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Abstract. We consider random subgroups of Thompson’s group F with respect to two natural
stratifications of the set of all k-generator subgroups. We find that the isomorphism classes of
subgroups which occur with positive density are not the same for the two stratifications. We
give the first known examples of persistent subgroups, whose isomorphism classes occur with
positive density within the set of k-generator subgroups, for all sufficiently large k. Addition-
ally, Thompson’s group provides the first example of a group without a generic isomorphism
class of subgroup. Elements of F are represented uniquely by reduced pairs of finite rooted
binary trees. We compute the asymptotic growth rate and a generating function for the number
of reduced pairs of trees, which we show is D-finite (short for differentiably finite) and not
algebraic. We then use the asymptotic growth to prove our density results.
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1. Introduction

We investigate the likelihood of randomly selecting a particular k-generator subgroup
of Thompson’s group F , up to isomorphism. This is made precise through a notion
of asymptotic density. This in turn involves a choice of stratification of the set
of k-tuples of elements, which we view as generating sets for the subgroups, into
spheres of size n. Intuitively, the density of an isomorphism class of subgroup with
k generators is the probability that a randomly selected k-generator subgroup is in
the class.

A k-generator subgroup H of a group G is called generic among all k-generated
subgroups if a randomly selected subgroup of G with k generators is isomorphic to H
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with probability which is asymptotically one. Previous results on asymptotic density
of subgroups of particular groups, such as braid or free groups, have always found a
generic type of subgroup for all k. We find that Thompson’s group F , with respect
to each of two natural stratifications on the set of k-generator subgroups, does not
possess a generic isomorphism class of subgroup for any k. Additionally, for each
stratification there are isomorphism classes of subgroups which are chosen at random
with small but positive probability among the set of all k-generated subgroups, for any
sufficiently large k. We call such subgroups persistent. Lastly, we exhibit subgroups
with positive density with respect to one stratification but not the other, illustrating
that different natural notions of stratification can have dramatic effects on the forms
of randomly chosen subgroups.

The likelihood that a particular isomorphism class of subgroup of a given group
is selected at random is motivated by questions in group-based cryptography. The
analysis of the security of algorithms used in cryptography can depend upon the
expected isomorphism type of a random subgroup. Many group-based cryptosystems
propose the braid group Bn as a platform; recent work of Miasnikov, Shpilrain and
Ushakov [16] shows that experimentally, subgroups of Bn generated by k elements
where k is small relative to n, and moreover, those k elements are of small size, are
generically isomorphic to Bn. Due to the restrictions on the size of the generators we
cannot conclude that a subgroup of Bn with k generators is generically isomorphic
to Bn. Regardless, their results explain why current cryptosystems based on Bn are
vulnerable to attack.

Our definition of the asymptotic density of a particular subgroup H of a group G

follows Borovik, Miasnikov and Shpilrain in [3]. They present a detailed discussion
of asymptotic and statistical questions in group theory. We also refer the reader to
Kapovich, Miasnikov, Schupp and Shpilrain [15] for background on generic-case
complexity and notions of density.

We let G be an infinite group and X a set of representatives of elements that maps
onto G. We can associate to each x 2 X an integer size. For example, a natural notion
of size is word length: we can let X be the set of all words in a finite generating set for
G, with size corresponding to word length. There are situations where other notions of
size, besides word length, are considered. We let Xk be the set of unordered k-tuples
of representatives x 2 X . Then each member of Xk corresponds to a k-generated
subgroup of G, taking the k representatives as the generators. We fix a notion of
size on Xk . We can define an integer size for each k-tuple in a variety of ways.
For example, the size of a k-tuple could be the sum of the sizes of its components.
Alternatively, one could take the size of a k-tuple to be the maximum size of any
of its components. Once notions of size are fixed, both for elements and tuples, the
set of all tuples of size n in Xk is called the n-sphere and denoted Sphk.n/. Such a
decomposition of Xk into spheres of increasing radii is known as a stratification of
Xk . We prefer our spheres of a fixed size to be finite and thus we can regard these
spheres of increasing radii as an exhaustion of an infinite set Xk by a collection of
finite sets.
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To quantify the likelihood of randomly selecting a particular subset of Xk , we
take a limit of the counting measure on spheres of increasing radii. Let jT j denote
the size of the set T . The asymptotic density of a subset T in Xk is defined to be the
limit

lim
n!1

jT \ Sphk.n/j
jSphk.n/j

if this limit exists. We often omit the word asymptotic and refer to this limit simply
as the density of T .

To understand density not just of k-tuples, but of isomorphism classes of k-
generator subgroups, we let TH be the set of k-tuples that generate a subgroup of G

isomorphic to some particular subgroup H . If the density of TH is positive we say
that H is visible in the space of k-generated subgroups of G. We call the set of all
visible k-generated subgroups of G the k-subgroup spectrum, denoted by Speck.G/.
If the density of TH is one, we say that H is generic in Speck.G/; if this density is
zero we say that H is negligible in Speck.G/.

We make a series of choices within this construction, each of which can greatly
influence the densities of different subsets; those choices include: the representation
of group elements, the size function defined on X , and the stratification of the set of
tuples Xk . Additionally, we are asserting that the likelihood of randomly selecting a
k-generator subgroup isomorphic to the given one is captured by the limit as defined.
It is certainly possible to construct contrived stratifications with various pathological
properties, so we concentrate on stratifications which correspond to “natural” def-
initions of the sphere of size n in Xk . Despite this, we show that for Thompson’s
group F , a small change in the stratification has a great impact on the set of visible
subgroups.

Below we show that Thompson’s group F is the first example of a group which
has different asymptotic properties with respect to two different, yet natural, methods
of stratification. To define these stratifications, we represent elements of F using
reduced pairs of finite rooted binary trees, which we abbreviate to “reduced tree
pairs”. These representatives are in one-to-one correspondence with group elements.
Each pair consists of two finite, rooted binary trees with the same number of leaves,
or equivalently, with the same number of internal nodes or carets, as defined below,
satisfying a reduction condition specified in Section 2. The size of a tree pair will be
the number of carets in either tree of the pair.

Using reduced tree pairs to represent elements of F , we define the sphere of radius
n in Xk in two natural ways:

(1) take Sphk.n/ to be the set of k-tuples in which the sum of the sizes of the
coordinates is n, or

(2) take Sphk.n/ to be the set of k-tuples where the maximum size of a coordinate
is n.

We will refer to these as the “sum stratification” and “max stratification” respec-
tively. With respect to the sum stratification, every non-trivial isomorphism class
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of m-generated subgroup for m � k is visible. That is, every possible subgroup
isomorphism class has non-zero density. With respect to the max stratification, there
are subgroup isomorphism classes with zero density.

Perhaps the most natural stratification to consider on F , or on any finitely gener-
ated group, is obtained by taking the size of an element of F to be the word length
with respect to a particular set of generators. For F we can consider word length
with respect to the standard finite generating set fx0; x1g. This stratifies the group
itself into metric spheres. Despite work of J. Burillo [6] and V. Guba [12] in this
direction, the sizes of these spheres have not been calculated, and thus it is not yet
computationally feasible to consider the possible induced stratifications of Xn with
respect to word length as a notion of size.

It is striking in our results below that the k-generator subgroups of Thompson’s
group F have no generic isomorphism type with respect to either stratification, for
any k. All other groups which have been studied in this way exhibit a generic type
of subgroup with respect to natural stratifications. Arzhantseva and Olshanskii [2]
and Arzhantseva [1] considered generic properties of subgroups of free groups. With
respect to the notions of stratification described here, Jitsukawa [14] proved that k

elements of any finite rank free group generically form a free basis for a free group
of rank k. Miasnikov and Ushakov [17] proved this is true also for the pure braid
groups and right angled Artin groups.

To obtain our results on random subgroups of Thompson’s group F we must
be able to count the number rn of reduced pairs of trees with a given number of
carets. Woodruff [21], in his thesis, conjectured that the number rn is proportional
to .8 C 4

p
3/n=n3. We prove Woodruff’s conjectured growth rate, and additionally

show that the generating function for the number of reduced tree pairs is not algebraic,
but that it is D-finite, meaning that it satisfies a linear ordinary differential equation
with polynomial coefficients.

This paper is organized as follows. In Section 2, we consider the number of pairs
of reduced trees of size n, which we call rn. We prove that rn has a D-finite generating
function which is not algebraic. We prove that rn approaches A�n=n3 uniformly,
where A is a constant and � D 8 C 4

p
3 � 14:93.

In Section 3 we describe particular subgroups of Thompson’s group F and ele-
mentary observations about F that will be important in later sections.

In Section 4 we study the sum stratification and compute the asymptotic density
of isomorphism classes of k-generator subgroups. We prove that if G is a non-trivial
m-generator subgroup of F , then its isomorphism class is visible in the space of
k-generator subgroups of F for k � m. This stands in stark contrast to previously
known examples, since no subgroup is generic in this stratification.

In Section 5 we turn to the max stratification and compute the asymptotic density of
isomorphism classes of k-generator subgroups of F and find very different behavior.
In this case, not every isomorphism class of m-generator subgroup is visible in the
space of k-generator subgroups of F for k � m. We prove that Z is visible in the
set of k-generated subgroups only for k D 1. Yet there are examples of isomorphism
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classes of subgroups which are persistent; that is, visible in the set of k-generator
subgroups for all sufficiently large k. For example, we show that the isomorphism
class of F itself is visible in the set of k-generated subgroups for all k � 2.

Acknowledgments. The authors wish to thank Collin Bleak, José Burillo, Jim Can-
non, Steve Fisk, Bob Gilman, Alexei Miasnikov, Thomas Pietraho, Claas Röver, Mark
Sapir, Melanie Stein and Sasha Ushakov for many helpful conversations and feedback
on this paper, and the anonymous referee for helpful suggestions.

2. Combinatorics of reduced tree pairs

A caret is a pair of edges that join two vertices to a common parent vertex, which
we draw as ^. An n-caret tree pair diagram, or tree pair for short, is an ordered
pair consisting of two rooted binary trees, each having n carets. A 5-caret tree pair
is shown in Figure 1 (a). A leaf is a vertex of degree one. A tree with n carets will

(a) 21

00

21

(b)

Figure 1. A five caret unreduced tree pair diagram, with its first three leaves numbered, and
the corresponding four caret reduced tree pair diagram.

have n C 1 leaves. In the trees we consider, all vertices other than the leaves and
the root have degree three. The left child of a caret is the caret attached to its left
leaf; the right child is defined analogously. An exposed caret is a caret both of whose
children are leaves. A pair of trees with at least two carets in each tree is unreduced
if, when the leaves are numbered from left to right, each tree contains a caret with
leaves numbered k and k C 1 for some k. In an unreduced tree pair, the caret with
identical leaf numbers is removed from both trees, the leaves are renumbered, and
the trees are again inspected for possible reductions. For example, the tree pair in
Figure 1 (a) is unreduced. Removing the exposed caret with leaves labeled 1, 2 in
each tree yields the reduced tree pair in Figure 1 (b). A pair of trees which is not
unreduced is called reduced. Note that we do not reduce a pair of single carets: we
insist that our tree pairs are always nonempty. We denote the number of reduced tree
pairs with n-carets by rn, so we have r0 D 0 and r1 D 1.

Woodruff studied the enumeration of frng in his thesis [21] where he derived a
formula for rn (denoted by Nn), proved an upper bound of .8 C 4

p
3/n � 14:93n
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and conjectured an asymptotic growth rate of .8 C 4
p

3/n=n3. We take a different
approach to counting rn and derive a recursive formula in terms of c2

n, where cn D
1

nC1

�
2n
n

�
is the n-th Catalan number. Working in terms of generating functions for rn

and c2
n, we obtain a finite-order differential equation which leads to a finite polynomial

recurrence for rn. From this we are able to prove the growth rate conjectured by
Woodruff. The key to this section is to show that the generating function for rn is
closely related to that for c2

n and many of the properties of the generating function
for c2

n are inherited by that of rn.
We let f .k; m/ denote the number of ordered k-tuples of possibly empty rooted

binary trees using a total of m carets, which we call forests. So for example f .3; 2/,
which is the number of forests of three trees containing a total of two carets, is equal
to nine, as shown by Figure 2. A straightforward argument shows that f .k; n/ D

k
2nCk

�
2nCk

n

�
.

Figure 2. We exhibit that f .3; 2/ D 9 by enumerating all forests consisting of three trees and
a total of two carets.

The n-th Catalan number cn counts the number of binary trees consisting of n

carets, and thus c2
n is the number of ordered pairs of rooted binary trees with n carets

in each tree. Some of these pairs will be reduced, and some not. For those that are not
reduced, we can cancel corresponding pairs of carets to obtain an underlying reduced
tree pair. In a reduced tree pair consisting of i carets, each tree has i C 1 leaves.
We describe a process which is the inverse of reduction, which we call “decoration.”
To decorate a reduced tree pair diagram .S; T / with i carets in each tree, we take
a forest of i C 1 trees, some of which may be empty, and n � i carets (for n � i ),
duplicate it, then append the trees in the forests to the corresponding leaves of S and
T . The first tree in the forest is appended to the first leaf, the second tree in the forest
to the second leaf and so on. We can do this in f .i C 1; n � i/ different ways. This
decorating process yields a new unreduced tree pair with n carets, which will reduce
to the original reduced tree pair .S; T / with i carets. For example, the reduced 2-caret
tree pair drawn in bold in Figure 3 can be decorated in 9 different ways with a forest
consisting of three trees A, B and C with a total of three carets between them, to
yield unreduced pairs of 5 carets all of which would all reduce to the original tree
pair diagram. This leads to the following lemma.

Lemma 1 (Relating rn and c2
n). For n � 1

c2
n D rn C rn�1f .n; 1/ C rn�2f .n � 1; 2/ C � � � C r1f .2; n � 1/:
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A B

CA

B C

Figure 3. Decorating a reduced tree with a forest of three trees A; B and C .

Proof. Each n-caret tree pair is either reduced or must reduce to a unique reduced
tree pair of i carets for some i 2 Œ1; n � 1�. Hence the total number of n-caret tree
pairs, c2

n, is the number of pure reduced pairs of n-carets, rn, plus the number ri of
reduced i -caret tree pairs multiplied by the number of ways to decorate them with a
forest of n � i carets, f .i C 1; n � i/, for each possible value of i .

We can reformulate this recursion in terms of generating functions. We define the
generating functions for rn, cn and c2

n respectively as

R.z/ D r1z C r2z2 C r3z3 C � � � ;

C.z/ D c0 C c1z C c2z2 C c3z3 C � � � ;

P.z/ D c2
1z C c2

2z2 C c2
3z3 C � � � :

Note that R.z/ and P.z/ have no constant term while C.z/ does. We prove in the
following proposition that R.z/ can be obtained from P.z/ via a simple substitu-
tion. Using knowledge of P.z/ we can find a closed form expression for R.z/ and
asymptotic growth rate for rn. Note that if G.z/ is the generating function for a set of
objects, then G.z/k is the generating function for ordered k-tuples of those objects.
In this way we can express the generating function of f .k; n/ for fixed k as C.z/k .

Proposition 2 (Relating R.z/ and P.z/). The generating functions for rn and c2
n are

related by the equation

R.z/ D .1 � z/P.z.1 � z//;

which is equivalent to

P.x/ D C.x/R.xC.x//:

Proof. The generating function for the Catalan numbers is well known and may be
written in closed form as

C.x/ D 1 � p
1 � 4x

2x
I
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it satisfies the algebraic equation C.x/.1 � xC.x// D 1. See, for instance, Stanley
[19]. If we rewrite the equation R.z/ D .1 � z/P.z.1 � z// substituting the variable
z with xC.x/ then we obtain

R.xC.x// D .1 � xC.x//P.xC.x/.1 � xC.x/// D 1

C.x/
P.x/;

which rearranges to
P.x/ D C.x/R.xC.x//:

This substitution is inverted by x 7! z.1 � z/, and so proving this equation implies
the proposition. By examining the coefficients of xn we will show that this statement
is equivalent to Lemma 1.

The right-hand side can be written as

C.x/R.xC.x// D C.x/
1P

kD0

rk.xC.x//k D
1P

kD0

rkxk.C.x//kC1:

We will use the notation Œxi �G.x/ to denote the coefficient of xi in the expansion of a
generating function G.x/. Considering the above equation in terms of the coefficient
of xn we have

c2
n D Œxn�P.x/ D Œxn�C.x/R.xC.x//

D Œxn�
1P

kD0

rkxk.C.x//kC1 D
1P

kD0

Œxn�xkrk.C.x//kC1

D
nP

kD0

Œxn�k�rk.C.x//kC1:

As noted above, .C.x//kC1 is the generating function for the number of or-
dered .k C 1/-tuples of rooted binary trees, which are counted by f .k C 1; n/.
Thus the coefficient of xn�k in .C.x//kC1 is precisely f .k C 1; n � k/, that is,
Œxn�k�.C.x//kC1 D f .k C 1; n � k/. So the above equation becomes

c2
n D rnf .n C 1; 0/ C rn�1f .n; 1/ C � � � C r1f .2; n � 1/ C r0f .1; n/

which is precisely Lemma 1 since f .n C 1; 0/ D 1 and r0 D 0.

A function is said to be D-finite if it satisfies a homogeneous linear ordinary
differential equation with polynomial coefficients, for example, see [19]. The class
of D-finite functions strictly contains the class of algebraic (and rational) functions.
If one has a differential equation for a generating function it is possible to obtain
the asymptotic growth rate of its coefficients by studying the differential equation.
Following [19], a generating function is D-finite if and only if its coefficients satisfy
a finite polynomial recurrence.
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Lemma 3 (R.z/ is D-finite). The generating function R.z/ satisfies the following
linear ordinary differential equation

z2.1 � z/.16z2 � 16z C 1/.2z � 1/2 d3R
dz3

� z.2z � 1/.16z2 � 16z C 1/.8z2 � 11z C 5/ d2R
dz2

� .128z5 � 320z4 C 365z3 � 232z2 C 76z � 4/ dR
dz

C 36z.z � 1/R.z/ D 0:

It follows that R.z/ is D-finite.

Proof. Starting from a recurrence satisfied by the Catalan numbers we can find a
differential equation satisfied by P.z/ and then standard tools allow us to transform
this equation into one satisfied by R.z/.

Since cn D 1
nC1

�
2n
n

�
, we have the following recurrence for the Catalan numbers:

.n C 2/cnC1 D 2.2n C 1/cn:

Squaring both sides yields

.n C 2/2c2
nC1 D 4.2n C 1/2c2

n:

Thus we have a finite polynomial recurrence for the coefficients of P.z/, which means
that we can find a linear differential equation for P.z/. We do this using the Maple
package GFUN [18] to obtain

.z2 � 16z3/ d2P
dz2 C .3z � 32z2/ dP

dz
C .1 � 4z/P.z/ D 1:

The original recurrence can be recovered by extracting the coefficient of zn in the
above equation. We can then make this differential equation homogeneous

.16z3 � z2/ d3P
dz3 C .80z2 � 5z/ d2P

dz2 C .68z � 4/ dP
dz

C 4P.z/ D 0:

Making the substitution z 7! z.1�z/ using the command algebraicsubs()
in GFUN we find a differential equation satisfied by P.z.1 � z//. This in turn leads
to the homogeneous differential equation for R.z/ given above.

Following the notation of Flajolet [11], we say that two functions are asymptoti-
cally equivalent and write f .n/ � g.n/ when

lim
n!1

f .n/

g.n/
D 1:

Proposition 4 (Woodruff’s conjecture). rn � A�n=n3 where � D 8 C 4
p

3 and
A > 0 is a constant.
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Proof. We begin by establishing a rough bound on the exponential growth of rn

and refine this bound by analyzing a polynomial recurrence satisfied by rn using
techniques from Wimp and Zeilberger [20].

Since reduced tree pairs are a subset of the set of all tree pairs, it follows that
rn � c2

n. We obtain a lower bound on rn by the following construction. For each tree
T with n carets, number the leaves from left to right starting with 0. Let S1 denote
the tree consisting of n left carets, each the left child of its parent caret. Let S2 denote
the tree with n � 1 left carets, and a single interior caret attached to the right leaf of
the leftmost caret. This interior caret has leaves numbered 1 and 2. If T does not
have an exposed caret with leaves labeled 0 and 1, then the pair .T; S1/ is reduced. If
T does have an exposed caret with leaves labeled 0 and 1, then form the reduced tree
pair .T; S2/. Thus for each tree T with n carets, there is at least one distinct reduced
tree pair diagram with n carets, and we conclude that cn � rn.

It follows that c
1=n
n � r

1=n
n � c

2=n
n . Since cn � B4nn�3=2 for a constant B (see

Flajolet and Sedgewick [11] for example), it follows that 4 � limn!1 r
1=n
n � 16.

The differential equation satisfied by R.z/ can be transformed into a linear dif-
ference equation satisfied by rn using the Maple package GFUN [18]:

0 D .n C 5/.n C 6/2rnC5 � .n C 5/.n C 4/.21n C 101/rnC4

C 2.4n C 15/.n C 4/.13n C 33/rnC3 � 4.n C 3/.53n2 C 208n C 195/rnC2

C 32.6n C 5/.n C 2/.n C 1/rnC1 � 64n2.n C 1/rn:

To compute the asymptotic behavior of the solutions of this recurrence we will
use the technique described in [20]. This technique has also been automated by the
command Asy() in the GuessHolo2 Maple package. This package is available from
Doron Zeilberger’s website. We outline the method below.

Theorem 1 of [20] implies that the solutions of linear difference equations

�P
`D0

a.n/fnC` D 0;

where a.n/ are polynomials, have a standard asymptotic form. While this general
form is quite complicated (and we do not give it here), we note that in the enumeration
of combinatorial objects which grow exponentially rather than super-exponentially
one more frequently finds asymptotic expansions of the form

fn � �nn�
P

j �0

bj n�j :

By substituting this asymptotic form into the recurrence one can determine the con-
stants �, � and bj . For example, substituting the above form into the recurrence
satisfied by rn, one obtains (after simplifying):

0 D .� � 1/.�2 � 16� C 16/.� � 2/2 C .� � 2/.5�4� C 17�4 � 256�3 � 74�3�

C 164�2� C 558�2 � 352� � 96�� C 32/=n C O.1=n2/:



Random subgroups of Thompson’s group F 101

In order to cancel the dominant term in this expansion we must have

� D 1; 8 � 4
p

3; 2; 8 C 4
p

3:

Each of these values for � implies different values of � so as to cancel the second-
dominant term. In particular, if � D 8 C 4

p
3, then we have � D �3. Since

4 � limn!1 r
1=n
n � 16, it follows that the value of � which corresponds to the

dominant asymptotic growth of rn must be 8 C 4
p

3.
The application of this process using the full general asymptotic form has been

automated by the GuessHolo2 Maple package. In particular, we have used the Asy()
command to compute the asymptotic growth of rn:

n3

A�n
rn � 1 C 33=2 � 11

p
3

n

for some constant A.

Though we do not need the exact value of the constant A in our applications below,
we can estimate the constant A as follows. Using Stirling’s approximation we know
that c2

n � 1
�n3 16n. This dictates the behavior of P.z/ around its dominant singular-

ity, which forces the behavior of R.z/ around its dominant singularity. Singularity
analysis using methods of Flajolet and Sedgewick [11] then yields

rn � 6 � 3
p

3

�n3
�n � 12

��n3
�n:

While this argument is not rigorous as it uses the estimate for A, the above form is in
extremely close numerical agreement with rn for n � 1000.

Proposition 5 (Not algebraic). The generating function R.z/ is not algebraic.

Proof. Theorem D of [10] states that if l.z/ is an algebraic function which is analytic
at the origin then its Taylor coefficients ln have an asymptotic equivalent of the form

ln � A ˇnns

where A 2 R and s 62 f�1; �2; �3; : : : g. Since rn is not of this form, in particular it
has an n�3 term, the generating function R.z/ cannot be algebraic.

The generating function, or “growth series,” for the actual word metric in Thomp-
son’s group F with respect to the fx0; x1g generating set (see below), is not known
to be algebraic or even D-finite. Burillo [6] and Guba [12] have estimates for the
growth, but there are significant gaps between the upper and lower bounds which pre-
vent effective asymptotic analysis at this time. Since finding differential equations for
generating functions can lead to information about the growth rate of the coefficients,
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more precise understanding of the growth series for F with respect the standard gen-
erating set (or any finite generating set) would be interesting and potentially quite
useful.

In the following sections we regularly use following lemma which follows imme-
diately from the asymptotic formula for rn.

Lemma 6 (Limits of quotients of rn). For any k 2 Z, lim
n!1

rn�k

rn

D ��k .

Proof. From Proposition 4 we have

rn�k � A�n�k.n � k/3 D A�kn3��k
�n � k

n

�3 � rn��k :

Finally, we give a formula for rn. Woodruff ([21] Theorem 2.8) gave the following
formula for the number of reduced tree pairs on n carets for n � 2:

dn=2eX
kD1

2n�2kC1

�
n � 1

n � 2k C 1

�
ck�1

kX
iD0

.�1/i

�
k

i

�
cn�i :

One may readily verify (numerically) that Woodruff’s formula and ours (below)
agree for n � 2. We have been able to show (using Maple) that both expressions sat-
isfy the same third-order linear recurrence, which together with the equality of the first
few terms is sufficient to prove that the expressions are, in fact, equal. Unfortunately
we have not been able to prove this more directly.

Lemma 7 (Formula for rn). The number of reduced tree pairs with n carets in each
tree is given by the formula

rn D
nX

kD1

.�1/n�k

�
k C 1

n � k

�
c2

k :

Proof. From Proposition 2 we have R.z/ D .1 � z/P.z.1 � z//, which expands toX
n�1

rnzn D .1 � z/
X
k�1

c2
kzk.1 � z/k D

X
k�1

c2
kzk.1 � z/kC1

D
X
k�1

c2
kzk

� kC1X
j D0

.�1/j

�
k C 1

j

�
zj

�
D

X
k�1

c2
k

kC1X
j D0

.�1/j

�
k C 1

j

�
zkCj :

Now we look at the coefficient of zn on both sides. For the right side, as k runs from
1 up, we get exactly one term from the second summation, when j D n � k. Thus
we get

rn D
X
k�1

c2
k.�1/n�k

�
k C 1

n � k

�
;

which yields the result since the binomial term becomes 0 for k > n.
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3. Thompson’s group F

Richard Thompson’s group F is a widely studied group which has provided examples
of and counterexamples to a variety of conjectures in group theory. We refer the
reader to Cannon, Floyd and Parry [7] for additional background information about
this group. Briefly, F is defined using the standard infinite presentation

hx0; x1; : : : j x�1
i xj xi D xj C1; i < j i:

It is clear that x0 and x1 are sufficient to generate the entire group, and the standard
finite presentation for this group is thus

hx0; x1 j Œx0x�1
1 ; x�1

0 x1x0�; Œx0x�1
1 ; x�2

0 x1x2
0 �i;

where Œa; b� denotes the commutator aba�1b�1. Group elements w 2 F can
be uniquely represented by a reduced tree pairs as defined in the previous sec-
tion. Equivalently, each element corresponds uniquely to a piecewise-linear map
�w W Œ0; 1� ! Œ0; 1� whose slopes are all powers of two, the coordinates of the break-
points are dyadic rationals and the slope changes at each breakpoint. As described
by Cannon, Floyd and Parry [7], each leaf of the reduced tree pair diagram defining
w 2 F corresponds uniquely to an interval with dyadic endpoints in the domain or
range of the map �w . The tree pair diagrams for x0 and x1 are given in Figure 4. F

has a diverse range of subgroups, but notably, it has no free subgroups of rank more
than 1.

Figure 4. Tree pair diagrams for the elements x0 and x1 respectively.

3.1. Recognizing support and commuting elements. Two elements of F can com-
mute for many reasons, but one of the simplest is that they have disjoint supports.
The support of an element of F regarded as a homeomorphism of Œ0; 1� is the closure
of the set of points x 2 Œ0; 1� such that f .x/ ¤ x; that is, the set of points which are
moved by f . Away from the support of f , the map f will coincide with the iden-
tity. From the graph representing a group element as a homeomorphism, it is easy
to recognize the complement of the full support of an element by inspecting where it
coincides with the identity; x1, for example, has support Œ1=2; 1� as it coincides with
the identity for the first half of the interval. It is not as easy to recognize the complete
support of an element directly from the reduced tree pair diagrams representing it.
Nevertheless, it is possible to tell easily if the support extends to the endpoints 0 and 1
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of the interval, by inspecting the locations of first and last leaves of the trees S and
T representing an element.

If the distances of the leftmost leaves (the leaves numbered 0) in S and T from
their respective roots are both k, then the homeomorphism represented by this pair
of trees coincides with the identity at least on the interval Œ0; 1

2k �. If there are, in
addition to the leaves numbered 0, a sequence of leaves numbered 1; : : : ; m, each of
which have the same distances from the root in both trees, then the homeomorphism
will coincide with the identity from 0 to the left endpoint of the dyadic interval
represented by leaf m. Similarly, near the right endpoint 1, if the distances of the
rightmost leaves (those numbered n) in S and T from their respective roots are
both l , then the homeomorphism represented coincides with the identity at least on
the interval Œ1 � 1

2l ; 1�. Again, if there are sequences of leaves numbered from n � m

up to n which have the same levels in the trees S and T , then the homeomorphism will
coincide with the identity on the corresponding dyadic interval, ending at the right
endpoint of 1. Elements that have homeomorphisms that coincide with the identity
for intervals of positive length at both the left and right endpoints are of particular
interest as those elements lie in the commutator subgroup of F , as described below.

A simple method for generating pairs of commuting elements of F is to construct
them to have disjoint supports. An illustrative example is simply the construction of
a subgroup of F isomorphic to F � F , where the four generators used are pictured in
Figure 5. The first two generators have support lying in the interval Œ1

2
; 1� and generate

Figure 5. Generators of the standard F � F subgroup of F .

a copy of F with support in that interval. Similarly, the second two generators have
support lying in Œ0; 1

2
� and generate a commuting copy of F in that interval. We refer

to this example as the standard F � F subgroup of F and will make use of it in later
sections.

3.2. More subgroups of F . One important subgroup of F is the restricted wreath
product Z o Z. Guba and Sapir [13] proved a dichotomy concerning subgroups of F :
any subgroup of F is either free abelian or contains a subgroup isomorphic to Z o Z.
A representative example of a subgroup of F isomorphic to Z o Z is easily seen to
be generated by the elements x0 and y D x1x2x�2

1 . The conjugates of y by x0 have
disjoint support and thus commute.
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Other wreath product subgroups of F include F o Z and H o Z for any H < F .
Generators for H oZ are obtained as follows. Let fh1; : : : ; hkg be a generating set for
H where hi D .T 0

i ; S 0
i /. Let T be the tree with two right carets, and leaves numbered

1, 2, 3. Define generators ki D .Ti ; Si / for H o Z by letting Ti be the tree T with T 0
i

attached to leaf 2, and Si be the tree T with S 0
i attached to leaf 2. Then fkig [ fx0g

forms a generating set for H o Z.
The group F contains a multitude of subgroups isomorphic to F itself; any two

distinct generators from the infinite generating set for F will generate such a subgroup.
More generally, Cannon, Floyd and Parry [7] describe a simple arithmetic condition to
guarantee that a set of analytic functions of the interval with the appropriate properties
generates a subgroup of F which is isomorphic to F . A combinatorial description of
their construction of proper subgroups of F isomorphic to F is as follows.

Given a finite string of zeros and ones, we construct a rooted binary tree by
attaching to a root caret a left child if the first letter of the string is zero, and a right
child otherwise. Continue in this way, adding a child to the left leaf of the previous
caret if the next letter in the string is a zero, to the right leaf of the previous caret
otherwise. For the final letter in the string, do not add a caret, but mark a distinguished
leaf v in the tree in the same manner, that is, mark the left leaf of the last caret added
if the final letter is a zero, and the right leaf otherwise. Let T be a tree constructed in
this way, and form two tree pair diagrams h0 and h1 based on T as follows. Denote
x0 D .Tx0

; Sx0
/ and x1 D .Tx1

; Sx1
/. Draw four copies of the tree T , numbered

T1 through T4. To the marked vertex v in T1 attach the tree Tx0
and to the marked

vertex v in T2 attach Sx0
, forming the tree pair diagram representing h0. Do the same

thing with T3, T4, Tx1
and Sx1

respectively to form h1. Then h0 and h1 generate a
subgroup of F isomorphic to F , which is called a clone subgroup in [9] and consists
of elements whose support lies in the dyadic interval determined by the vertex v.
Subgroups of this form are easily seen to be quasi-isometrically embedded. This
geometric idea is easily extended to construct subgroups of F isomorphic to F n.

Another family of important subgroups of F are the subgroups isomorphic to Zn,
which will play a role in the proofs in Sections 4 and 5. We let T be the tree with
n � 1 right carets, and n leaves, and .Ai ; Bi / for i D 1; 2; : : : ; n reduced pairs of
trees so that for each i , Ai and Bi have the same number of carets. We construct
generators hi D .Ci ; Di / of Zn as follows. We let Ci be the tree T with Ai attached
to leaf i , and Di the tree T with Bi attached to leaf i , as shown in Figure 6. We
reduce the pair .Ci ; Di / if necessary. It is easy to check by multiplying the tree pair
diagrams that hihj D hj hi for i; j D 1; 2; : : : ; n and thus these elements generate a
subgroup of F isomorphic to Zn. Burillo [5] exhibits a different family of subgroups
of F isomorphic to Zn using the generators fx0x�1

1 ; x2x�1
3 ; x4x�1

5 ; : : : x2n�2x�1
2n�1g

which he shows are quasi-isometrically embedded. In fact, Burillo proves that any
infinite cyclic subgroup of F is undistorted; that is, that the cyclic subgroups are
quasi-isometrically embedded.
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Figure 6. Three tree pairs h1, h2, h3 used to generate Z3. We have used the tree pair diagram
for x0 as each pair .Ai ; Bi /. Note that the first pair can be reduced to a tree pair diagram
containing only three carets by deleting the rightmost exposed caret.

3.3. The commutator subgroup of F . In the proofs in Sections 4 and 5 below, we
use both algebraic and geometric descriptions of the commutator subgroup ŒF; F �.
This subgroup of F has two equivalent descriptions:

� The commutator subgroup of F consists of all elements in F which coincide
with the identity map (and thus have slope 1) in neighborhoods both of 0 and
of 1. This is proven as Theorem 4.1 of [7].

� The commutator subgroup of F is exactly the kernel of the map ' W F ! Z˚Z
given by taking the exponent sum of all instances of x0 in a word representing
w 2 F as the first coordinate, and the exponent sum of all instances of x1 as the
second coordinate.

The exponent-sum homomorphism ' is closely tied to another natural homomor-
phism � from F to Z ˚ Z. The “slope at the endpoints” homomorphism � for an
element f 2 F takes the first coordinate of the image to be the logarithm base 2 of
the slope of f at the left endpoint 0 of the unit interval and the second coordinate
to be the logarithm base 2 of the slope at the right endpoint 1. The images of the
generators under the slope-at-the-endpoints homomorphism � are �.x0/ D .1; �1/

and �.x1/ D .0; �1/ and � and ' have the same kernel.

It is not hard to see that the first description above has the following geometric
interpretation in terms of tree pair diagrams. An element of the commutator subgroup
will have slope 1 at the left and right endpoints and coincide with the identity on
intervals of the form Œ0; b0� and Œb1; 1� where b0 and b1 are, respectively, the first and
last points of non-differentiability in Œ0; 1�. The points .b0; b0/ and .b1; b1/ must lie
on the line y D x, and the element is represented by tree pair diagrams in which
the first leaves (numbered 0) in each tree lie at the same level or distance from the
root, and the same must be true of the last leaf in each of the trees. Thus, elements of
the commutator subgroup are exactly those which have a reduced tree pair diagram
.S; T / where the leaves numbered zero are at the same level in both S and T and the
last leaves are also at the same level in both S and T . For example, if .A; B/ is any
reduced n-caret tree pair, then the .n C 2/-caret tree pair in Figure 7 is also reduced
and represents an element in ŒF; F �.
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BA

Figure 7. Constructing a tree pair representing a group element which lies in the commutator
subgroup ŒF; F �.

We refer the reader to [7] for a proof that the commutator of F is a simple group,
and that F=ŒF; F � Š Z ˚ Z.

In our arguments below we will be interested in isomorphism classes of subgroups
of F . It will sometimes be necessary to assume that a particular finitely generated
subgroup of F is not contained in the commutator subgroup ŒF; F �. We now show
that within the isomorphism class of any subgroup H of F , it is always possible to
pick a representative not contained in ŒF; F �. The proof of this lemma follows the
proof of Lemma 4.4 of [7].

Lemma 8 (Finding subgroups outside the commutator). Let H be a finitely generated
subgroup of F . Then there is a subgroup H 0 of F which is isomorphic to H and not
contained in the commutator subgroup.

Proof. If H is not contained in the commutator subgroup ŒF; F �, then take H 0 D H .
Otherwise, let H be generated by h1, h2, …, hk where each hi 2 ŒF; F �. Then
each hi has an associated ordered pair .ai ; bi / where ai is x-coordinate of the first
point of non-differentiability of hi as a homeomorphism of Œ0; 1� (necessarily at ai

the slope will change from 1 to something which is not 1.) Similarly, we let bi be
the x-coordinate of the final point of non-differentiability of hi . We let a D minfaig
and b D maxfbig. By the choice of a and b, all h 2 H have support in Œa; b�.

Following the proof of Lemma 4.4 of [7], we let � W Œa; b� ! Œ0; b � a� be defined
by �.x/ D x � a. We use � to define a map on h 2 H by h 7! �h��1, assuming
that �h��1 acts as the identity for x 2 .b � a; 1�. It is clear from the definition of
� that the breakpoints of �h��1 are again dyadic rationals, and the slopes are again
powers of two. Since � is an isomorphism, we know that H Š h�hi�

�1i. But this
subgroup cannot be in the commutator, since at least one element, the one which had
its minimal breakpoint at x D a, now has slope not equal to 1 at x D 0, and thus is
not in the commutator subgroup.

In the proofs in Sections 4 and 5 below, we often want to make a more specific
choice of representative subgroup from an isomorphism class of a particular subgroup
of F as follows.
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Let Ei .w/ for i D 0; 1 denote the exponent sum of all instances of xi in a word
w in x0 and x1.

Lemma 9. Let H D hh0
1; h0

2; : : : ; h0
k
i be a finitely generated subgroup of F . Then

there is a subgroup H 0 D hh1; h2; : : : ; hki isomorphic to H so that E0.h1/ ¤ 0 and
E0.hj / D 0 for j D 2; 3; : : : ; k.

Proof. By Lemma 8, we assume without loss of generality that H is not contained in
the commutator subgroup ŒF; F �. By replacing some generators with their inverses,
we may assume that E0.h0

i / � 0 for all i , and that E0.h0
1/ is minimal among those

E0.h0
i / which are positive. For these h0

i with i > 1, we replace h0
i by h0

ih
�di

1 where di

is chosen so that E0.h0
ih

0�di

1 / is as small as possible while non-negative. Repeating
this process yields a generating set for a subgroup isomorphic to H with one element
having exponent sum on all instances of x0 equal to zero. We can repeat this process
with the remaining generators, possibly reindexing at each step, until a generating set
with the desired property is obtained.

4. Subgroup spectrum with respect to the sum stratification

We now introduce the first of two stratifications of the set of k-generator subgroups
of Thompson’s group F . We view group elements as non-empty reduced tree pairs
and denote by Xk the set of unordered k-tuples of non-empty reduced tree pairs
ti D .T i

1 ; T i
2 / for i D 1; : : : ; k. We denote the number of carets in T i

1 by jti j. We
define the sphere of radius n in Xk as the set of k-tuples having a total of n carets in
the k tree pair diagrams in the tuple:

Sphsum
k .n/ D f.t1; : : : ; tk/ j Pk

iD1 jti j D ng
which induces a stratification on Xk that we will call the sum stratification. Note that
since each tree in a tree-pair has the same number of carets, we only count (without
loss of generality) the carets in the left tree. For example, the triple of tree pairs in
Figure 6, once h1 is reduced, lies in Sphsum

3 .11/.
Recall from Section 1 that the density of a set T of k-tuples of reduced tree pairs

is given by

lim
n!1

jT \ Sphsum
k .n/j

jSphsum
k .n/j

with respect to this stratification. Let H be a subgroup of F , and TH the set of k-
tuples whose coordinates generate a subgroup of F that is isomorphic to H . Recall
that H is visible if TH has positive density, and the k-spectrum Specsum

k .F / is the set
of visible subgroups with respect to the sum stratification of Xk . In this section we
explicitly compute these subgroup spectra. We find that any isomorphism class of
nontrivial subgroup H of F which can be generated by m generators is an element
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of Specsum
k .F / for all k � m (Theorem 11). We conclude that this stratification does

not distinguish any particular subgroups through the subgroup spectrum, in contrast
to the results we will describe in Section 5 when the max stratification is used.

We begin by determining upper and lower bounds on the size of the sphere of
radius n in this stratification. Since our k-tuples are unordered, we may assume that
they are arranged from largest to smallest.

Lemma 10 (Size of Sphsum
k .n/). For k � 1 and n � k, the size of the sphere of

radius n with respect to the sum stratification satisfies the following bounds:

rn�kC1 � jSphsum
k .n/j � rnCk�1:

Proof. For the lower bound, Sphsum
k .n/ contains all k-tuples where the first pair has

n � k C 1 carets and the remaining .k � 1/ pairs are consist of two single carets.
There are rn�kC1 ways to choose this first pair, which yields the lower bound.

For the upper bound, we consider the set of all rnCk�1 reduced tree pairs with
n C k � 1 carets in each tree. A (small) subset of these correspond to the k-tuples of
Sphsum

k .n/ as follows. Take the subset of these tree pairs where each tree contains at
least k � 1 right carets, as in Figure 8, where leaf i for 0 � i � n � 1 has a possibly
empty left subtree labeled Ai in T� and Bi in TC. Let An and Bn respectively denote
the right subtrees attached to leaf n in T� and TC. The sum of the number of carets
in the Ai must equal n. When the number of carets in Ai equals the number of carets

Figure 8. A tree-pair consisting of k � 1 right caret pairs (with k D 5).

in Bi for all i , this pair of trees can be associated to an (ordered) k-tuple of tree
pairs with a total of n carets. Amongst these we can find every unordered k-tuple in
Sphsum

k .n/. So this is a gross overcount which suffices to prove the lemma.

Theorem 11 (All subgroup types are visible with respect to sum). Suppose that
H D hh1; h2; : : : ; hmi is a nontrivial subgroup of F . Then H 2 Specsum

k .F / for all
k � m.

We use the notation from Section 3.3 to represent the exponent sum of different
generators in a word in x0 and x1. Let Ei .w/ for i D 0; 1 denote the exponent sum
of xi in a group element given by a word w.
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Proof. Applying Lemmas 8 and 9, we may assume that H is a representative of its
isomorphism class which is not contained in the commutator subgroup ŒF; F � and
such that E0.h1/ ¤ 0 but E0.hi / D 0 for i > 1.

We now construct a set of k generators li D .Ti ; Si / for i D 1; 2; : : : ; k using
a total of n carets which we will show generate a subgroup of F isomorphic to H .
We let hi D .T 0

i ; S 0
i / as a tree pair diagram, and s D Pm

iD1 jhi j. We let .A; B/ be a
reduced pair of trees with n � .s C k/ carets in each tree. We take n to be larger than
s Ck in order to construct .A; B/ in this way. We define l1 by taking T1 to be the tree
with a root caret whose left subtree is T 0

1 and whose right subtree is A. Similarly, we
let S1 be the tree with a root caret whose left subtree is S 0

1 and whose right subtree
is B .

For 2 � i � m, we let Ti be the tree consisting of a root caret whose left subtree
is T 0

i and whose right subtree is empty. We let Si be the tree consisting of a root caret
whose left subtree is S 0

i and whose right subtree is empty. For m C 1 � i � k, we
let li be the identity represented by a pair of trees each containing a single caret.

We note that by construction, all tree pair diagrams constructed in this way are
reduced. We have k root carets (counting one caret per pair), to which we attached
s carets for all the .T 0

i ; S 0
i / pairs, n � .s C k/ carets for the .A; B/ pair. This totals

to k C s C n � .s C k/ D n ensuring that the k-tuple constructed lies in the desired
sphere.

It is clear that hl1; l2; : : : ; lki generate a subgroup of H �Z, where the isomorphic
copy of H lies in the first factor of the standard F � F subgroup of F and where
we take .A; B/ to be the generator of the Z factor which lies in the second factor
of the standard F � F subgroup. We now claim that hl1; l2; : : : ; lki Š H . We
use the coordinates .h; ta/ on H � Z, where h 2 H and t D .A; B/. We define a
homomorphism from H � Z to H by taking the first coordinate of .h; ta/. When
restricted to hl1; l2; : : : ; lki, this map is onto by construction.

To show this projection map is injective, we suppose that .1; ta/ lies in the kernel,
for a ¤ 0. Thus hl1; l2; : : : ; lki 	 H � Z has a relator � which, when projected to
H , yields a relator r of H , and when considered as a word in hl1; l2; : : : ; lki, has a
second coordinate not equal to the identity. But any relator r of H , when each h1 is
written as a word in x0 and x1, satisfies E0.r/ D 0. Since the only generator of H

with E0.hi / ¤ 0 is h1, we see that r must have the same number of h1 and h�1
1 terms

in it. Thus � must have the same number of l1 D .h1; t / and l�1
1 terms. Since l1 is

the only generator of hl1; l2; : : : ; lki which can change the Z coordinate of a product,
having equal numbers of l1 and l�1

1 terms in our relator � implies that when the H

coordinate is the identity, the second coordinate must be t0. Thus projection to the
first factor is an isomorphism when restricted to hl1; l2; : : : ; lki, and we conclude that
this group is isomorphic to H .

We now show that the set of k-tuples of tree pair diagrams constructed in this way
is visible in Specsum

k .F /. There are rn�.sCk/ ways to choose the pair .A; B/, which
had n � .s C k/ carets, and which determined the l1 generator in this construction.
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Thus we see that

lim
n!1

rn�.sCk/

jSphsum
k .n/j � lim

n!1

rn�.sCk/

rnCk�1

D ��.s�1C2k/ > 0;

using Lemmas 10 and 6.

The probabilistic motivation for the definition of a visible subgroup H is that a set
of k randomly selected reduced pairs of trees will generate a subgroup isomorphic to
H with nonzero probability. In the preceding proof, we were able to show that any
given m-generator subgroup is visible in Specsum

k .F / using a k-tuple of pairs of trees
consisting of one “large” tree pair diagram, m � 1 “small” tree pair diagrams, and
finally k � m “tiny” tree pair diagrams representing the identity.

Given a subgroup H of F , the estimate given above on a lower bound for the
density of the isomorphism class of H is small but positive. It follows from the
proof of Theorem 11 that we obtain larger estimates of this lower bound when the
original subgroup H is generated by elements with small tree pair diagrams. For
example, the asymptotic density of the isomorphism class of the subgroup Z is at
least ��5 � 1

750 000
in the set of all 2-generator subgroups, since k D 2 and Z can

be generated by x0 which has size 2. For other nontrivial subgroups, the construction
in this proof will require more carets and the lower bounds we obtain will be even
smaller, but always positive.

5. Subgroup spectrum with respect to the max stratification

We now begin to compute the subgroup spectrum with respect to a different strati-
fication, the “max” stratification, of the set of all k-generator subgroups of F . We
again let Xk be the set of unordered k-tuples of reduced pairs of trees, and define the
sphere of size n to be the collection of k-tuples in which the maximum size of any
component is n:

Sphmax
k .n/ D ˚

.t1; : : : ; tk/ j max
i2f1;2;:::;kg

fjti jg D n
�
:

For example, the triple of tree pairs in Figure 6 (once h1 is reduced) lies in Sphmax
3 .4/.

Defining spheres in this way induces the desired stratification of Xk .
We define the density of a subset T 
 Xn with respect to the max stratification

by

lim
n!1

jT \ Sphmax
k .n/j

jSphmax
k .n/j

and Specmax
k .F / to be the set of visible isomorphism classes of subgroups of F

with respect to the max stratification. As noted at the end of Section 4, the sum
stratification is biased towards k-tuples of tree pair diagrams which contain multiple
copies of the identity and other “small” pairs of trees having few carets. Using the
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maximum number of carets in a tree pair diagram to determine size seems to yield a
more natural stratification.

We find strikingly different results when we compute Specmax
k .F / as compared to

Specsum
k .F /. For example, we show that Z lies in Specmax

1 .F / but not in Specmax
k .F /

for larger values of k.
As in Section 4, we must first obtain bounds on the size of the sphere of radius n

with respect to the max stratification. We will use these bounds in the proofs below.
We begin with a lemma about sums of rn.

Lemma 12 (Sums of rn). For n � 2,
n�1P
iD1

ri � rn.

Proof. Since r1 D 1 < r2 D 2 the statement holds for n D 2. We assume for
induction the statement is true for k � 2. Then

kP
iD1

ri D
k�1P
iD1

ri C rk � 2rk

by inductive assumption. We consider the set of reduced tree pairs with k C 1 carets
in each tree, where either the right child of each root is empty, or the left child of each
root is empty. In each case there are rk ways to arrange the k carets on the nonempty
leaf, and these tree pairs form disjoint subsets of the set of all reduced pairs of trees
with k C 1 carets. Thus 2rk � rkC1 which completes the proof.

Lemma 13 (Size of Sphmax
k .n/). For k � 1 and n � k,

1

kŠ
.rn/k � jSphmax

k .n/j � k.rn/k :

Proof. For the lower bound, there are .rn/k ordered k-tuples of reduced tree pairs
where every pair has n carets. Since Sphmax

k .n/ consists of unordered tuples then
dividing this by kŠ gives a lower bound.

For the upper bound, at least one of the k tree pairs must have n carets. For
1 � i � k suppose that i tree pairs have exactly n carets, and the remaining k � i tree
pairs have strictly less than n carets. There are at most .rn/i ordered i -tuples of n-caret
tree pairs, and so at most this many unordered i -tuples, and at most .

Pn�1
j D1 rj /k�i

ordered .k � i/-tuples of tree pairs with at most n � 1 carets each, and so at most this
many unordered .k � i/-tuples.

So for each i the number of unordered k-tuples of tree pairs where i pairs have n

carets and k � i pairs have less than n carets is at most

.rn/i
� n�1P

j D1

rj

�k�i � .rn/i .rn/k�i D .rn/k
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by Lemma 12. Since our k-tuples of tree pairs are unordered, without loss of gener-
ality we can list the ones containing n carets first.

Thus for the total number of k-tuples we have at most

kP
iD1

.rn/k D k.rn/k :

We begin by showing that Zk is present in Specmax
k .F / for all k � 1. We prove

that Z … Specmax
k .F / for k > 1, and conjecture that Zm is not visible in Specmax

k .F /

for k > m. In the proof below, we construct a particular collection of subgroups of F

isomorphic to Zk , all of whose generators have a common form, and show that this
collection of subgroups is visible. Presumably, the actual density of the isomorphism
class of subgroups of F isomorphic to Zk is considerably larger.

Lemma 14 (Specmax
k .F / is nonempty). Zk 2 Specmax

k .F / for all k � 1.

Proof. We let T be the tree consisting of a string of k �1 right carets. We construct a
set of k pairs of trees which generate a subgroup of F isomorphic to Zk as described
in Section 3.2.

We let .Ai ; Bi / be a reduced pair of trees each with n � .k � 1/ carets for i D
1; 2; : : : ; k. We let hi be the pair of trees obtained by taking the pair .T; T / and
attaching Ai to the i -th leaf of the first copy of T , and Bi to the i -th leaf of the second
copy of T . We reduce the tree pair generated in this way (which will be necessary for
i D 1; : : : ; k � 2) to obtain the reduced representative for hi , which we again denote
hi . We note that hk will have n carets in each tree in its pair, so this tuple does lie in
the proper sphere of the stratification. As discussed above, the set fh1; h2; : : : ; hkg
will generate a subgroup of F isomorphic to Zk .

We compute the density of the set of k-tuples of pairs of trees constructed in this
way to be at least

lim
n!1

.rn�kC1/k

k.rn/k
D 1

k
��k2Ck > 0;

using Lemma 6 and the upper bound from Lemma 13. Thus Zk is visible in
Specmax

k .F /.

For example, this shows that the density of Z2 in the set of 2-generator subgroups
is at least 1

2
��2 � 1

500
.

We now show that a subgroup H of F cannot appear in Specmax
k .F / for values of

k smaller than the rank of the abelianization Hab.

Lemma 15 (Abelianization). We let H be a subgroup of F , and let n be the rank of
the abelianization Hab of H . Then H … Specmax

k .F / for k < n.

Proof. Since the rank of Hab is n, we know that H cannot be generated with fewer
than n elements. Thus H cannot be visible in Specmax

k .F / for k < n.
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Aside from straightforward obstructions like the group rank and the rank of the
abelianization, it is not clear what determines the presence of an isomorphism class of
subgroup in a given spectrum. In general, it is difficult to show that an isomorphism
class of subgroup is not present in a particular spectrum. This is because it can
be difficult to systematically describe all possible ways of generating a subgroup
isomorphic to a given one. However, in the case of Z, we can show that Z is not
present in the k-spectrum for k � 2. This highlights a major difference between
the composition of Specsum

k .F / and Specmax
k .F /, since Z appears in all spectra with

respect to the sum stratification. As a subgroup of F with a single generator is either
the identity or infinite cyclic, it follows that Specmax

1 .F / contains only Z.

5.1. Showing that the sum and max spectra are different. The goal of this section
is to prove the following theorem.

Theorem 16 (Z not visible). With respect to the max stratification, the spectrum
Specmax

1 .F / D fZg and for any k � 2, we have that Z … Specmax
k .F /.

The essence of this proof is that if k group elements generate a subgroup iso-
morphic to Z, then they must all be powers of a common element. Thus we make
precise the notion that counting the number of k-tuples which generate a subgroup
isomorphic to Z is, up to a polynomial factor, the same problem as choosing a single
reduced tree pair as the generator of the subgroup.

We begin with some elementary lemmas relating the slope of the first non-identity
linear piece of a nontrivial element f 2 F and the number of carets in the reduced
tree pair diagram representing that element.

Lemma 17. If f 2 F has a breakpoint with coordinates . x
2m ; y

2r / where x; y are
odd integers, then the reduced tree pair diagram for f has at least max.m; r/ carets
in each tree.

Proof. In each tree within the tree pair diagram, carets at level k correspond to points
in Œ0; 1� with denominator 2k . The lemma follows.

Lemma 18. Suppose that the first non-identity linear piece of f 2 F has slope 2r

for r ¤ 0. Then the reduced tree pair diagram for f has at least jr j carets.

Proof. Suppose that the first non-identity linear piece of f with slope 2r has endpoints
with coordinates . a

2s ; a
2s / and . b

2x ; c
2y / where a is either zero or an odd integer and b

and c are odd integers. We easily see that

2r D
c

2y � a
2s

b
2x � a

2s

:
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Factoring out the highest power of 2 possible from the denominator and the numerator
of this fraction, and letting m1 D min.s; x/ and m2 D min.s; y/, we obtain

1
2m1

. c
2y�m1

� a
2s�m1

/
1

2m2
. c

2y�m2
� a

2s�m2
/

D 2m2

2m1
A D 2r ;

where no additional powers of 2 can be factored out of the A part of this expression.
Thus we see that one of m1; m2 must be at least jr j, and thus it follows from Lemma 17
that the tree pair diagram for f has at least jr j carets.

We will use the coordinates of the first breakpoint to vastly overcount the number
of pairs of tree pair diagrams that we are considering. However, even this vast
overcounting will work for the final argument. We also need the following elementary
lemma that follows from Lemma 18.

Lemma 19. Let f 2 F have a reduced tree pair diagram with n carets. Then f

does not have an m-th root for m > n.

Proof. Suppose that f has an m-th root h for some m > n. If f is the identity on
Œ0; "�, then any root or power of f will be the identity on this interval as well. Let the
slope of the first non-identity linear piece of h be 2r for r ¤ 0, and have left endpoint
˛ D . a

2s ; a
2s / for a D 0 or a odd. Then the slope of hm near ˛ is 2rm and jrmj > n

since m > n. Thus it follows from Lemma 18 that the tree pair diagram for f D hm

has more than n carets, a contradiction.

The proof of Theorem 16 is divided into the following three lemmas. Note that
Lemma 21 is a special case of Lemma 22, but is included to illustrate the ideas
involved.

Lemma 20. With respect to the max stratification, the spectrum Specmax
1 .F / D fZg.

Proof. It follows from Lemma 14 that Z 2 Specmax
1 .F /. The only other possible

candidate for a subgroup isomorphism class in Specmax
1 .F / is that of the identity, and

the only reduced tree pair diagram representing the identity is of size 1. The number
of reduced tree pairs representing the identity is 0 for size n > 1, and thus the density
of the isomorphism class of the identity subgroup when k D 1 is 0. We conclude that
Specmax

1 .F / D fZg.

To see that Z … Specmax
k .F / for any k � 2, we begin by overcounting the number

of k-tuples of elements which can generate a subgroup isomorphic to Z.

Lemma 21. For a fixed n > 1, there are at most .2nC1/.nC1/rn distinct unordered
pairs of elements f; g 2 F so that

(1) the number of carets in each tree pair diagram is at most n,
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(2) the number of carets in at least one tree pair diagram is equal to n, and

(3) hf; gi Š Z.

Proof. Since hf; gi Š Z we know that f and g are powers of a common element.
Note that this includes the case where this common element is either f or g. By
assumption, one of f and g has n carets in its tree pair diagram; without loss of
generality we assume that it is f . Thus there are rn choices for f .

From Lemma 19 we know that f may have m-th roots for 0 � m � n. It follows
from [4], Theorem 4.15 that if f 2 F has an m-th root, then that root is unique.
Denote the possible roots of f by q0, q1, …, qj for 0 � j � n. Note that we are
including f itself as the 0-th root. We also know that g must be a power of one of
those (at most) nC1 possible roots, so there is an i so that g D qa

i for some integer a.
Since g has at most n carets in its tree pair diagram, it follows from Lemma 18 that
this exponent a is at most n in absolute value. To see this, let .x; x/ be the first
breakpoint of f so that the slope of the linear piece following .x; x/ is 2˛ for ˛ ¤ 0.
Then it is easy to see that the slope to the right of .x; x/ in f k is 2k˛ and the statement
then follows from Lemma 18. Thus there are 2n C 1 choices for the exponent a so
that ha D g since jaj � n. In total, the number of ways we can construct a pair of
this form is at most .2n C 1/.n C 1/rn. Again, this count includes many pairs of
elements that do not satisfy the requirements of the proposition, but all elements that
do satisfy those conditions are counted in this argument.

Lemma 22. For a fixed n > 1, there are at most .2n C 1/k�1.n C 1/rn distinct
unordered k-tuples of elements f1; f2; : : : ; fk 2 F so that

(1) the number of carets in each tree pair diagram is at most n,

(2) the number of carets in at least one tree pair diagram is equal to n, and

(3) hf1; f2; : : : ; fki Š Z.

Proof. The argument follows the proof of Lemma 21. There must be some element h

which generates this copy of Z, that is, all fi are powers of this element h. Suppose
without loss of generality that f1 has n carets in its tree pair diagram. Then f1 may
have m-th roots for 0 � m � n, which we denote q0, q1, …, qj for 0 � j � n. The
same reasoning shows that there is some l with 0 � l � n so that for each i we must
have fi D q

el

l
, with jej j � n, where the latter inequality follows from Lemma 18.

We then see that the number of such k-tuples satisfying the conditions of the lemma
is at most .2n C 1/k�1.n C 1/rn.

We now finish the proof of Theorem 16.

Proof of Theorem 16. For k � 2 we see that the density of k-tuples of pairs of trees
which generate a subgroup isomorphic to Z is at most

lim
n!1

.2n C 1/kC1.n C 1/rn

1
kŠ

.rn/k
D 0;
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using the bound on the size of the n-sphere in the max stratification given in Lemma 13
as well as the upper bounds proven in Lemmas 21 and 22. The first statement in the
theorem follows from Lemma 20 and the second from the above limit.

We note that this approach does not appear to generalize to show that Zm is not
visible in Specmax

k .F / for k > m, as it is difficult to recognize when a collection of
tree pair diagrams generates a subgroup isomorphic to Zm for m � 2.

5.2. Further results for the max spectrum. Apart from Specmax
1 .F /, it seems

quite difficult to compute the complete list of subgroups which appear in Specmax
k .F /.

Indeed, ignoring any consideration of densities, a complete list of even the 2-generated
subgroups of F is not known (see [8] Problem 2.4). For k D 2 we can say the
following.

Proposition 23 (2-spectrum of F ). Let H D hh1; h2i be a subgroup of F . Then
either H or H � Z lies in Specmax

2 .F /. If Hab Š Z ˚ Z, then H 2 Specmax
2 .F /,

otherwise H � Z 2 Specmax
2 .F /.

Proof. We may assume, quoting Lemmas 8 and 9 that if H D hh1; h2i that

� h1 … ŒF; F �,
� when h1 is expressed as a word in x0 and x1, the exponent sum of all the instances

of x0 is not equal to 0, and
� when h2 is expressed as a word in x0 and x1, the exponent sum of all the instances

of x0 is equal to 0.

As tree pair diagrams, we use the notation hi D .Si ; Ti /.
We create a new set of generators k1 D .X1; Y1/ and k2 D .X2; Y2/ for a two

generator subgroup of F as follows. We let T be the tree consisting entirely of two
right carets, whose leaves are numbered 1, 2 and 3, and let .A; B/ and .C; D/ be
arbitrary reduced pairs of trees so that .A; B/ has n � N.h1/ � 2 carets in each tree
and .C; D/ has n � N.h2/ � 2 carets in each tree. We construct X1 by attaching S1

to leaf 1 of T and A to leaf 2 of T . We construct Y1 by attaching T1 to leaf 1 of T

and B to leaf 2 of T . We construct X2 by attaching S2 to leaf 1 of T and C to leaf 3

of T . We construct Y2 by attaching T2 to leaf 1 of T and D to leaf 3 of T , as in
Figure 9. Note that each tree has size n, and we assume without loss of generality
that n > maxfN.hi /g C 4 so that the trees A; B; C and D each have at least two
carets.

One may easily verify that k1 and k2 generate a subgroup of the standard F � F

subgroup in which the subgroup you obtain on the first factor of F is simply H . Also,
t D .A; B/ and s D .C; D/ each generate a copy of Z in the second factor of F � F

provided that neither tree pair diagram represents the identity. Let K Š hk1; k2i.
Then by construction, K 	 H � Z2, where the first Z is generated by t D .A; B/

and the second by s D .C; D/.
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TS 11

BA DC

TS2 2

Figure 9. Constructing the tree pairs k1; k2 which generate a subgroup of H � Z.

We first show that the set of subgroups K constructed in this way is visible in
Specmax

2 .F /, and then we discuss of what isomorphism class of subgroups we have
constructed using these elements. By Lemmas 13 and 6 the density of pairs of tree
pair diagrams constructed in this way is at least

lim
n!1

.rn�N.h1/�2/.rn�N.h2/�2/

2.rn/2
D 1

2
��N.h1/�N.h2/�4 > 0

We claim that K is either isomorphic to H or to H � Z. Use the coordinates
.w; ta; sb/ on H � Z2 where w 2 H . It is easy to see that for every element
h 2 H , there is at least one k 2 K represented by the coordinates .h; ta; sb/ for some
a; b 2 Z. We first show that for each h 2 H , there is a unique second coordinate.
Suppose that w1 D .h; ta; sb/ and w2 D .h; tc ; sd / both lie in K, and thus the
product w1w�1

2 D .id; ta�c ; sb�d / also lies in K. Thus there is some relation � in
H expressed in terms of h1 and h2 so that when we replace hi with ki we obtain the
element .id; ta�c ; sb�d / 2 K. Since the generator t of Z is linked to h1 in k1, and
the t coordinate of .id; ta�c ; sb�d / is not zero, we conclude that in �, the exponent
sum of all instances of the generator h1 is not equal to zero.

Recall that h1 was chosen so that when h1 is expressed as a word in x0 and x1,
the exponent sum of all the instances of x0 is not equal to 0, but h2 does not have this
property. Any relation in H can be written in terms of x0 and x1 to yield a relation
of F , and thus any relation in H must have the total exponent sum of all instances of
x0 equal to 0. By our choice of h1 and h2, we see that a relation of H must have the
exponent sum of all instances of the generator h1 equal to zero. Thus we must have
a D c in our coordinates above.

We have now shown that either K Š H � Z, or K Š H . Suppose next that
Hab Š Z ˚ Z. Then .H � Z/ab Š Z3 and it follows from Lemma 15 that H � Z …
Specmax

2 .F /. In this case we must have K Š H .
Suppose that Hab D Z. In this case, either h2 2 ŒH; H� or hc

1 D hd
2 w for some

non-identity element w 2 ŒH; H� and integers c; d . In either case, there is a relator
of H in which the total exponent sum on the instances of h2 is nonzero. Since the s

coordinate of the second Z factor in H � Z2 is linked to the h2 generator in k2, there
is a way to realize both .h; ta; sb/ and .h; ta; sd / in K with d ¤ b. Thus we must
have K Š H � Z.
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It follows from Proposition 23 that Specmax
2 .F / contains Z2; F; and Z o Z, and

from Theorem 16 that it does not contain Z or fidg.
We have seen above that it can be difficult to ascertain when a particular isomor-

phism class of subgroup is present in a given spectrum. Furthermore, the example
of Z shows that presence in a given spectrum does not necessarily imply presence in
spectra of higher index.

We find that F is a very special two generator subgroup of itself, and exhibits
behavior unlike that of Z. As long as k � 2, we can show that F 2 Specmax

k .F /. We
call this behavior persistence; that is, a subgroup H is persistent if there is an l so
that H 2 Specmax

k .F / for all k � l . In the small set of groups whose spectra have
been previously studied, no subgroups have shown this persistent behavior. As noted
in the introduction, the current known examples of subgroup spectra all find that the
free group Fk is generic in the k-spectrum. In Thompson’s group F we find a wealth
of examples of this persistent behavior. In the previous section, we effectively proved
that every non-trivial finitely generated subgroup of F is persistent with respect to
the sum stratification (Theorem 11). As a corollary of Theorem 24 below and the
techniques in Lemma 14 above, it will follow that F n � Zm and F n o Zm are also
persistent with respect to the max stratification, with l D 2n C m.

Theorem 24 (F is persistent). F lies in Specmax
k .F / for all k � 2.

Proof. Since F can be generated by two elements, and Fab Š Z˚Z, it follows from
Proposition 23 that F 2 Specmax

2 .F /. We now show that F 2 Specmax
k .F / for all

k > 2.
We define k generators h1, h2, …, hk which generate a subgroup of F isomorphic

to F , in such a way that the set of k-tuples pairs of trees of this form is visible. As
reduced tree pair diagrams, we use the notation hi D .Ti ; Si /. We begin by defining
h1 and h2. We let x0 D .Tx0

; Sx0
/ and x1 D .Tx1

; Sx1
/ as tree pair diagrams,

.C1; D1/ any reduced pair of trees with n � 4 carets in each tree and .C2; D2/ any
reduced pair of trees with n � 5 carets in each tree. We let T be the tree with two
right carets, and three leaves numbered 1, 2, 3. We construct h1 and h2 as follows:

� We let T1 be the tree T with Tx0
attached to leaf 1 and C1 attached to leaf 2.

� We let S1 be the tree T with Sx0
attached to leaf 1 and D1 attached to leaf 2.

� We let T2 be the tree T with Tx1
attached to leaf 1 and C2 attached to leaf 3.

� We let S2 be the tree T with Sx1
attached to leaf 1 and D2 attached to leaf 3.

This construction is shown in Figure 10.
For fixed n, let .Ai ; Bi / be any reduced pair of trees with n � 3 carets for i D

3; 4; : : : ; k. Note that there are rn�3 ways to choose each such pair. Construct a
reduced .n � 1/-caret tree pair that represents an element of ŒF; F � by attaching the
pair .Ai ; Bi / to a 2-caret tree as in Figure 7 in Section 3.3. Call this pair .A0

i ; B 0
i /.

We now define hi D .Ti ; Si / for i D 3; 4; : : : ; k as follows:

� let Ti consist of a root caret with A0
i attached to its left leaf, and
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D11C 2D2C BiAi

Figure 10. Constructing the tree pairs h1; h2, and hi generating a subgroup of F � Z2.

� let Si consist of a root caret with B 0
i attached to its left leaf.

The subgroup generated by the fhig is clearly a subgroup of F � Z2, since the
subtrees of the hi which are the left children of the root carets, when taken as inde-
pendent tree pair diagrams, clearly generate a subgroup H which is isomorphic to F ,
as they contain the tree pair diagrams for x0 and x1.

Any relator which is introduced into H by the inclusion of the commutators
.A0

i ; B 0
i / as generators must hold true in F as well. Since all relators of F are

commutators or conjugates of commutators, all relators have exponent sum on all
instances of x0 and x1 equal to zero. Additionally, we know that x0 and x1 are not
commutators themselves. Thus any new relators introduced into H by the inclusion of
the commutators .A0

i ; B 0
i / as generators must also have exponent sum on all instances

of x0 and x1 equal to zero. Using the coordinates .w; ta; sb/ for elements of H , where
w 2 F , t D .C1; D1/ and s D .C2; D2/, the argument given in Proposition 23 goes
through exactly to show that w 2 F has unique second and third coordinates, and
thus H Š F .

To see that the set of k-tuples constructed in this way is visible, note that the
number of ways to construct them is rn�4rn�5.rn�3/k�2. The choices are in the Ci ,
Di trees which generate Z2, and the A0

i , B 0
i trees which are used to construct elements

of ŒF; F �. Thus we compute the density of this set of k-tuples to be at least

lim
n!1

rn�4rn�5.rn�3/k�2

k.rn/k
D 1

k
��4��5.��3/k�2 > 0

by Lemmas 13 and 6.

This proof used two very special properties of the whole group F which are not
generally true for subgroups of F . First, there is an explicit way of characterizing tree
pair diagrams corresponding to elements in the commutator subgroup ŒF; F �, which
allows us to construct commutators containing an arbitrarily large tree pair. Sec-
ond, the relators of F are all commutators themselves, and thus including additional
commutators as generators yields relators with the appropriate exponent sums on x0

and x1. Thus we do not expect this persistent behavior from many other subgroups
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of F . However, we can adapt the ideas used above to prove that if a subgroup H

of F is visible in a particular spectrum, Specmax
k .F /, then both the product H � Z

and the wreath product H o Z are visible in Specmax
kC1.F /. As a corollary of this fact

and Theorem 24, we find that subgroups which contain F as a factor are indeed per-
sistent. We first need the following straightforward lemma about densities of visible
subgroups.

Lemma 25. We let Hk.n/ denote the set of all k-tuples of tree pair diagrams which
generate a subgroup of F isomorphic to H with a maximum of n carets in any pair
of trees such that at least one coordinate realizes this maximum. If a subgroup H is
visible in Specmax

k .F / then

lim
n!1

jHk.n/j
.rn/k

� �k

for some �k 2 .0; 1�.

Proof. We have

lim
n!1

jHk.n/j
.rn/k

� lim
n!1

jHk.n/j
kŠjSphmax

k .n/j
by Lemma 13. Since H is visible this limit equals the density of H with respect to
the max stratification, and is positive, which gives the result.

Proposition 26 (Closure under products). If H 2 Specmax
k .F / then H �Z and H oZ

lie in Specmax
kC1.F /.

Proof. We construct the k C 1 generators necessary to obtain a family of subgroups
of F isomorphic to H � Z in such a way that the set of .k C 1/-tuples of this form
is visible. The techniques are similar to those used above.

We let h1, h2, …, hk be a set of k generators for H . We will construct a set l1, l2,
…, lkC1 of generators for H �Z. We let hi D .T 0

i ; S 0
i / as a reduced pair of trees, and

we must define li D .Ti ; Si /. For i D 1; : : : ; k we let Ti consist of a root caret with
T 0

i as its left subtree, and Si consist of a root caret with S 0
i as its left subtree. We let

.A; B/ be a reduced pair of trees with n � 1 carets. To define lkC1, let TkC1 consist
of a root caret with A as its right subtree, and SkC1 consist of a root caret with B as
its right subtree.

It is clear that the set flig generate a subgroup of F isomorphic to H �Z. We now
show that the set of .k C 1/-tuples constructed in this way is visible in Specmax

kC1.F /.
To compute the density of the set of .k C 1/-tuples constructed in this way which

generate a subgroup of F isomorphic to H � Z, we compute the following limit:

lim
n!1

jHk.n � 1/jrn�1

jSphmax
kC1.n/j � lim

n!1

jHk.n � 1/jrn�1

.k C 1/.rn/kC1
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by Lemma 13

D lim
n!1

1

k C 1

jHk.n � 1/j
.rn/k

rn�1

rn

D lim
n!1

1

k C 1

jHk.n � 1/j
.rn�1/k

.rn�1/k

.rn/k

rn�1

rn

� �k��k�1

k C 1
> 0

by Lemmas 25 and 6.
To see that H o Z lies in Specmax

kC1.F / under the same assumption on H , we
construct slightly different generators, and make an argument analogous to that in
Theorem 24. As above, we let h1, h2, …, hk be a set of k generators for H . We
will construct a set l1, l2, …, lkC1 of generators which will generate a subgroup of
.H o Z/ � Z which we show to be isomorphic to H o Z.

Let Hk.n�3/ be the set of all k-tuples which generate a subgroup of F isomorphic
to H , where at least one tree pair contains n � 3 carets. Let fhi D .T 0

i ; S 0
i /g 2

Hk.n � 3/. Since H is visible in Specmax
k .F /, Lemma 25 implies that

lim
n!1

jHk.n � 3/j
rk

n�3

> 0:

We define li D .Ti ; Si / for i D 1; 2; : : : ; k C 1 as follows. We let T be the tree
with two left carets, and one interior caret attached to the right leaf of the caret which
is not the root. Number the leaves of T by 1, 2, 3, 4. For i D 1; 2; : : : ; k, let Ti be the
tree T with T 0

i attached to leaf 2. We let Si be the tree T with S 0
i attached to leaf 2.

We let .A; B/ be any reduced pair of trees with n � 3 carets. We let x0 D .Tx0
; Sx0

/.
We define lkC1 by taking TkC1 to be a single root caret with Tx0

attached to its left
leaf and A attached to its right leaf. We let SkC1 be a single root caret with Sx0

attached to its left leaf and B attached to its right leaf. See Figure 11.

ii ST 0 0 BA

Figure 11. Constructing the pairs li and lkC1 generating a subgroup of .H o Z/ � Z.

It is clear by the construction of our generators that any element of H o Z can
appear as the pair of left subtrees of the root carets in any element of hhi i. However,
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we must show that hhi i is a subgroup of F isomorphic to H oZ and not to .H oZ/�Z.
To do this, we note that since H o Z is a wreath product, all relators are commutators.
Thus the argument in Theorem 24 can be applied to show that hhi i Š H o Z rather
than .H o Z/ � Z.

We must now show that the set of .k C 1/-tuples generated in this way is visible
in Specmax

kC1.F /. We let Hk.n/ be the set of all k-tuples of tree pair diagrams which
generate a subgroup of F isomorphic to H with a maximum of n carets in any pair of
trees, such that at least one coordinate realizes this maximum. The density of the set
of .k C1/-tuples constructed in this way which generate a subgroup of F isomorphic
to H o Z is computed as follows. We have rn�3 choices for the pair .A; B/, and
jH.n � 3/j is the number of .T 0

i ; S 0
i / generating sets for H with a maximum of n � 3

carets in some pair. So together the density is

lim
n!1

jH.n � 3/jrn�3

jSphmax
kC1.n/j � lim

n!1

1

k C 1

jH.n � 3/jrn�3

.rn/krn

� lim
n!1

1

k C 1

jH.n � 3/j
.rn�3/k

.rn�3/k

.rn/k

rn�3

rn

D 1

k C 1
�k��3k�3 > 0

by Lemmas 25 and 6.

This proposition combined with Theorem 24 allows us to find many isomorphism
classes of subgroups in Specmax

k .F / for the appropriate value of k.

� The l-fold iterated wreath product of Z with itself Z o � � � o Z lies in Specmax
l .F /.

� If H is a persistent subgroup present in Specmax
k .F / for k � l , then H � Z and

H o Z are persistent subgroups present in Specmax
k .F / for k � l C 1.

� For n � 1, m � 0 and for all k � 2n C m, we have that F n � Zm lies in
Specmax

k .F /. This shows that it is possible to have a subgroup H of F so that
both H and H � Z are contained in the Specmax

k .F / for the same value of k; we
can take H D F n � Zm and k > 2m C n.

� F n o Z lies in Specmax
k .F / for n � 1 for all k � 2n C 1.

More generally, we can see that persistent subgroups can “absorb” visible sub-
groups to form new persistent subgroups.

Theorem 27 (Products with persistent subgroups are persistent). If H is a subgroup
which is present in Specmax

k .F / and K is a persistent subgroup which is present in
Specmax

l .F / for l � l0, then H � K is persistent and present in Specmax
l .F / for

l � l0 C k.

Proof. Let Hk.n/ denote the set of all k-tuples of tree pair diagrams which generate
a subgroup of F isomorphic to H with a realized maximum of n carets in some
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coordinate. Since H 2 Specmax
k .F / we know from Lemma 25 that

lim
n!1

jHk.n/j
.rn/k

� �k

for some �k 2 .0; 1�.
Let Kl.n/ denote the set of all l-tuples of tree pair diagrams which generate

a subgroup of F isomorphic to K with a realized maximum of n carets in some
coordinate. Since K is persistent, we know that for any l � l0, the limit

lim
n!1

jKl.n/j
.rn/l

� �l

for some �l 2 .0; 1�.
Let m D k C l for any l � l0. Form a generating set ft1; t2; : : : ; tmg, where

ti D .Ti ; Si /, for H � K as follows. Take any k-tuple ı 2 Hk.n/, where ıi 2 ı is
represented by the pair of trees .T ı

i ; Sı
i /. Take any l-tuple 	 2 Kl.n/, where 	j 2 	

is represented by the pair of trees .T
�

j ; S
�
j /.

� For 1 � i � k, let Ti consist of a root caret with left subtree T ı
i , and let Si

consist of a root caret with left subtree Sı
i .

� For k C 1 � i � m, let Ti consist of a root caret with right subtree T
�
i , and let

Si consist of a root caret with right subtree S
�
i .

This set of tree pairs generates a subgroup of F � F isomorphic to H � K. A lower
bound on the density of the isomorphism class of H � K is given by the following
positive valued limit:

lim
n!1

jHk.n/jjKl.n/j
rkCl

n

D lim
n!1

jHk.n/j
rk

n

jKl.n/j
r l

n

� �k�l > 0:

Thus, our analysis shows that the following subgroups are present in the k-
spectrum with respect to the max stratification:

� the persistent subgroups F , F � F , …F n for 2n � k;
� the persistent subgroups F n � Zm, for 2n C m � k; n � 1;
� the persistent subgroups F n o Z for 2n C 1 � k; n � 1;
� the abelian subgroup Zk and the k-fold iterated wreath product of Z with itself;
� the mixed direct and wreath products of Z with itself with k terms, including

for example Zk�1 o Z and .Z o Z o Z/ � Zk�3;
� various mixed direct and wreath products with Z such as .F 2 � Z3/ o Z � Z

which, for example, is present in all k � 9.

While the isomorphism classes of subgroups described above occur with positive
densities in Specmax

k .F / for appropriate k, the lower bounds on their densities are very
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small. In fact, the lower bound on the sum of the densities of all of these isomorphism
classes of subgroups amounts to much less than 1% of all isomorphism classes of
subgroups in Specmax

k .F /.
We conclude with an open question about the isomorphism type of a random

subgroup of the other Thompson’s groups T and V . Although these groups contain
F as a proper subgroup, unlike F they also contain free subgroups or rank 2 and
above. What is the density of the set of free subgroups of a given rank within
Speck.T /? Within Speck.V /? Are these groups like F in that their subgroup spectra
contain many isomorphism classes, or does one find a generic isomorphism class of
subgroup in Speck.T / and Speck.V /?
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