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Equivariant bundles and isotropy representations
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Abstract. We introduce a new construction, the isotropy groupoid, to organize the orbit data
for split �-spaces. We show that equivariant principal G-bundles over split �-CW complexes
X can be effectively classified by means of representations of their isotropy groupoids. For
instance, if the quotient complexA D �nX is a graph, with all edge stabilizers toral subgroups
of � , we obtain a purely combinatorial classification of bundles with structural group G a
compact connected Lie group. IfG is abelian, our approach gives combinatorial and geometric
descriptions of some results of Lashof–May–Segal [18] and Goresky–Kottwitz–MacPherson
[10].

Mathematics Subject Classification (2010). 55R91, 55R15; 22A22.

Keywords. Equivariant bundles.

Introduction

In this paper we continue our study of equivariant principal bundles via isotropy
representations (see [13]). If � and G are topological groups, then a �-equivariant
principalG-bundle is a locally trivial, principalG-bundlep W E ! X such thatE and
X are left �-spaces. The projection map p is �-equivariant and �.e � g/ D .�e/ � g,
where � 2 � and g 2 G acts on e 2 E by the principal action. Equivariant principal
bundles, and their natural generalizations, were studied by T. E. Stewart [25], T. tom
Dieck [26], [27], I (8.7), R. Lashof [15], [16] together with P. May [17] and G. Segal
[18].

The isotropy representation at a point x 2 X is the homomorphism ˛x W �x ! G

defined by the formula
� � Qx D Qx � ˛x.�/

where Qx 2 p�1.x/. The homomorphism ˛x is independent of the choice of Qx up to
conjugation in G. Here �x denotes the isotropy subgroup or stabilizer of x 2 X .

The use of isotropy representations is particularly effective when the projection
� W X ! �nX ��!� A has a section ' W A ! X . We call the triple .X; �; '/ a
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split �-space over A. A natural source of examples is symplectic toric manifolds
(see (4.8)), where A is the moment polytope. Under reasonable assumptions, a split
�-space over A is uniquely determined by its isotropy groupoid

� ´ f.�; a/ 2 � � A j � 2 �'.a/g

(see Proposition 2.1). A �-equivariant principal G-bundle � ´ .E
p�! X/ is called

split if the pull-back '�.�/ is a trivial bundle. The isotropy representations of � then
produce a continuous groupoid representation of � in G which is well defined up to
conjugation by Map.A;G/. We denote by

RepG.�/ D Hom.�; G/=Map.A;G/

the space of conjugacy classes of such groupoid representations. The first part of this
paper is devoted to proving the following general classification theorem.

Theorem A. Suppose that � and G are compact Lie groups. Let X be split �-space
over A with isotropy groupoid �. Assume that A is locally compact, and that � is
locally maximal. Then the equivalence classes of split �-equivariantG-bundles over
X are in bijection with RepG.�/.

The relevant definitions are given in Section 3: see § 3A for equivariant bundles,
§ 3B for the notion of a locally maximal isotropy groupoid, and the proof of TheoremA
is given in § 3C. In our applications we will assume that X is a �-CW-complex,
equipped with a splitting ' W A ! X such that �'.a/ is constant on each open cell
of its quotient CW-complex A. This property doesn’t always hold (see Remark 4.2),
but it seems a natural assumption. We call the resulting isotropy groupoids cellular
(see § 4A). A cellular groupoid is a combinatorial object and, when � is discrete,
it is a particular case of a developable simple complex of groups as considered by
M. Bridson and A. Haefliger [4]. Cellular groupoids whose stalks �a are compact
Lie groups are called proper groupoids. They arise from proper actions of a Lie
group � , as studied for example in [20] for � discrete. In Theorem 4.5 we extend
Theorem A to the classification of split �-equivariant bundles over a proper groupoid.

In a second part of this paper, we describe some approaches to computing RepG.�/

assuming � is cellular. There is a corresponding notion of cellular representations,
meaning those which are constant on the open cells ofA, whose classes modulo con-
jugation by a fixed element ofG form a set denoted by RepG

cell.�/ (see § 5A). The cel-
lular representations are also purely combinatorial, and forA a regular CW-complex,
RepG

cell.�/ is determined by restriction to the 0-skeleton of A (see Proposition 5.1).
We consider Theorem A to be an effective method of classifying equivariant bundles
whenever RepG.�/ can be reduced to RepG

cell.�/. We therefore study the natural map
RepG

cell.�/ ! RepG.�/, which turns out to be injective (Proposition 5.18) but not
surjective in general (see (5.21)). It is however bijective when G is compact abelian
(Proposition 5.3), or when A is a tree (Proposition 5.20).
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We next consider the case where A is a graph. Here it is useful to define a related
object RepG

cell.�/, by allowing conjugation of cellular homomorphisms over each
cell of A independently. It turns out that there exists a natural map { W RepG.�/ !
RepG

cell.�/. In Theorem 5.11, we study this map for G a compact connected Lie
group. A sample application of Theorem 5.11 is given by the following:

Theorem B. Let � and G be a compact Lie groups, with G connected, and suppose
thatA is a graph. If � is a cellular groupoid with all edge stabilizers torus subgroups
of � , then the map { W RepG.�/ ! RepG

cell.�/ is a bijection.

Recall that there exists a classifying space B.�;G/ for �-equivariant principal
G-bundle [26], so the classification of equivariant bundles in particular cases can
also be approached by studying the �-equivariant homotopy type of B.�;G/. If the
structural group G of the bundle is abelian, then the main result of Lashof, May
and Segal [18] states that equivariant bundles over a �-space X are classified by
the ordinary homotopy classes of maps ŒX �� E�;BG�. For non-abelian structural
groups, it appears that the natural map � W ŒX; B.�;G/�� ! ŒX �� E�;BG� misses
a lot of information, and our results could be interpreted as studying ��1.•/.

Our isotropy groupoid � has a classifying space B� constructed by Haefliger
[12], p. 140. We observe that B� ' X �� E� when � is cellular. In our language,
the result of [18] implies that the natural mapB W RepG.�/ ! ŒB�; BG� is injective
for G compact abelian. More generally, we show in Corollary 6.4:

Theorem C. Let G and � be compact Lie groups, with G abelian. Let X be a split
�-space over A with cellular isotropy groupoid �. Suppose that H 1.AI�0.G// D
H 2.AI Z/ D 0. Then the map B W RepG.�/ ! ŒB�; BG� is a bijection.

In 6.5 we point out the connection between our classification results and equiv-
ariant K-theory. Finally, in 6.7, we compare our results with some classical theo-
rems in equivariant cohomology, due to Chang–Skjelbred [5] and Goresky–Kottwitz–
MacPherson [10].

1. Preliminaries

Most of this section contains folklore facts about compact Lie groups. Let K and
G be topological groups. We denote by Hom.K;G/ the space of continuous homo-
morphisms from K to G, endowed with the compact-open topology. Two homo-
morphisms ˛1; ˛2 2 Hom.K;G/ are called conjugate if there exists g 2 G such
that ˛2.�/ D g�1˛1.�/g for all � 2 K. We denote by Hom.K;G/ the space of
conjugacy classes, endowed with the quotient topology.

Lemma 1.1. Let K and G be compact Lie groups. Then the space Hom.K;G/ is
totally disconnected.
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Proof. A bi-invariant Riemannian metric on G gives rise to a bi-invariant distance d
on G. The uniform convergence distance on Hom.K;G/,

d.˛; ˇ/ D max
k2K

d.˛.k/; ˇ.k//;

induces the compact-open topology. Let us denote by N̨ ; Ň 2 Hom.K;G/ the conju-
gacy classes of ˛ and ˇ. One checks that the formula

Nd. N̨ ; Ň/ D min
g2G

d.g˛g�1; ˇ/ D min
g;h2G

d.g˛g�1; hˇh�1/

defines a distance on Hom.K;G/. Because Nd. N̨ ; Ň/ � d.˛; ˇ/, the projection
p W .Hom.K;G/; d/ ! .Hom.K;G/; Nd/ is continuous, so the quotient topology
on Hom.K;G/ is finer than the metric topology (one can check that they are equal,
but we shall not use that).

The space Hom.K;G/ has at most countably many points [2], Prop. 10.14. There-
fore, the set D D fd.a; b/ j a; b 2 Hom.K;G/g is at most countable. Let
a; b 2 Hom.K;G/ with a ¤ b. There exists � 2 R with 0 < � < Nd.a; b/ and
� … D . The space Hom.K;G/ is then the disjoint union of fx j Nd.a; x/ < �g and
fx j Nd.a; x/ > �g. These are non-empty open sets for the topology induced by Nd
and then for the quotient topology. This proves that any subspace of Hom.K;G/
containing more than one point is not connected.

Lemma 1.2. LetK and G be compact Lie groups. Let B be a space homeomorphic
to a compact disk and let b 2 B . Let x 7! ˇx be a continuous map from B to
Hom.K;G/. Then there is a continuous x 7! gx from B to G with gb D 1 such that
ˇx.�/ D g�1

x ˇb.�/gx for all � 2 K and all x 2 B .

Proof. If B is of dimension n, then, by a pointed homeomorphism, one can replace
the pair .B; b/ by .Œ0; 1�n; 0/ if b lies in the boundary of B , or by .Œ�1; 1�n; 0/
otherwise. By Lemma 1.1, ˇx stays for all x in the same conjugacy class O of
Hom.K;G/. As seen in the proof of Lemma 1.1, the space Hom.K;G/ is metric,
therefore Hausdorff. Therefore, O is compact. AsG is compact, the map p W G ! O

given by g 7! gˇ0g
�1 can then be identified with a principal bundle whose structure

group is the centraliser Z.ˇ0.K//, which is a closed subgroup ofG. Lemma 1.2 then
follows from the a recursive use of the homotopy lifting property.

Lemma 1.3. Let K be a compact abelian Lie group. Denote by K1 the connected
component of the unit element 1 2 K. Then there is a bicontinuous isomorphism
K1 � �0.K/ ��!� K.

Proof. AsK is abelian, it suffices to construct a homomorphic section of the projec-
tionK ! �0.K/. As�0.K/ is finite, one can reduce to the case where�0.K/ D C is
a cyclic group of orderm. Let c 2 C be a generator and choose Qc 2 K representing c.
Then Qcm is in K1 and there exists � 2 K1 such that �m D Qcm. The map 	 W C ! G

defined by 	.ck/ D Qck��k is a homomorphic section of the projectionK ! C .
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1.4. Spaces over A. Let f W X ! A be a continuous map between topological
spaces. This enables us to consider X as a “space over A”. For a 2 A, the stalk
over a is Xa D f �1.a/. Any subspace Y of B �A is seen as a space over A via the
projection onto A restricted to Y .

2. Split � -spaces

LetA be a topological space and� be a topological group. A�-space is a topological
space equipped with a continuous left action of � . If X is a �-space and x 2 X , we
denote by �x the stabiliser of x.

A split �-space over A is a triple .X; �; '/ where

(i) X is a �-space.
(ii) � W X ! A is a continuous surjective map and, for each a 2 A, the preimage

��1.a/ is a single orbit.
(iii) ' W A ! X is a continuous section of �

The maps � and ' may omitted from the notation and we might speak of a
split �-space X over A. By (ii), the map � descends to N� W �nX ! A which is a
homeomorphism (its continuous inverse is provided by the section '). The map �
may thus be identified with the projection of X onto the orbit space �nX .

A .�; A/-groupoid is a subspace � � � �A such that, for each a 2 A, the space
�a D � \ .� � fag/ is of the form Q�a � fag, where Q�a is a closed subgroup of � .
We consider �a as a topological group, naturally isomorphic to the closed subgroup
Q�a of � . We will often identify these two groups, and write, for instance, �a D �b

when we mean Q�a D Q�b . The space � is regarded as a topological groupoid whose
space of objects isA: if a; b 2 A, the space of morphisms from a to b is empty when
a ¤ b and is equal to �a otherwise.

Let � be a .�; A/-groupoid. A (left) action of � on a topological space W is a
continuous map ˇ W � �W ! W such that, for each a 2 A, the restriction of ˇ to
�a � W is an action of �a on W . The notation 
 � w is used for ˇ.
; w/. A right
action is defined accordingly, as a continuous map from W � � to W . When � acts
on the right on a space V and on the left on a space W , we define the quotient space

V �� W D .V �W /=�;
where “�” is the smallest equivalence relation such that .v � 
; w/ � .v; 
 �w/ for all

 2 �. If W is a space over A, then V �� W is a space over A as well. The stalk
over a is then V ��a

Wa.
Let .X; �; '/ be a split �-space over A. Its isotropy groupoid is the .�; A/-

groupoid defined by

�.X/ D �.X; �; '/ ´ f.�; a/ 2 � � A j � 2 �'.a/g:
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A .�; A/-groupoid � is called weakly locally maximal if each point a 2 A admits
a neighbourhood U such that �u is a subgroup of �a for all u 2 U . A space X is
called locally compact if it is Hausdorff and if every point of X admits a compact
neighbourhood. The main result of this section is the following proposition.

Proposition 2.1 (Reconstruction). Let � be a compact topological group and A be
a locally compact space. Let � be a weakly locally maximal .�; A/-groupoid. Then
the following properties hold.

(i) There is a split �-space .Y�;…; �/ over A with isotropy groupoid �; the space
Y� is locally compact.

(ii) Let .X; �; '/ and .X 0; � 0; '0/ be two split �-spaces overA with isotropy group-
oid �. Suppose that X and X 0 are locally compact. Then there is a unique
�-equivariant homeomorphism F W X ! X 0 such that '0 D F B '.

Proposition 2.1 permits us to speak about the split �-space over A with isotropy
groupoid � (as we speak about the real number field instead of a real number field).
The triple .Y�;…; �/ constructed for the proof of (i) is an explicit model for this space,
but other models also occur naturally, as will be seen in examples.

Proof of Proposition 2.1. The groupoid � acts by multiplication on the right on � .
We let it act trivially on the left on A and form the space

Y� D � �� A:

The projection � � A ! A descends to a continuous surjective map … W Y� ! A.
The section � W A ! Y� is defined by �.a/ D Œ1; a�, where 1 is the unit element in
� . The �-action ˇ � .�; x/ D .ˇ�; x/ on � � A descends to a �-action on Y� . The
stalk …

�1.a/ is the orbit through �.a/ and ��.a/ D �a. Thus, .Y�;…; �/ is a split
�-space over A with isotropy groupoid �.

To prove that Y� is Hausdorff, let x and y be two distinct points in Y� . Let us show
that they admit disjoint neighbourhoods. If �.x/ ¤ �.y/, this is obvious since A is
Hausdorff. In the case �.x/ D �.y/ D a, let U be a neighbourhood of a for which
�b is a subgroup of �a for all b 2 U . Then …

�1.U / is a neighbourhood of fx; yg and
there is a continuous map f W …

�1.U / ! .��.a/n�/�U such that f .x/ ¤ f .y/. As
��.a/ D �a is a closed subgroup of� , the space .��.a/n�/�U is Hausdorff and then
x and y admit disjoint neighbourhoods. Observe that the proof that Y� is Hausdorff
uses only that � and A are Hausdorff and that � is weakly locally maximal.

Let x 2 Y� . As A is locally compact, ….x/ admits a compact neighbourhood V
in A. Then …�1.V / is a neighbourhood of x and is the continuous image of � � V
under the natural projection � �A ! Y� . As � �V is compact and Y� is Hausdorff,
…

�1.V / is compact. This shows that Y� is locally compact and finishes the proof
of (i).

Let us prove (ii), starting with uniqueness. Let F1; F2 W X ! X 0 be two �-
equivariant isomorphisms satisfyingF1B' D F2B'. ThenF1 D F2 by equivariance,
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since '.A/ is a fundamental domain for the �-action. Now, let .X; �; '/ be a split
�-space with isotropy groupoid �. The map zF W � � A ! X defined by zF .�; a/ D
� � '.a/ is continuous, �-equivariant and surjective. It descends to a �-equivariant
continuous bijection F W Y� ! X . Observe that zF is proper, that is zF �1.K/ is
compact for all compact subsets K in X . Indeed, zF �1.K/ is a closed subset of
� � �.K/ which is compact. Since Y� is Hausdorff, the map F is proper as well.
A proper continuous bijection between locally compact spaces is a homeomorphism,
which proves (b).

Remark 2.2. If in Proposition 2.1 we only assume that � is locally compact, the
space Y� constructed for the proof of (i) might not be locally compact. As an example,
take A D Œ0; 1�, �a trivial for a < 1 and �1 D � . Then Y� is the cone on � , which
is not locally compact if � is not compact. Moreover, the uniqueness also fails in
this case. Let � D Z. Then the cone V on the real integers in the complex plane,
with vertex i say, and the induced metric, is a split �-space with isotropy groupoid
�. The proof of Proposition 2.1 provides a �-equivariant continuous bijection from
the Y� onto V but it is not a homeomorphism (a set containing one point in the
interior of each segment would be closed in Y� , even if it contains a subsequence
converging to the vertex i ). A version of Proposition 2.1 with � non-compact is
given in Proposition 4.3.

A stronger local maximality condition will play a role in Section 3. A .�; A/-
groupoid � is called locally maximal if, for each point a 2 A and each neighbourhood
B ofa, there exists an open setU ofA, witha 2 U � B , and a homotopy �t W U ! U

(t 2 Œ0; 1�) satisfying �0.u/ D u, �1.u/ D a and �u � ��t .u/ for all u 2 U and
t 2 Œ0; 1�. The neighbourhood U is then contractible. Locally maximal implies
weakly locally maximal.

Lemma 2.3. Let � be a compact topological group and A be a locally compact
space. Let � be a locally maximal .�; A/-groupoid. Let .X; �; '/ be a split �-space
over A with isotropy groupoid � and let x 2 X . Then there is a �-equivariant open
neighbourhood yU of the orbit�x and a�-equivariant O�t W yU ! yU such that O�0 D id
and O�1. yU/ D � � x. Moreover, O�t satisfies � B O�t D �t B � and ' B �t D O�t B '.

Proof. By Proposition 2.1, one may suppose that .X; �; '/ D .Y�;…; �/. Let a D
….x/ and let �t W U ! U be a homotopy from an open neighbourhood U of A to
itself, such that �0.u/ D u, �1.u/ D a and �u � ��t .u/ for all u 2 U . Let yU D
…

�1.U /. We check that the required homotopy O�t can be defined by O�t .Œ�; u�/ ´
Œ�; �t .u/�.

Let � be a .�; A/-groupoid and let �0 be a .� 0; A0/-groupoid. A morphism of
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groupoids from � to �0 is a commutative diagram

�

��

f �� �0

��
A

Nf �� A0

where f and Nf are continuous maps such that, for each a 2 A, the restriction of f
to �a is a homomorphism fa W �a ! �0 Nf .a/

. The map Nf is not mentioned when it is

obvious, like an inclusion or a constant map.

3. Split equivariant principal bundles

§ 3A. Definitions. LetG be a topological group andX be a topological space. By a
G-principal bundle � overX , we mean, as usual, a continuous surjection p W E ! X

from a space E D E.�/ and a free right action E �G ! E so that p.z � g/ D p.z/,

with the standard local triviality condition. TwoG-principal bundles � W E p�! X and

�0 W E 0 p0

�! X overX are isomorphic if there exists aG-homeomorphism f W E ! E 0
such thatp0Bf D p. Isomorphism classes ofG-principal bundles overX are denoted
by BunG.X/.

Let X be a �-space for a topological group � . A G-principal bundle � W E p�! X

is called a �-equivariant principal G-bundle if it is given a left action � � E ! E

commuting with the free right action of G and such that the projection p is �-
equivariant. Two�-equivariant principalG-bundles � and �0 are called�-isomorphic
(or just isomorphic) if there exists a G-homeomorphism from E.�/ to E.�0/ over
the identity of X which is �-equivariant. The set of �-isomorphism classes of �-
equivariantG-principal bundles overX is denoted by BunG

� .X/. There is a forgetful
map BunG

� .X/ ! BunG.X/.
Let .X; �; '/ is a split �-space over A with isotropy groupoid �. Let 
 be a �-

equivariant principal G-bundle over X . We say that 
 is split if the induced bundle
'�
 is trivial. For instance, any �-equivariant principal G-bundle is split when A is
contractible and paracompact, which is the case in many examples of Section § 4B.
Two split �-equivariant principal G-bundles over .X; �; '/ are isomorphic if they
are isomorphic just as �-equivariant principalG-bundles over X . The set of isomor-
phism classes of �-equivariant splitG-principal bundles over .X; �; '/ is denoted by
SBunG

� .X; �; '/ or simply by SBunG
� .X/. It is a subset of BunG

� .X/.

§ 3B. The isotropy representation. Let � be a .�; A/-groupoid and G be a topo-
logical group. A continuous representation of � toG is a continuous map ˛ W � ! G

such that, for all a 2 A, the restriction ˛a of ˛ to �a is a homomorphism (it is thus
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a morphism of groupoids between � and the .pt; G/-groupoid G ! pt ). Two con-
tinuous representations ˛1 and ˛2 are called conjugate if there exists a continuous
map  W A ! G such that ˛2.
/ D  .�2.
//

�1˛1.
/ .�2.
// for all 
 2 �, where
�2 W � ! A is the second factor projection.

A continuous representation of ˛ W � ! G is called locally maximal if each point
a 2 A admits a neighbourhood U such that �u is a subgroup of �a for all u 2 U ,
together with a continuous map g W U ! G such that ˛u.�/ D g.u/˛a.�/g.u/

�1

for all u 2 U and all � 2 �u. This implies that � is weakly locally maximal. It is
easy to see that, if ˛; ˇ W � ! G are two conjugate representations of �, then ˇ is
locally maximal if and only if ˛ is weakly locally maximal. We denote by RepG.�/

the set of conjugacy classes of locally maximal continuous representations of �.

Let .X; �; '/ be a split �-space overAwith isotropy groupoid �. Let � W E p�! X

be a split �-equivariant G-principal bundle over X . As '�� is trivial, there exists a
continuous lifting Q' W A ! E of '. The equation

� � Q'.a/ D Q'.a/ Q̨a.�/; (1)

valid for a 2 A and � 2 �a, determines a continuous representation ˛�; Q' W � ! G.

Lemma 3.1. Suppose that � and G are compact Lie groups and that A is locally
compact. If � is locally maximal, then the continuous representation ˛�; Q' is weakly
locally maximal.

Proof. Let a 2 A and let B be a compact neighbourhood of a. Since � is locally
maximal, there exists an open set U , with a 2 U � B and a homotopy �t W U ! U

such that �0.u/ D u, �1.u/ D a and �u � ��t .u/ for all u 2 U . If Z � A, we
denote OZ D ��1.Z/; if Y is a �-invariant subspace ofX , we denoteEY D p�1.Y /.
The latter is the total space of a split �-equivariant G-principal bundle �Y over Y .

By Proposition 2.1 and its proof, the space OB is compact. ThenE OB is compact and
therefore totally regular. By [27], Proposition 8.10, the bundle � OB is then a locally
trivial numerable �-equivariant G-principal bundle in the sense of [27], p. 58. The
same then holds for its restriction � yU .

By Lemma 2.3 and its proof, the homotopy �t W U ! U is covered by a �-
equivariant homotopy O�r W yU ! yU such that O�0 D id and O�1. yU/ D ��1.a/. By
[27], Theorem 8.15, the induced bundle O��

1���1.a/ is then isomorphic to � yU . More
precisely, let

E1 ´ f.x; z/ 2 yU �E��1.a/ j O�1.x/ D p.z/g
be the total space of O��

1���1.a/. Then there is a .��G/-equivariant homeomorphism

� W E1 ! E yU which commutes with the projections onto yU . By Lemma 2.3 one has
' B �t D O�t B '; therefore, .'.u/; '.a// 2 E1 for all u 2 U . This enables to define
Q'0 W U ! E by Q'0.u/ D �.'.u/; Q'.a//. For � 2 �u � �a, we have

� � Q'0.u/ D �.'.u/; � Q'.a// D �.'.u/; Q'.a/˛a.�// D �.'.u/; Q'.a// � ˛a.�/: (2)
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On the other hand, Q' and Q'0 are two liftings of ' over U . Hence, there exists a
continuous map g W U ! G such that Q'0.u/ D Q'.u/ � g.u/ for all u 2 U . Therefore

� � Q'0.u/ D � Q'.u/ g.u/ D Q'.u/˛u.�/g.u/ D Q'0.u/ � .g.u/�1˛u.�/g.u//: (3)

Comparing equations (2) with (3), we get that ˛u.�/ D g.u/˛a.�/g.u/
�1, which

proves Lemma 3.1.

By Lemma 3.1, ˛�; Q' determines a class ˛� 2 RepG.�/. We check that ˛� does
not depend on the choice of Q' and depends only on the �-equivariant isomorphism
class of �; details are as in the proof of [13], Lemma 3.2. This defines a map

ˆ W SBunG
� .X/ ! RepG.�/

called the isotropy representation.

§ 3C. The classification theorem. The following theorem corresponds to Theo-
rem A of the introduction.

Theorem 3.2 (Classification). Let .X; �; '/ be a split �-space over A with isotropy
groupoid �. Suppose thatA is locally compact, that � is locally maximal and that� is
a compact Lie group. Then, for any compact Lie groupG, the isotropy representation
ˆ W SBunG

� .X/ ! RepG.�/ is a bijection.

Proof. We first prove the surjectivity of ˆ. By Proposition 2.1, we may assume that
.X; �; '/ D .Y�;…; �/. Recall that Y� D � �� A.

Let ˇ W � ! G be a continuous representation. Then � acts on the left on A�G
by 
 � .a; g/ D .a; ˇ.
/ g/. Form the space Eˇ D � �� .A � G/. The continuous
map p W Eˇ ! Y� given p.Œ�; .a; g/�/ D Œ�; a� coincides with the projection Eˇ !
Eˇ=G of Eˇ to its orbit space for the obvious free right G-action on Eˇ . A lifting
Q� W A ! Eˇ of � is given by Q�.a/ D Œ1; .a; 1/�, where 1 denotes the unit elements.
For a 2 A and � 2 �a, one has

� � Q�.a/ D � � Œ1; .a; 1/� D Œ�; .a; 1/� D Œ1; .a; ˇa.�/� D Q�.a/ � ˇa.�/:

We now prove that p admits local trivializations when ˇ is locally maximal. Let
a 2 A. Choose an open neighbourhood Ua of a such that �u is a subgroup of �a

for all u 2 Ua, together with a continuous map ga W Ua ! G such that ˇu.�/ D
ga.u/ˇa.�/ga.u/

�1 for all u 2 Ua and all � 2 �u. This gives an open cover
U D fUa j a 2 Ag of A. Setting yUa D …

�1.Ua/ gives rise to an open cover
yU D f yUa j a 2 Ag of X , indexed by A. Define Qfa W � �Ua �G ! � � fag �G by
fa.�; u; g/ ´ .�; a; ga.u/g/. If ı 2 �u, we have

Qfa.�ı; u; g/ D .�ı; a; ga.u/g/ D .�; a; ˇa.ı/ga.u/g/
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and
Qfa.�; u; ˇu.ı/g/ D .�; a; ga.u/ˇu.ı/g/:

Since ˇa.ı/ga.u/ D ga.u/ˇu.ı/, this shows that Qfa descends to a continuous G-
equivariant map fa W p�1. yUa/ ! p�1.��1.a//. Passing to the quotient by G gives
rise to a commutative diagram

p�1. yUa/
fa ��

p

��

p�1.��1.a//

p

��

� ��a
G

���

��
yUa

Nfa �� ��1.a/ �=�a.���

Since � is a Lie group and �a a closed subgroup, the projection qa W � ! �=�a

admits local sections 	V W V ! � for each V in some open covering Va of �=�a

(see, e.g., [24], §7.5). We check that the formula


V .�; g/ D ˇa.	.q.�//
�1�/ g

defines a G-equivariant continuous map 
V W p�1.V / ! G, which gives rise to a
trivialization over V of p W ���a

G ! �=�a. Therefore, 
V Bfa W p�1. Nf �1
a .V // !

G is a G-equivariant continuous map giving rise to a trivialization over Nf �1
a .V / of

p W p�1. yUa/ ! yUa. This gives rise to a trivializing open cover W D f Nf �1
a .V / j

.a; V / 2 Ag of X , indexed by A D f.b; V / j b 2 A and V 2 Vbg. We have proved
thus the surjectivity of ˆ.

We now prove the injectivity of ˆ. Let � W .E Np�! X/ be a split �-equivariant
bundle with ˆ.�/ D Œˇ�. A lifting N' W A ! E of ' then produces a continu-
ous representation Ň D ˛�; N' with Œ Ň� D Œˇ�. There exists then a continuous map
 W A ! G such that ˇ.
/ D  .q.
//�1 Ň.
/ .q.
//. The map Q' W A ! E given
by Q'.a/ D N'.a/ �  .a/ is then another lifting of ' such that ˛�; Q' D ˇ. One checks
that the correspondence Œ�; .a; g/� 7! � � '.a/ � g defines a .� � G/-equivariant
continuous bijection zF W Eˇ ! E, covering the unique �-equivariant homeomor-
phism F W Y� ! X such that F B ' D �, obtained in Proposition 2.1. Since F
is a homeomorphism, so is zF . Indeed, choose an open set Z in Y� such that 
ˇ

is trivial over Z and 
 is trivial over F.Z/. Using trivializations, we can write
zF .z; g/ D .F.z/; �.z/ g/, where � W Z ! G is a continuous map. Then zF�1 has,

over F.Z/, the form zF �1.y; h/ D .F �1.y/; �.F �1.y//�1 h/, which is continuous.
We have thus proven that two split �-equivariant principal G-bundles � and �0 with
ˆ.�/ D ˆ.�0/ are �-equivariantly isomorphic.

Remark 3.3. Recall that an open cover of a space is numerable if it admits a refine-
ment by a locally finite partition of unity. In the proof of Theorem 3.2, the covers Va

are numerable, since �=�a are manifolds. Hence we can check that the trivializing
cover W of X is numerable if U is numerable. This observation will be used in
Theorem 4.5.
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3.4. Non-split bundles and abelian structure group. Let .X; �; '/ be a split �-
space over A. One has the map '� W BunG

� .X/ ! BunG.A/, sending 
 to '�
 . This
map is surjective: if � 2 BunG.A/, then ��� admits a natural �-action, since � is
�-invariant, so �� is a section of '�. Theorem 3.2 computes the pre-image of the
trivial bundle, which is SBunG

� .X/.
Let us now assume that G is abelian. Recall that there is then a composition

law “˝” on BunG
� .X/ which makes the latter an abelian group. If 
i W Ei

pi�! X

(i D 1; 2) are �-equivariant principal G-bundles, one defines 
1 ˝ 
2 W E pi�! X by
first forming the pull-back

E1 O�E2

��

�� E1

p1

��
E2

p2 �� X

where the mapE1 O�E2 ! X is a principalG�G-bundle. SetE D E1 O�GE2 (asG
is abelian, it acts on the left or on the right onEi ) and check that 
1 ˝ 
2 is a principal
G-bundle over X . The diagonal �-action on E1 O� E2 descends to a �-action on E,
making 
1 ˝ 
2 a �-equivariant principal G-bundle. When G D S1, we can think
of 
i as �-equivariant complex line bundles over X , thus “˝” becomes the standard
tensor product. The map '� W BunG

� .X/ ! BunG.A/ is a group-homomorphism.
Another special feature of the case G abelian is that the isotropy representation

is defined on BunG
� .X/: in equation (1), one can just use a local section Q' around

a 2 A, whose choice is irrelevant if G is abelian. The set RepG.�/ is an abelian
group, by multiplication of the images, and ˆ W BunG

� .X/ ! RepG.�/ is a group
homomorphism. Using Theorem 3.2, we get

Proposition 3.5. Let .X; �; '/ be a split �-space over A with isotropy groupoid �.
Suppose that A is locally compact, that � is locally maximal and that � is a compact
Lie group. Then, for any compact abelian Lie group G, one has an isomorphism of
abelian groups

.ˆ; '�/ W BunG
� .X/ ��!� RepG.�/ � BunG.A/:

3.6. Functorial properties. Theorem 3.2 enjoys functorial properties which are
contravariant in .�; A/ and covariant inG. For the contravariant ones, let f W A0 ! A

be a continuous map between locally compact spaces and h W � 0 ! � be a continuous
homomorphism between compact Lie groups. Let � be a .�; A/-groupoid. Then

�0 ´ .h; f /�� ´ f.� 0; a0/ 2 � 0 � A0 j h.� 0/ 2 �f .a0/g
is a .� 0; A0/-groupoid, with �0

a0 D h�1. Q�f .a0/ / � fa0g. One has the continuous map

� 0 ��0 A0 .h;f /���! � �� A: (4)
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Therefore, if � and �0 are locally maximal, Proposition 2.1 together with equation (4)
implies the following: if .X; �; '/ and .X 0; � 0; '0/ are the split spaces with isotropy
groupoids � and �0, there is a unique map F D Fh;f W X 0 ! X such that F.� 0x0/ D
h.� 0/F.x0/, � B F D f B � 0 and ' B f D F B '0. Let � be a split �-equivariant
principal G-bundle over X . Using Theorem 3.2, one checks that �0 ´ F �� is a
split � 0-equivariant principal G-bundle over X 0 and that the isotropy representations
˛0 2 RepG.�0/ and ˛ 2 RepG.�/ satisfy ˛0 D h�˛, where h�˛ D ˛ B h. Therefore,
one gets a commutative diagram

SBunG
� .X/

�ˆ

��

F �
�� SBunG

�0.X 0/

�ˆ

��
RepG.�/

h�
�� RepG.�0/.

(5)

As for the covariant functoriality inG, let� W G ! G0 be a continuous homomor-
phism between compact Lie groups. If � W .E ! X/ is a split �-equivariant principal
G-bundle overX , one checks that��� W .E��G

0 ! X/ is a split�-equivariant prin-
cipal G-bundle with isotropy representation ��˛ D � B ˛. One gets a commutative
diagram

SBunG
� .X/

�ˆ

��

�� �� SBunG0

� .X/

�ˆ

��
RepG.�/

�� �� RepG0

.�/.

(6)

In particular, letG D G0 �G00 and let p0 and p00 be the two projections. Diagram (6)
becomes

SBunG
� .X/

�ˆ

��

.�0
�;�00

�/ �� SBunG0

� .X/ � SBunG00

� .X/

�ˆ�ˆ

��
RepG.�/

.�0
�;�00

�/

� �� RepG0

.�/ � RepG0

.�/.

(7)

Diagram (7) then shows that the map

.�0�; �00�/ W SBunG0�G00

� .X/ ��!� SBunG0

� .X/ � SBunG00

� .X/ (8)

is a bijection.

4. Cellular groupoids – examples

§ 4A. Cellular groupoids. Let A be a CW-complex filtered by its skeleta A.n/. We
denote byƒ D ƒ.A/ the set of cells of A. The dimension of a cell e 2 ƒ is denoted
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by d.e/ and we set ƒn D fe 2 ƒ j d.e/ D ng. For each e 2 ƒ, there exists a
characteristic map 	e W .Dd.e/;Sd.e/�1/ ! .A.d.e//; A.d.e/�1//, and 	e restricted to
the interior of Dd.e/ is an embedding whose image is denoted by jej. For a 2 A, we
denote by e.a/ 2 ƒ the cell e of smallest dimension such that a 2 	.e/. The set
ƒ is partially ordered: f 0 � f if f 0 is a face of f , which means that there exists
x 2 Sd.f /�1 such that e.	f 0.x// D f .

Let � be a topological group and A be a CW-complex. A .�; A/-groupoid � is
called cellular if it is locally maximal and if Q�a D Q�b when e.a/ D e.b/. We write
�.n/ for the restriction of � overA.n/. Recall that �a D Q�a �fag where Q�a 2 Gr.�/,
the poset of closed subgroups of� . One can then define a map Q� W ƒ.A/ ! Gr.�/ by
Q� .e/ D Q�a for awith e.a/ D e. The local maximality of � implies that Q� .e/ � Q� .f /

when f � e. Thus, Q� is a contravariant functor from the poset ƒ.A/ to the poset
Gr.�/. A cellular groupoid is a combinatorial construction.

Lemma 4.1. The correspondence � ! Q� is a bijection between the set of cellular
groupoids whose object-space is A and the set of contravariant functors from ƒ.A/

to Gr.�/.

Proof. The correspondence is clearly injective. For the surjectivity, let F W e 7! Fe

be a contravariant functor fromƒ.A/ to Gr.�/. By induction on n, we shall construct
�.n/, giving rise to a .�; A/-groupoid �, with Q� D F and then check that � is locally
maximal. Define �.0/ D `

v2ƒ0.A/ Fv � fvg. Suppose that �.n�1/ is constructed.

The n-skeleton A.n/ of A is obtained as the quotient space

A.n/ D � `
e2ƒn.A/

De

� `
A.n�1/

ıfx � 	e.x/ j x 2 Seg;

where .De;Se/ is a copy of .Dn;Sn�1/ and 	e W De ! A is a characteristic map for
the cell e. We then define

�.n/ D � `
e2ƒn.A/

.Fe � De/
� `

�.n�1/
ıf.�; x/ � .�; 	e.x// j x 2 Seg:

The equivalence relation � makes sense since, for x 2 Se , one has Fe � Q�.n�1/

�e.x/
.

Clearly, Q� D F . Now each a 2 A admits a fundamental system of open neighbour-
hoodsU of a such that e.a/ � e.u/ for all u 2 U . One can also require thatU admits
a homotopy �t W U ! U such that �0 D id, �1.U / D fag and e.�t .u// D e.u/ for
t < 1 (see [21], Theorem 6.1 and its proof, or proof of Lemma 4.4 below). Therefore,
� is locally maximal.

The notation Q� was introduced in order to state and prove Lemma 4.1 properly.
In future occurrences we shall write �.e/ instead of Q� .e/.
Remark 4.2. Let .X; �; '/ be a split �-space over a CW-complex A, with a cellular
isotropy groupoid �. ThenX is provided with a�-equivariant CW-complex structure
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(see, e.g., [27], Chapter 2) with �-cells indexed by ƒ.A/. If 	e W Dd.e/ ! A is
a characteristic map for e 2 ƒ.A/, then Q	e W �=�.e/ � Dd.e/ ! X , defined by
Q	.�; a/ D � '.a/, is a characteristic map for the �-cell of X corresponding to e.

On the other hand, let X be a �-CW-complex and A D �=X be its orbit space
with the induced CW-structure. Suppose that there exists a section ' W A ! X of the
projection � W X ! A, so that the isotropy groupoid � is weakly locally maximal.
Then � is cellular, since �a is constant on the interior of each cell. We call X a split
�-CW-complex over A.

However, one has the following example of a split �-space over a CW-complex
admitting no splitting for which the isotropy groupoid is cellular. Let X D .Œ0; 1� �
S2/=f.1; x/ � .0;�x/g, the mapping cylinder of the antipodal map of S2, endowed
with the natural action of � D SO.3/. ThenA D Œ0; 1�=f0 � 1g � S1. Any splitting
is of the form '.t/ D .t; f .t// with limt!0 f .t/ D � limt!1 f .t/. Thus, f .t/ is
not constant and � is not weakly locally maximal. Observe thatX is a smooth closed
3-manifold and that the SO.3/-action is smooth with cohomogeneity one.

For cellular groupoids we have a stronger version of Proposition 2.1, which applies
to any topological group � .

Proposition 4.3 (Reconstruction II). Let � be a topological group, and A be a CW-
complex. Given a cellular .�; A/-groupoid �, there is a unique split �-CW-complex
over A with isotropy groupoid �.

Proof. The space Y� is a split �-CW-complex over A. Suppose that .X; �; '/ is
another split �-CW-complex with isotropy groupoid �. As in the proof of Proposi-
tion 2.1, the map zF W � � A ! X defined by zF .�; a/ D � � '.a/ descends to give
a continuous �-equivariant bijection F W Y� ! X . For each cell e 2 ƒn.Y / with
characteristic map 	e W Dn ! A, there is a commutative diagram

� ��.e/ D
n

�
Y�
e

��

id �� � ��.e/ D
n

�Y
e

��
X

F �� Y .

Therefore F is an open map and hence a homeomorphism.

Let � be a topological group andA be a CW-complex. A .�; A/-groupoid � such
that �a is a compact Lie group for all a 2 A is called proper. When � is itself a
Lie group, this is equivalent to saying that the �-action on the corresponding split
�-CW-complex with isotropy groupoid � is proper; see [19], Theorem 1.23. We
have a classification theorem for equivariant bundles over split �-spaces with proper
isotropy groupoids in Theorem 4.5. First we give a version of Lemma 3.1.
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Lemma 4.4. Let � be a topological group, and A be a CW-complex. Let � be a
proper .�; A/-groupoid. Then any continuous representation of � to a compact Lie
group G is weakly locally maximal.

Proof. Let ˛ W � ! G be a continuous representation. Let a 2 A. We shall construct
a pair .U; g/, where U is an open set of A, such that �u is a subgroup of �a for each
u 2 U , and g W U ! G is a continuous map satisfying ˛u.�/ D g.u/˛a.�/g.u/

�1

for all u 2 U and all � 2 �u. Call the pair .U; g/ an a-straightening of ˛ in A. The
final open setU will be a neighbourhood of a, but the definition of an a-straightening
does not use that a 2 U , just that the element g.a/ 2 G is defined. An a-straightening
is equivalent to the data of a sequence .U .d/; gd / of a-straightenings of ˛ in A.d/,
such that U .dC1/ \ A.d/ D U .d/ and gdC1jU .d/ D gd .

We construct .U .d/; gd / by induction on d , setting Ud D ; if d < d.e.a//.
If d.e.a// D 0, then we set U .0/ D fag and g0.a/ D 1. If d.e.a// > 0, then
there exists a neighbourhood U d.e.a// of a in e.a/ with a pointed homeomorphism
.U .d.e.a///; a/ ��!� .Œ�1; 1�d.e.a//; 0/. The existence of gd.e.a// is guaranteed by
Lemma 1.2. Suppose that an a-straightening .U .d/; gd / of ˛ in A.d/ is constructed,
with d 	 d.e.a// and a 2 Ud . For e 2 ƒdC1.A/, let 	e W .DdC1

e ;Sd
e / !

.A.dC1/; A.d// be a characteristic map for the cell e. Let Ve be the open set of
Sd

e defined by Ve D 	�1
e .U .d//. Let We be the open set of DdC1

e defined by We D
ftx j x 2 Ve and t 2 .0; 1�g. The correspondence u 7! ˛�e.u/ 2 Hom.�.e/; G/ is
a continuous representation ˛e of the .�;DnC1

e /-groupoid �.e/ � DnC1
e . The pair

.Ve; gd B 	e/ is a a-straightening of ˛e in Sn
e . AsWe is homeomorphic to Ve � Œ0; 1�,

this a-straightening extends to a a-straightening .We; ge/ of ˛e in DnC1
e . The family

ge defines a map gdC1 W U .nC1/ ! G, where U .nC1/ D S
e2ƒnC1.A/We , giving

rise to the a-straightening of ˛ in A.nC1/.

By Lemma 4.4, the isotropy representation ˆ W SBunG
� .X/ ! RepG.�/ is de-

fined, as in Section § 3B. The classification theorem for split bundles over a split
�-CW-complex with proper isotropy groupoid takes the following form.

Theorem 4.5 (Classification II). Let � be a Lie group, and A be a CW-complex. Let
� be a proper .�; A/-groupoid. Let .X; �; '/ be a split �-CW-complex over A with
isotropy groupoid �. Then, for any compact Lie groupG, the isotropy representation
ˆ W SBunG

� .X/ ! RepG.�/ is a bijection. Moreover, any split bundle over X is
numerable.

Proof. The proof of Theorem 4.5 is the same as that of Theorem 3.2, using Lemma 4.4
instead of Lemma 3.1 and Proposition 4.3 instead of Proposition 2.1. Being a CW-
complex, A is paracompact, so each open cover is numerable. The last assertion of
Theorem 4.5 comes from Remark 3.3.

Remark 4.6. The assumption that � is a Lie group is only used to ensure that the
quotient projection qa W � ! �=�a is a (numerable) principal bundle. If we do
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not care about numerability, the existence of local cross-sections of qa holds more
generally (see [22] and [23]).

As in Proposition 3.5, Theorem 4.5 extends to a classification of all �-equivariant
G-bundles if G is abelian. More precisely:

Proposition 4.7. Let � be a proper .�; A/-groupoid for a Lie group � . Let .X; �; '/
be a split �-CW-complex over A with isotropy groupoid �. Then, for any compact
abelian Lie group G, one has an isomorphism of abelian groups

.ˆ; '�/ W BunG
� .X/ ��!� RepG.�/ � BunG.A/ :

Moreover, any principal �-equivariant G-bundle over X is numerable.

Proof. The proof Proposition 4.7 is the same as that of Proposition 3.5, using The-
orem 4.5 instead of Theorem 3.2. For the numerability, observe that the inverse of
the bijection .ˆ; '�/ is given by .ˆ; '�/�1.
; �/ D 
 ˝ ���. By Theorem 3.2,

 is numerable. Since A is a CW-complex, � is numerable and thus .ˆ; '�/�1.
; �/

is numerable. Hence, any �-equivariant principal G-bundle over X is numerable.

§ 4B. Examples

4.8. Generalised toric manifolds of real dimension 2m, in the sense of [6], are split
T -spaces where T is anm-dimensional torus. The orbit spaceA is a simple polytope
and the section' is given in [6], Lemma 1.4. This includes symplectic toric manifolds,
see, e.g., [11], where � W X ! A is the moment map and A � Lie.T /� the moment
polytope. Our reconstruction Proposition 2.1 is the topological content of Delzant’s
theorem [11], Theorem 1.8, or [6], Proposition 1.7.

4.9. When � is discrete, the “strata preserving actions with strict fundamental do-
main” of [4], Chapter II.12, are generalizations of split �-spaces with a cellular
isotropy groupoid. Several examples are given in [4], Chapter II.12.9.

Several of the examples below involve .�; A/-groupoids where A D �m is the
standard m-simplex in RmC1:

�m D ˚
.t0; : : : ; tm/ 2 RmC1 j ti 	 0 and

Pm
iD0 ti D 1

�
:

We use the standard simplicial structure on �m, with ƒk.�
m/ being the set of all

subsets of f0; : : : ; mg containing k C 1 elements. When m D 1; 2, we use special
notations illustrated by the following pictures.
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4.10. Let T D .S1/mC1. We define a cellular .T ; A/-groupoid � with A D �m by

�.e/ D f.�0; : : : ; �m/ j �i D 1 if i 2 eg:
A model .X; �; '/ for the split T -space with isotropy groupoid � is given by X D
S2mC1 � CmC1 with the T -action .�0; : : : ; �m/�.z0; : : : ; zm/ D .�0 z0; : : : ; �m zm/.
The map � and ' may be chosen as

�.z0; : : : ; zm/ D .jz0j2; : : : ; jzmj2/;
'.t0; : : : ; tm/ D .

p
t0; : : : ;

p
tm/:

(9)

More generally, let T be any torus and let �0; : : : �m 2 Hom.T ; S1/. Define a
cellular .T ; A/-groupoid � with A D �m by �.e/ D T

j 2e ker �j . A model for the
split T -space with isotropy groupoid � is again given by .S2m�C; �; '/, where �
and ' are defined by equations (9) and where the T -action on S2mC1 is

� � .z0; : : : ; zm/ D .�0.�/z1; : : : ; �m.�/zm/:

4.11. Let � be a .�; A/-groupoid and let �0 be a closed subgroup of � . A .�; A/-
groupoid �0 is then defined onA by �0.e/ be the subgroup generated by �.e/[�0. If
.X; �; '/ is the split �-space overAwith isotropy groupoid �, then that with isotropy
groupoid �.�0/ is .�0nX;�0; '0/, where �0 is induced by � and '0 is ' composed
with the projection X ! �0nX . For instance, if we take �0 to be the diagonal S1

in Example 4.10, we get a split .S1/mC1-structures on the complex projective space
CPm.

4.12. Let � D SO.n C 1/. We see SO.n/ as the subgroup of � leaving the last
coordinate fixed. Consider the .�; A/-groupoid with A D Œ�1; 1�, defined by �˙1 D
� and �.�1;1/ D SO.n/. The split�-space with isotropy groupoid � is .Sn; �; '/with
�.x1; : : : ; xnC1/ D xnC1 (' may be defined using a meridian). The classification of
split �-equivariant G-bundles over Sn has been studied in [13].

4.13. Let X be a �-CW-complex X so that the orbit space, with its induced CW-
structure, is a segment (say�1). This is one type of cohomogeneity one action. There
are then subgroups �0, �1, �01 of � so that X is �-equivariantly homeomorphic to
�=�01 � Œ0; 1� glued to �=�0 � f0g and �=�1 � f1g by equivariant maps. Sending t
to .Œe�; t/ 2 �=�01 � Œ0; 1� produces a splitting ' with a cellular isotropy groupoid �,
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satisfying �01 D �01, �0 D �0 and �1 D �1. The space X is then a split �-space
with isotropy groupoid �. If � is a compact Lie group, one checks that X has a
natural smooth manifold structure for which the action is smooth. For more details
and references on cohomogeneity one action, see [13], §8, where �-equivariant G-
bundles over such �-spaces are classified (they are all split).

4.14. Let T be any torus and let � be a non-trivial element in Hom.T ; S1/. Define
a cellular .T ; A/-groupoid � with A D �1 by �0 D �1 D T and �01 D ker �.
The split T -space with isotropy groupoid � is .CP 1; �; '/, where �.Œz0W z1�/ D
.jz0j2; jz1j2/, '.t0; t1/ D Œ

p
t0 W p

t1� and the T -action is given by � Œx0W x1� D
Œ�.�/ x0W x1�. We denote this split T -space by CP 1.�/.

5. Cellular representations – computations of RepG .� /

§ 5A. Cellular representations. Let � be a .�; A/-groupoid. A representation
ˇ W � ! G is called cellular if ˇa D ˇb when e.a/ D e.b/. For each e 2 ƒ.A/,
this thus defines ˇe 2 Hom.�.e/; G/, with the face compatibility conditions ˇe D

f̌ j�.e/whenever f � e. Two cellular representations ˛ and ˇ are called conjugate
if there exists g 2 G such that ˇ.�/ D g�1˛.�/g for all � 2 �a and all a 2 A.
Denote by RepG

cell.�/ the set of conjugacy classes of cellular representations of �

into G.
To a cellular representation ˛ W � ! G and a cell e of A, one can associate its

conjugacy class Œ˛e� 2 Hom.�.e/; G/. This gives rise to a map

� W RepG
cell.�/ ! Q

e2ƒ.A/

Hom.�.e/; G/:

If an element .be/ of this product is in the image of �, it must satisfy the face compati-
bility conditions, that is the equation be D bf j�.e/ holds in Hom.�.e/; G/whenever
f � e. We then define

RepG
cell.�/ D ˚

.be/ 2 Q
e2ƒ.A/ Hom.�.e/; G/ j be D bf j�.e/ if f � e

�
and see � as a map � W RepG

cell.�/ ! RepG
cell.�/. When � is a proper .�; A/-groupoid,

the map � sits in a commutative diagram

RepG
cell.�/

	 �����������

| �� RepG.�/

{�����������

RepG
cell.�/.

(10)

The map | is obvious, since a cellular representation is a representation which is
clearly weakly locally maximal. To define {.ˇ/e for e 2 ƒ.A/, we choose a 2 A
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with e.a/ D e and set {.ˇ/e D Œˇa�. Since cells are connected, { is well defined by
Lemma 1.1. Although none of these maps is either surjective or injective in general,
diagram (10) is the source of all our information about RepG.�/ so far.

One useful method for computing RepG
cell.�/ and RepG

cell.�/ is to restrict repre-
sentations of � to skeleta of A. This yields restriction maps resk W RepG

cell.�/ !
RepG

cell.�
.k// and resk W RepG

cell.�/ ! RepG
cell.�

.k//. Recall that a CW-complex A is
regular if each cell e admits a characteristic map 	e W Dd.e/ ! A that is an embed-
ding, sending Sd.e/�1 onto a subcomplex of A.d.e/�1/. We set kek D 	e.Dd.e//, the
closure of jej. To simplify the notations, we write @e instead of @kek for the boundary
of kek.

Proposition 5.1. Let � be a .�; A/-groupoid for � a topological group. Assume that
A is a regular CW-complex. Then, for any topological group G, one has

(a) res0 W RepG
cell.�/ ! RepG

cell.�
.0// and res0 W RepG

cell.�/ ! RepG
cell.�

.0// are
injective;

(b) res1 W RepG
cell.�/ ! RepG

cell.�
.1// and res1 W RepG

cell.�/ ! RepG
cell.�

.0// are
bijective.

Proof. Let ˛ 2 RepG
cell.�/ (the proof for RepG

cell.�/ is the same). As A is regular,
each cell of A has a face which is a vertex. Therefore, res0.˛/ determines ˛ which
proves (a) and the injectivity part of (b).

For the surjectivity in (b), it is enough to prove that the restriction map
RepG

cell.�
.n// ! RepG

cell.�
.n�1// is onto when n 	 2. Let ˇ W �.n�1/ ! G be a

cellular representation. We must extend ˇ to Ǒ D ˇ [ fˇeg 2 RepG.�/, which may
be done for each n-cell independently. For each e 2 ƒn.A/, choose f 2 ƒn�1.A/

with f � e and define ˇe D f̌ j �.e/. We must check that ˇe does not depend
on the choice of f . Let f 0 be another choice. As n 	 2, there exists a continuous
path c.t/ in the frontier of jej joining a 2 jf j to a 2 jf 0j. By the face compatibility
condition, ˇaj�c.t/ is constant, thus f̌ j �.e/ D f̌ 0 j �.e/.

Corollary 5.2. Suppose that the hypotheses of Proposition 5.1 hold true. Let b 2
RepG

cell.�/. If res1.b/ 2 �.RepG
cell.�

.1///, then b 2 �.RepG
cell.�//.

Proof. This is a consequence of the commutative diagram

RepG
cell.�/

	

��

res1

� �� RepG
cell.�

.1//

	

��
RepG

cell.�/
res1

� �� RepG
cell.�

.1//,

(11)

the bijectivity of the horizontal arrows coming from Proposition 5.1.



Equivariant bundles and isotropy representations 147

§ 5B. Case where G is abelian

Proposition 5.3. Let � be a proper .�; A/-groupoid for a topological group � . Let
G be a compact abelian Lie group. Then the three maps {, | , � of diagram (10) are
bijective.

Proof. The map � is bijective since conjugation has no effect if G is abelian. It is
then enough to prove that | is surjective. Let ˇ 2 RepG.�/. As in the construction
of {, one shows that ˇ.
/ D ˇ.
0/ if e.�2.
// D e.�2.


0//, which is equivalent to ˇ
being in the image of | .

If � is a Lie group, Proposition 5.3 together with the classification Theorem 4.5
gives a bijection SBunG

� .X/ � RepG
cell.�/. Using Proposition 5.1 and the functorial

property in diagram (5) (which holds true in the framework of Theorem 4.5), this
also shows that, forG abelian, the restriction maps SBunG

� .X/ ! SBunG
� .X

.0// and
SBunG

� .X/ ! SBunG
� .X

.1// are respectively injective and bijective, when A is a
regular CW-complex.

By Lemma 1.3, one has G ��!� G0 ��0.G/, where G0 is the identity component
of the unit element. Therefore, RepG

cell.�/ � Rep�0.G/
cell .�/ � RepG0

cell.�/ (the same
decomposition holds for SBunG

� .X/ by equation (8), again true in the context of
Theorem 4.5). The group G0 is isomorphic to a product of circles, so RepG0

cell.�/ is a
product of copies of RepG

cell s.�/. We shall now study the latter.

§ 5C. RepG
cell s.� / for � a toric groupoid. Let T be a torus. A cellular .T ; A/-

groupoid � is called 0-toric if �v D T for all v 2 ƒ0 D ƒ0.A/. It is called 1-toric
if it is 0-toric and if, for each e 2 ƒ1 D ƒ1.A/, �.e/ is a codimension 1 subtorus of
T . There is then �e 2 Hom.T ; S1/ with ker �e D �.e/. The part of X above the
closure kek of jej is a T -space isomorphic to CP 1.�e/ of Example 4.14. The split
T -space with isotropy groupoid �.1/ is then a graph of CP 1.�/’s. Such a space T -
spaceX is also called a GKM-space, as this property was first studied by M. Goresky,
R. Kottwitz and R. MacPherson in [10].

Let t be the Lie algebra of T and let l D ker.exp W t ! T /. Moreover, let l� D
fw 2 t� j w.l/ � Zg (the dual lattice). Consider S1 as R=Z. The correspondence
which assigns to ˛ 2 Hom.T ; S1/ its differential at the unit element of T (the weight
of ˛) produces an isomorphism between Hom.T ; S1/ and the additive group l�. We
shall thus identify Hom.T ; S1/ with l�.

Let � be a 1-toric cellular .T ; A/-groupoid with A a regular complex. By Propo-
sition 5.1, RepG

cell s.�/ injects into RepG
cell s.�

.0//, which is the direct product of
character groups

RepG
cell s.�/ � Q

v2ƒ0

Hom.T ; S1/ D Q
v2ƒ0

l�: (12)

Let us orient each edge e; this determines an ordering @�e, @Ce of the two vertices
of e. The character �e will also be seen in l�. A family .av/v2ƒ0

is said to satisfy



148 I. Hambleton and J.-C. Hausmann

the GKM-conditions if, for each e 2 ƒ1, the difference a@Ce � a@�e is a multiple of
�e . These conditions, considered in [10], are also discussed in Proposition 6.9 and
Remark 6.10.

Proposition 5.4. Let � be a 1-toric cellular .T ; A/-groupoid. Then the image of
RepG

cell s.�/ in
Q

v2ƒ0
l� is the set of families .av/v2ƒ0

satisfying theGKM-condition.

Proof. By Proposition 5.1, it is enough to show that this condition characterises the
image of RepG.�.1// in RepG.�.0//. Denote by ˛v 2 Hom.T ; S1/ the element with
weight av 2 l�. For e 2 ƒ1 the three following conditions are equivalent:

(a) the difference a@Ce � a@�e is a multiple of �e .

(b) �.e/ � ker ˛@Ce˛
�1
@�e

.
(c) ˛@Cej�.e/ D ˛@�ej�.e/.

The equivalence between (a) and (b) comes from �.e/ being of codimension 1 in T .
This proves Proposition 5.4.

Example 5.5. Let X be a symplectic toric manifold of dimension 2n. It is a split
T n-space, with � W X ! A � t� being the moment map, and the isotropy groupoid
� is 1-toric. The moment polytope A is a n dimensional convex polytope of t�. It
is known that each edge e of A is parallel to �e (see, e.g., [3], §4.2.4). By Propo-
sition 5.4, RepG

cell s.�/ may be visualised as the set of affine maps ˛ W A ! t� such
that ˛.�0.A// � l� and ˛.jej/ parallel to �e for each e 2 �1.A/.

The left figure below shows a 2-dimensional moment polytope for a toric manifold,
a Hirzebruch surface diffeomorphic to CP 2 ]CP 2. The torus T is S1 � S1, �12 D
�34 D f1g � S1, �14 D S1 � f1g, �23 is the diagonal subgroup and the isotropy
group for the 2-cell is trivial. The right figure visualises two elements of RepG.�/.

1 2

34

A
0

a.v1/ a.v2/

a.v3/ a.v4/

Let ˛ 2 RepG
cell s.�/. LetX be the split T -space with isotropy groupoid �. Let �

be a split T -equivariant S1-principal bundle over X , with isotropy representation ˛.
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Let e 2 ƒ1. In Proposition 5.4, the integer ke 2 Z such that a@Ce � a@�e D ke�e is
related to the Euler number of � restricted to Xe , the part of X above the closure kek
of jej, which is homeomorphic to CP 1. Choose a generator ŒXe� of H2.XeI Z/. Let
" 2 H 2.XeI Z/ be the Euler class of � restricted to Xe .

Proposition 5.6. ".ŒXe�/ D ˙ke .

Proof. It is enough to consider the case where X D Xe D CP 1.�/ for � 2
Hom.T ; S1/. The quotient space A is then a segment, with two 0-cells 0 and 1 and
a 1-cell e, and we identify A with Œ0; 1�. One has �0 D �1 D T and �.e/ D ker �.
The elements ˛0; ˛1 2 Hom.T IS1/ have weights a0; a1 2 l�. The bundle � may

then be identified with the bundle E˛
��! Y� of the proof of Theorem 3.2.

Let U0 D A � f1g and U1 D A � f0g and call W0 and W1 the open sets of X
above U0 and U1. One has local sections 	i W Wi ! E˛ of � defined by 	i .Œ�; u�/ D
Œ�; u; ˛i .�/�. Let s 2 Hom.S1;T / such that �B s W S1 ! T=�e is surjective. Define
Os W S1 ! Y� by Os.ı/ D Œs.ı/; 1=2�. One has

	1.Os.ı// D 	0.Os.ı// ˛0.s.ı//
�1˛1.s.ı// D 	0.Os.ı// � �.s.ı//˙ke :

By the classification of S1-principal bundles over a 2-sphere, this proves Proposi-
tion 5.6.

§ 5D. Smooth circle bundles. Let � be a cellular .T ; A/-groupoid withA a regular
complex. Let .X; �; '/ be a split T -space with isotropy groupoid �. Suppose that
X is (closed) smooth manifold and that the T -action is smooth. In this subsection,
we relate the isotropy representation ˆ W SBunG

� .X/ ! RepG.�/ � Q
v2ƒ0

l� with
some “moment map” ˆ W X ! t�. The material of this section is inspired by [14].

Let � D .E
p�! X/ be a smooth T -equivariant split principal S1-bundle over X .

Choose � 2 �1.E/ be an T -invariant connection of the bundle � (we see S1 D R=Z,
so Lie.S1/ D R). This gives rise to a “moment map” ˆ W X ! t� determined as
follows. For 
 2 t, denote by 
E the vector field on E induced by the action of T .
The map ˆ is defined by the equation

hˆ.x/; 
i D �.
E .y//;

for any x 2 X and z 2 p�1.x/. As � is T -invariant, the map ˆ descends to a
continuous map N̂ W A ! t�.

Let ˛ 2 RepS1

.�/ be the isotropy representation of �. For each v 2 ƒ0.A/, the
homomorphism ˛v 2 Hom.T ; S1/ is determined by its weight av 2 l�.

Proposition 5.7. Suppose that � is 0-toric. Then, for each v 2 ƒ0.A/, one has
N̂ .v/ D av .
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Proof. Let 
 2 t. Let v 2 ƒ0.A/ and z 2 E with p.z/ D '.v/. As '.v/ is a fixed
point, the vector 
E .z/ is tangent to the S1-orbit z � S1. If we identify the latter with
S1, then �.
E .z// is the derivative of ˛v , that is, av .

Remark 5.8. The figure of Example 5.5 suggests a possible relationship with the
“twisted polytopes” of [14] which remains to be investigated.

§ 5E. Case where A is a graph. In this section we shall determine RepG.�/ for a
.�; A/-groupoid � whenA is a graph, generalising the case treated in [13] whereA is
a segment. One may suppose that the graphA is regular. Indeed, the subdivision of an
edge e, by adding a vertex Oe 2 jej and setting � Oe D �.e/, changes neither RepG.�/

nor RepG
cell.�/. Observe also that if G is connected, any G-principal bundle over A

is trivial, so for a split �-space X over A one has SBunG
� .X/ D BunG

� .X/. We start
with some preliminary material.

Lemma 5.9. Let � andG be topological groups. Let � be a .�; A/-groupoid, where
A is a tree. Then � W RepG

cell.�/ ! RepG
cell.�/ is surjective.

Proof. The lemma is true for A D ; since then both RepG
cell.�/ and RepG

cell.�/

are empty. Otherwise, let b 2 RepG
cell.�/ and let v be a vertex of A. Chose

ˇv 2 Hom.�v; G/ representing bv . For an edge e between v and v0, define ˇe 2
Hom.�.e/; G/ by ˇe D ˇvj�.e/. Since b 2 RepG

cell.�/, one can choose ˇv0 2
Hom.�v0 ; G/ which represents bv0 such that ˇv0 j�.e/ D ˇe . This constructs a cel-
lular representation ˇ1 over the tree A.v; 1/ of points of distance � 1 from v (for
the distance where each edge has length 1). The same methods will propagate ˇ1

to ˇ2, over A.v; 2/ and then to A.v; n/ for all n. This defines ˇ 2 RepG
cell.�/ with

�.ˇ/ D b.

Lemma 5.10. Let � be a .�; A/-groupoid, where � is a topological group and A
is a graph. Let G be a path-connected topological group. Then { W RepG.�/ !
RepG

cell.�/ is surjective.

Proof. We may suppose thatA is connected: otherwise, both RepG.�/ and RepG
cell.�/

simply decompose into disjoint unions over components of A. Let A0 be a maximal
tree ofA and let �0 be the restriction of � overA0. Letb 2 RepG

cell.�/. By Lemma 5.9,
there exists a cellular representation ˇ W �0 ! G such that �.ˇ/ D bj�0

. We want to
extend ˇ to Ǒ W � ! G. This can be done by defining Ǒ over kek for each edge e of
A n A0. Let v; v0 2 ƒ0.A0/ be the vertices of e. As b 2 RepG

cell.�/, there is g 2 G
with g�1ˇv.�/g D ˇv0.�/ for all � 2 �.e/. Since G is path-connected, there exists
a continuous map a 7! ga, from kek to G with gv D 1 and gv0 D g. For a 2 kek,
we then define Ǒ

a W �.e/ ! G by Ǒ
a.�/ D g.a/�1ˇv.�/g.a/.

We now introduce some material in order to describe the preimage {�1.˛/ of
˛ 2 RepG

cell.�/. LetK be a topological group and let Q̨ 2 Hom.K;G/. Define C. Q̨ /



Equivariant bundles and isotropy representations 151

to be the centraliser of Q̨ .K/ in G. Let Q̨ 0 2 Hom.K;G/ be such that Œ Q̨ � D Œ Q̨ 0�
in Hom.K;G/. Choose b 2 G such that Q̨ 0.�/ D b Q̨ .�/b�1. Sending z 2 C. Q̨ /
to bzb�1 produces a continuous isomorphism r Q̨ 0; Q̨ W C. Q̨ / ! C. Q̨ 0/ which does not
depend on the choice of b. Moreover, one has r Q̨ 00; Q̨ B r Q̨ 00; Q̨ 0 D r Q̨ 00; Q̨ . Therefore, a
topological group C.˛/ is defined for ˛ 2 Hom.K;G/: take the disjoint union of
C. Q̨ / for all representatives Q̨ of ˛ and identify z 2 C. Q̨ / with r Q̨ 0; Q̨ .z/ 2 C. Q̨ 0/. If
K 0 is a subgroup of K, one checks that C.˛/ is a subgroup of C.˛jK0/

Let � be a .�; A/-groupoid and ˛ 2 RepG
cell.�/. Let PA be the first barycen-

tric subdivision of A. We assume that A is regular, so ƒ1. PA/ is the set of pairs
.v; e/ 2 ƒ0.A/ � ƒ1.A/ with v < e; the edge corresponding to .v; e/ joins v
to the barycentre Oe of e. Form the group X.˛/ D Q

.v;e/2ƒ1. PA/ �0.C.˛e//. Let
J 0 W Q

v2ƒ0.A/ �0.C.˛v// ! X.˛/ be the homomorphism sending .xv/ to .z.w;e//

with z.w;e/ D jw;e.xw/, where jw;e W �0.C.˛w// ! �0.C.˛e// is the homomor-
phism induced by the inclusion. Consider also the homomorphism
J 1 W Q

e2ƒ1.A/ �0.C.˛e// ! X.˛/ sending .ye/ to .z.w;f //, where z.w;f / D yf .
Set Y 0.˛/ and Y 1.˛/ to be the images of J 0 and J 1 and consider the double coset
family Z.˛/ D Y 0.˛/nX.˛/=Y 1.˛/.

Theorem 5.11. Let � be a proper .�; A/-groupoid, with� a topological group andA
a graph. Let G be a compact connected Lie group. Then { W RepG.�/ ! RepG

cell.�/

is surjective and the preimage {�1.˛/ of ˛ 2 RepG
cell.�/ is in bijection with Z.˛/.

Before proving Theorem 5.11, we state some of its corollaries, in which we assume
the hypotheses of Theorem 5.11 and mention only the additional hypotheses.

Corollary 5.12. Let A be a finite graph. Then the preimages of { W RepG.�/ !
RepG

cell.�/ are finite.

Proof. As C.˛e/ is a closed subgroup inG, �0.C.˛e// is finite for each edge e of A.
Therefore Z.˛/ is finite.

The next corollary corresponds to [13], Theorem B and 8.12.

Corollary 5.13. Suppose that � is a proper .�;�1/-groupoid. Then the
preimage {�1.˛/ of ˛ 2 RepG

cell.�/ is in bijection with the set of double cosets
�0.C.˛0//n�0.C.˛01//=�0.C.˛1//.

Proof. The group X.˛/ is isomorphic to �0.C.˛01// � �0.C.˛01// with Y 1.˛/ �
�0.C.˛01//being the diagonal subgroup. The groupY 0.˛/ is�0.C.˛0//��0.C.˛1//.
Therefore, the map X.˛/ ! �0.C.˛01// given by .z0; z1/ 7! z0z

�1
1 descends to a

bijection from Z.˛/ to �0.C.˛0//n�0.C.˛01//=�0.C.˛1// (see [13], Section 8).
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Corollary 5.14. Suppose that �.e/ is a torus for all edges e of A. Then it follows
that { W RepG.�/ ! RepG

cell.�/ is a bijection.

Proof. Let ˛ 2 RepG
cell.�/ and let Q̨ W � ! G be a continuous representation with

{. Q̨ / D ˛ Our hypotheses imply that Q̨a.�e/ is a torus for all e 2 ƒ1.A/ and all
a 2 jej. As G is connected, the group C.˛e/ is then connected (see, e.g., [8],
Theorem 3.3.1). Therefore, Z.˛/ reduces to a single element.

Proof of Theorem 5.11. The surjectivity of { is established in Lemma 5.10. Let
˛ 2 RepG

cell.�/. The strategy is to construct a transitive action ofX.˛/ on {�1.˛/ and
study the stabilisers.

Let Q̨0 W �.0/ ! G be a representative of ˛.0/. Let eRepG.�; Q̨0/ be the set
of continuous representations from � to G which restrict to Q̨ 0 on ˛.0/. As G is
connected, any map from A.0/ to G extends to A, which implies that each class
in {�1.˛/ has a representative in eRepG.�; Q̨0/. Also, if Q̨ 2 eRepG.�; Q̨0/, then
{. Q̨ / D ˛ by Proposition 5.1. Thus, the map Q̨ 7! Œ Q̨ � 2 RepG.�/ produces a
surjection eRepG.�; Q̨0/ � {�1.˛/.

Form the group QX. Q̨0/ D Q
.v;e/2ƒ1. PA/ C. Q̨ 0.�.e//. Let z D .z.v;e// 2 QX. Q̨ 0/

and Q̨ 2 eRepG.�; Q̨0/. For each edge e of A with @e D fv; v0g, choose, using that G
is connected, a continuous map ge W kek ! G such that ge.v/ D z.v;e/ and ge.v

0/ D
z.v0;e/. We call fgeg a connecting family for z. Define z �fgeg Q̨ 2 eRepG.�; Q̨0/ by

z �¹geº Q̨ .�/ D
´
ge.a/ Q̨ .�/ge.a/

�1 if a 2 jej and � 2 �a ;

Q̨a.�/ otherwise:
(13)

For two connecting families fgeg and f Ngeg for z, we check that

z �fgeg Q̨ .�/ D h.a/
�
z �f Ngeg Q̨ .�/�h.a/�1 ;

where h W A ! G is the (continuous) map defined by h.a/ D ge.a/ Nge.a/
�1 if

a 2 kek. This thus defines z � Q̨ in {�1.˛/ which does not depend on the choice of
the connecting family fgeg.

Now suppose that Q̨ ; Q̨ 0 2 eRepG.�; Q̨0/ represent the same element in RepG.�/.
This means that there is a map h W A ! G such that Q̨ 0

a.�/ D h.a/ Q̨a.�/h.a/
�1.

Observe then that h.v/ 2 C. Q̨0.�v// for all v 2 ƒ0.A/ and hence

h.a/
�
z �fgeg Q̨�

h.a/�1 D z �fh.a/geh.a/�1g Q̨ 0 :

We have thus defined an action of QX. Q̨0/ on {�1.˛/. We now prove that this action
is transitive. Let Q̨ ; Q̨ 0 2 eRepG.�; Q̨0/. Orient each edge e of A, getting then
@e D f@�e; @Ceg. By Lemma 1.2, there exist s; s0 W kek ! G such that Q̨ .�/ D
s.a/�1 Q̨ 0

@�e
.�/s.a/ and Q̨ 0.�/ D s0.a/�1 Q̨ 0

@�e
.�/s0.a/ for all � 2 �.e/ and all a 2

kek. This implies that s.@e/ and s0.@�e/ are contained in C. Q̨ .�.e///. Hence one
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has Q̨ 0 D zfgeg � Q̨ , where z.@�e;e/ D s0.@�e/�1s.@�e/, z.@Ce;e/ D s0.@Ce/�1s.@Ce/
and ge.a/ D s0.a/�1s.a/. Hence the action of QX. Q̨0/ on {�1.˛/ is transitive.

If z D .z.v;e// is in the unit component of QX. Q̨0/, then z �fgeg Q̨ D Q̨ , if the
maps ge are chosen so that g. Oe/ D 1 and ge.k.v; e/k/ � C. Q̨0

v.�.e///. This
implies that the action of QX. Q̨0/ on {�1.˛/ descends to an action of the groupQ

.v;e/2ƒ1. PA/ �0.C. Q̨ 0
v.�.e/// which is isomorphic to X.˛/.

Let f be an edge of A, with @f D fv; v0g. The representation Q̨ 0 W �.0/ ! G

can be chosen such that the restrictions to �e of Q̨ 0
v and Q̨ 0

v0 coincide. For each

 2 C. Q̨0

v.�.f // D C. Q̨0
v0.�.f // we can then consider the element z.
/ of QX. Q̨0/

satisfying z.v;f /.
/ D z.v0;f /.
/ D 
 and z.w;e/.
/ D 1 of e ¤ f . Then z.
/ �fgeg
Q̨ D Q̨ if the ge are constant maps. This may be done for each edge f of A, showing
that the group Y 1.˛/ acts trivially on ˇ for all ˇ 2 {�1.˛/.

Let y 2 Q
v2ƒ0.A/.C. Q̨ 0

v.�v/// and z 2 QX. Q̨ 0/. Consider the element yz 2
QX. Q̨0/ defined by .yz/.v;e/ D yvz.v;e/. Choose a connecting family ge W kek ! G

for z. For each .v; e/ 2 ƒ1.�A/, choose h.v;e/ W k.v; e/k ! G such that h.v;e/.v/ D
yv and h.v;e/. Oe/ D 1. This defines a continuous map h W A ! G, by h.a/ D h.v;e/.a/

if a 2 k.v; e/k, which conjugates .yz/ �fhgeg Q̨ with z �fgeg Q̨ . This shows that
ux � ˇ D x � ˇ in {�1.˛/, for all u 2 Y 0.˛/, x 2 X.˛/ and ˇ 2 {�1.˛/.

Fixˇ 2 {�1.˛/, represented by Q̌ 2 eRepG.�; Q̨0/. Consider the map Q‰ W QX. Q̨0/ !
{�1.˛/ given by Q‰.z/ D Œz � Q̌�. By the above, we have shown that Q descends
to a surjection ‰ W Z.˛/ � {�1.˛/. It remains to show that ‰ is injective. Let
z0 2 QX. Q̨ 0/ with ‰.z0/ D ‰.z/. Choose connecting families fgeg and fg0

eg
for z and z0. If ‰.z0/ D ‰.z/, there exists a map h W A ! G with .z0 �fg0

eg
Q̌/.�/ D h.a/.z �fgeg Q̌/.�/h.a/�1. Observe that h.v/ 2 C. Q̨0.�v// and there-

fore h.0/ W �.o/ ! G defines an element y 2 Q
v2ƒ0.A/.C. Q̨ 0

v.�v/// satisfying

..yz/ �fhgeg Q̌/.�/ D h.a/.z �fgeg Q̌/.�/h.a/�1. Let Nz D yz and Nge D hge . One
has Œ Nz� D uŒz� in X.˛/ with u 2 Y 0.˛/. Thus, Nz and z represent the same class in
Y 0.˛/nX.˛/ and the equality z0 �fg0

eg Q̌ D Nz �f Ngeg Q̌ holds in eRepG.�; Q̨0/. Therefore,
Nge.a/

�1g0
e.a/ 2 C.ˇa.�.e// for all a 2 kek. This implies that z0 and Nz represent

the same class in X.˛/=Y 1.˛/. Finally, we have shown that z and z0 represent the
same class in Z.˛/, proving the injectivity of ‰.

We now give some examples of the use of Theorem 5.11.

5.15. Let A be the 1-simplex �1. Let � D SO.n/, with n D 2k C 1 	 3 and
consider the .�; A/-groupoid � with �0 D �1 D � and �01 D SO.n � 1/ (the split
�-space X with isotropy groupoid � is Sn with the SO.n/-action fixing the north
and the south pole). For G D SO.n/, RepG

cell.�/ contains two elements, the trivial
representation and the representation ˛ with ˛0 D ˛1 D id. The preimage by { of
the trivial representation contains one element but {�1.˛/ contains two elements. For
details and developments, see [13], Example 7.5.
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5.16. If �1.G/ D f1g, Theorem 5.11 extends to a .�; A/-groupoid � where A is of
dimension 2, provided that �.e/ D f1g when e 2 ƒ2.A/. Examples are given by
toric manifolds of (real) dimension 4.

5.17. Let � be the S1-structure on the 1-simplex �1 with �0 D �1 D S1 and
�01 D f1g. The splitS1-space with isotropy groupoid � isS2 withS1 acting by rota-
tion around an axis. By Theorem 5.11, SBunG

S1.S
2/ � Hom.�0; G/� Hom.�1; G/.

Choosing a maximal torus T in G, this yields SBunG
S1.S

2/ � Hom.�0; T /=W �
Hom.�1; T /=W where W is theWeyl group for T . IfG is of rankk, then Hom.�0; T /

and Hom.�1; T / are both in bijection with Zk .
Let us specialise to G D SO.m/ for m 	 3. A maximal torus T of SO.m/ is

formed by matrices containing 2-blocks concentrated around the diagonal, so isomor-
phic to SO.2/k , and where k D Œm=2�. The action of W on Hom.S1; T / � Zk can
be deduced from [1], p. 114. Whenm D 2kC 1, the action of W on Zk is generated
by the permutation of coordinates and sign changes in any of them. A fundamental
domain D � Zk is then

D D f.r1; : : : ; rk/ 2 Zk j 0 � r1 � � � � � rkg

and SBunSO.2kC1/

S1 .S2/ � D � D . Whenm D 2k, the sign changes must be even in

number. A fundamental domain E � Zk is then

E D f.r1; : : : ; rk/ 2 Zk j 0 � r1 � � � � � rk�1 � jrkjg
and SBunSO.2k/.S2/S1 � E � E .

This example was treated in our paper [13], Example 7.3, but the determination
of SBunSO.m/

S1 .S2/ is wrong there because, in the action of the Weyl group, the sign
changes were forgotten. However, the computation in [13], Example 7.3, of the
second Stiefel–Whitney number w2.
/ for 
 2 SBunSO.m/.S2/S1 , being mod 2, is
correct.

Here is an interesting consequence of the proof of Theorem 5.11.

Proposition 5.18. Let � be a proper .�; A/-groupoid, withA a regular CW-complex
and � a topological group. Let G be a compact connected Lie group. Then
| W RepG

cell.�/ ! RepG.�/ is injective.

Proof. As in the proof of Lemma 5.10, one may assume thatA is connected. LetA0 be
a maximal tree ofA and let �0 be the restriction of � overA0. AsA is connected, A0

contains all the vertices ofA and then the restriction map RepG
cell.�/ ! RepG

cell.�0/ is
injective by Proposition 5.1. Therefore, it is enough to prove Proposition 5.18 when
A is a tree.

Let ˇ; ˇ0 W � ! G be cellular representations with |.ˇ/ D |.ˇ0/. Let v be a
vertex of the tree A. By conjugation of ˇ with a constant element of G, one may
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assume that ˇv D ˇ0
v . Let e be an edge between v and v0; one has ˇe D ˇ0

e .
Suppose that ˇv0 ¤ ˇ0

v0 . Then ˇ0
v.�/ D zˇ.�/z�1 with z 2 C.ˇe.�.e// and

z … C.ˇv0.�v0//. Choose a continuous map ge W kek ! G with ge.v/ D 1 and
ge.v

0/ D z. Let �kek be the restriction of � over kek and let ˇ00 W �kek ! G be
the (non-cellular) representation defined by ˇ00.�/ D ge.a/

�1ˇ0.�/ge.a/. Using the
notations of the proof of Theorem 5.11, this means that ˇ; ˇ00 2 eRepG.�kek; ˇ.0//

and ˇ00 D y �ge
ˇ, where y 2 QX.ˇ.0// is defined by y.v;e/ D 1 and y.v0;e/ D z.

The element y is non-trivial in Z.˛kek/ which, by Theorem 5.11, would contradict
the assumption |.ˇ/ D |.ˇ0/. Therefore, ˇv0 D ˇ0

v0 . This argument may be done
independently for all edges adjacent to v and then propagated to the whole treeA.

When A is a tree, the map | W RepG
cell.�/ ! RepG.�/ is actually bijective. More

precisely:

Lemma 5.19. Let � be a proper .�; A/-groupoid, where A is a graph and � a
topological group. Let A0 be a subtree of A. Let G be a compact Lie group. Then
any ˛ 2 RepG.�/ has a representative which is cellular over A0.

Proof. Let v be a vertex of A0. For an edge e of A0, between v and v0, there exists,
by Lemma 1.2, a map  e W kek ! G such that  e.a/˛a.�/ e.a/

�1 D ˛v.�/ for
each a 2 kek and � 2 �e . This defines a map 1 W A0.v; 1/ ! G (notations as in the
proof of Lemma 5.9). As A0.v; 1/ is contractible, the homotopy extension property
permits us to extend  1 to a continuous map  1 W A ! G. The maps  1 conjugates
˛ to ˛1 which is cellular over A0.v; 1/. The process propagates over A0.v; n/ for
all n, giving rise to a map  W A ! G which conjugates ˛ to a representation which
is cellular over A0.

Proposition 5.18 together with Lemma 5.19 implies the following

Corollary 5.20. Let � be a proper .�; A/-groupoid with � a topological group and
A a tree. LetG be a compact connected Lie group. Then | W RepG

cell.�/ ! RepG.�/

is bijective.

5.21. In contrast with Theorem 5.11, the map | W RepG
cell.�/ ! RepG.�/ is not

surjective when the graph A is not a tree. Using Lemma 5.9, it is enough to find
an example where � W RepG

cell.�/ ! RepG
cell.�/ is not surjective. Let A be the 1-

skeleton of the 2-simplex �2 with �0 D �1 D �2 D � D S1 � S1, �01 D 1 � S1,
�02 D S1 � 1 and �12 is the diagonal S1. The split �-space with this isotropy
groupoid is CP 2 with the action .c1; c2/ � Œz0 W z1 W z2/� D Œc0z0 W c1z1 W z2/�. Take
G D SU.2/; the diagonal torus H has dimension 1 and its Weyl group W acts by
passing to the inverse. Then

Hom.�; SU.2// � Hom.�;H/=W

� O�=f� � ��g � .Z � Z/=f.p; q/ � �.p; q/g:
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We identify Hom.�; SU.2// with the fundamental domain D in Z � Z:

D ´ f.p; q/ 2 Z � Z/ j q 	 0 and .p 	 0 if q D 0/g:
If ˇ 2 RepG

cell.�/ is not trivial, it must be not trivial on at least one edge-isotropy
groups (say �01). Then ˇ is conjugate to ˇ0 such that ˇ0

01.�01/ � H . As H is
maximal abelian, ˇ0 is then an algebraic representation of � inH . By Proposition 5.4,
one has an identification of RepH .�/ with the set of triples

..p0; q0/; .p1; q1/; .p2; q2// 2 .Z � Z/3

such that
p0 D p2; q0 D q1; and p1 C q1 D p2 C q2: (14)

A class in RepG
cell.�/ is a triple

.Œp0; q0�; Œp1; q1�; Œp2; q2�/ 2 D � D � D

such that jp0j D jp2j, q0 D q1 and jp1 C q1j D jp2 C q2j. The class ˛ 2 RepG
cell.�/

corresponding to .Œ�1; 2�; Œ3; 2�; Œ1; 4�/ is not in the image of �. Indeed, none of the
8 triples in .Z � Z/3 above ˛ satisfies equations (14).

6. Comparison with the homotopy-theoretic approach

§ 6A. Haefliger classifying spaces. Let .X; �; '/ be a split �-space over a space
A with isotropy groupoid �. Let B� be the Haefliger classifying space for � [12],
p. 140. For a groupoid like B� where morphisms go from one object to itself, we
check that the construction of [12], p. 140, takes the following form: set

E� D f.v; a/ 2 E� � A j v 2 E�ag;
with the induced topology, and defineB� as the quotient spaceE�=�. The projection
N� W B� ! AmakesB� is a space overAwhose stalk over a is the Milnor classifying
space B�a. There is a section j W A ! B� of N� sending a 2 A to the class of
.v0; a/ where v0 D .1e; 0; : : : / 2 E� , expressed as the infinite join, with e the unit
element of � . The inclusion � � � �A is a morphism of topological groupoids and
therefore induces a continuous map E� ! E� �A which descends to a continuous
map B� ! B� � A.

Recall that the Borel construction associates toX the spaceX� D E���X . The
map� W X ! A descends to a continuous and open surjective map N� W X� ! A, with

N��1.a/ D E� �� �a � B�a. The composed map E� ! E� � A id�'���! E� � X
descends to a continuous map ı W B� ! X� over the identity of A. The restriction
of ı to each stalk is a weak homotopy equivalence. It would then be interesting to
figure out, for instance in the spirit of Sections 2 and 3, under which hypotheses ı is
a weak homotopy equivalence. We will restrict ourselves to .�; A/-groupoids, where
we get the following proposition.
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Proposition 6.1. Let � be a proper .�; A/-groupoid for a Lie group � . Let .X; �; '/
be a split �-space over A, with isotropy groupoid �. Then the map ı W B� ! X� is
a homotopy equivalence.

Proof. By Proposition 4.3, we may suppose that .X; �; '/ D .Y�;…; �/. If K is a
subspace of A, we denote by �.K/ the subgroupoid of � formed by all the stalks
over K, and we set X.K/ D Y�.K/.

Observe first that Proposition 6.1 is true if �a is constant for all a 2 A. Indeed,
one then has X D �=�a � A, so B� � B�a � A and X� � E�=�a � A and ı is a
homotopy equivalence. More generally, Proposition 6.1 remains true if �a is locally
constant, meaning constant on each connected component of A.

Proposition 6.1 will be proved, by induction on n, for X.A.n//, the split �-space
over the n-skeleton A.n/ of A. It is true for n D 0 since �.A.0// is locally con-
stant. The induction step involves the subcomplexes K 0 D A.n�1/ � K D A.n/,
so K is obtained from K 0 by adjunction of E D `

e2ƒn
Dn

e , via the attaching map
f W @E D `

e2ƒn
Sn�1

e ! K 0 (ƒn D ƒn.A/). Then X.K/ is obtained from X.K 0/
by attaching the �-space QE D `

e2ƒn
.�=�.e/ � Dn

e / via the �-equivariant map
Qf W @ QE D `

e2ƒn
.�=�.e/ � Sn�1

e / ! X.K 0/. We denote by F W E ! K and
zF W QE ! X.K/ the characteristic maps, extending f and Qf . We see QE and @ QE as

split �-spaces over E and @E respectively with locally constant isotropy groupoids:
if x 2 Dn

e , then �.E/ D �.@E/ D �.e/. Let us consider the following diagram:

B�.@E/

Bf

��

�� ��
��

'
ı@E ������������

II

B�.E/

BF

��

��
'

ıE������������

I

.@ QE/� �� ��

Qf�

��

QE�

zF�

��
III

X.K 0/� �� ��

IV

X.K/�

B�K0 �� ��
��

ıK0

'

������������
B�K

ıK

�����������

The maps ı@E and ıE are homotopy equivalences since the isotropy groupoids are
locally constant. The map ıK0 is a homotopy equivalence by induction hypothesis.
Restriction to any stalk shows that diagrams I–IV are commutative. As � is a Lie
group, all the spaces under consideration have the homotopy type of CW-complexes.
Therefore, the outer and inner square diagrams are homotopy push-out diagrams. By
push-out properties, the map ıK is a homotopy equivalence.

§ 6B. Split bundles and classifying spaces. Let � W .P p�! X/ be a �-equivariant
principal G-bundle. The Borel construction E� �� P ! E� �� X yields a
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principal G-bundle �� over X� with the same trivialising cover as �. If � is nu-
merable, so is �� . Let .X; �; '/ be a split �-CW-complex over A. By Theo-
rem 4.5, any split �-equivariant principal bundle over X is numerable. There-
fore we obtain a map ‰ W BunG

� .X/ ! ŒX� ; BG�. The isotropy representation
ˆ W SBunG

� .X/ ��!� RepG.�/ is a bijection. Passing to the classifying spaces gives a
map B W RepG.�/ ! ŒB�; BG�. The map ı W B� ! X� of Section § 6A gives rise
to a map ı� W ŒX� ; BG� ! ŒB�; BG�.

Proposition 6.2. Let � be a proper .�; A/-groupoid for a Lie group � . Let .X; �; '/
be a split �-CW-complex over A with isotropy groupoid �. Let G be a compact Lie
group. Then the diagram

SBunG
� .X/

ˆ�
��

‰ �� ŒX� ; BG�

ı�

��
RepG.�/

B �� ŒB�; BG�

is commutative.

Proof. By Proposition 4.3, we may assume that .X; �; '/ D .Y�;…; �/. Let " 2
SBunG

� .Y�/ and let � W � ! G be a representatative of ˆ."/. By Theorem 4.5 and
its proof, " has a representative � of the form

� �� .A �G/ ! � �� A D Y�;

where � acts on A �G by 
 � .a; g/ D .a; �.
/ g/. The bundle �� takes the form

E� �� .A �G/ ! E� �� A D X� :

Let q W L ! B� be the induced bundle ı��� . To prove Proposition 6.2, it is enough
to construct a G-equivariant map F W L ! EG making the diagram

L
F ��

q

��

EG

��
B�

B
 �� BG

commutative. Restricted to the stalk over a, the bundle ı��� is of the form

E�a ��a
.fag �G/ �! E�a ��a

fag:
Therefore, the required map F can be defined by

F.u; a; g/ D E�.u/ � g:
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Proposition 6.2 allows us to study the mapB W RepG.�/ ! ŒB�; BG�, especially
when G is abelian, in which case B is a homomorphism of abelian groups.

Proposition 6.3. Let � be a proper .�; A/-groupoid for a Lie group � . Let .X; �; '/
be a split �-CW-complex over A with isotropy groupoid �. Let G be a compact
abelian Lie group. Then one has an isomorphism of split exact sequences of abelian
groups:

0 �� SBunG
� .X/

ˆ�
��

�� BunG
� .X/

ı�B‰�
��

'�

�� BunG.A/

�
��

��

		
�� 0

0 �� RepG
cell.�/

B �� ŒB�; BG�
j �

�� ŒA; BG� ��

N��

		 0.

(15)

Proof. The top split exact sequence of abelian groups comes from Proposition 4.7
and its proof. For the bottom one, one has at least a sequence

RepG.�/
B�! ŒB�; BG�

j �

�! ŒA; BG�

with j � B B D 0. By Proposition 4.7, any principal �-equivariant G-bundle over
X is numerable. Therefore, the map ı� B ‰ is defined and is a homomorphism of
abelian groups. One checks that the left-hand square of the diagram (15) is commu-
tative, as well as the right-hand square with '� and j �. The map ı� is bijective by
Proposition 6.1. AsG is abelian, the map‰ is a bijection by [18], Theorem A. Thus,
ı� B ‰ is an isomorphism. This proves that the bottom sequence of diagram (15) is
split exact.

Corollary6.4. Let� beaproper .�; A/-groupoid for aLie group� . Let .X; �; '/bea
split�-space overAwith isotropy groupoid �. LetG be a compact abelian Lie group.
Suppose that H 1.AI�0.G// D H 2.AI Z/ D 0. Then the map B W RepG.�/ !
ŒB�; BG� is a bijection.

Proof. The groupG is a disjoint union of tori, so�j .BG/ D �j �1.G/ D 0 for j > 2.
One has Hom.�1.A/; �1.BG// D Hom.�1.A/; �0.G// � H 1.AI�0.G// D 0. A
map f W A ! BG is then null-homotopic on the 1-skeleton and the obstruction
theory to homotop it to a constant map is with constant coefficients. Our hypotheses
implies that H 2.AI�2.BG// D 0, so one gets ŒA; BG� D 0. Corollary 6.4 then
follows from Proposition 6.3.

6.5. Equivariant K-theory. For vector bundles it is natural to stabilize, and then to
study bundles via equivariant K-theory. For example, if G D U.n/ we consider the
stabilization maps

SBunU.n/
� .X/ ! SBunU.nC1/

� .X/

and point out how stabilization is related to our classification results.
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Proposition 6.6. Let � be a proper .�; A/-groupoid for a Lie group � . Let .X; �; '/
be a split �-CW-complex over A with isotropy groupoid �. Then there is a natural
isomorphism

ˆ W K�.X;A/ Š KRep.�/

of abelian groups induced by the isotropy representations.

The group KRep.�/ is the Grothendieck group of the abelian monoid obtained
by stabilization from the system fRepU.n/.�/g.

6.7. Equivariant cohomology. Let � be a compact Lie group and X a �-CW-
complex. By [18], Theorem A, one has isomorphisms

BunS1

� .X/ ��!� ŒX� ; BS
1� � H 2

�.X/; (16)

where H�
� .X/ D H�

� .X I Z/ denotes the equivariant cohomology. If .X; �; '/ is
a split �-space over a CW-complex A, then the projection � descends to a map
N� W X� ! A. We denote by X .i/ the part of X above the i -skeleton of A and by
ri W H�

� .X/ ! H�
� .X

.i// the restriction homomorphism induced by the inclusion
X .i/ � X .

Proposition 6.8. Let � be topological group and A be a CW-complex. Let � be a
proper .�; A/-groupoid and .X; �; '/ be a split �-space with isotropy groupoid �.
Then

(a) the sequence 0 ! H 2.A/
N��

��! H 2
�.X/

r0�! H 2
�.X

.0// is exact;

(b) the two restriction homomorphisms

r0 W H 2
�.X/ ! H 2

�.X
.0// and r10 W H 2

�.X
.1// ! H 2

�.X
.0//

have the same image.

Proof. The map N� admits a section N' W A ! X� coming from '. Therefore,
N�� W H�.A/ ! H�

� .X/ is injective.

One has H 2
�.X

.0// � SBunS1

X .0/ � RepG
cell s.�

.0//. The composed homo-

morphism BunS1

.A/ � H 2.A/
��

��! H 2
�.X/

r0�! H 2
�.X

.0// � RepG
cell s.�

.0//

sends an S1-bundle 
 over A to the isotropy representation of ��
 , which is triv-
ial. Thus, r0 B N�� D 0. Using Proposition 3.5, one has an isomorphism H 2

�.X/ �
RepG

cell s.�/�H 2.A/. The remainder of (a) and (b) follow from Proposition 5.1.

We now specialise to � being a torus T , with Lie algebra l, and use the definitions
and notations of Section § 5C. If � is 0-toric, we have from equation (12), that

H 2
T .X

.0// � RepG
cell s.�

.0// � Q
v2ƒ0

l�

by using Proposition 6.8 and its proof, together with Proposition 5.4.
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Proposition 6.9. Let � be a 1-toric cellular .T ; A/-groupoid and let .X; �; '/ be a
split T -space with isotropy groupoid �. The image of r W H 2

T .X/ ! Q
v2ƒ0

l� is
the set of elements .av/v2ƒ0

satisfying the GKM-condition.

Remark6.10. LetX be as in Proposition 6.9. Suppose thatX is equivariantly formal,
i.e. the homomorphism H�

T .X/ ! H�.X/ induced by the inclusion X � XT is

surjective. In this case, the homomorphim H 2
�.X/

r0�! H 2
�.X

.0// is injective and
Part (b) of Proposition 6.8 holds, see [9], Theorem 1. The injectivity of r0 is considered
as a “localisation theorem”, see e.g., [10], Theorem 6.3, and Part (b) of Proposition
6.8 is referred to as the “Chang–Skjelbred principle” (historically it occurred in [5],
Lemma 2.3, for rational coefficients). But, by Part (a) of Proposition 6.8, X is
equivariantly formal only if H 2.A/ D 0, so our context is different. For complex
coefficients, Proposition 6.9 was proven in [10], Theorem 7.2. There X need not to
be split but again must be equivariantly formal.
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