsion, �.a/ � C1. So for
any a with no power conjugate to its inverse, we have an estimate

scl.a2C5=C1/ � 1

36
jS j�4C5 :

Therefore the constant

C.ı; jS j/ D 1

36
jS j�4C5

C1

2C5

satisfies the claim of the theorem.

Remark 3.3. It follows from the proof that if a does not satisfy the no mirror con-
dition, so that there is a positive n with an D ca�nc�1 for some c, then n may be
chosen to be less than some constant depending only on ı and jS j.

It is interesting to ask the following:

Question 3.4. Let G be a group, and let H be the set of elements in G which satisfy
the no mirror condition, i.e., for which an ¤ ba�nb�1 whenever b 2 G and n ¤ 0.
Under what circumstances is infa2H scl.a/ positive?

We say that a group G has the stable commutator gap property if it has the property
described in Question 3.4. Theorem A shows that hyperbolic groups have the stable
commutator gap property.

Example 3.5. In [7], Comerford and Edmunds show that in a free group F , every
nonzero element a satisfies scl.a/ � 1=2 (this lower bound essentially follows from an
earlier result of Duncan and Howie [10] and improves an earlier estimate scl.a/ � 1=6

obtained by Culler in [8]). Let G be residually free; i.e., suppose that for all nonzero
a 2 G there is a homomorphism �a W G ! F to a free group, for which �a.a/ is
nonzero. Since scl is nonincreasing under homomorphisms, G satisfies the stable
commutator gap property.

4. Counting functions

Here we review so-called counting functions, which generalize a construction intro-
duced by Brooks [4] to construct quasimorphisms on free groups. See [14], [16] or
[2] for more details.
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Suppose that G is a group with a fixed symmetric generating set S , and � ´
�S .G/ is its Cayley graph. Let w be a word in the generating set. Let ˛ be a (directed)
path in � , and j˛j its length. Define j˛jw to be the maximal number of times that w

can be seen as an (oriented) subword of ˛ without overlapping.

Example 4.1. jxyxyxjxy D 2. jxyxyxjxyx D 1. jxxyxyjyx D 1.

Let 0 < W < jwj be a constant. For x; y 2 � , define

cw;W .x; y/ ´ d.x; y/ � inf
˛

.j˛j � W j˛jw/;

where ˛ ranges over all the paths from x to y. If the infimum is attained by ˛, we
say that ˛ is a realizing path for cw;W from x to y. If � is a geodesic from x to y,
then define cw;W .�/ D cw;W .x; y/.

Fix a point x 2 � . Define, for a 2 G,

cw;W .a/ ´ cw;W .x; ax/:

cw;W is called the counting function for the pair .w; W /. Let w�1 denote the inverse
word of w. We define

hw;W ´ cw;W � cw�1;W :

In [14], the normalization W D 1 is used. This is an appropriate choice of con-
stant when w� ´ : : : wwww : : : is a bi-infinite geodesic, which is the case in our
applications throughout this paper.

More generally, when G acts on a graph � (not necessarily properly), we modify
the definition of counting functions as follows. Let w be a path in � and call aw

for a 2 G a copy of w or (interchangeably) a translate of w. For a path ˛ in � ,
define j˛jw to be the maximal number of disjoint oriented copies of w which can
be obtained as subpaths of ˛. All other definitions are as above. These modified
counting functions will be important in the sequel when we discuss the action of the
mapping class group MCG.S/ on the complex of curves C.S/, for some surface S .

Proposition 4.2 (Lemma 3.3 [16]). If ˛ is a realizing path for cw;W , then it is a
.K; 	/-quasigeodesic, where

K D jwj
jwj � W

; 	 D 2W jwj
jwj � W

:

It is known that in a ı-hyperbolic space any two .K; 	/-quasigeodesics which have
same end points stay in the L.K; 	; ı/-neighborhood of each other for some universal
constant L (see [21]).

Let L D L.jwj=.jwj � W /; 2W jwj=.jwj � W /; ı/. Let ˛ be a geodesic from x

to y. From Proposition 4.2 we deduce that a realizing path for ˛ must be contained in
the L-neighborhood of ˛. Consequently, if the L-neighborhood of ˛ does not contain
a copy of w, then cw;W .˛/ D 0.
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Remark 4.3. We will use this fact later in our argument to avoid “reverse counting”.
Roughly speaking, let w be a word such that wn is a geodesic. Then, for n > 0,

cw;W .wn/ � W n

because jwnjw D n.
Suppose that the L-neighborhood of wn does not contain a copy of w�1. Here we

are thinking of the L-neighborhood of wn, for large n, like a long narrow tube whose
core has a definite orientation, agreeing with the orientation on w. By “a copy of
w�1” here we mean a copy of w whose orientation disagrees with that of the core of
the tube (compare with Figure 1 and the accompanying discussion). Then it follows
that cw�1;W .wn/ D 0 because for a realizing path ˛ for cw�1;W at wn we must have
j˛jw�1 D 0. We thus obtain for all n > 0 an inequality hw;W .wn/ � nW .

Let D.h/ be the defect of h. Then we have the following inequality:

Proposition 4.4 (Proposition 3.10 [16]).

D.hw;W / � 12L C 6W C 48ı:

Remark 4.5. Note that the defect only depends on jwj; W; ı. If we take W D 1, then
L depends only on ı if jwj � 2. In particular, the upper bound in Proposition 4.4
depends only on ı. We will take W D 1 in all the applications in this paper.

5. The Gap Theorem, improved version

We are now in a position to state and prove the improved version of the Gap Theorem,
using counting quasimorphisms. The following theorem improves Theorem A in at
least two ways: it does not use Bavard’s theorem or Mineyev’s flow space, and the
constants in questions can be effectively estimated.

Theorem A0 (Gap Theorem, strong version). Let G be a word-hyperbolic group that
is ı-hyperbolic with respect to a symmetric generating set S with jS j generators. Let
a 2 G be a (non-torsion) element. Assume that there is no n > 0 and no b 2 G with
ba�nb�1 D an. Then there is a homogeneous quasimorphism h on G such that

(1) h.a/ D 1,

(2) the defect of h is � C.ı; jS j/.
Moreover, let ai 2 G be a collection of elements for which T D supi �.ai / is finite.
Suppose that for all integers n; m ¤ 0 and all elements b 2 G and indices i there is
an inequality

banb�1 ¤ am
i :

Then there is a homogeneous quasimorphism h on G such that
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(1) h.a/ D 1, and h.ai / D 0 for all i ,

(2) the defect of h is � C 0.ı; jS j; T /.

Remark 5.1. Note that in the second part of the theorem, we must state a general-
ization of the no mirror condition, involving both a and the elements ai .

Remark 5.2. Hamenstädt ([24]) used dynamical methods to directly construct quasi-
morphisms on word-hyperbolic groups. Similar ideas were developed by Picaud
([32]) in the special case of surface groups. It is not clear to us how to use these
methods to obtain uniform estimates on defects.

Proof. We follow [14], [16]. We assume in what follows that a is not torsion. Let
N be a constant such that aN stabilizes a bi-infinite geodesic la. Note that one may
find an N whose size can be bounded in terms of ı and jS j. We also choose N so
that N�.a/ 	 L.ı/. Note that since �.a/ can be bounded from below by a positive
constant depending only on ı and jS j, the constant N still depends only on ı and jS j
(see the proof of Theorem A).

After replacing a by a conjugate if necessary, we may assume that 1 2 la. Set
b D aN . la is an axis for b. We denote the subpath of la from 1 to b by lajb and the
subpath from 1 to b�1 by lajb�1. Note that we think of these as oriented segments.

Now let cb be the counting function on G for the pair .lajb; 1/ (note that we are
setting W D 1 in the notation of § 4). Then for any n > 0, we obtain an estimate
cb.bn/ � n, since the subpath of la from 1 to bn can be tiled by n disjoint translates
of lajb. At the cost of possibly replacing N by 2N if necessary, we may assume that
jlajbj � 2, so that L (as in § 4) depends only on ı.

Claim 1: There is a constant C1.ı; jS j/ such that if N � C1 then there is no
translate of lajb�1 in the L-neighborhood of la whose orientation agrees with that
of la.

Note that lajb�1 is a copy of lajb with the opposite orientation, so we could just
as well state Claim 1 as saying that there is no translate of lajb in the L-neighborhood
of la whose orientation disagrees with that of la. We will prove the claim later; we
call the conclusion of the claim “no reverse counting”, and prove our theorem under
this hypothesis.

Take N to satisfy N � C1 as well in the following. Note that N can still be
chosen satisfying these criteria with size bounded from above in terms of ı and jS j.

Let cb�1 be the counting function for the pair .lajb�1; 1/. It follows from Claim 1
that

cb�1.bn/ D 0

for all n > 0. We define hb D cb � cb�1 and then obtain

hb.bn/ � n

for any n > 0.
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By Proposition 4.4 and Remark 4.5, there is a constant K.ı/, which depends only
on ı such that

D.hb/ � K.ı/:

Since b D aN , we get hb.an/ � n=N for all n > 0. By averaging, we may replace
hb by a homogeneous quasimorphism h0 D Nhb (see § 2.3). Then D.h0/ � 4K.ı/ and
h0.a/ � 1=N . Define h D mh0 for some constant m for which h.a/ D 1. Then h is
a homogeneous quasimorphism, and satisfies D.h/ � 4NK.ı/.

This proves the first part of the theorem, modulo Claim 1.
The second part follows by almost the same argument. First of all, we may assume

that ai has infinite order (equivalently, �.ai / > 0) since every homogeneous quasi-
morphism will already vanish on torsion. Since we are looking for a homogeneous
quasimorphism which vanishes on ai , without loss of generality, we may replace each
ai by a conjugate of a non-trivial power (� N.ı; jS j/). Therefore, we may assume
that ai has a geodesic axis lai

, with 1 2 lai
.

Let v be an oriented geodesic path in �S .G/ from 1 to aN , and let v�1 be v with
the opposite orientation. In other words, v D lajaN .

A relative version of Claim 1 proves the second part of the theorem. We give two
different proofs, which give different constants. Recall our notation b D aN .

Claim 2: Suppose that N satisfies

N � C1jS j�.a/ �.a/

�.ai / C 1

for suitable C1 depending only on ı and jS j. Then there is no copy of lajb or lajb�1

in the L-neighborhood of lai
.

Claim 20: Suppose that N satisfies

N � C1jS jT

for suitable C1 depending only on ı and jS j. Then there is no copy of lajb or lajb�1

in the L-neighborhood of lai
.

It follows from Claim 2 or 20 that h as constructed above satisfies h.ai / D 0 for
all i .

Proof of Claim 1. In fact, the proof of the claim follows by the same argument as
the end of the proof of Theorem A. A copy of lajb�1 in the L-neighborhood of la is
contained in an axis of some element e which is conjugate to a�1; i.e. e D ca�1c�1

for some c.
Let v denote such a copy of lajb�1, and let v0 represent its initial point. The

geodesic la is invariant under aN but not necessarily under a itself. Nevertheless,
there is a constant C2 depending only on ı such that ai .v0/ is within distance C2 of
la, for any integer i . Then for all i < N the element e�iai satisfies

d.v0; e�iai .v0// � 2L C 2C2:
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So if N > jS j2LC2C2 we must have e�i1ai1 D e�i2ai2 for two distinct indices
i1; i2, and therefore the .i2 � i1/-th power of a is conjugate by c to its inverse. Set
C1 D jS j2LC2C2 .

Proof of Claim 2. We only sketch the proof of Claim 2 since the details are almost
identical to those of the proof of Claim 1. If the L-neighborhood of lai

contains a
copy of a arbitrarily long subpath of la, we can find a point v0 for which

d.v0; ekj a
j
i .v0// � 2L C 2C2 C �.a/

for some conjugate e of a or a�1, and for any 0 � j � J for an arbitrarily big
(fixed) J . It follows that if N > jS j2LC2C2C�.a/ then some non-trivial power of ai

is conjugate to some (possibly trivial) power of a, say ak . Moreover, if

N > jS j2LC2C2C�.a/ �.a/

�.ai / C 1

then k 6D 0, contrary to hypothesis.

Proof of Claim 20. This argument interchanges the roles of a and ai in the proof of
Claim 2. Suppose that the L-neighborhood of lai

contains a copy, v, of lajb or lajb�1.
The segment v is a part of an axis of e D cac�1 or ca�1c�1. Let v0 be the starting
point of v. Then for each 0 � j � N , there exists kj such that

d.v0; a
kj

i ej .v0// � 2L C 2C2 C �.ai / � 2L C 2C2 C T

(we use the same constant C2 for ai ). Therefore, if N > jS j2LC2C2CT , then some
non-trivial power of a is conjugate to some (possibly trivial) power of ai , which is
impossible.

This completes the proof of the theorem.

Remark 5.3. The second statement can be used to give a lower bound of the stable
commutator length “relative to faig”. That is, if we can write a as a product

a D Œb1; c1� : : : Œbn; cn�a
m1

i1
: : : a

mk

ik

then we say the relative length of a is � n C k=2. The infimum of this number
is the relative commutator length, and the liminf of the relative commutator length
of an divided by n as n ! 1 is the relative stable commutator length. Using our
theorem, the relative commutator length has a lower bound of 1=2D.h/, where h is
a homogeneous quasimorphism obtained in the second part for a and the ai .

Remark 5.4. One may reinterpret the second part of Theorem A0 as follows. In any
group G, let B1.G/ denote the real vector space of group 1-boundaries (i.e., the group
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1-cycles that are boundaries of group 2-chains), and for any chain
P

tigi 2 B1.G/

define scl by the formula

scl.
P

tigi / D sup
�

j P
ti�.gi /j

2D.�/

(compare with Theorem 2.5). This function is a pseudo-norm, and agrees with scl on
ordinary elements (see [6], § 2.6). It evidently vanishes on the subspace H spanned
by cycles of the form g � hgh�1 and gn � ng, and descends to a quotient pseudo-
norm on BH

1 .G/ ´ B1.G/=H . Then the second part of Theorem A0 implies that
whenever G is hyperbolic, scl is a genuine norm on BH

1 .G/.

We refer to the homogeneous quasimorphisms constructed in the proof of Theo-
rem A0 as counting quasimorphisms, by contrast with the abstract quasimorphisms
promised by Bavard’s theorem.

It is interesting to speculate that one could use Theorem A or A0 as a starting
point to invert the word-hyperbolic Dehn surgery theory developed by Groves and
Manning and independently by Osin (cf. [23], [31]).

Corollary 5.5. Let K be a knot in S3 of genus g. Then for any ı > 0 and every integer
n > 0 there is a constant C.ı; n/ > 0 such that if Mp=q is the result of p=q surgery
on K and jpj � C � g, then every homomorphism from �1.Mp=q/ to a torsion-free
n-generator ı-hyperbolic group is trivial.

Proof. By construction, if a represents the core geodesic of Mp=q , we can estimate

scl.a/ � g=jpj:
Moreover, since K is a knot in S3, �1.Mp=q/ is normally generated by a.

Let G be ı-hyperbolic and torsion free. Then no element is conjugate to its inverse,
and therefore there is a uniform lower bound on the stable commutator length of any
nontrivial element in G, depending only on ı and the size of a generating set for G.
If � W �1.Mp=q/ ! G is any homomorphism, then scl.�.a// � scl.a/, and the image
is normally generated by �.a/. The claim follows.

Remark 5.6. One knows that under a degree 1 map between hyperbolic manifolds of
the same dimension, volume must go down. It is therefore significant in this corollary
that the volumes of the manifolds Mp=q go up as jpj ! 1.

6. First accumulation point

In a torsion free word-hyperbolic group G, stable commutator length defines a func-
tion scl from conjugacy classes to R. By Theorem A or A0, the first accumulation
point ı1 for the image of this function is positive. In this section, we obtain universal
estimates for ı1 which are independent of G.
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Theorem B (Accumulation Theorem). Let G be a torsion free non-elementary word-
hyperbolic group. Then the first accumulation point ı1 for stable commutator length
satisfies

1

12
� ı1 � 1

2
:

Proof. To obtain the upper bound, observe that G contains a quasi-isometrically
embedded copy of the free group on 2 generators. A nonabelian free group contains
infinitely many conjugacy classes with scl � 1=2 (see e.g. [1]). Since the embedding
is quasi-isometric, the image of infinitely many of these conjugacy classes stay non-
conjugate in G. Under any homomorphism, scl cannot go up, so the upper bound is
proved.

An elementary argument gives a lower bound of 1=24. We follow the argument in
the proof of TheoremA, and we adopt notation and the setup from that theorem. In any
hyperbolic group, there are only finitely many conjugacy classes of elements whose
translation length is bounded above by any constant. Therefore, we may assume that
the translation length of an element a is as long as we like. In particular, we can
assume that there is an axis la which is geodesic and invariant under a. As before,
let ˛ denote a fundamental domain for an. Then length.˛/ D n�.a/.

We suppose, as in the proof of TheoremA, that there is a segment 
 � la satisfying

length.
/ � length.˛/ � .4m � 2/.C 0
3 C C 0

4/

12m � 6
� 2C 0

4;

which cobounds a strip R of z†1 of width � C5 with a translate c.la/. As before,
there is e D ca�1c�1 which stabilizes c.la/ and moves points in almost the same
direction as a.

If the translation length of a is long enough, then under the assumption scl.a/ <

1=24, the estimate above gives us that length.
/ is more than twice as big as a
fundamental domain for a. For, if scl.a/ < 1=24 then we can choose n; m as above
such that n=m > 24. Now, length.˛/ D n�.a/, so

length.
/ � n

12m � 6
�.a/ � O.1/ � 2�.a/;

providing that �.a/ is sufficiently big.
In fact, we can assume that

length.
/

2�.a/
� 1 C 	;

where 	 is any number smaller than 1=24 � scl.a/. In particular, we can assume that

length.
/ � 2�.a/ D 2C6;

where C6 is as big as we like. We parameterize 
 as 
.i/ where

i 2
��jlength.
/j

2
;
jlength.
/j

2

�
:
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Observe that for all i 2 Œ�C6; C6� we have estimates

d.e�1a.
.i//; 
.i// � 4C5; d.ae�1.
.i//; 
.i// � 4C5:

For all �C6 � i � C6 we let �i 2 G be such that

�i .
.0// D 
.i/:

It follows that for any ji j � C6 we have

d.��1
i e�1a�i .
.0//; 
.0// � 4C5; d.��1

i ae�1�i .
.0//; 
.0// � 4C5:

If C6 is very big compared to .jS j4C5/2 then by the pigeonhole principle there
are i1; : : : ; in where n � C6=.jS j4C5/2 for which �ij ��1

ik
commutes with both e�1a

and ae�1 whenever 1 � j; k � n. Up to this point, our argument makes no use of
the fact that G is torsion free.

In a torsion free word-hyperbolic group, two nontrivial elements which commute
are proportional. Since �ij ��1

ik
commutes with both e�1a and ae�1, it follows that

e�1a and ae�1 themselves are proportional. Since they are conjugate, they have the
same translation length, and are either equal or inverse, since G is torsion free. In the
first case, a and e�1 commute; since they have the same (positive) translation length,
they are either equal or inverse. Since their axes are almost oppositely aligned along

 , they must be inverse, so a D e. But e D ca�1c�1 which is absurd in a torsion
free group. In the second case, e�1a D ea�1, so e2 D a2, and therefore e D a since
G is torsion free, and we get a contradiction in any case. This proves the estimate
ı1 � 1=24.

To get the estimate ı1 � 1=12 we use Theorem 2.7. We argue as above that if
scl.a/ < 1=12 and a has sufficiently long translation length, then

jlength.
/ � �.a/j D 2C6

is as big as we like. Let p be a point at a distance C6 from one of the endpoints of 
 .
Let p, q be the ideal points stabilized by a, and r , s the ideal points stabilized by

b. Then for suitable parameterizations of the flowlines .p; q; � /; .r; s; � / the points
.p; q; t/ and .r; s; t/ are within distance Me�C6 for t 2 ŒC6; length.
/ � C6�, where
M and � < 1 are universal constants (depending only on ı and jS j), but C6 is as big
as we like.

This requires some explanation: by Theorem 2.7 (5), for any three ideal points x,
y, z, there are parameterizations of .x; z; � / and .y; z; � / for which

d�..x; z; t/; .y; z; t// � M�t

for suitable M and 0 � � < 1. In fact, by Remark 2.9, these parameterizations are
exactly those for which .x; z; 0/ is the closest point on .x; z; � / to y, and .y; z; 0/

is the closest point on .y; z; � / to x. Now, if .p; q; � / and .r; s; � / are flowlines
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which have long sub-segments which are distance � C5 apart, then if m is the point
on .p; q; � / which is closest to r , and n is the point on .p; q; � / which is closest to s,
then m, n are uniformly close to the endpoints of 
 . Similarly, if m0, n0 are the points
on .r; s; � / closest to p, q respectively, then m0, m are close, and so are n, n0. Now
consider the flowline .p; s; � /. This flowline converges exponentially fast to .p; q; � /
along the ray from n to p. Similarly, it converges exponentially fast to .r; s; � / along
the ray from m0 to s. Hence away from a bounded neighborhood of the endpoints
of 
 , the flowlines .p; q; � / and .r; s; � / are themselves exponentially close. This is
the kind of convexity argument which is very standard in strictly negatively curved
spaces; Mineyev’s technology allows us to transplant it to F .

It follows that

d �.e�1a � .p; q; C6/; .p; q; C6// � 2Me�C6 :

By the triangle inequality, for any n we estimate

d �..e�1a/n � .p; q; C6/; .p; q; C6// � 2nMe�C6

and therefore

�.e�1a/ � 2nKMe�C6 C 	

n
;

where K, 	 are as in the last bullet of Theorem 2.7. The constants K, M , �, 	 all
depend only on ı and jS j, whereas we may choose C6 as big as we like, and n as big
as we like. In particular, �.e�1a/ may be made arbitrarily small by choosing C6 very
big.

On the other hand, if a is not equal to e, then �.e�1a/ � C1 > 0 for C1 depending
only on ı and jS j. This gives a contradiction for sufficiently big C6 (chosen depending
on C1).

This contradiction proves the theorem.

Example 6.1. The upper bound 1=2 is sharp, and is realized in a nonabelian free
group, or closed hyperbolic surface group, by [7].

Example 6.2. Suppose that H D hh1; h2i is a non-free 2-generator subgroup of (any
group) G. Then one can show scl.Œh1; h2�/ < 1=2. However, Delzant showed ([9])
that in any word-hyperbolic group there are only finitely many conjugacy classes of
non-free 2-generator subgroups.

If G is allowed to have torsion, things become slightly more complicated.

Example 6.3. Let S be a (surface) orbifold containing two orbifold points p2, p3 of
order 2 and 3 respectively. If ˛ is any embedded arc in S from p2 to p3, then the
boundary of a regular neighborhood of ˛ has scl at most 1=12. For typical S there
are infinitely many distinct isotopy classes of such arcs ˛.
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It is straightforward to see that in any word-hyperbolic group G, there is a positive
first accumulation point for scl on conjugacy classes satisfying the no mirror condition
(in fact this follows directly from Theorem A and Theorem A0), but we have not been
able to show that this lower bound is independent of G, and therefore we pose the
following

Question 6.4. Is there a universal positive constant C such that the first accumulation
point for scl on conjugacy classes satisfying the no mirror condition in a hyperbolic
group is at least C ?

Finally, the explicitness and universality of the constants in Theorem B, together
with Example 6.1 motivates the following

Question 6.5. Can the lower bound in Theorem B be improved to 1=4?

7. Mapping class groups

Our theorems may be generalized to groups which are not themselves hyperbolic but
which act suitably on ı-hyperbolic spaces. In this section and the next, we concentrate
on two important examples.

We show how to adapt our Gap Theorem to the action of the mapping class group
on the complex of curves. For an introduction to this complex and its properties, see
[28] or [3]. The proof follows much the same outline as the proof of Theorem A0.
A significant difference is that the action of MCG.S/ on C.S/ is not proper; never-
theless it is weakly proper in a suitable sense [2], and this weak properness is enough.
The technical tool we use is the acylindricity of the action of MCG.S/ on C.S/ as
observed by Bowditch [3].

We denote the translation length of an element a 2 MCG.S/ on C.S/ by �.a/.

Theorem C (Mapping Class Theorem). Let S be a compact orientable surface of
hyperbolic type and MCG.S/ its mapping class group. Then there is a positive
integer P depending on S such that for any pseudo-Anosov element a, either there
is an 0 < n � P and an element b 2 MCG.S/ with ba�nb�1 D an, or else
there exists a homogeneous quasimorphism h on MCG.S/ such that h.a/ D 1 and
D.h/ � C.S/, where C.S/ depends only on S .

Moreover, let ai 2 MCG.S/ be a collection of elements for which T D supi �.ai /

is finite. Suppose that for all integers n; m ¤ 0 and all elements b 2 MCG.S/ and
indices i there is an inequality

banb�1 ¤ am
i :

Then there is a homogeneous quasimorphism h on MCG.S/ such that

(1) h.a/ D 1, and h.ai / D 0 for all i ,

(2) the defect of h is � C 0.S; T /.
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Remark 7.1. By Thurston’s classification of surface automorphisms (see e.g. [36])
every element of infinite order in MCG.S/ is either reducible or pseudo-Anosov. An
element a 2 MCG.S/ has �.a/ D 0 on C.S/ if and only if it has finite order or it is
reducible.

Remark 7.2. Note the reappearance of the no mirror condition. Also note the sepa-
ration theorem; compare with the statement of Theorem A0.

Remark 7.3. The dependence of C.S/ on S is somewhat subtle and indirect, and
does not seem to be easy to estimate.

Proof. The basic structure of the proof should be reasonably clear at this point.
Let C.S/ be the curve graph of S . C.S/ is ı-hyperbolic [28]. Any pseudo-

Anosov element acts as an axial isometry. Moreover, by Bowditch [3], there exists
B.S/ such that for any pseudo-Anosov element a, aB has a geodesic axis in C.S/.
So, in particular, �.a/ � 1=B .

If there exists n > 0 and b 2 MCG.S/ with banb�1 D a�n, then one may
assume that n � P.S/, where P.S/ depends only on S . This follows because
the action of MCG.S/ on C.S/ is acylindrical in the sense of Bowditch [3]. Here
is the precise statement of acylindricity: for any A > 0, there exists E, M such
that for any two points x; y 2 C.S/ with d.x; y/ � E then there are at most M

elements b 2 MCG.S/ such that d.x; bx/ � A; d.y; by/ � A. We consider the case
A D 10ı. So, in the following we assume that for all 0 < n and b 2 MCG.S/, we
have banb�1 6D a�n.

From above, one finds that there is P 0 > 0 such that if n � P 0, then (a copy of the
geodesic segment) a�n does not appear in the L-neighborhood of a geodesic axis of
aB , where L is the constant from Section 4, which depends only on ı in this setting.
This is because, otherwise, one finds that am is conjugate to a�m for some 0 < m,
which is a contradiction.

So there exists R.S/ such that for any a as in the theorem there exists N � R

such that aN has a geodesic axis, and no reverse counting happens for aN .
Let ˛ be a geodesic axis for aN . Let x 2 ˛, and denote the subpath from x to

aN x as aN . Let h D c � c� be the quasimorphism constructed using the counting
functions for the pairs .aN ; 1/ and .a�N ; 1/. Then c.aNn/ � n and c�.aNn/ D 0 for
any n > 0, since there is no reverse counting. So, h.aNn/ � n for all n > 0. We know
that D.h/ � K.ı/, where K.ı/ depends only on S by Proposition 4.4. Therefore,
given a, we can construct (by averaging h) a homogeneous quasimorphism f such
that f .a/ D 1 and D.f / � 4KR, where the constant KR depends only on S .

The argument to prove the second part is very similar to the proof of the second
part of Theorem A0. Given a collection of elements ai and a uniform upper bound T

on their translation lengths, if there is a translate of the axis of a which stays close to
an axis of ai on a sufficiently long interval, then by acylindricity and the pigeonhole
principle, we can conclude that some power of a is conjugate to a power of ai .
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In slightly more detail: let lai
be an axis for ai , and let v be an axis for a conjugate

e D cac�1 of a which stays close to lai
on a sufficiently long segment ˇ (we say

how long in a moment). Let integers nj , mj be chosen for which

jnj �.ai / � mj �.a/j < C1

for some fixed constant C1. Given an upper bound on T and �.a/, we can find at least
C2 many such pairs .nj ; mj / whose absolute values are bounded by C3 where C2 is
as big as we like, and where C3 depends on T; �.a/; S; C1 (and not on the specific
element ai ). Let ˇ be longer than C3T; C3�.a/. Then (after possibly replacing nj

by �nj for some j ) we observe that

d.a
nj

i emj .p/; p/ � C 0
1

for some C 0
1 which depends only on C1 and S . By acylindricity and the pigeonhole

principle, there are distinct indices (which we denote by n1, m1, n2, m2, respectively)
for which

a
n1

i em1 D a
n2

i em2

and therefore some nonzero power of ai is equal to some nonzero power of e, which
is itself conjugate to a, contrary to hypothesis.

This shows that the length ˇ can be bounded above in terms of S; T; �.a/.
Note that one constructs by this argument a single quasimorphism h whose value

grows linearly on powers of a, and which vanishes on all powers of ai simultaneously.
The fact that there are (typically) infinitely many ai on which h vanishes is immaterial.

We give another proof of the second claim which makes more explicit use of
acylindricity and gives the slightly better constants claimed in the statement of the
theorem.

The argument is similar to the one to show for sufficiently large N , there is no
reverse counting for aN , since otherwise, for some 0 < n � N , an is conjugate to
a�n by the acylindricity of the action, which is impossible. Also, see the proof of
Claim 20 in the proof of Theorem A0.

We want to show that ca˙2N .ai / D 0 for all i if N is bigger than a constant
depending only on S and T . Suppose that ca2N .ai / > 0 for some (fixed) i (the
argument is precisely analogous for ca�2N ). Let lai

be an axis for ai , and let le be
an axis for a conjugate e D cac�1 of a which stays close to, namely in the L.ı/-
neighborhood of, lai

on a segment v such that one endpoint is v0 and the other end
point is e2N .v0/.

For simplicity, we assume that both lai
, le are geodesics (replace a, ai by aB ,

aB
i if necessary). Then v is 2ı-close to lai

, where ı is the hyperbolicity constant
for C.S/ (here we assume that v is much longer than ı, which follows if we take N

bigger than a constant depending only on S ).
We observe that for all 0 � j � N , there exists nj such that

d.a
nj

i ej .v0/; v0/; d.a
nj

i ej CN .v0/; eN .v0// � �.ai / C 4ı � T C 4ı:
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We set A D T C 4ı and obtain corresponding constants D.A/, M.A/ for the
acylindricity of the action. Now assume that N is such that d.eN .v0/; v0/ � D.A/.
In other words, N�.a/ � D.A/ (we know �.a/ � 1=B , so take N � BD). Then,
by the acylindricity, there are at most M distinct elements in a

nj

i ej .0 � j � N /.
It follows that if N > M , then some non-trivial power of a is conjugated by c to a
(possibly trivial) power of ai , which is impossible. We thereby obtain an upper bound
for N by A, D.A/, M.A/, B , which depend only on S , T , to have ca2N .ai / > 0.
We obtain the same upper bound from ca�2N .ai / > 0 as well.

8. Amalgamations

In this section we adapt our theorem to the special case of an amalgamated free product
acting on its associated tree, and construct many quasimorphisms with uniform lower
bounds. One must be slightly careful: the group SL.2; Qp/ is an amalgam of two
copies of SL.2; Zp/. Nevertheless, SL.2; Qp/ is uniformly perfect, and therefore
admits no nonzero homogeneous quasimorphisms at all. As in the case of the mapping
class group acting on C.S/, one must ensure (by fiat) that the action of the amalgam
on its associated tree is weakly proper; this is guaranteed by a suitable malnormality
condition.

Theorem D (Amalgamation Theorem). Let G D A �C B . Let w be a word on
A, B which is reduced and cyclically reduced such that jwj > 1, and let xw denote
the corresponding element in G. Suppose that the double coset C xwC does not
contain the element corresponding to any cyclic conjugate of w�1. Then there exists
a homogeneous quasimorphism h on G such that h. xw/ D 1, and the defect of h

is � 312.

Proof. We use [17]. Here is a review. Let � be the Cayley graph of G for the
generating set A [ B .

Then a geodesic between 1 and a is exactly a word for a reduced as a word in
A�C B (Lemma 3.1 [17]). Let w be a reduced word for a. Assume that w is cyclically
reduced. Then w� D : : : www : : : is an infinite reduced word, which is a geodesic
in � since w is cyclically reduced. For such w, let c, c�1 be the counting function
for .w; 1/, .w�1; 1/. Then c.an/ � n for all n > 0.

By the double coset condition, c�1.an/ D 0 for all n > 0, namely, no reverse
counting. The argument is essentially in [17]. Suppose that c�1.an/ > 0. Then there
is a realizing path ˛ from 1 to an which contains w�1 as a subword. It is shown
in Lemma 3.2 [17] that one can always take a realizing path to be a geodesic. Let
ˇ D wn, which is a geodesic from 1 to an. Since both reduced words ˛ and ˇ

represent the same element an, by Britton’s lemma, there must be c; c0 2 C such
that c Nwc0 D Nv, where v is some cyclic conjugate of w�1 (see Section 4 of [17] for
details). But this is prohibited.
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It follows that h.an/ � n, where h D c � c�1. It is shown in Proposition 3.1 [17]
that D.h/ � 78. When we make a quasimorphism homogeneous, an upper bound
for the defect becomes 312 D 78 � 4.

Remark 8.1. There is no implied suggestion that the constant 312 is optimal! The
main point is that it is a universal constant, which does not depend in any way on the
group G.

Remark 8.2. If C is trivial, so that G is a free product, Bavard ([1], Proposition 3.7.2)
obtains the (optimal) lower bound scl � 1=2.

Remark 8.3. Note that the double coset condition is the precise analogue of the no
mirror condition in the context of amalgamated free products.

Question 8.4. What is the optimal constant in Theorem D?

The following example clarifies the geometry of the double coset condition in the
context of 3-manifold topology.

Example 8.5. Let M be a knot complement in a rational homology sphere. After
choosing an orientation for the knot and for M , there is a natural choice of meridian
and longitude m, l on @M . The longitude is defined by the property that it is virtually
trivial in homology. So there is some surface S of least Euler characteristic in M

whose boundary is a multiple of the longitude.
Suppose that Œ@S� D n � Œl � in homology. Define �Q D �.S/

n
. Let Mp=q be the

result of Dehn filling M along the slope p=q. Let � � Mp=q denote the core of the
added solid torus. As in Example 2.3, we have an estimate for stable commutator
length

scl.�/ � ��Q

2p
:

As before, for K a knot in S3, this estimate becomes

scl.�/ � g � 1=2

p
;

where g is the genus of a Seifert surface for K.
A slope p=q on @M is said to be a boundary slope if there is an essential, oriented,

proper surface † � M such that @† is a nonempty union of curves isotopic to the
p=q curve, with either orientation.

After filling M to Mp=q , the manifold Mp=q splits along a surface †0 obtained
by filling in the boundary components of †, into two submanifolds which by abuse
of notation we denote MA, MB with fundamental groups A, B . For brevity, we
denote �1.†/ D C . The core geodesic � intersects the two submanifolds MA, MB

efficiently, in a collection of proper arcs which represent elements of the double coset
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spaces CAC and CBC . If the volume of M (and therefore that of Mp=q) is small, and
the area of †0 is large, most of MA, MB must be very thin, and have the structure of
an I -bundle over some subsurfaces †0

A, †0
B of †0 D @MA D @MB . These I -bundles

are known as the characteristic submanifolds of MA, MB and we denote them by IA,
IB , respectively.

If †0 is connected, the boundary components of IA and IB are contained in a single
surface. Suppose that @IA and @IB are connected. The geodesic � is decomposed
into a sequence of geodesic segments �j with 0 � j � i which are the connected
components of � \ .Mp=q � †0/. Each �i is properly embedded in MA or MB , and
is contained in the corresponding characteristic submanifold IA or IB . Since we are
assuming @IA, @IB are connected, each oriented geodesic segment �j can be dragged
around IA (say) into itself in such a way that the orientation is reversed at the end.
Composing these proper isotopies, we can drag all the �j simultaneously in such a
way that the common endpoints of �j and �j �1 agree during the dragging, for each
j � i . The initial point of �0 and the final point of �i will not necessarily follow
homotopic paths under this dragging, and their difference is an element of �1.†0/.
Translating this into algebraic information, we have exhibited a conjugate of � as an
element of the double coset space �1.†0/��1�1.†0/.

This example actually occurs: Nathan Dunfield [11] has produced examples of
Montesinos knots with genus 1 for which p=1 is an essential slope where p 

20; 000. The corresponding core geodesics � satisfy scl.�/ � 1

40;000
and therefore �

is conjugate into �1.†0/��1�1.†0/ by Theorem D.
The double coset condition shows us how to think about the geometry of the

resulting manifolds, and the way in which � sits inside them.

References

[1] C. Bavard, Longueur stable des commutateurs. Enseign. Math. (2) 37 (1991), 109–150.
Zbl 0810.20026 MR 1115747

[2] M. Bestvina and K. Fujiwara, Bounded cohomology of subgroups of mapping class
groups. Geom. Topol. 6 (2002), 69–89. Zbl 1021.57001 MR 1914565

[3] B. H. Bowditch, Tight geodesics in the curve complex. Invent.Math. 171 (2008), 281–300.
Zbl 05248088 MR 2367021

[4] R. Brooks, Some remarks on bounded cohomology. In Riemann surfaces and related top-
ics: Proceedings of the 1978 Stony Brook Conference, Ann. of Math. Stud. 97, Princeton
University Press, Princeton, N.J., 1981, 53–63. Zbl 0457.55002 MR 0624804

[5] D. Calegari, Length and stable length. Geom. Funct. Anal. 18 (2008), 50–76.
Zbl 1155.57015 MR 2399095

[6] D. Calegari, scl. MSJ Memoirs 20, Math. Soc. Japan, Tokyo 2009. MR 2527432

[7] L. P. Comerford, Jr. and C. C. Edmunds, Products of commutators and products of
squares in a free group. Internat. J. Algebra Comput. 4 (1994), 469–480. Zbl 0808.20027
MR 1297152

http://www.emis.de/MATH-item?0810.20026
http://www.ams.org/mathscinet-getitem?mr=1115747
http://www.emis.de/MATH-item?1021.57001
http://www.ams.org/mathscinet-getitem?mr=1914565
http://www.emis.de/MATH-item?05248088
http://www.ams.org/mathscinet-getitem?mr=2367021
http://www.emis.de/MATH-item?0457.55002
http://www.ams.org/mathscinet-getitem?mr=0624804
http://www.emis.de/MATH-item?1155.57015
http://www.ams.org/mathscinet-getitem?mr=2399095
http://www.ams.org/mathscinet-getitem?mr=2527432
http://www.emis.de/MATH-item?0808.20027
http://www.ams.org/mathscinet-getitem?mr=1297152


Stable commutator length in word-hyperbolic groups 89

[8] M. Culler, Using surfaces to solve equations in free groups. Topology 20 (1981), 133–145.
Zbl 0452.20038 MR 605653

[9] T. Delzant, Sous-groupes à deux générateurs des groupes hyperboliques. In Group theory
from a geometrical viewpoint (Trieste, 1990), World Sci. Publ., Singapore 1991, 177–189.
Zbl 0845.20027 MR 1170366

[10] A. J. Duncan and J. Howie, The genus problem for one-relator products of locally indicable
groups. Math. Z. 208 (1991), 225–237. Zbl 0724.20024 MR 1128707

[11] N. Dunfield, private communication.

[12] H. Endo and D. Kotschick, Bounded cohomology and non-uniform perfection of mapping
class groups. Invent. Math. 144 (2001), 169–175. Zbl 0987.57004 MR 1821147

[13] H. Endo and D. Kotschick, Failure of separation by quasi-homomorphisms in map-
ping class groups. Proc. Amer. Math. Soc. 135 (2007), 2747–2750. Zbl 1127.20029
MR 2317948

[14] D. B. A. Epstein and K. Fujiwara, The second bounded cohomology of word-hyperbolic
groups. Topology 36 (1997), 1275–1289. Zbl 0884.55005 MR 1452851

[15] B. Farb, C. J. Leininger, and D. Margalit, The lower central series and pseudo-Anosov
dilatations. Amer. J. Math. 130 (2008), 799–827. Zbl 05300184 MR 2418928

[16] K. Fujiwara, The second bounded cohomology of a group acting on a Gromov-hyperbolic
space. Proc. London Math. Soc. (3) 76 (1998), 70–94. Zbl 0891.20027 MR 1476898

[17] K. Fujiwara, The second bounded cohomology of an amalgamated free product of groups.
Trans. Amer. Math. Soc. 352 (2000), 1113–1129. Zbl 1053.20517 MR 1491864

[18] S. M. Gersten, Cohomological lower bounds for isoperimetric functions on groups. Topol-
ogy 37 (1998), 1031–1072. Zbl 0933.20026 MR 1650363

[19] É. Ghys and V. Sergiescu, Sur un groupe remarquable de difféomorphismes du cercle.
Comment. Math. Helv. 62 (1987), 185–239. Zbl 0647.58009 MR 896095

[20] M. Gromov, Volume and bounded cohomology. Inst. Hautes Études Sci. Publ. Math. 56
(1982), 5–99. Zbl 0516.53046 MR 686042

[21] M. Gromov, Hyperbolic groups. In Essays in group theory, Math. Sci. Res. Inst. Publ. 8,
Springer-Verlag, New York 1987, 75–263. Zbl 0634.20015 MR 0919829

[22] M. Gromov, Geometric group theory (Sussex, 1991), vol. 2: Asymptotic invariants of
infinite groups. London Math. Soc. Lecture Note Ser. 182, Cambridge University Press,
Cambridge 1993. Zbl 0841.20039 MR 1253544

[23] D. Groves and J. F. Manning, Dehn filling in relatively hyperbolic groups. Israel J. Math.
168 (2008), 317–429. Zbl 05508729 MR 2448064

[24] U. Hamenstädt, Bounded cohomology and isometry groups of hyperbolic spaces. J. Eur.
Math. Soc. (JEMS) 10 (2008), 315–349. Zbl 1139.22006 MR 2390326

[25] D. Kotschick, Signatures, monopoles and mapping class groups. Math. Res. Lett. 5 (1998),
227–234. Zbl 0905.57010 MR 1617905

[26] D. Kotschick, Quasi-homomorphisms and stable lengths in mapping class groups. Proc.
Amer. Math. Soc. 132 (2004), 3167–3175. Zbl 1055.20037 MR 2073290

http://www.emis.de/MATH-item?0452.20038
http://www.ams.org/mathscinet-getitem?mr=605653
http://www.emis.de/MATH-item?0845.20027
http://www.ams.org/mathscinet-getitem?mr=1170366
http://www.emis.de/MATH-item?0724.20024
http://www.ams.org/mathscinet-getitem?mr=1128707
http://www.emis.de/MATH-item?0987.57004
http://www.ams.org/mathscinet-getitem?mr=1821147
http://www.emis.de/MATH-item?1127.20029
http://www.ams.org/mathscinet-getitem?mr=2317948
http://www.emis.de/MATH-item?0884.55005
http://www.ams.org/mathscinet-getitem?mr=1452851
http://www.emis.de/MATH-item?05300184
http://www.ams.org/mathscinet-getitem?mr=2418928
http://www.emis.de/MATH-item?0891.20027
http://www.ams.org/mathscinet-getitem?mr=1476898
http://www.emis.de/MATH-item?1053.20517
http://www.ams.org/mathscinet-getitem?mr=1491864
http://www.emis.de/MATH-item?0933.20026
http://www.ams.org/mathscinet-getitem?mr=1650363
http://www.emis.de/MATH-item?0647.58009
http://www.ams.org/mathscinet-getitem?mr=896095
http://www.emis.de/MATH-item?0516.53046
http://www.ams.org/mathscinet-getitem?mr=686042
http://www.emis.de/MATH-item?0634.20015
http://www.ams.org/mathscinet-getitem?mr=0919829
http://www.emis.de/MATH-item?0841.20039
http://www.ams.org/mathscinet-getitem?mr=1253544
http://www.emis.de/MATH-item?05508729
http://www.ams.org/mathscinet-getitem?mr=2448064
http://www.emis.de/MATH-item?1139.22006
http://www.ams.org/mathscinet-getitem?mr=2390326
http://www.emis.de/MATH-item?0905.57010
http://www.ams.org/mathscinet-getitem?mr=1617905
http://www.emis.de/MATH-item?1055.20037
http://www.ams.org/mathscinet-getitem?mr=2073290


90 D. Calegari and K. Fujiwara

[27] D. Kotschick, Stable length in stable groups. In Groups of diffeomorphisms: in honor
of Shigeyuki Morita on the occasion of his 60th birthday Adv. Stud. Pure Math. 52,
Kinokuniya, Tokyo 2008, 401–414.

[28] H. A. Masur and Y. N. Minsky, Geometry of the complex of curves I: Hyperbolicity.
Invent. Math. 138 (1999), 103–149. Zbl 0941.32012 MR 1714338

[29] I. Mineyev, Flows and joins of metric spaces. Geom. Topol. 9 (2005), 403–482.
Zbl 1137.37314 MR 2140987

[30] I. Mineyev, N. Monod, and Y. Shalom, Ideal bicombings for hyperbolic groups and
applications. Topology 43 (2004), 1319–1344. Zbl 1137.20033 MR 2081428

[31] D. V. Osin, Peripheral fillings of relatively hyperbolic groups. Invent. Math. 167 (2007),
295–326. Zbl 1116.20031 MR 2270456

[32] J.-C. Picaud, Cohomologie bornée des surfaces et courants géodésiques. Bull. Soc. Math.
France 125 (1997), 115–142. Zbl 0888.53049 MR 1459300

[33] L. Polterovich, Growth of maps, distortion in groups and symplectic geometry. Invent.
Math. 150 (2002), 655–686. Zbl 1036.53064 MR 1946555

[34] L. Polterovich and Z. Rudnick, Stable mixing for cat maps and quasi-morphisms of the
modular group. Ergodic Theory Dynam. Systems 24 (2004), 609–619. Zbl 1071.37019
MR 2054053

[35] W. Thurston, The geometry and topology of three-manifolds. Princeton University,
Princeton 1980. http://www.msri.org/publications/books/gt3m/

[36] W. P. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces. Bull.
Amer. Math. Soc. (N.S.) 19 (1988), 417–431. Zbl 0674.57008 MR 956596

Received June 6, 2008; revised June 22, 2009

D. Calegari, Department of Mathematics, California Institute of Technology, Pasadena CA,
91125, U.S.A.

E-mail: dannyc@its.caltech.edu

K. Fujiwara, Graduate School of Information Science, Tohoku University, Sendai, Japan

E-mail: fujiwara@math.is.tohoku.ac.jp

http://www.emis.de/MATH-item?0941.32012
http://www.ams.org/mathscinet-getitem?mr=1714338
http://www.emis.de/MATH-item?1137.37314
http://www.ams.org/mathscinet-getitem?mr=2140987
http://www.emis.de/MATH-item?1137.20033
http://www.ams.org/mathscinet-getitem?mr=2081428
http://www.emis.de/MATH-item?1116.20031
http://www.ams.org/mathscinet-getitem?mr=2270456
http://www.emis.de/MATH-item?0888.53049
http://www.ams.org/mathscinet-getitem?mr=1459300
http://www.emis.de/MATH-item?1036.53064
http://www.ams.org/mathscinet-getitem?mr=1946555
http://www.emis.de/MATH-item?1071.37019
http://www.ams.org/mathscinet-getitem?mr=2054053
http://www.msri.org/publications/books/gt3m/
http://www.emis.de/MATH-item?0674.57008
http://www.ams.org/mathscinet-getitem?mr=956596

	Introduction
	Statement of results
	Acknowledgments

	Background Material
	delta-hyperbolic groups and spaces
	Stable commutator length
	Quasimorphisms
	Mineyev's geodesic flow space

	The Gap Theorem, first version
	Counting functions
	The Gap Theorem, improved version
	First accumulation point
	Mapping class groups
	Amalgamations
	References

