
Groups Geom. Dyn. 4 (2010), 195–208
DOI 10.4171/GGD/80

Groups, Geometry, and Dynamics
© European Mathematical Society

Examples of hyperlinear groups without factorization property
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Abstract. In this note we give an example of a group which is locally embeddable into finite
groups (in particular it is initially subamenable, sofic and hence hyperlinear) but does not have
Kirchberg’s factorization property. This group provides also an example of a sofic Kazhdan
group which is not residually finite, answering a question from [ES05]. We also give an
example of a group which is not initially subamenable but hyperlinear. Finally, we point out
a mistake in [Kir94], Corollary 1.2 (v) ) (i), and [Kir93], Corollary 7.3 (iii), and provide an
example of a group which does not have the factorization property and is still a subgroup of a
connected finite-dimensional Lie group.

Mathematics Subject Classification (2010). 20F65, 22D25, 46M07, 46L05.

Keywords. Hyperlinear group, sofic group, Kazhdan’s property (T), factorization property.

1. Introduction

In [Oza04b], N. Ozawa observed that there are no hyperlinear groups known which
do not have E. Kirchberg’s factorization property (see below for definitions). In this
note we give examples of groups with this behaviour. As a consequence, the maximal
group C*-algebra of such a group cannot have the local lifting property. To the best
knowledge of the author, although this should be so for large classes of groups, no
such group had been constructed before. Another example yields a group which is
hyperlinear but not initially subamenable, a concept that goes back to M. Gromov;
see [Gro99] for more information and Section 3 for a definition. The possibly weaker
notion of being sofic (which also goes back to [Gro99], see also [Wei00], [ES05],
[ES06] and Definition 3.6) is immediately connected with all that. It has been asked
by various people whether all hyperlinear groups are sofic and whether all sofic groups
are initially subamenable. The first question has the flavour of A. Mal’cev’s result
that all finitely generated linear groups are residually finite. Concerning the second
question, Gromov states in [Gro99], p. 157, that “it may (?) happen” that a group is
sofic but not initially subamenable. We do not have an answer, but our result gives
that at least one of these interesting questions has a negative answer.
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The question here is about different qualities of matricial or combinatorial approx-
imation to group laws. In the theory of von Neumann algebras one frequently encoun-
ters the following kind of approximation: Let G be a finitely generated group with a
fixed generating set S � G; this amounts to fixing a monoid surjection w W FS ! G

from the free monoid on symbols fs; s� j s 2 Sg so that w.s�/ D w.s/�1. Given an
integer n and " > 0, one wants to find complex matrices fusgs2S (of some arbitrary
size k) such that for all words t 2 FS of length � n we have that tr. xw.t// is "-close
to zero whenever w.t/ is non-trivial and "-close to one whenever w.t/ is trivial in
G. Here xw denotes the natural monoid homomorphism xw W FS ! MkC satisfying
xw.s/ D us and xw.s�/ D u�

s . As usual, tr W MkC ! C denotes the normalized trace
on the algebra of complex k � k-matrices. The matrices fusgs2S are usually called
."; n/-microstates. Sometimes, one assumes the existence of some universal bound
on the operator norms of the matrices us , but this is not necessary.

A finitely generated group which admits ."; n/-microstates for all n 2 N and all
" > 0 is said to be hyperlinear. Whereas the study of microstates was initiated in
work of D. Voiculescu on free probability theory, the name hyperlinear goes back
to F. Rădulescu. The class of hyperlinear groups includes all residually amenable
groups and there is no group known, which is not hyperlinear. As a matter of fact, if
G is residually amenable, then the approximations above can be chosen to be induced
(on the generators of G) by linear maps

�k W C �G ! Mnk
C

which are unital, completely positive and satisfy

(i) limk!1 k�k.a/�k.b/ � �k.ab/k2 D 0 for all a; b 2 C �G, and
(ii) limk!1 j�.a/ � tr B �k.a/j D 0 for all a 2 C �G.

Here C �G denotes the maximal group C*-algebra and � W C �G ! C denotes the
canonical trace. A linear map �k is said to be completely positive if the induced linear
maps

1MnC ˝ �k W MnC ˝C C
�G ! MnC ˝C Mnk

C

respect the cone of positive operators for all n � 1. The notion of complete positiv-
ity and complete boundedness appears naturally in the realm of C*-algebras and is
naturally embedded into the subject of operator space theory. For background on the
theory of operator spaces we refer to the book by G. Pisier [Pis03].

Following E. Kirchberg ([Kir94]), a group G is said to have the factorization
property if it is hyperlinear and the approximation is induced by unital completely
positive maps as described above. The factorization property can be defined in various
ways and has been studied in detail in [Kir93], [Kir94], see also [Oza04a]. Kirchberg
proved the following remarkable and beautiful result:

Theorem 1.1 (Kirchberg, see [Kir94]). For a Kazhdan group G the following prop-
erties are equivalent:
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(i) G has the factorization property.

(ii) G is residually finite.

(iii) G is isomorphic to a subgroup of the unitary group of the hyperfinite II1- factor.

Recall that a group is residually finite if every non-trivial element can be mapped
non-trivially to a finite group. For background on Kazhdan’s property (T); see
[BdlHV08]. We will use as a definition that 1-cocycles into unitary representations
are bounded. More precisely:

Definition 1.2. Let G be a group. The group G is said to have Kazhdan’s property
(T) if for every unitary Hilbert space representation � W G ! U.H/ and every map
c W G ! H which satisfies c.gh/ D �.g/c.h/C c.g/, there exists a constant C 2 R
such that kc.g/k � C for all g 2 G.

C. Champetier (see [Cha00]) showed the existence of Kazhdan groups with no
subgroups of finite index. These groups cannot have Kirchberg’s factorization prop-
erty and it remains an intriguing question to decide whether they can be hyperlinear.
Since these groups appear as inductive limits of hyperbolic groups, the question
whether all hyperbolic groups are residually finite is immediately linked with this
problem.

There are two sources of simple groups with Kazhdan’s property (T). Such groups
appear for example as lattices in certain Kac–Moody groups; see [CR06]. Much
earlier it was also shown by Gromov ([Gro87]) that every hyperbolic group surjects
onto a Tarski monster, i.e., every proper subgroup of this quotient is finite cyclic; in
particular: this quotient group is simple and is a Kazhdan group if the hyperbolic
group was a Kazhdan group.

In this note we describe explicitly a finitely generated hyperlinear (in fact locally
embeddable into finite groups (LEF), hence sofic) Kazhdan group which is not residu-
ally finite and hence does not have the factorization property. In fact, we show that our
example admits a surjective and non-injective endomorphism (i.e., it is non-hopfian)
and use A. Mal’cev’s famous result:

Theorem 1.3 (Mal’cev, see [Mal40]). Every finitely generated residually finite group
is hopfian.

Although we did not define all the notions used so far, we try to clarify the situation
by drawing a diagram of known implications between the concepts involved. We will
recall all relevant definitions along the way. Throughout, all groups are assumed to
be finitely generated.

The decorations on the arrows indicate that additional assumptions are needed,
f.p. means finitely presented.
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The first main result of this article is:

Theorem 1.4. There exists a finitely generated Kazhdan group G which is locally
embeddable into finite groups (in particular sofic and hence hyperlinear) but does
not have the factorization property.

This answers the question whether all hyperlinear groups could have the factor-
ization property, see [Oza04b], p. 524. As Ozawa points out (see [Oza04b], p. 527),
the maximal group C*-algebra of G cannot have the local lifting property. (Ozawa
proved in [Oza04a] that there are groups whose maximal group C*-algebra do not
have the lifting property.) We do not go into the definition of the lifting property or the
local lifting property and the relevance of this results, see [Oza04b]. This example of
a group also ends speculations on whether all sofic Kazhdan groups are necessarily
residually finite, see [ES05], Proposition 4.5.

The second result is:

Theorem 1.5. There exists a hyperlinear Kazhdan group K which is not initially
subamenable.

Unfortunately, we cannot decide whether our example is sofic or not. In any case,
we can conclude that either there exists a hyperlinear group which is not sofic, or
there exists a sofic group which is not initially subamenable. Note that this group
cannot have the factorization property.

Remark 1.6. E. Kirchberg claims in [Kir94], Corollary 1.2, that the three properties
in Theorem 1.1 are equivalent to G being isomorphic to a subgroup of an almost
connected locally compact group. However, our second exampleK of a group without
factorization property arises as a subgroup of a connected finite dimensional Lie group
and disproves this claim. The mistakes in the proof of Corollary 1.2 of [Kir94] arises
in the reference to the proof of Lemma 7.3 (iii) in [Kir93]. There, it is implicitly
assumed thatG is unimodular and has a basis of almost conjugation invariant compact
neighborhoods; see Remark 3.1 for more details.
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Remark 1.7. After submission of this paper, Yves de Cornulier has informed me
(personal communication) that he can construct examples of sofic groups which are
not initially subamenable.

I want to thank Alain Valette for pointing out a reference and contributing many
helpful comments after reading the first draft of this paper.

2. The first example

2.1. Non-hopfian Kazhdan groups. We follow ideas of Y. de Cornulier [dC07] in
constructing non-hopfian groups with Kazhdan’s property (T). Some of his ideas go
back to work of H. Abels [Abe79].

Let R be a (unital) commutative ring and defineG0.R/ to be the following group
of matrices:

G0.R/ D

8̂
ˆ̂̂<
ˆ̂̂̂
:

2
66664

1 a12 a13 a14 a15

0 a22 a23 a24 a25

0 a32 a33 a34 a35

0 a42 a43 a44 a45

0 0 0 0 1

3
77775

2 SL5.R/ j ai;j 2 R

9>>>>=
>>>>;
:

We will be mainly interested in G0 D G0.FpŒt; t
�1�/ for some prime p. The

centreZ.G0/ ofG0 consists of the elementary matrices fe15.a/ j a 2 FpŒt; t
�1�g and

it is naturally isomorphic to the group

Z.G0/ Š L
n2Z

Fpt
n: (1)

We denote by C the subgroup corresponding to ˚n�0Fpt
n � Z.G0/ and set G D

G0=C . Conjugation with the diagonal matrix t˚1˚� � �˚1 induces an automorphism
of G0 and of its centre which shifts the index set under the isomorphism in eq. (1)
and hence maps C onto a proper subgroup of itself. As a consequence, the induced
endomorphism onG is surjective (since it is induced by a surjection) and not injective.
Indeed, the kernel is isomorphic to .Fp;C/ and sits as Fpt

�1 in the upper right corner
of G. We conclude that G is non-hopfian.

Lemma 2.1. The group G has Kazhdan’s property (T).

Proof. First of all, A. Suslin proved in [Sus77] that the group of elementary 3 � 3-
matrices EL3.FpŒt; t

�1�/ coincides with SL3.FpŒt; t
�1�/ (see for example Proposi-

tion 5.4 in [Lam06]). Secondly, Y. Shalom showed in [Sha06], Theorem 1.1, that
for any finitely generated and commutative ring R, the group ELn.R/ is a Kazhdan
group for n � 2C dimR, where dim denotes the Krull dimension of the ring R.
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Hence, since dim FpŒt; t
�1� D 1, we get that SL3.FpŒt; t

�1�/ is a Kazhdan group.
Moreover, by [Sha06], Theorem 2.4, the pair

.SL2.FpŒt; t
�1�/ Ë FpŒt; t

�1��2;FpŒt; t
�1��2/

has the relative Kazhdan property, meaning that every 1-cocycle on the crossed prod-
uct will be bounded on FpŒt; t

�1��2.
Let now � W G ! U.H/ be a unitary representation of G and c W G ! H a

1-cocycle. In order to show that G has Kazhdan’s property (T) it is sufficient to
show that c is bounded. Using the results above we see that c is bounded on the
copy of SL3.FpŒt; t

�1�/ and bounded on the two copies of FpŒt; t
�1��3. Since these

subgroups generateG boundedly, it follows that c is bounded onG. This finishes the
proof.

Remark 2.2. It was pointed out to me byA.Valette, that there is a proof of Lemma 2.1
using more classical technology. Indeed, the Borel–Harish Chandra criterion applies
to show that G0.FpŒt; t

�1�/ is a S -arithmetic lattice in the locally compact group
QG D G0.FpŒŒt ��/ � G0.FpŒŒt

�1��/. Here FpŒŒt �� and FpŒŒt
�1�� denote the Laurent

power series rings in the variable t and t�1 respectively. Standard arguments along
the lines of our proof now show that the locally compact group QG has property (T).
This implies that alsoG0.FpŒt; t

�1�/ (and henceG being a quotient ofG0.FpŒt; t
�1�/)

has property (T).

The first consequence – which is not entirely obvious – is thatG is finitely gener-
ated. SinceG is not hopfian, we can now invoke Mal’cev’s theorem (see Theorem 1.3)
and get that G is not residually finite. Hence, using Kirchberg’s result (see Theo-
rem 1.1), G necessarily fails to have the factorization property. In order to retrieve
the desired example, we show that the group G is hyperlinear.

In fact, we will show that G is locally embeddable into finite groups (LEF),
i.e., every finite piece of the multiplication table of G can be found as a piece of
the multiplication table of a finite group. This notion was studied by A. Vershik
and E. Gordon in [VG97]. Considering the left regular representation of the finite
group, one easily sees that such groups are sofic (see [ES05] and Definition 3.6) and
hyperlinear, even with " D 0.

Lemma 2.3. For every finite subset F � G, there exists a finite group K and an
injective map � W F 2 ! K such that

�.f1f2/ D �.f1/�.f2/ for all f1; f2 2 F:

Proof. Since F is finite, there exists some integer n � 1 such that tk and t�k for
k � n are not involved in writing down the elements from F .

Consider G0.FpŒ��/ where � is a formal 6n-th root of 1 and consider K D
G0.FpŒ��/=C

0 where C 0 D ˚3n�1
kD0

Fp�
k . Clearly, since FpŒ�� is a finite ring, the
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group K is finite. It is also clear that the natural identification of F 2 with a subset
of K which maps tk 7! �k satisfies the required multiplicativity. This finishes the
proof.

2.2. Some consequences for the theory of operator spaces. Following ideas of
M. Gromov, R. Grigorchuk (see [Gri84]) has introduced the space of marked groups
with n generators. The elements in that space are (equivalence classes of) finitely
generated groups G with a fixed (ordered) generating set S of cardinality n. Again,
fixing an ordered generating set amounts to fixing a surjection � W Fn ! G. The
distance is defined in terms of the kernel N � Fn of � as follows:

d..G; S/; .G0; S 0// D inff2�k j k 2 N W N \ BFn
.k/ D N 0 \ BFn

.k/g;
where BFn

.k/ denotes the ball of radius k in Fn.
Let .G; S/be a marked group. We denote byC �Gj�k � C �G the operator system

spanned by all group elements of length � k with respect to the length induced by S .
We consider a convergent sequence of marked groups

lim
i!1.Gi ; Si / D .G; S/:

Denote by pi;k W C �Gj�k ! C �Gi j�k the natural linear bijections (defined for
large i ) of operator systems induced by the identification of subsets of G and Gi .
It is natural to expect that convergence of marked groups is somehow resembled in
the convergence of the associated operator systems. More precisely, one would like
to decide whether the cb-norm of the maps pi;k W C �Gj�k ! C �Gi j�k necessarily
tends to one. However, we show that this is not the case in general. We first have
to recall a well-known theorem in the theory of operator spaces and conclude some
corollary.

Theorem 2.4 (Haagerup–Paulsen). Let � W A ! B.K/ be a completely contractive
map. Then there exists a Hilbert space H , a �-homomorphism � W A ! B.H/, and
isometries T; S W K ! H such that

�.a/ D S��.a/T:

It is well known that every unital complete contraction is completely positive.
The following consequence of the preceding theorem is an approximate version of
this result, which is surely well known to experts.

Corollary 2.5. Let 0 � " < 1. Let A be a unital C*-algebra and let � W A ! B.H/

be a self-adjoint, unital, and completely bounded map with k�kcb � 1 C ". There
exists a unital completely positive map  W A ! B.H/ such that

k� �  kcb � 3
p
":
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Proof. Clearly, �".a/ D .1 C "/�1�.a/ is completely contractive and hence there
exist isometries T; S W K ! H and a unital �-homomorphism � W A ! B.H/ such
that

�".a/ D S��.a/T:
Since S�T D T �S D �".1/ D .1C "/�1, we compute

.T � � S�/.T � S/ D T �T � S�T � T �S C S�S D 2 � 2.1C "/�1 � 2":

We conclude that kT � Sk � p
2". We can now simply set  .a/ D S��.a/S , and

compute

k .a/ � �.a/k � k .a/ � �".a/k C k�".a/ � �.a/k
� kS��.a/.T � S/k C .1 � .1C "/�1//k�.a/k
� .

p
2"C "/ � kak

� 3
p
" � kak

for a 2 A. A similar computation for a 2 MnC ˝C A yields that k ��kcb � 3
p
".

This proves the claim since  .a/ is unital completely positive.

Corollary 2.6. There exists a convergent sequence of marked groups Gi ! G and
an integer k � 1 such that

lim inf
i!1 kpi;k W C �Gj�k ! C �Gi j�kkcb > 1:

Proof. We provided an example of a sequence of finite groups that converges in the
space of marked groups to a group without the factorization property. If for every
k the cb-norm of the natural maps pi;k W C �Gj�k ! C �Gi j�k would tend to one
on a subsequence, then by Wittstock’s extension theorem for completely bounded
maps, there would exist linear maps p0

i W C �G ! B.`2Gi / (extending C �Gj�k !
C �Gi j�k � C �Gi � B.`2Gi /) with the same cb-norms. By Corollary 2.5, a slight
cb-norm perturbation gives unital completely positive maps close to that extensions.
Sincep0

i is compatible with traces on group elements of length � k, we could conclude
that the group G has the factorization property. However, as we showed, this is not
the case. Hence, there exists some k, for which the assertion fails.

Remark 2.7. Unfortunately, we were unable to say anything about

lim inf
i!1 kp�1

i;k W C �Gi j�k ! C �Gj�kkcb:

However, in many interesting cases of convergence of marked groups, the convergence
is induced by surjective group homomorphisms �i W Gi ! G. In this case the above
maps p�1

i;k
are induced by �-homomorphisms �0

i W C �Gi ! C �G and hence are
completely contractive.



Examples of hyperlinear groups without factorization property 203

3. The second example

3.1. An example of Cornulier. In this section we provide an example of a finitely
presented group, which is hyperlinear but not initially subamenable. Recall that a
group is said to be initially subamenable if every finite piece of its multiplication
table can be found as a piece of the multiplication table of an amenable group. Let
R be a (unital) commutative ring. Following Cornulier (see [dC07]), we set:

K0.R/ D

8̂
<̂
ˆ̂:

2
664
1 a12 a13 a14

0 a22 a23 a24

0 0 a33 a34

0 0 0 1

3
775 2 SL8.R/

ˇ̌
ˇ̌
ˇ

a22; a33 2 SL3.R/

a12; a13; a
t
24; a

t
34 2 M13.R/

a23 2 M33.R/

a14 2 R

9>>=
>>;
:

We set K1.R/ D K0.R/=R (where we identify R with the centre of K0.R/) and
denote the image of g 2 K0.R/ in K1.R/ by Ng. There is a natural lift g0 of Ng in
K0.R/ and we write gz for the element g.g0/�1. Associated with the natural split
above there is a 2-cocycle ˛ W K1.R/ �K1.R/ ! R which classifies the extension

0 ! R ! K0.R/ ! K1.R/ ! 0:

We will be mainly interested in K0.ZŒ1=p�/. The example has similar properties
as our first example above. The centre ofK0.ZŒ1=p�/ is isomorphic to ZŒ1=p� and we
set K D K0.ZŒ1=p�/=Z, where we view Z as the natural subgroup Z � ZŒ1=p�. It
was shown in [dC07] thatK is a finitely presented non-hopfian Kazhdan group. (The
main advantage over the first example is that K is finitely presented.) In particular,
the group K is not initially subamenable. Indeed, any finitely presented initially
subamenable group is residually amenable. Being a Kazhdan group, a homomorphic
image in an amenable group follows to be finite. Hence, each finitely presented
initially subamenable Kazhdan group is necessarily residually finite. However, K is
not residually finite since it is finitely generated and non-hopfian. Note that K does
not have the factorization property.

Remark 3.1. Note that K arises as a dense subgroup of the connected finite dimen-
sional Lie groupK0.R/=Z. This disproves the implication (v) ) (i) of Corollary 1.2
in [Kir94], see Remark 1.6. Kirchberg’s proof still implies that K cannot arise as a
subgroup of a unimodular almost connected locally compact group L which has a
local basis of compact sets fSngn2N such that

lim
n!1

�.gSn4Sng/

�.Sn/
! 0 for all g 2 L;

where� denotes the Haar measure onL. E. Kirchberg informed us that it is sufficient
to assume (as an additional assumption) that the locally compact group L satisfies
property (Z), which was also introduced in [Kir93]. However, Kirchberg shows in
[Kir93] that L has not property (Z) if SL2.R/ � L.
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Remark3.2. A.Valette pointed out that M. S. Raghunathan has shown in [Rag84] that
lattices in the universal covering of Sp.n; 1/ are not residually finite. This provides
another counterexample to the assertion of Kirchberg since these groups have property
(T) and thus cannot have the factorization property.

3.2. The group K is hyperlinear. We will now prove that K is hyperlinear. The
ultra-product R! and the concept of a field of von Neumann algebras will play a
role in the proof. However, we do not want to give its definition and properties
(see [Oza04b] for more details) since we will provide a second and more elementary
proof without using the theory of von Neumann algebras.

Proposition 3.3. The group K is hyperlinear.

Given a group G and a 2-cocycle ˛ W G � G ! S1, we can consider the twisted
group von Neumann algebraL˛ŒG=C �. Formally,L˛ŒG� is the von Neumann algebra
which is generated by the involutive algebra C˛ŒG� in its GNS-representation with
respect to the canonical trace. Here, C˛ŒG� is the C-algebra with C-linear basis
fŒg� j g 2 Gg and multiplication Œg� � Œh� D ˛.g; h/Œgh�. The involution is given by
Œg�� D Œg�1� and the trace satisfies �.Œg�/ D ıg;e .

In our special situation, a group K0.ZŒ1=p�/ is given together with a central sub-
group Z. Associated to a (set-theoretic) lift � W K D K0.ZŒ1=p�/=Z ! Z there is a
2-cocycle ˛ W K �K ! Z which classifies the extension:

0 ! Z ! K0.ZŒ1=p�/ ! K ! 0:

Given any character ˇ W Z ! S1, we consider the twisted group von Neumann
algebras LˇB˛ŒK�.

Lemma 3.4. Let G be a group and let C be a central subgroup. The group G
is hyperlinear if and only if the twisted group von Neumann algebra LˇB˛ŒG=C �

embeds into R! for every character ˇ 2 yC .

Proof. Since C is central, LG is naturally identified with a field of von Neumann
algebras LˇB˛ŒG=C � over the base yC , where we view the compact group yC as a
probability space with the Haar measure on yC . It is a standard fact that this implies
that LG is embeddable into R! (i.e., G is hyperlinear) if and only if LˇB˛ŒG=C � is
embeddable into R! for almost all ˇ 2 yC . In particular, if LG is embeddable into
R! , the set of ˇ’s for which LˇB˛ŒG=C � embeds is dense in yC . Since the character
ˇ varies by definition continuously on yC , it is easily seen that the set of ˇ’s for which
an embedding exists is also closed. Indeed, if the sequence .ˇn/n2N is convergent to
ˇ 2 yC , then there exists an embedding: 	 W LˇB˛ŒG=C � ,!

Q
! LˇnB˛ŒG=C �:Hence,

the set of ˇ0s for which LˇB˛ŒG=C � embeds into R! is all of yC if LG embeds into
R! . This finishes the proof.
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First proof of Proposition 3.3. Applying the ring homomorphism rq W ZŒ1=p� !
Z=qZ for q prime to p, we get sufficiently many homomorphisms from K0.ZŒ1=p�/

to finite groups K0.Z=qZ/ to see that K0.ZŒ1=p�/ is residually finite. In particular
it is hyperlinear and hence (by Lemma 3.4) the algebras LˇB˛ŒK0.ZŒ1=p�/=Z� are
embeddable into R! for all ˇ 2 OZ. In particular, LK D L1B˛ŒK0.ZŒ1=p�/=Z� is
embeddable into R! .

Remark 3.5. The proof yields that every quotient of a hyperlinear group by a central
subgroup is again hyperlinear. Note however that a central quotient of a group with
factorization property does not necessarily has Kirchberg’s factorization property, as
the example above shows.

In order to make the argument in the first proof above more explicit, we will
provide a concrete construction of microstates and try to explain the kind of problems
one encounters when trying to prove that K is sofic. Let us first recall the definition
of the term sofic.

Definition 3.6. A group G is called sofic if for any real number 0 < 
 < 1 and any
finite subset F � G there exists a natural number n 2 N and a map � W G ! Sn

with the following properties:

(i) #1�.g/�.h/ �.gh/
�1 � .1 � 
/n for any two elements g; h 2 F ,

(ii) �.e/ D e 2 Sn,
(iii) #1�.g/ � 
n for any e ¤ g 2 F .

Here, #1� denotes the number of fixed points of a permutation � 2 Sn. Sofic
groups (with an equivalent definition in terms of Cayley graphs) were first studied
by Gromov in [Gro99] and later by B. Weiss in [Wei00] who also coined the name.
Later, G. Elek and E. Szabó continued a more systematic study in [ES05], [ES06] and
proved that sofic groups are hyperlinear. We always think of Sn as sitting insideU.n/
as permutation matrices. The number of fixed points of a permutation (normalized
by the size of the set) is now identical with the normalized trace of the permutation
matrix. Hence, showing that a groupG is sofic is the same as finding microstates for
G within permutation matrices. Although we are not able to show that the group K
is sofic we will provide microstates in the subgroup T n Ì Sn � U.n/.

Lemma 3.7. Let C be a residually finite abelian group. The set of characters

f� W C ! T j there exists N �f:i: C such that �jN D 1N g
is dense in the Pontrjagin dual yC .

Proof. Since C is residually finite, we have an injective map

� W C ,! Q
N �f:i:C

C=N:
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Let K be a closed subgroup of yC such that we have a factorization

L
N �f:i:C

1C=N ! K
�
,�! yC :

By duality, the inclusion � factorizes over the surjection O� W C � OK: Hence, O� is an
isomorphism and so is �. This proves the claim.

Let q be an integer which is prime to p and let �q W ZŒ1=p� ! Z=qZ the natural
reduction modulo q.

Corollary 3.8. Let k � 1 be an integer and " > 0. There exist an integer q 2 N,
prime to p, and characters ˇl W Z=qZ ! T , for 1 � l � pk , such that

j.ˇl B �q/.j=pk/ � exp.2�i �j �l=pk/j < " for all 1 � j � pk :

Second proof of Proposition 3.3. Let S 0 be some finite generating set of K, let S
be some lift of S 0 to K0.ZŒ1=p�/ and let k be the highest power of p involved in a
denominator of gz for some g 2 .S [ S�1/n. Let " > 0 be arbitrary and choose
characters according to Corollary 3.8. In addition, we may choose q large enough so
that .S [ S�1/n is mapped injectively to K0.Z=qZ/.

Denote by ˇ W Z=qZ ! Cpk
the direct sum

Lpk

lD1
ˇl . For 1 � l � pk , there

exists a natural involution preserving homomorphism of rings �l W CK0.ZŒ1=p�/ !
Cˇl ˛K1.Z=qZ/ given by

�l.g/ D .ˇl B �q/.gz/ � �q. Ng/:
Here, Cˇl

K1.Z=qZ/ denotes the twisted group algebra associated with the 2-cocycle
ˇl˛ W K1.Z=qZ/ � K1.Z=qZ/ ! S1. The homomorphisms satisfies �.�l.g// D
.ˇl B �q/.g/;8g 2 ZŒ1=p� D Z.K0.ZŒ1=p�/: We consider also the ring homomor-
phism

ˆ D ˚pk

lD1
�l W CK0.ZŒ1=p�/ ! ˚pk

lD1
Cˇl ˛K1.Z=qZ/ DW Cˇ˛K1.Z=qZ/:

The algebra Cˇ˛K1.Z=qZ/ is finite dimensional and carries a natural normalized
trace, obtained by averaging the traces on the direct summands. We denote this trace
by � W Cˇ˛K1.Z=qZ/ ! C.

We observe that j�.ˆ.j=pk//j < " for all 1 � j < pk , since
Ppk

lD1
exp.2�i �l=pk/ D

0, and similarly j�.ˆ.1// � 1j < " for 1 2 ZŒ1=p�. The algebra Cˇ˛K1.Z=qZ/ acts

naturally on the Hilbert space H D `2.K1.Z=qZ//˝ Cpk
via

.g1; : : : ; gpk / B .ıh ˝ ıj / D ˇl.˛.gl ; h// � ıgl h ˝ ıj : (2)

Here, ˛ W K1.Z=qZ/�K1.Z=qZ/ ! Z=qZ is the natural 2-cocycle as before. This
presentation preserves the natural trace � and combined with ˆ it provides ."; n/-
microstates. Hence, K is hyperlinear.
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In some sense this presentation is not far away from a permutation presentation,
which would yield that K is sofic. However, the matrices of our approximation
are in the subgroup T r Ì Sr � U.r/ rather than Sr � U.r/, where r D dim H .
(This is obvious from eq. (2).) Unfortunately, we were not able to remove the phase
in this approximation. Moreover, this kind of approximation is not well suited for
applications. In particular, it remains unclear whether direct finiteness of the group
ring over some skew-field, the determinant conjecture (see [ES05] and references
therein) or the algebraic eigenvalue conjecture (see [Tho08]) can be proved for the
group K.
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