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On semisimple representations of universal lattices

Daniel K. Shenfeld

Abstract. We study finite-dimensional semisimple complex representations of the universal
lattices �n;k D SLn.ZŒx1; : : : ; xk �/ .n � 3/. One may obtain such a representation by
specializing x1; : : : ; xk to some complex values and composing the induced homomorphism
�n;k ! SLn.C/ with a rational representation of SLn.C/. We show that any semisimple
representation coincides, on a subgroup of finite index, with a direct sum of tensor products of
representations obtained in this way.
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1. Introduction

The groups SLn.O/ (n � 3), where O is the ring of integers of a number field
share many remarkable properties. For example, they have Kazhdan’s property .T /,
a positive solution to the congruence subgroup problem (CSP), and superrigidity.
Y. Shalom noticed an interesting interplay between these groups and the groups
�n;k D SLn.ZŒx1; : : : ; xk�/. In [17] he named the groups �n;k universal lattices,
because they can be mapped onto many lattices in SLn.F / for different locally com-
pact fields F , and conjectured that many of the common properties of SLn.O/ are
inherited from them. It is unknown, however, whether �n;k can be embedded as a
lattice in a locally compact group (embeddings of �n;k in SLn.C/ obtained by spe-
cializing x1; : : : ; xk to algebraically independent values are not discrete). Therefore,
the methods of Margulis theory do not apply naturally to problems regarding �n;k .

A recent remarkable result of Shalom and Vaserstein [18], [21] shows that �n;k

has property .T / for n � 3 and all k, and these are in fact the first known examples
of linear groups with .T / that are not arithmetic. In [9], Kassabov and Nikolov show
that �n;k does not have the congruence subgroup property; in fact, its congruence
kernel is not even finitely generated (f.g.), although it is central. Apparently, the
superrigidity of universal lattices, and their representation theory in general, have not
been addressed in the literature. This is the focus of this paper.

Recall the most important feature of representations of SLn.O/, superrigidity:
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Theorem 1.1 ([13], Theorem 7.2). Let O be the ring of integers of a number field
K, � W SLn.O/ ! GLr.F / (n � 3) a representation, F a field of characteristic 0.
Then there exists a rational representation RK=Q.SLn/! GLr , defined over F , that
coincides with � on a subgroup of finite index.

Here, RK=Q.SLn/ is the restriction of scalars, i.e., an algebraic group H such that
HQ Š SLn.K/. When F contains the Galois closure of K, e.g., F D C, we have
HF Š Qd

iD1 SLn.F / for d D ŒK W Q� ([24], 6.1.3). Thus, � extends, on a finite
index subgroup, to a rational representation of

Qd
iD1 SLn.F /.

The superrigidity theorem was proved by Margulis, in a more general form. How-
ever, when proving the CSP (see 2.1 for definitions) for SLn.n � 3/ and Sp2n.n � 2/,
Bass, Milnor, and Serre noted that the CSP implies superrigidity for F D Q ([3],
16.2), a result later extended to the general case in [14] and [13]. Their method
does not apply directly to the universal lattices, as these do not enjoy the CSP. How-
ever, their congruence kernel is central [9], an important result that we shall refer to
multiple times. This allows us to argue along the lines of Bass, Milnor and Serre,
with necessary modifications, at least for the case of semisimple representations. It
should be noted that this is not the general case, as we show immediately; moreover,
unlike SLn.O/, �n;k also has infinite representations in characteristic p > 0, as the
reduction mod p shows. Thus, �n;k has a more intricate representation theory than
the arithmetic lattices – ultimately due to the richer ideal structure of ZŒx1; : : : ; xk�

compared with O.
A natural way to obtain representations of �n;k is by specialization: let ˛1,

…, ˛k 2 C. Let N̨ W ZŒx1; : : : ; xk� ! C be the ring homomorphism defined by
assigning the value ˛i to xi , and, by abuse of notation, we denote the induced ho-
momorphism SLn.ZŒx1; : : : ; xk�/ ! SLn.C/ by N̨ as well. Composing N̨ with a
rational representation � of SLn.C/ we obtain a representation of �n;k , and we say
that it arises from a specialization, or, by abuse of language, that it is a specialization.

Kazhdan asked whether every representation � W �n;k ! GLr.C/ arises in this
way up to finite index, i.e., whether there exists a finite index subgroup �0 � �n;k

so that �j�0
coincides with a specialization. This is not the case, even for k D 1,

and we present two examples which show why it cannot be true. Our first example
shows that �n;1 has non-semisimple representations, as mentioned above, marking a
fundamental difference from the representation theory of arithmetic lattices:

Example 1.2. Let U E CŒx� be an ideal which can be generated by elements in ZŒx�

and is not radical,
p

U its radical. Then SLn.CŒx�=U / is a connected linear alge-
braic group. The natural projection SLn.CŒx�=U /! SLn.CŒx�=

p
U / is surjective

by 2.2, and its kernel consists of unipotent elements, since U contains a power of
its radical ([1], 7.14). Hence SLn.CŒx�=U / is not reductive. By choosing a repre-
sentation N� of SLn.CŒx�=U / which is not completely reducible (in particular, it is
infinite), we obtain a representation � of �n;1 that is not completely reducible either,
since its image is Zariski dense in the image of N�, and likewise for any finite index
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subgroup of �n;1. On the other hand, bearing in mind that all the representations of
SLn.C/ are semisimple, it is easily seen that any representation of �n;1 arising from
a specialization is completely reducible.

Even when restricting our interest to semisimple representations of �n;k , there
are representations that do not arise from a single specialization:

Example 1.3. Consider the coprime ideals generated by x and x� 1 in ZŒx�. By the
Chinese remainder theorem we obtain an isomorphism

ZŒx�=x � .x � 1/ Š ZŒx�=x � ZŒx�=.x � 1/ D Z � Z:

The natural map

� W SLn.ZŒx�/ � SLn.ZŒx�=x � .x � 1// Š SLn.Z/ � SLn.Z/

is a surjection, as can be seen using the fact that SLn.Z/ is generated by elementary
matrices (see 2.2). It follows that �n;1 has an irreducible n2-dimensional representa-
tion � . By the appendix, SLn.C/ has no such representations, hence � cannot factor
through SLn.C/. This is true for finite index subgroups as well, since the Zariski
closure of their image under � must be the same as the one of �n;1, seeing that the
latter is Zariski connected.

This example shows that semisimple representations of �n;k may arise by taking
finite tensor products of specializations, i.e., given N̨1; : : : ; N̨m 2 Ck and irreducible
algebraic representations

�j W SLn.C/! GLrj
.C/ .j D 1; : : : ; m/;

we obtain an irreducible representation of �n;k , namely
Nm

j D1 �j B N̨j . We remark
that the image of �j must actually lie in SLrj

.C/ by semisimplicity. This is in fact the
general case, bearing a striking similarity to representations of SLn.O/ as discussed
above. This is our main theorem:

Theorem 1.4. Let � W �n;k ! GLr.C/ .n � 3/ be a semisimple representation.
Then there exists a finite index subgroup �0 � �n;k so that �j�0

decomposes as a
direct sum

Ln
iD1 �i , where each �i is a tensor product of specializations.

It is worth pointing out that in the case k D 0, our proof reduces to that of Bass,
Milnor and Serre for the group SLn.Z/; it also shows superrigidity of SLn.O/, by
taking k D 1 and specializing x to a suitable algebraic number, although here we
have to assume complete reducibility.

The paper is organized in the following way. Section 2 contains some prelimi-
nary definitions and results. In Section 3, we calculate the profinite completion of
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ZŒx1; : : : ; xk�. For the main theorem, we follow the method for arithmetic groups
in [3] with the needed changes in Section 4, reducing the question of semisimple
representations of �n;k to that of the representations of its local factors; these are
dealt with in Section 5, and the proof is completed subsequently.

The following notation and conventions are used throughout the text. We put
Rk D ZŒx1; : : : ; xk�, �n;k D SLn.Rk/. As we fix n and k throughout the discussion,
we use the notation R D Rk and � D �n;k as well. We denote k-tuples by overlined
bold letters, e.g., Nx D .x1; : : : ; xk/. Rings are always commutative and unital. Local
and semi-local rings are denoted by curly letters, e.g. A (recall that a semi-local ring
is a ring that contains only finitely many maximal ideals). For a ring A and a prime
ideal a � A, Aa denotes the localization of A at a, while A Oa denotes the completion
of A with respect to the a-adic topology, i.e., lim �n

A=an.
An ideal U of finite index in a ring A is denoted by U Ef A; finite index

subgroups are denoted similarly. We denote by OA the profinite completion of A,
namely, OA D lim �U Ef A

A=U . In the same fashion, for a group G we define its

profinite completion OG D lim �N Ef G
G=N .

Acknowledgements. The author thanks Prof. Alex Lubotzky of The Hebrew Univer-
sity of Jerusalem for his invaluable guidance of this work, including suggesting the
problem and numerous ideas. The author also wishes to thank Dr. Tsachik Gelander
and Dr. Uzy Hadad of The Hebrew University for insightful discussions and remarks,
as well as the reviewers for suggesting various improvements to the manuscript. The
results presented in this paper are part of a Master’s thesis.

2. Preliminaries

2.1. The congruence subgroup property. Let A be a ring, ƒ D SLn.A/. A prin-
cipal congruence subgroup in ƒ is the kernel of the natural map ƒ ! SLn.A=U /

for an ideal U E A; we denote it by SLn.U /. If U �f A then SLn.U / �f ƒ.
Taking the inverse limit over all finite index principal congruence subgroups, we

obtain the congruence completion Qƒ D lim �ƒ= SLn.U /. There exists a natural map

� W Oƒ ! Qƒ; ker � is called the congruence kernel of ƒ, and we say that ƒ has the
congruence subgroup property (CSP) if it is finite.

If A is either local [2] or the ring of integers of a number field [3], then SLn.A/

has the CSP for all n � 3 but not necessarily for n D 2 [14]. As mentioned before,
the congruence kernel of �n;k is infinite but central.

In what follows, we denote by SL0
n.A/ any finite index congruence subgroup of

SLn.A/ (not necessarily a proper subgroup).

2.2. Generation by elementary matrices. Let A be a ring. For 1 � i ¤ j � n,
put Eij .A/ D fI C r � eij j r 2 Ag, and let ELn.A/ be the subgroup generated by
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all the Eij .A/. For large enough n (n � 2 is sufficient for all rings considered here),
ELn.A/ E SLn.A/ [12]; by definition, SLn.A/ is generated by elementary matrices
iff equality holds. This is the case for all n � 2 when A is local [2], or when A is the
ring of integers of a number field [3]. Suppose that SLn.A/ is generated by elementary
matrices; then so is SLn.AŒx�/ [20]. If, in addition, A is f.g., then SLn.A/ is also f.g.
In particular, �n;k is generated by elementary matrices and f.g. for all n � 2, k � 1.

The following propositions are useful:

Proposition 2.1 ([2], 5.1). Suppose that A is local, U E A, and let ELn.U / be the
normal closure of ELn.A/\ SLn.U / in SLn.A/. Then ELn.U / D SLn.U / for any
n � 2.

Proposition 2.2 ([2], 5.2). If U E A and A=U is semi-local, then the natural
homomorphism SLn.A/! SLn.A=U / is surjective.

2.3. Property .T / and finite abelianizations. Let G be a f.g. group, S a finite set
of generators for G, and let � be a unitary representation of G on a Hilbert space
H . A vector v 2 H is called an .�; S/-invariant vector if k�.s/v � vk < �kvk for
all s 2 S . We say that G has Kazhdan’s property .T / if there exists � > 0 such
that every irreducible unitary representation of G on a Hilbert space H which has an
.�; S/-invariant vector is trivial. This does not depend on the choice of S . Property
.T / has some important group theoretic consequences; the following is one we shall
be using frequently.

Proposition 2.3 ([10]). If G has .T / then G has finite abelianizations, namely, if
H �f G then H=ŒH; H� is finite.

�n;k has .T / and hence finite abelianizations for all n � 3 [18], [21]. This is not
true for �2;k , as it surjects onto SL2.Z/, which contains a finite index free subgroup.

2.4. Regular rings. Let A be a local ring with maximal ideal m and Krull dimen-
sion d . We say that A is complete if it is complete for the m-adic topology. It is
always true that the minimal number of generators for m is at least d ([1], ch. 11). A

is called regular if m can actually be generated by exactly d elements. If the residue
field of A is of characteristic p and if p … m2, then A is called unramified.

An extension Kf of Qp of degree f is called unramified if the residue field of Kf

has exactly pf elements. For every f � 1 there exists a unique (up to isomorphism)
unramified extension Kf of Qp of degree f ; this is the extension generated over Qp

by a primitive .pf � 1/-th root of 1 (see e.g. [22], I.IV). Denote by Of the ring of
integers of Kf . It is easily seen that Of is unramified iff Kf is unramified.

The following structure theorem will be the cornerstone of the calculations in
Section 3:
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Theorem 2.4 ([5], Theorem 15). Let A be a complete unramified regular local
ring. Suppose that A has characteristic 0 and dimension d , with a residue field of
characteristic p and degree f over Fp . Then A is isomorphic to a formal power
series ring in d � 1 variables over Of .

A Noetherian ring A is called regular if any localization at a prime ideal is regular.
Any ring of integers of a number field is regular, since its localizations are Dedekind
domains. If A is a regular ring, then AŒx� is also a regular ring ([15], IV.25). It follows
that Rk is regular.

2.5. Representations of direct products. Let G1, G2 be finite groups, G D G1 �
G2, L an algebraically closed field, V a finite-dimensional vector space over L, and
let � W G ! AutL.V / be an irreducible representation. It is well known that � is
isomorphic to a tensor product of irreducible representations of G1 and G2, i.e., there
exist irreducible representations .�1; U /, .�2; W / of G1, G2, respectively, so that
.�; V / Š .�1˝ �2; U ˝W /; the latter representation is given by .g1; g2/.u˝w/ D
g1u˝ g2w, where G1 and G2 act by �1 and �2, respectively.

The same holds for general groups, but the proofs in the literature seem to treat
only some specific cases. We sketch here a proof of this elementary result. Let .�1; U /

be an irreducible subrepresentation of �jG1
, and let g 2 G2 be any element. Since

G1 and G2 commute in G, we see that gU is also an irreducible subrepresentation of
�jG1

, and either gU \ U D 0 or gU D U , in which case, by Schur’s lemma, g acts
on U as a scalar. Let U1; : : : ; Ud be all the irreducible components obtained from U

in this way. Then
Ld

iD1 Ui D V since � is irreducible. Note that the representations
Ui are all isomorphic to U (by the action of some g). We fix isomorphisms Ui Š U

and identify all these representations.
Let W D Ld , and define �2 W G2 ! AutL.W / by the action of G2 on the standard

basis feigdiD1 as follows: g.ei / D ˛ej (g 2 G2; ˛ 2 L) if gUi D Uj and the action
of g after the identification of Ui and Uj is multiplication by ˛. It is routine to check
that �2 is well defined, and that � Š �1 ˝ �2, from which the irreducibility of �2

follows as well. It is also straightforward to check that if � is continuous, then so are
�1 and �2.

Remark 2.5. Let G D Q1
iD1 Gi , � a finite-dimensional irreducible representation

of G. We may find by induction irreducible representations �t , �0
t of Gt ,

Q1
iDtC1 Gi ,

respectively, so that � D �1˝� � �˝�t˝�0
t . Since � is finite dimensional, dim �0

t D 1

for all but finitely many t .

3. The profinite completion of ZŒx1; : : : ; xk�

From now on we fix n and k and put R D Rk , � D �n;k . In this section we calculate
the profinite completion of R.
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Proposition 3.1. Let A be a Noetherian ring. Then OA D Q
mEA A ym, where m

ranges over all finite index maximal ideals.

Proof. Let ˆ W OA ! Q
mEA A ym be the natural map, and let U Ef A be a finite

index ideal, with primary decomposition U D T
qi where mi D pqi are distinct

and necessarily maximal, being prime ideals of finite index. For some ti , we have
m

ti
i � qi , since any ideal in A contains a power of its radical. Note that for i ¤ j , m

ti
i

and m
tj
j are coprime, hence by the Chinese remainder theorem

T
m

ti
i D

Q
m

ti
i � U ,

implying injectivity of ˆ. Now for i ¤ j , qi and qj are coprime, so again by the
Chinese remainder theorem A=U Š Q

A=qi � Q
A=m

ti
i , from which surjectivity

of ˆ follows.

Note that R, being a f.g. ring, does not surject onto any infinite field, hence any
maximal ideal in R has finite index.

Proposition 3.2. Let m E R be a maximal ideal. Suppose that R=m has pf

elements and let Op;f be the ring of integers of the unramified extension of Qp of
degree f . Then R ym Š Op;f ŒŒT1; : : : ; Tk��.

Proof. R ym is a complete local ring and dim R ym D dim R D k C 1 (cf. [1], 11.19).
It is also regular, since R is regular. Since m is a prime ideal of finite index in R, we
have p 2 m for some prime p 2 Z. We claim that R ym is unramified, i.e., p … m2;
by ([5], Theorem 2), it is enough to show that Rm is unramified. There is a natural
isomorphism Rm=p Š FpŒ Nx� xm where xm is the image of m under the projection
modulo p. The quotient of a regular local ring by an ideal U is regular iff U can be
generated by elements that are linearly independent over m=m2 ([23], 11.26). As the
ring on the right is regular, it follows that p … m2, as desired. Note in particular that
m can be generated by p together with k additional elements, whose image in FpŒ Nx�

generate xm. The proposition now follows from 2.4.

We denote Rp;f D Op;f ŒŒT1; : : : ; Tk��. This is a pro-p ring, whose topology
clearly coincides with the m-adic topology on R ym. Note that the indeterminates xT
are not the image of the indeterminates Nx in R. In fact, from the proof of 2.4 it follows
that the isomorphism can be chosen to map the generators of m other than p to xT .
Putting 3.1 and 3.2 together we obtain:

Proposition 3.3.
OR ŠQ

p

Q

xm
Op;f . xm/ŒŒT1; : : : Tk��;

where p goes over all primes in Z, xm goes over all maximal ideals in FpŒ Nx�, and
f . xm/ is the degree of FpŒ Nx�= xm over Fp .

Remark 3.4. The isomorphism in 2.4 is neither unique nor natural, thus neither is the
isomorphism in 3.3. Throughout the discussion, we fix an isomorphism and identify
OR with the above product.
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4. The Bass–Milnor–Serre argument

We follow the argument of Bass, Milnor and Serre [3] for arithmetic lattices, which
uses finiteness of the congruence kernel to associate a given representation with a
map of analytic pro-p groups. In our case the congruence kernel of � is infinite; we
overcome this obstacle by restricting our interest to semisimple representations and
using the centrality of the congruence kernel. First, we may shift our focus to p-adic
representations of �:

Lemma 4.1. Let � W � ! GLr.C/ be a representation. Then there exists a prime p

and an isomorphism of abstract fields ˆ W xQp Š C, where xQp is an algebraic closure
of Qp , so that under the induced isomorphism on GL, the image of � is contained in
GLr.Zp/.

Proof. � is f.g. (Section 2.2), hence the entries in the image of � generate a f.g. do-
main D, which can be embedded in Zp for infinitely many primes p ([4], ch. 5). Fixing
such a prime p we have � W � ! GLr.Zp/. By elementary field theory considera-
tions, the embedding D ,! Zp can be extended by an embedding Zp ,! xQp Š C
fixing D, and the lemma follows.

From now on we treat irreducible p-adic representations of � , returning to the
complex case only in the proof of the main theorem. We endow xQp with the topology
induced by the unique extension of the p-adic norm ([11], III.3).

Proposition 4.2. Let � W � ! GLr.Zp/ be an irreducible representation. Then there
exists a finite index subgroup �0 � � , so that �j�0

decomposes as a finite direct sumL
�i , where

�i W �0
��!

t.i/Q

j D1

SL0
n.Rp;fj

/
��! GLr.xQp/;

is an irreducible representation; 	 is the natural embedding, while 
 is given by a
tensor product of continuous irreducible representations.

Proof. Since � is irreducible, the Zariski closure �.�/ of �.�/, is reductive, hence
its commutator is semisimple. Since � has finite abelianizations (see 2.3), we may
take a finite index subgroup �0 � � so that �.�0/ is connected and semisimple.
Furthermore, GLn.Zp/ is an analytic pro-p group, so it containts an open pro-p
torsion-free subgroup ([6], ch. 4). Taking a suitable finite index subgroup again, we
may also assume that �.�0/ is torsion-free. It follows that Z.�.�0// is trivial, since
its Zariski closure is contained in Z.�.�0// which is finite by semisimplicity.

Consider the natural map � W O� ! z� from the profinite completion of � to its
congruence completion. We contend that z� D SLn. OR/ and that � is surjective. Note
first that for U Ef R, SLn.R/= SLn.U / Š SLn.R=U / by Proposition 2.2. Now we
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have natural maps

z� D lim �
U Ef R

�= SLn.U / D lim �
U Ef R

SLn.R=U /! SLn. OR/;

where the last map is easily seen to be injective. It is also surjective, as OR is local,
so SLn. OR/ is generated by elementary matrices, which are clearly in the image of
z� . The image under � of the elementary matrices of � (embedded in O�) is dense in
the elementary matrices in z� , hence �. O�/ is dense in z�; as O� is compact and � is
continuous, it is onto.

Putting z�0 D �. O�0/ we obtain a diagram

�0
� ��

��

GLr.Zp/

C �� O�0 �
��

O�
����������� z�0

Q�
��

where O� exists due to the universal property of profinite groups. Since any element
commuting with �.�0/ would be in the center of its Zariski closure, we see that O�. O�0/

also has trivial center. The congruence kernel C D ker � \ O�0 is central, hence is
killed by O�. Thus, O� factors through the congruence completion and we obtain Q�; all
the maps are continuous.

By Proposition 3.3 and the claim above,

z� ŠQ

l

Q

xm
SLn.Rl;f . xm//

where l goes over all primes and xm goes over all the maximal ideals in Fl Œ Nx�. The
rings Rl;f . xm/ are local, so each of the local factors SLn.Rl;f . xm// has the congruence
subgroup property. Since z�0 has finite index in z� , we may assume that z�0 is obtained
by replacing finitely many of the local factors by a congruence subgroup.

The image of Q� is a pro-p torsion-free group, so for any l ¤ p the image of
the l-adic factors is trivial. We now consider Q� as a representation into GLr.xQp/.
Then Q� may not be irreducible on z�0, but it is completely reducible. Each irreducible
component can be written as a tensor product of irreducible representations of finitely
many local factors and a 1-dimensional representation of the product of the other
factors, by Remark 2.5. Using the fact that � has finite abelianizations and that it is
dense in SLn.Rp;f . xm//, we see that any abelian image must be finite, hence trivial. It
follows that we can regard any irreducible component of Q�j�0

as a representation of
a finite product of principal congruence subgroups

Qt
j D1 SL0

n.Rp;fj
/, establishing

the proposition.
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5. Representations of the local factors

Put R D Rp;f and let m be the maximal ideal of R. In view of 4.2 we shall study
irreducible representations of SL0

n.R/.

Remark 5.1. If p E R is a prime ideal so that R=p is a f.g. Zp-module, it is integral
over Zp and we have an equality of Krull dimensions dim R=p D dim Zp D 1.
Conversely, if dim R=p D 1 then it is finite over Zp ([6], 6.43). We say that p has
dimension 1.

Theorem 5.2. Let 
 W SL0
n.R/! GLd .xQp/ be an irreducible representation. Then

there exists a finite index subgroup ƒ � SL0
n.R/ so that 
jƒ decomposes as a direct

sum
L


i , and each component has the form


i W ƒ ˛�!
s.i/Q

j D1

SLn.xQp/
��! GLd .xQp/;

where each of the components of ˛ is a specialization and � decomposes as a tensor
product of irreducible algebraic representations.

For the proof we proceed in several steps. We say that a pro-p group (pro-p ring)
is f.g. if it is topologically f.g., i.e., if it has a f.g. dense subgroup (subring).

Proposition 5.3. Let 
 W SLn.ml/! GLd .xQp/ be a continuous representation.

(a) There exists an ideal 0 ¤ U E R so that SLn.U / � ker 
 and R=U is a
f.g. Zp-module (in particular, ker 
 ¤ 1).

(b) If 
 is irreducible, then U can be taken to be a radical ideal, all of whose
associated prime ideals have dimension 1.

Remark 5.4. Bass’s stable structure theorem ([2], 4.2, 5.1) asserts that if A is semi-
local and N E SLn.A/ is any normal subgroup, there exists 0 ¤ U E A so that
SLn.U / � N . However, here we need this stronger result.

Proof. SLn.ml/ is f.g., since it is (topologically) generated by elementary matrices
(Prop. 2.1) and the ideal ml is f.g. Let F � xQp be the field generated by the entries
of the image of 
. Then F is a f.g. algebraic extension of Qp , hence finite over
Qp . We regard 
 as a representation 
 W SLn.ml/ ! GLd .F /. Let O0

p be the ring
of integers of F . The image of 
 is compact since SLn.R/ is, therefore it lies in a
subgroup conjugate to GLd .O0

p/ ([16], IV.2). This is a pro-p analytic group, hence
every closed subgroup is f.g. ([6], 8.1, 3.11).

Fix distinct i; j 2 f1; : : : ; ng. The image under � of Eij .ml/ is closed, abelian
and f.g., hence is isomorphic to Zm

p � H for some m 2 N and a finite group H

([6], Ex. 1.23). It follows that Sij D ker 
 \ Eij .ml/ is not trivial, since ml has
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finite index in R which is not f.g. as an abelian pro-p group. Identify Sij with the
corresponding set in R, and let Jij be the ideal generated by Sij . Since n � 3, we
may use the commutation relation

ŒEij .a/; Ejv.s/� D Eiv.as/ .i ¤ v/

twice to see that if s 2 Sij , a 2 m2l , then a�s 2 Suv for any distinct u; v 2 f1; : : : ; ng.
Take U D m2lJij ; then R=U is a finite Zp-module, and it follows from 2.1 that
SLn.U / D ELn.U / � ker 
, as needed.

Suppose now that 
 is irreducible; then the Zariski closure of its image is re-
ductive. We may again pass to a finite index subgroup and assume that the Zariski
closure of 
.SLn.ml// is connected and semisimple (recall that SLn.R/ has finite
abelianizations). Consider the projection �U W SLn.ml=U / ! SLn.ml=

p
U / be-

tween principal congruence subgroups in the respective quotient rings; it is indeed
onto by 2.2. Since U contains a power of its radical, it is easy to see that ker �U is
unipotent, hence its image under 
 is trivial, and we may take U to be a radical ideal.
R is Noetherian, so U is a finite intersection of prime ideals, say U DTs

iD1 pi . The
quotients R=pi are also finite over Zp , asserting the last claim.

The following lemmas address the structure of R=U ; the first one is a variant of
the Chinese remainder theorem (cf. [1], 1.10):

Lemma 5.5. Let p1; : : : ; ps be distinct prime ideals of dimension 1 in R. Then the
natural map

� W R=
sT

iD1

pi !
sQ

iD1

R=pi

is injective and its image contains a finite index ideal.

Proof. Injectivity is clear. We claim that for some m, the image of R=
T

pi contains
the product

Qs
iD1 mm=pi . It follows from the dimension assumption and from the

fact that for all j ¤ i , pi ; pj � m by locality of R, that the only prime ideal
containing pi C pj is the maximal ideal m, so this is an m-primary ideal. As any
ideal contains a power of its radical, we have mtij � pi C pj for some tij . Take
t D maxij .tij / and m D t � .s � 1/. It is enough to show that .y1 : : : ys�1; 0; : : : ; 0/

is in the image of � for y1; : : : ; ys�1 2 mt . Write for i D 1; : : : ; s�1: yi D ui Cvi

(ui 2 p1, vi 2 piC1). It is easy to check that

x D v1 : : : vs�1 D .y1 � u1/ : : : .ys�1 � us�1/;

as desired.

Lemma 5.6. Let p be a prime ideal of dimension 1 in R. Put �0 D R=p and let �

be the integral closure of �0 in its field of fractions. Then � is a complete discrete
valuation ring (DVR) and �0 has finite index in � as abelian groups.
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Proof. � is a complete local pro-p domain of dimension 1 by [8], lemma 6. Since �

is integrally closed by assumption, it is a complete DVR. As �0 and � have the same
field of fractions, their free ranks as Zp-modules are equal and finite by hypothesis.
It follows that �0 �f � .

The next lemma is essentially part of the proof of the superrigidity theorem ([3],
16.2), which we reproduce here for completeness:

Lemma5.7. Let� beapro-p DVR,K itsfield of fractions, H D RK=Qp
.SLn/. LetF

be a finite extension of Qp and � W SL0
n.�/! GLd .F / a continuous representation.

Then � coincides on a finite index subgroup with a rational representation T W H !
GLd defined over F .

Proof. SLn.�/ D HZp
since � is a DVR (cf. [24], 6.1.3). As before, the image

of � is contained in a subgroup conjugate to GLd .O0
p/, O0

p the ring of integers of
F , so this is a continuous map between analytic pro-p groups. Hence � is analytic
([6], ch. 9); let L.�/ be its tangent map at the identity. Since SL is semisimple and
simply-connected, so is H , and there exists a unique homomorphism of algebraic
groups T W H ! GLd , defined over F , whose tangent map is L.�/. Therefore, T

agrees locally over F with � , so they coincide on a finite index subgroup.

Proof of 5.2. By 5.3, 
 factors, on a suitable finite index subgroup, as a represen-
tation of SL0

n.R=U /, which can be seen by 5.5, 5.6 as a finite index subgroup inQs
j D1 SLn.�j /, with �j a pro-p DVR. Such a subgroup can be assumed to be of the

form
Q

SL0
n.�j / since each factor has the CSP. The map ˛ W SL0

n.R/!Q
SLn.�j /

is a specialization since it is induced by a ring homomorphism R!Q
Sj .

Fix an index j and put � D �j , K, H as in 5.7. Let f�1; : : : ; �mg be the distinct
embeddings of K in xQp . Then SLn.�/ embeds in H xQp

Š Qm
iD1 SLn.xQp/, via the

map g ! .g�1 ; : : : ; g�m/ where the �i act on the matrix g in the obvious way ([19],
12.4). The theorem follows from this remark together with 5.7 and Section 2.5.

Putting everything together, the proof of the main theorem now follows easily:

Proof of 1.4. We begin with the p-adic case. Let � W � ! SLr.Zp/ be an irreducible
representation. By 4.2, � decomposes on a finite index subgroup as a tensor product
of continuous irreducible representations SL0

n.Rp;f / ! GLr.xQp/. In view of 5.2,
each of these representations coincides, again on a finite index subgroup, with a
tensor product

N
j̨ B �j , where the j̨ are specializations into xQp and �j are rational

representations of SLn.xQp/. Taken together, we see that on a finite index subgroup
�0 �f � , � decomposes as a direct sum of tensor products of specializations:

�0
˛�!

tQ

j D1

SLn.xQp/
��! GLr.xQp/:
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The complex case now follows by applying the isomorphism ˆ W xQp Š C from 4.1
to the specializations ˛ and the representations � . Finally, the semisimple case follows
directly from the irreducible one.

6. Appendix

We assert that the group G D SLn.C/ has no irreducible representations of di-
mension n2. [7] serves as a reference for this appendix. Recall that any irreducible
representation of G is determined by a unique highest weight, which in turn is defined
by an .n � 1/-tuple of nonnegative integers .a1; : : : ; an�1/. This representation is
denoted by �a1;:::;an�1

, and we put for a1; a2; : : : ; an�1 � 1: d.a1; : : : ; an�1/ D
dim �a1�1;:::;an�1�1. We have ([7], 15.17):

d D d.a1; : : : ; an�1/ D Q

1�i<j �n

ai C���Caj �1

j �i
(1)

The following elementary properties are easy consequences of this formula:

(a) d is monotonous in the ai ;
(b) d is symmetric, i.e., d.a1; a2; : : : ; an�1/ D d.an�1; : : : ; a2; a1/;
(c) If i < j � n�1

2
and k � 2, then

d.1; : : : ; k
i
; : : : ; 1; : : : ; 1/ < d.1; : : : ; 1; : : : ; k

j
; : : : ; 1/:

Proposition 6.1. The group SLn.C/ .n � 3/ has no irreducible representations of
dimension n2.

Proof. An elementary calculation gives

d.2; 1; 1; : : : ; 1; 2/ D n2 � 1: (2)

By the properties above we obtain that d.1; : : : ; k; : : : ; l; : : : ; 1/ > n2 for any k; l � 2

apart from the option (2). Another elementary calculation gives: d.k; 1; : : : ; 1/ D�
kCn�2

k�1

�
. For n � 6, k � 4 this is larger than n2, and by the properties above we have

d.1; : : : ; k; : : : ; 1/ > n2. The cases n D 3; 4; 5 can be checked directly; therefore,
we only need to check the cases k D 2; 3.

For k D 2 note that

d.a1; : : : ; an�1; 1/ D d.a1; : : : ; an�1/ � 1

.n � 1/Š
�

n�1Q

iD1

.ai C � � � C an/ (3)

It is easily checked that if Na D .1; 1; : : : ; 2; : : : 1/, where 2 is at the index l , then
d.Na/ D �

n
l

� ¤ n2. Finally, for k D 3 note that d.3; 1; : : : ; 1/ D n.nC1/
2

, and using
(3) we obtain that d.1; 3; : : : ; 1/ > n2 for any n � 4. The claim now follows from
the properties of d .
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