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Abstract. We study the class N of graphs, the right-angled Artin groups defined on which do
not contain closed hyperbolic surface subgroups. We prove that a presumably smaller class N 0

is closed under amalgamating along complete subgraphs, and also under adding bisimplicial
edges. It follows that chordal graphs and chordal bipartite graphs belong to N 0.
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1. Introduction

In this paper, all graphs will be finite and will not have loops or multi-edges unless
specified otherwise. For a graph � , let V.�/ and E.�/ denote the vertex set and the
edge set of � , respectively. The right-angled Artin group with the underlying graph
� is the group presentation

A.�/ D hV.�/ j Œu; v� D 1 for fu; vg 2 E.�/i:
Also known as graph groups or partially commutative groups, right-angled Artin
groups possess various group theoretic properties. One of the most fundamental
results is that, two right-angled Artin groups are isomorphic if and only if their
underlying graphs are isomorphic [20], [10]. Right-angled Artin groups are linear
[19], [18], [7], biorderable [12], [6], and acting on finite-dimensional CAT(0) cube
complexes freely and cocompactly [4], [23], [25]. Any subgroup of a right-angled
Artin group surjects onto Z [17].

The complement graph of a graph � is the graph x� , defined by V.x�/ D V.�/ and
E.x�/ D ffu; vg j fu; vg 62 E.�/g. For a subset S of V.�/, the induced subgraph �S

of � on S is the maximal subgraph of � with the vertex set S . We also write �S � � .
Note that V.�S / D S and E.�S / D ffu; vg j u; v 2 S and fu; vg 2 E.�/g. If ƒ is
another graph, an induced ƒ in� is an induced subgraph of� , which is isomorphic to
ƒ. An elementary fact is, if � contains an inducedƒ, then A.ƒ/ embeds into A.�/.
A complete graphKn is a graph with n vertices such that every pair of distinct vertices
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are joined by an edge. For convention, K0 D ¿ is considered also as a complete
graph. Cn and Pn denote the cycle and the path with n vertices, respectively. In
particular, Pn is obtained by removing an edge in Cn. C3 is also called a triangle. A
graph is chordal if the graph does not contain any induced cycle of length at least 4.
Graph theoretic characterizations of � determine several group theoretic properties
of A.�/:

� A.�/ is coherent (i.e., every finitely generated subgroup is finitely presented), if
and only if � is chordal [9], if and only ifA.�/ has a free commutator subgroup
[27].

� A.�/ is subgroup separable (i.e., every finitely generated subgroup is closed in
the profinite topology), if and only if � does not contain an induced C4 or an
induced P4 [24], which happens exactly when every subgroup of A.�/ is also
a right-angled Artin group [11].

� A.�/ is virtually a 3-manifold group, if and only if each connected component
of � is a tree or a triangle [9], [15].

In this paper, a surface will mean a compact, oriented 2-manifold. A closed (com-
pact, respectively) hyperbolic surface group will mean the fundamental group of a
closed (compact, respectively) hyperbolic surface. Finding sufficient and necessary
conditions for a given group to contain a closed hyperbolic surface group is an im-
portant question motivated by 3-manifold theory. In this article, we consider this
question in the case of right-angled Artin groups. Namely, we investigate

N D f� j A.�/ does not contain a closed hyperbolic surface groupg:

A.�/ is known to contain a closed hyperbolic surface group if � has an induced
Cn (n � 5) [27] or an induced Cn (n � 5) [22] (proved by the author). That is, Cn

and Cn are not in N for n � 5. The classification of the graphs in N with at most 8
vertices is given in [5]. A complete graph amalgamation of two graphs is the union
of the two graphs such that their intersection is complete; in particular, those two
graphs will be induced subgraphs of the union. A key stumbling block for the (graph
theoretic) characterization of N is the following conjecture.

Conjecture 1.1. N is closed under complete graph amalgamation.

For a graph � , a cube complex X� is inductively defined as follows.

(i) X .0/
� is a single vertex.

(ii) Suppose that X .k�1/
� is constructed, so that each complete subgraph of � with

i vertices .i < k/ corresponds to an i -torus. Let K be a complete subgraph of
� with k vertices. Glue a unit k-cube to X .k�1/

� so that each pair of parallel
faces is glued to each .k � 1/-torus corresponding to the complete subgraph of
K with k � 1 vertices.
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X� , called the Salvetti complex of A.�/, is a locally CAT(0) cube complex on which
A.�/ acts freely and cocompactly. In particular, X� is a K.A.�/; 1/-space [3].

Suppose that � D �1 [�2, such thatK D �1 \�2 is complete and � 62 N . One
can find a closed hyperbolic surface S , and a �1-injective map f W S ! X� . Since
A.�/ is the amalgamated free product of A.�1/ and A.�2/ along a free abelian sub-
group A.K/, a transversality argument shows that there exists a compact hyperbolic
surface S1 � S and a �1-injective map g W S1 ! X�i

such that g.@S1/ � XK , where
i D 1 or 2. In order to approach Conjecture 1.1, it is natural to consider a relative
embedding of a compact hyperbolic surface group into A.�/ as follows.

Definition 1.2. Let � be a graph and S be a compact hyperbolic surface. An em-
bedding � W �1.S/ ! A.�/ is called a relative embedding if � D f� for some
�1-injective map f W S ! X� satisfying the following:

for each boundary component @iS of S , there exists a complete subgraph
K � � such that f .@iS/ � XK .

Define N 0 to be the class of graphs � such that A.�/ does not allow a relative
embedding of a compact hyperbolic surface group. It is vacuously true that N 0 � N .
Also, the paragraph preceding Definition 1.2 has proved the following.

Lemma 1.3. If � 62 N and � is a complete graph amalgamation of �1 and �2, then
�i 62 N 0 for i D 1 or 2.

For a compact surface S and a set V , a V -dissection on S is a pair .H ; �/ such that
H is a set of transversely oriented simple closed curves and properly embedded arcs
on S , and � W H ! V [6]. For each � 2 H , �.�/ is called the label of � . Note that
our definition allows curves or arcs of the same label to intersect, while the definition
in [6] does not. Let � be a graph and .H ; �/ be a V.�/-dissection. Suppose that for
any ˛ and ˇ in H , ˛ \ ˇ ¤ ¿ only if �.˛/ and �.ˇ/ are equal or adjacent in � .
Then .H ; �/ determines a map � W �1.S/ ! A.�/. � maps the equivalence class
of a based, oriented loop ˛ � S onto the word in A.�/, obtained by reading off
the labels of the curves and the arcs in H that ˛ intersects, and recording the order
and the transverse orientations of the intersections. That is, when ˛ crosses � 2 H ,
one records �.�/ or �.�/�1, according to whether the orientation of ˛ matches the
transverse orientation of � . This map � W �1.S/! A.�/ is called the label-reading
map with respect to (or, induced by) .H ; �/, and .H ; �/ is called a label-reading
pair with the underlying graph � . In [6], it is shown that any map �1.S/ ! A.�/

can be realized as a label-reading map. By studying this label-reading pair, we will
prove that a relative embedding of a compact hyperbolic surface group intoA.�/ can
be promoted to an embedding of a closed hyperbolic surface group into A.��/, for
some graph �� which is strictly larger than � (Lemma 3.10). This plays a crucial
role in the proof of the following theorem.

Theorem 3.12. N 0 is closed under complete graph amalgamation.
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Kn 2 N 0, since A.Kn/ Š Zn does not contain any non-abelian free group. A
classical result of Dirac shows that any chordal graph can be constructed by taking
complete graph amalgamations successively, starting from complete graphs [8], [14].
So, we have:

Corollay 3.13. All chordal graphs are in N 0.

Given a label-reading pair .H ; �/ inducing � W �1.S/ ! A.�/, we will define
the complexity of .H ; �/. A label-reading pair .H ; �/ is called normalized if the
complexity of .H ; �/ is minimal in the lexicographical ordering, among all the label-
reading pairs inducing the same map up to conjugation in A.�/. Certain properties
of a label-reading map can be more easily detected by looking at this normalized
label-reading pairs. An edge fa; bg of a graph � is called bisimplicial if any vertex
adjacent to a is either equal or adjacent to any vertex that is adjacent to b [13]. For
e 2 E.�/, Ve denote the interior of e.

Theorem 5.1. Let e be a bisimplicial edge of � . If � n Ve 2 N 0, then � 2 N 0.

A chordal bipartite graph is a graph that does not contain a triangle or an induced
cycle of length at least 5. By definition, a chordal bipartite graph is not necessar-
ily chordal. Any chordal bipartite graph can be obtained by successively attaching
bisimplicial edges, starting from a discrete graph [13]. Using this, we prove:

Corollay 5.2. All chordal bipartite graphs are in N 0.

In particular, if � is chordal or chordal bipartite, then A.�/ does not contain a
closed hyperbolic surface group. This first appeared in [21] and also follows from
[5].

We will also prove that N 0 is closed under a certain graph operation, called co-
contraction [22]. Using this, a lower bound for N 0 will be given. We will provide new
examples of right-angled Artin groups that contain closed hyperbolic surface groups,
by using co-contraction and results in [5]. Lastly, we will describe an equivalent
formulation of Conjecture 1.1. A vertex of a graph � is called simplicial, if the link
of the vertex induces a complete subgraph of � .

Proposition 6.4. The following are equivalent.

(i) N is closed under complete graph amalgamation.

(ii) For any graph � , if the graph obtained by removing a simplicial vertex from �

is in N , then � is also in N .

(iii) N 0 D N .

Note. All the results in this article, except for Example 6.3, originally appeared in
the Ph.D. thesis of the author [21]. After submission of his thesis, the author came
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to know that Crisp, Sageev and Sapir proved similar results to Corollary 3.13 and
Theorem 5.1, where N 0 is replaced by the presumably larger class N [5]. A special
case of Lemma 3.10 can also be deduced from [5]. That is the case when there exists
a fixed complete subgraph K � � and a relative embedding � W �1.S/! A.�/ for
some compact hyperbolic surface S , such that the image of each peripheral element
of �1.S/ is conjugate intoA.K/. Their work is independent from the author, and the
arguments are completely different.

Acknowledgement. I would like to thank my Ph.D. thesis advisor, Professor Andrew
Casson for sharing his deep insights and valuable advice that guided me through this
work. I am also grateful to Professor Alan Reid for many helpful comments on earlier
versions of this article. Lastly, I am thankful for exceptionally kind and detailed
feedback from an anonymous referee, particularly for hinting Remark 3.11.

2. Label-reading maps

In this section, we review basic properties of label-reading maps from surface groups
into right-angled Artin groups. We owe most of the definitions and the results in this
section to [6].

Recall our convention that we only consider oriented surfaces. LetS be a compact
surface with an arbitrarily chosen base in its interior. From the orientation of S , the
boundary components of S inherit canonical orientations so that

P
Œ@iS� D 0 in

H1.S/. We will often abbreviate a closed curve and a properly embedded arc on S
as a curve and an arc, respectively. We assume that a curve or an arc is given with an
orientation, which is arbitrarily chosen unless specified. Suppose that � is a graph.
In A.�/, a letter means v˙1 for some v 2 V.�/, and a word means a sequence
of letters. A word represents an element in A.�/. Let .H ; �/ be a label-reading
pair on S with the underlying graph � . Here, curves and arcs in H with the same
label are allowed to intersect. This difference from [6] leaves most of the results
and the arguments in [6] still valid. For a 2 V.�/, an a-curve and an a-arc in H

will mean a curve and an arc, respectively, labeled by a. For each based loop �
transversely intersecting H , one follows � starting from the base point; whenever �
intersects ˛ 2 H , one records �.�/ or �.�/�1 according to whether the orientation
of � coincides with the transverse orientation of ˛ or not. The wordw� thus obtained
is called the label-reading of � with respect to .H ; �/. Note that the label-reading
w� can also be defined if � is an oriented arc, instead of an oriented curve. The map
� W �1.S/ ! A.�/, defined by �.Œ��/ D w� , is called the label-reading map with
respect to .H ; �/.

Conversely, suppose that � W �1.S/! A.�/ is an arbitrary map. Write

�1.S/ D hx1; x2; : : : ; xg ; y1; y2; : : : ; yg ; d1; d2; : : : ; dm jQg
iD1Œxi ; yi �

Qm
iD1 di i:

Here d1; d2; : : : ; dm correspond to the boundary components @1S; @2S; : : : ; @mS
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of S . Draw a dual van Kampen diagram� for the following word inA.�/ [26], [22]:

w D
gY

iD1

Œ�.xi /; �.yi /�

mY
iD1

�.di /:

Recall this means that � is a disk along with a set of transversely oriented, properly
embedded arcs labeled by V.�/, such that the label-reading of @� with respect to
these arcs isw (Figure 1 (a)). @� is subdivided into segments, so that the label-reading
of each segment is a letter in V.�/˙1. Glue the boundary of � by identifying �.xi /

with �.xi /
�1, and also �.yi / with �.yi /

�1, as in Figure 1 (b). Then one obtains
S back, with a set H of transversely oriented curves and arcs on S and a labeling
map � W H ! V.�/. It follows that .H ; �/ is a label-reading pair, and � is the
label-reading map with respect to .H ; �/ up to conjugation in A.�/. Moreover, if �

>

>

>

>

>

>

>

c�1

b

a�1

b�1

c

a

w

!

 c

&

b

a

(a)

�.yi /�1

�.xi /�1

�

�.yi /

�.xi /

: :
:

(b)

Figure 1. (a) A dual van Kampen diagram � for the word w D c�1aba�1b�1c in the
right-angled Artin group ha; b; c j Œa; b� D 1i. (b) Identifying intervals on @�.

is a relative embedding, then for each i there exists a complete subgraphK � � such
that �.di / D w0�1

i wiw
0
i for some wi 2 A.K/ and w0

i 2 A.�/. In this case, .H ; �/

can be chosen so that any arc in H intersecting with a boundary component @iS is
labeled by a letter in V.K/. This is achieved by gluing the words w0

i and w0�1
i in our

construction. We summarize this as follows.

Proposition 2.1 ([6], [21]). Let S be a compact surface and � be a graph. Suppose
that � W �1.S/! A.�/ is a map.

(1) � is a label-reading map with respect to some label-reading pair .H ; �/ with
the underlying graph � .

(2) If � is a relative embedding, then one can find .H ; �/ in (1) satisfying the
following: for each boundary component @iS , there exists a complete subgraph
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K � � such that any arc in H intersecting with @iS is labeled by a vertex in
V.K/.

From now on, whenever we are given with a relative embedding � W �1.S/ !
A.�/ with respect to a label-reading pair .H ; �/, we will implicitly assume that
.H ; �/ satisfies the property described in Proposition 2.1 (2).

Notation 2.2. Let S be a compact surface.

(1) If ˛ and ˇ are closed curves, ˛ � ˇ means ˛ and ˇ are freely homotopic. If A
and B are subsurfaces of S , A � B means A and B are isotopic in S .

(2) If ˛ and ˇ are properly embedded arcs, ˛ � ˇ means ˛ and ˇ are homotopic,
by a homotopy leaving the endpoints of ˛ and ˇ on the boundary of S (but not
requiring the endpoints to be fixed).

(3) Let A � S . We write ˛ÝA and say ˛ is homotopic into A, if ˛ � ˇ for some
ˇ � A; in particular, if A D @S we say that ˛ is homotopic into the boundary
of S .

(4) i.˛; ˇ/ D minf˛0 \ ˇ0 j ˛ � ˛0 and ˇ � ˇ0g.
We say two maps �; W �1.S/ ! A.�/ are equivalent if � D i B  for some

inner-automorphism i W A.�/ ! A.�/. Note that for a fixed label-reading pair, a
base change does not alter the equivalence class of the corresponding label-reading
map �1.S/ ! A.�/. We also say two label-reading pairs are equivalent if they
induce equivalent label-reading maps. There are certain simplifications on .H ; �/

that do not change the equivalence class (see [6] for details and proofs).

Lemma 2.3 ([6]). Let .H ; �/ and .H 0; �0/ be label-reading pairs on S with the
underlying graph � . The label-reading maps induced by .H ; �/ and .H 0; �0/ are
equivalent, if any of the following is satisfied.

(1) H 0 is obtained by removing null-homotopic curves in H .

(2) H 0 is obtained by removing ˛ 2 H , for some ˛ Ý @S .

(3) Suppose that ˛; ˇ 2 H intersect at p and have the same label a. Alter ˛ and
ˇ on a neighborhood D of p so that we get ˛0 and ˇ0 which are labeled by
a and do not intersect in D. Transverse orientations of ˛0 and ˇ0 are deter-
mined by those of ˛ and ˇ. .H 0; �0/ is the label-reading pair thus obtained
(Figure 2 (a)).

(4) Suppose that ˛; ˇ 2 H bound a bigon. Alter ˛ and ˇ on a neighborhood of the
bigon so that we get ˛0 and ˇ0 which do not intersect in that neighborhood. The
labels of ˛0 and ˇ0 are equal to those of ˛ and ˇ, respectively. .H 0; �0/ is the
label-reading pair thus obtained (Figure 2 (b)).

Remark 2.4. Let .H ; �/ be a label-reading pair on a compact surface S , inducing a
label-reading map � W �1.S/! A.�/.
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a! a!

p

�
ˇ˛

a! ! a

ˇ 0˛0

�� ��

(a)

b!
a!

˛

ˇ

b!
a! ˛0

ˇ 0

�� ��

(b)

Figure 2. Homotopies that do not change the equivalence class of a label-reading pair. Note
that (b) is allowed only when a D �.˛/ and b D �.ˇ/ are equal or adjacent in � .

(1) By Lemma 2.3, we will always assume that curves and arcs in H are neither
null-homotopic nor homotopic into the boundary. Moreover, curves and arcs
in H will be assumed to be minimally intersecting [2]. Curves and arcs of the
same label are assumed to be disjoint, unless stated otherwise.

(2) Let � be a curve or an arc on S , such that the endpoints (meaning the base point
if � is a loop) are not on H . If � is not transverse to H , define the label-reading
w� by w� D w� 0 for some � 0 � � such that � 0 has the same endpoints as � ,
and � 0 is transverse to H . This definition ofw� 2 A.�/ does not depend on the
choice of � 0.

3. N 0 is closed under complete graph amalgamation

Recall that N 0 denotes the class of graphs, the right-angled Artin groups on which do
not allow relative embeddings of compact hyperbolic surface groups (Definition 1.2).
Let � be a graph and S be a compact hyperbolic surface. Recall that x 2 �1.S/

is called peripheral if x D Œ˛� for some ˛ homotopic into @S . We note that an
embedding � W �1.S/ ! A.�/ is a relative embedding if, for each peripheral x 2
�1.S/, there exists a complete subgraph K � � such that �.x/ is conjugate into
A.K/. In this section, we examine basic combinatorial properties of N 0, and prove
that N 0 is closed under complete graph amalgamation. Roughly speaking, a key
idea for the proof is that commutativity is scarce in hyperbolic surface groups. The
following is immediate from the fact that any two elements in a compact hyperbolic
surface group generate Z or a free group of rank 2.

Lemma 3.1. Let S be a compact hyperbolic surface, and x and y be commuting
elements of �1.S/. Then there exists c 2 �1.S/ such that x; y 2 hci. If x and y
are further assumed to be represented by essential simple closed curves, then either
x D y or x D y�1.

Let �1 and �2 be graphs. The disjoint union of �1 and �2 is denoted by �1 t�2.
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We define join.�1; �2/ to be the graph obtained by taking the disjoint union of �1

and �2 and adding the edges in ffv1; v2g j v1 2 V.�1/; v2 2 V.�2/g. This means,

join.�1; �2/ D �1 t �2:

Proposition 3.2. If �1; �2 2 N 0, then join.�1; �2/ 2 N 0.

Proof. Suppose that � D join.�1; �2/ 62 N 0. One can find a relative embedding
� W �1.S/! A.�/ Š A.�1/�A.�2/ for some hyperbolic surface S . Let .H ; �/ be
a label-reading pair inducing �, and pi W A.�/! A.�i / be the projection map.

We claim that p1 B � or p2 B � is injective. Suppose not, and choose 1 ¤ a1 2
ker.p1 B �/ and 1 ¤ a2 2 ker.p2 B �/. Write �.a1/ D .1; b2/ and �.a2/ D
.b1; 1/ for some non-trivial bi 2 A.�i /, i D 1; 2. �Œa1; a2� D Œ�.a1/; �.a2/� D
Œ.1; b2/; .b1; 1/� D 1. Since S is hyperbolic and � is an embedding, a1; a2 2 hci
for some c 2 �1.S/ (Lemma 3.1). Hence, h�.a1/; �.a2/i � h�.c/i Š Z, which
contradicts to Z � Z Š h.1; b2/; .b1; 1/i D h�.a1/; �.a2/i

Without loss of generality, we may assume that p1 B � is injective. The label-
reading map �1.S/! A.�1/ obtained by removing curves and arcs in H labeled by
V.�2/ is injective. So �1 62 N 0.

Since K1 2 N 0, it follows from Proposition 3.2 that Kn 2 N 0 for any n.
For the rest of this section, we will prove that N 0 is closed under complete graph

amalgamation. For a graph � , the set of all vertices adjacent to a 2 V.�/ will be
denoted by link.a/.

Definition 3.3 ([14]). A vertex a of a graph � is called simplicial if link.a/ induces
a complete subgraph of � .

A set of pairwise non-adjacent vertices in a graph is said to be independent.

Lemma 3.4. Let � and � 0 be graphs such that � 0 is obtained by removing a set of
independent simplicial vertices in � . If � 0 2 N 0, then � 2 N 0.

Proof. Let� 0 be the induced subgraph of� on V.�/nfa1; : : : ; arg, where a1; : : : ; ar

are independent simplicial vertices of � . Suppose that � 62 N 0.
First, consider the case when r D 1. Let a D a1. One can find a compact

hyperbolic surface S and a relative embedding � W �1.S/ ! A.�/ induced by a
label-reading pair .H ; �/. Put Ha D ��1.a/.

Case 1. Ha consists of simple closed curves only.
Choose a connected component S 0 of S n .[Ha/, so that S 0 is hyperbolic. The

curves and arcs in the set .[H / \ S 0 naturally inherit transverse orientations and
labels from those of .H ; �/, and so determine a label-reading pair .H 0; �0/ inducing
�0 W �1.S

0/! A.� 0/. �0 is injective, since �0 is a restriction of � up to equivalence.
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A simple closed curve in Ha intersects with a curve in H labeled by a vertex in
link.a/. Each boundary component @iS

0 of S 0 either is a boundary component of
S , or comes from a curve in Ha. In the latter case, any curve in H 0 intersecting with
@iS

0 must be labeled by a vertex in link.a/. Since link.a/ induces a complete graph
in � 0, �0 is a relative embedding. This implies � 0 62 N 0.

Case 2. Ha contains a properly embedded arc ˛.
Suppose that ˛ joins the boundary components @1S and @2S . Here, ˛ is an

essential arc, but it is possible that @1S D @2S . Since � is a relative embedding, any
curve or arc in H intersecting with @1S or @2S is labeled by a vertex in link.a/[fag.
From the definition of a label-reading pair, the label-reading of ˛ is in hlink.a/i.
Choose ı1 � @1S and ı2 � @2S , such that ı1 and ı2 have the same basepoint, and
transversely intersect H . Moreover, we assume that ı1 and ı2 are sufficiently close
to @1S and ˛ � @2S � ˛�1 respectively, so that wı1

and wı2
are in hlink.a/ [ fagi

(Figure 3). Since a is simplicial, hlink.a/[fagi is free abelian, and �.ŒŒı1�; Œı2��/ D
Œwı1

; wı2
� D 1. The injectivity of � implies ŒŒı1�; Œı2�� D 1, which is impossible

unless ı1 � ı˙1
2 and S is an annulus (Lemma 3.1).

VV V

@1S @2S

˛"
a

ı2ı1

	

Figure 3

In the case when r > 1, note that ar is a simplicial vertex of the induced subgraph
on V.�/ n fa1; a2; : : : ; ar�1g. An inductive argument shows that � 0 62 N 0.

Using the next two lemmas, we will prove a general fact (Lemma 3.7) on the
fundamental group of a hyperbolic surface with boundary. For a set X , the period
of a finite sequence f W f1; 2; : : : ;M g ! X is the smallest positive number p such
that f .i/ D f .i C p/ whenever i and i C p are in f1; 2; : : : ;M g. The following
combinatorial lemma asserts that if two finite sequences coincide at consecutive terms
the number of which is as large as the sum of the periods, then one sequence is a
translation of the other.

Lemma 3.5. LetX be a set, andM1;M2 > 0. For i D 1; 2, letAi D f1; 2; : : : ;Mig,
and fi W Ai ! X be a finite sequence with the period pi . Suppose that there exist
integers u and v such that for each i D v C 1; v C 2; : : : ; v C p1 C p2, we have
i 2 A1, uC i 2 A2 and f1.i/ D f2.uC i/. Then p1 D p2, and f1.i/ D f2.uC i/
whenever i 2 A1, uC i 2 A2.

Proof. We may assume thatp1 � p2. Suppose that i; iCp1 2 A2. There exists some
q such thatuCvC1 � iCp2q � uCvCp2. Thenf2.iCp1/ D f2.iCp1Cp2q/ D
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f1.i C p1 C p2q � u/ D f1.i C p2q � u/ D f2.i C p2q/ D f2.i/. Note that we
used the conditions that vC1Cp1 � iCp1Cp2q�u � vCp1Cp2 and vC1 �
i Cp2q�u � vCp2. This shows that p1 is also the period of f2, and so, p1 D p2.
Now suppose that i 2 A1 and uC i 2 A2. For some q0, vC 1 � i Cp2q

0 � vCp2.
Hence, f1.i/ D f1.i C p2q

0/ D f2.uC i C p2q
0/ D f2.uC i/.

Recall that two elements in a free group are said to be independent if they do
not have non-trivial conjugate powers. In the following lemma, the special case
when u1 D u2 D � � � D um was first proved in [1], and further generalized to any
word-hyperbolic group in [16]. The following proof uses a similar idea to [16].

Lemma 3.6. Let F be a free group. Suppose u1; : : : ; um 2 F n f1g, satisfying
that any pair ui and uj are either equal or independent. Set u0 D um. Choose
b1; : : : ; bm 2 F such that ui�1 D ui only if Œbi ; ui � ¤ 1. Then there exists N > 0

such that for any jn1j; : : : ; jnmj > N , b1u
n1

1 b2u
n2

2 : : : bmu
nm
m is non-trivial in F .

Proof. We may assume that each ui is cyclically reduced and not a proper power.
For g 2 F , jgj denotes the word-length of g. Let N be a sufficiently large integer
which will be determined later in the proof, and jn1j; : : : ; jnmj > N . Suppose that
w D b1u

n1

1 b2u
n2

2 : : : bmu
nm
m is trivial in F . Consider a dual van Kampen diagram

� of w. The boundary @� is divided into segments, each of which intersects with
only one properly embedded arc. For each i , the interval uni

i on @� intersects with
jni jjui j arcs. Since ui is cyclically reduced, no arc intersects uni

i twice. Hence, there
exists j such that there are at least

Mi D 1

m

�
jni jjui j �

X
k

jbkj
�

arcs joining uni

i and u
nj

j . If two arcs ˛ and ˇ join uni

i and u
nj

j , then so does any

arc between ˛ and ˇ. This means uni

i and u
�nj

j have a common subword of length
at least Mi . The word uni

i is a finite sequence of the period jui j. Since jui j ¤ 0,
one can choose a sufficiently large N such that Mi >

P
k jukj. Lemma 3.5 implies

that ui is a cyclic conjugation of u˙1
j . By the independence of ui and uj , ui D uj .

Note that such j exists for any i . So, if one chooses such a pair .i; j / which is
innermost, then j D i C 1 or j D i � 1. Assume that j D i � 1. In �, some
arcs join an interval of the form uk

i in uni

i to an interval in uni�1

i�1 . By cutting �
along these arcs, one obtains another dual van Kampen diagram for some word of
the form u

p
i�1biu

q
i D up

i biu
q
i . Here, up

i�1 and uq
i are subwords of of uni�1

i�1 and uni

i ,
respectively. We have up

i biu
q
i D 1, which is a contradiction to Œbi ; ui � ¤ 1.

For a compact surface S ,D.S/ denotes the double of S along @S . The following
lemma is well known when the surface S has only one boundary component [28], [1].



286 S. Kim

Lemma 3.7. Let S be a surface with the boundary components @1S; : : : ; @mS .
q W D.S/ ! S denotes the natural quotient map. Let Ti W D.S/ ! D.S/ be the
Dehn twist along @iS � D.S/. Then for any x 2 �1.D.S//n f1g there existsN > 0

such that whenever jn1j; : : : ; jnmj > N , .q B T n1

1 B � � � B T nm
m /�.x/ ¤ f1g.

Proof. Put �1.S/ D hx1; : : : ; xg ; y1; : : : ; yg ; d1; : : : ; dm j Q
Œxi ; yi �

Q
di D 1i,

where di is represented by a loop freely homotopic to @iS . Let h W S 0 ! S be a
homeomorphism, such that D.S/ D S [ S 0 glued along @iS D @iS

0 for each i . Let
v be the base point of S , and v0 be its image in S 0. One can find arcs ı1; ı2; : : : ; ım

joining v to v0 in D.S/ such that (Figure 4),

(i) ıi and @jS intersect if and only if i D j ,
(ii) Œq B T n1

1 B � � � B T nm
m .ıi /� D Œq B T ni

i .ıi /� D dni

i .

V

V

V

V

V

V

v v0

S S 0

@2S

@1S

ı1

ı2

Figure 4. The double of a surface.

Choose any x 2 �1.D.S// n f1g. If x is in �1.S/ � �1.D.S//, then .q B
T

n1

1 B � � � B T nm
m /�.x/ D x ¤ 1. Hence, we may assume x 62 �1.S/. For some

l � 1 and 1 � i1; i2; : : : ; i2l � m, x can be represented as a concatenation of arcs
x D ˇ1 � ıi1 �ˇ2 � ı�1

i2
: : : ˇ2l � ı�1

i2l
possibly after a conjugation. Here, ˇ1; ˇ3; ˇ5; : : :

are loops in S based at v, and ˇ2; ˇ4; ˇ6; : : : are loops in S 0 based at v0. By choosing
the minimal l , one may assume that if ik�1 D ik then ˇk is not homotopic into
@ikS D @ikS

0. One can write

.q B T n1

1 B � � � B T nm
m /�.x/ D Œˇ1�d

ni1

i1
Œh.ˇ2/�d

�ni2

i2
: : : Œh.ˇ2l/�d

�ni2l

i2l
:

By applying Lemma 3.6 to the free group �1.S/, one sees that .q B T n1

1 B � � � B
T

nm
m /�.x/ ¤ 1 if n1; : : : ; nm are all sufficiently large.

From now on, we denote the set of maximal complete subgraphs of � by K.�/.
We define a graph operation, called simplicial extension.

Definition 3.8. Let � be a graph. Define the simplicial extension of � , denoted by
��, to be the graph having the following vertex and edge sets:

(i) V.��/ D V.�/ t fvK;ujK 2K.�/; u 2 V.K/g;
(ii) E.��/ D E.�/ t ffvK;u; u

0gjK 2K.�/; u; u0 2 V.K/g.
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�� is obtained from � by adding a simplicial vertex (denoted by vK;u) for each
pair of a maximal complete subgraph K and a vertex u of K; see Figure 5. We first
make a graph theoretical observation regarding simplicial extensions.

x y z

K L� � � Ý x
y

z

vK;x vL;y

vK;y vL;z

� � �

� �

� �

�������

��
��

��
�

�������

��
��
��
�

�������

��
��

��
�

�������

��
��
��
�

(a) P3 and P �
3

x y

z

K� �

�
��

��
��

��
��
��

Ý
x y

z

vK;z

vK;x
vK;y

� �

� ��

�

��
��

��
�

��
��
��
�

��������������

���������

���������
���������

��������������

									


















��
��
��
��
�

(b) K3 and K�
3

Figure 5. Examples of simplicial extensions.

Lemma 3.9 (Decomposing ��). Suppose that � is a complete graph amalgamation
of �1 and �2. Then �� is a complete graph amalgamation of � 0

1 and � 0
2 for some

� 0
1, � 0

2 such that

(i) �i � � 0
i � ��

i ,

(ii) V.� 0
i / n V.�i / is a set of independent simplicial vertices of � 0

i .

Proof. LetK D �1\�2. We may assume thatK ¤ ¿. Note that K.�1/\K.�2/ �
fKg and K.�/ �K.�1/ [K.�2/ �K.�/ [ fKg.

Case 1. K 2K.�1/ [K.�2/.
We may assume K 2 K.�1/. Then, K is maximal in �2 if and only if K is

maximal in � . Combining this with K.�2/ � K.�1/ [K.�2/ � K.�/ [ fKg,
one has K.�2/ � K.�/. Define � 0

1 to be the graph obtained from ��
1 by removing

the simplicial vertices fvK;u j u 2 V.K/g. Put � 0
2 D ��

2 . � 0
1 \ � 0

2 D �1 \ �2 D K.
Moreover, V.��/ � V.� 0

1[� 0
2/[fvK;u j u 2 V.K/g. Since K.�1/nfKg �K.�/

and K.�2/ � K.�/, � 0
1 [ � 0

2 � ��. If K 62 K.�/, then vK;u 62 V.��/ for each
u 2 V.K/, and so, V.��/ � V.� 0

1 [ � 0
2/. If K 2 K.�/, then K 2 K.�2/ and

vK;u 2 V.� 0
2/ for each u 2 V.K/; this implies V.��/ � V.� 0

1 [ � 0
2/ [ fvK;u j u 2

V.K/g D V.� 0
1 [ � 0

2/. It follows that �� D � 0
1 [ � 0

2.
Case 2. K 62K.�1/ [K.�2/.
In this case, K.�/ DK.�1/ tK.�2/. Hence, �� D ��

1 [ ��
2 and ��

1 \ ��
2 D

�1 \ �2 D K. Set � 0
1 D ��

1 and � 0
2 D ��

2 .

Lemma 3.10 is a key step for the proof of Theorem 3.12. The lemma states
that a relative embedding of a compact hyperbolic surface group into A.�/ can be
“promoted” to an embedding of a closed hyperbolic surface group into A.��/.



288 S. Kim

Lemma 3.10. Let � be a graph. Then � 2 N 0 if and only if �� 2 N .

Proof. H) : Suppose that � 2 N 0. � is obtained from �� by removing a set of
independent simplicial vertices. By Lemma 3.4, �� 2 N 0 � N .
(H : Suppose that � 62 N 0. Fix a compact hyperbolic surface S and a rel-

ative embedding � W �1.S/ ! A.�/, which is a label-reading map with respect to
.H ; �/. Denote the boundary components of S by @1S; @2S; : : : ; @mS . Recall @S
is oriented so that

P
Œ@iS� D 0 in H1.S/. Since � is a relative embedding, we may

assume that for each boundary component @iS of S , there exists a complete sub-
graphK of � such that the curves and the arcs in H intersecting with @iS are labeled
by V.K/.

Let S 0 be a surface homeomorphic to S by a homeomorphism g W S ! S 0.
Put @iS

0 D g.@iS/. We consider D.S/ as the union of S; S 0 and the annuli
A1; A2 : : : ; Am. Here, Ai is parametrized by fi W Œ�1; 1� � S1 ! Ai , such that
fi .�1 � S1/ and fi .1 � S1/ are glued to @iS and @iS

0, respectively. We will define
a label-reading pair .H 0; �0/ onD.S/, which restricts to .H ; �/ on S . To do this, we
will write H 0 D H 0

1 [H 0
2 [H 0

3 as follows.
H 0

1 will be the collection of the simple closed curves � and g.�/, for all simple
closed curves � 2 H . Here, we let � and g.�/ in H 0

1 inherit the label and the
transverse orientation of � 2 H .

To define H 0
2, let � 2 H be a properly embedded arc, joining @iS and @jS . Let

fi .�1�pi / and fj .�1�pj / be the intersection of � with @iS and @jS , respectively.
There exists a simple closed curve Q� on D.S/ obtained by taking a concatenation
of �; fj .Œ�1; 1� � pj /; g.�

�1/ and fi .Œ�1; 1� � pi /. Again, we let Q� inherit the
label and the transverse orientation of � , and define H 0

2 to be the collection of all
such simple closed curves Q� on D.S/, where � ranges over all properly embedded
arcs in H .

Now we define H 0
3 as follows. Consider any boundary component @iS , and let

ˇ1; ˇ2; : : : ; ˇs � S be the properly embedded arcs in H intersecting with @iS .
There exists a (possibly non-unique) maximal complete subgraph K � � such
that �. ǰ / 2 V.K/ for all j . We choose disjoint essential simple closed curves
˛1; : : : ; ˛s in the interior of Ai , and let �0. j̨ / D vK;�. ǰ / 2 V.��/, for each j .
Moreover, we let the transverse orientation of j̨ be from fi .�1�S1/ to fi .1�S1/,
if the transverse orientation of ǰ coincides with the orientation of @iS , and be
the opposite otherwise (Figure 6 (a)). Let H 0

3 be the collection of all such j̨ ’s,
for all the boundary components @1S; : : : ; @mS . In this way, we have defined a
set of transversely oriented curves and arcs H 0 D H 0

1 [ H 0
2 [ H 0

3 and a labeling
�0 W H 0 ! V.��/.

Let �0 W �1.D.S// ! A.��/ be the label-reading map with respect to .H 0; �0/.
Fix any n > 0. Define pn W A.��/ ! A.�/ by pn.a/ D a for a 2 V.�/, and
pn.vK;u/ D un for K 2 K.�/ and u 2 V.K/. Let Ti be the Dehn twist of D.S/
along @iS , and T D T1 B T2 B � � � B Tm.
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Claim. The following diagram commutes up to equivalence.

�1.D.S//

.qBT n/�

��

�0

�� A.��/
pn

��
�1.S/

� �� A.�/

Note that � B q� is the label-reading map with respect to the pair .H 0
1 [H 0

2; �
0/.

Similarly, � B .q B T n/� is the label-reading map with respect to the pair consisting
of the set T �n.H 0

1 [H 0
2/, and the labeling map �0 B T n.

Let ˛ 2 H 0
3 be any simple closed curve inside an annulus, say Ai . Write �0.˛/ D

vK;u for some K 2 K.�/ and u 2 V.K/. Consider n copies of disjoint essential
simple closed curves Q̨1; Q̨2; : : : ; Q̨n � Ai , with the same transverse orientation as ˛.
Label Q̨1; Q̨2; : : : ; Q̨n by u. Define Cn to be the collection of all such Q̨j ’s, for all the
simple closed curves˛ 2 H 0

3. Then H 0
1[H 0

2[Cn with the transverse orientations and
the labeling defined so far determines a label-reading map  W �1.D.S// ! A.�/.
Note that two curves or arcs of the same label are not necessarily disjoint in this
label-reading pair (Figure 6 (b)). From the construction,  D pn B �0.

V VV V

Ai

 
b

a

vK;a vK;b

!

 !

@i S @i S 0

(a) H 0 D H 0
1 [ H 0

2 [ H 0
3

V V

 
b

a

a a b b

!

  ! !

@i S @i S 0

(b) H 0
1 [ H 0

2 [ Cn

V V

b

a!

 
@i S @i S 0

(c) T �n.H 0
1 [ H 0

2/

Figure 6. Defining a label-reading pair .H 0; �0/ on D.S/. (b) and (c) show equivalent label-
reading pairs.
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From Lemma 2.3 (3), one immediately sees that  is equivalent to the label-
reading map with respect to .T �n.H 0

1 [ H 0
2/; �

0 B T n/ (Figure 6 (c)). Therefore,
pn B �0.x/ is equivalent to � B .q B T n/�.x/. The claim is proved.

Now suppose that x is a non-trivial element in �1.D.S//. By Lemma 3.7, there
existsn � 0 such that .qBT n/�.x/ D .qBT n

1 BT n
2 B� � �T n

m/�.x/ ¤ 1. The injectivity of
� and the commutativity of the diagram above imply that �0.x/ is non-trivial. Hence,
�0 is injective, and so, �� 62 N .

Remark 3.11. (1) One can also see that �0 is injective in the above proof by a method
from [5], rather than resorting to Lemma 3.7. The labels of the curves inside two
different annuli Ai and Aj are either simplicial vertices joined to the same maximal
complete subgraph of � , or disjoint and independent. Now suppose that �0Œ˛� D 1

for some Œ˛� 2 �1.D.S//nf1g. By the solution to the word problem for right-angled
Artin groups, ˛ has an essential subarc ˇ (in S or S 0) satisfying the following: ˇ
intersects boundary components @iS and @jS , such that the curves inside Ai and Aj

are labeled by simplicial vertices joined to the same maximal complete subgraph K
of � and the label-reading by .H ; �/ of ˇ is in A.K/ (note that i D j may occur).
This implies that any arc intersecting with @iS or @jS is labeled by a vertex of K.
Orient ˇ from @iS to @jS . Then the label-reading by .H ; �/ of ˇ �@jS �ˇ�1 and @iS

are both in A.K/, and so, commute. This will contradict to the injectivity of �.
(2) Lemma 3.6 is interesting in its own right. Let � be a graph with two vertices

v1 and v2, and multi-edges e1; e2; : : : ; er joining v1 and v2. Fix independent words
u1; : : : ; ur in a non-abelian free group F . Define G to be a graph of groups on � by
choosing two copies of F as the vertex groups and letting the edge group Gi Š Z
be glued along the copies of hui i for each i . Then Lemma 3.6 shows that G is fully
residually free.

Theorem 3.12. N 0 is closed under complete graph amalgamation.

Proof. Let �; �1 and �2 be graphs, such that � is a complete graph amalgamation of
�1 and �2. We will show that � 2 N 0 if and only if �1; �2 2 N 0.
H) : Obvious, since �i � � .
(H : Assume that � 62 N 0. By Lemma 3.10, �� 62 N . �� is a complete

graph amalgamation of induced subgraphs � 0
1 � �1 and � 0

2 � �2, as in Lemma 3.9.
By Lemma 1.3, we may assume � 0

1 62 N 0. Since � 0
1 can be obtained by adding

independent simplicial vertices to �1, Lemma 3.4 implies �1 62 N 0

Corollary 3.13. Any chordal graph is in N 0.

Proof. Recall that each complete graph is in N 0 (Proposition 3.2). For each chordal
graph � , either � is complete or � can be written as a complete graph amalgamation
� D �1 [ �2 of proper induced subgraphs �1 and �2 [8]. By Theorem 3.12, an
inductive argument shows that � is in N 0.
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In particular, A.�/ does not contain a closed hyperbolic surface group if � is
chordal. The condition that the underlying graph � is chordal is equivalent to two
important group theoretic properties on A.�/. Namely, � is chordal, if and only if
A.�/ is coherent [9], if and only if A.�/ has a free commutator subgroup [27].

4. Normalized label-reading pairs

In this section, we let � be a graph and S be a compact surface. For a given label-
reading pair on S with the underlying graph � , we will consider a simplification
(called, normalization) of the label-reading pair, without changing the equivalence
class of the induced label-reading map (Definition 4.2). Lemma 4.3 and 4.7 will be
crucially used in Section 5.

Definition 4.1 (Regular label-reading pair). A label-reading pair .H ; �/ on S with
the underlying graph � is called regular, if the following are satisfied.

(i) The induced label-reading map � W �1.S/! A.�/ is injective.
(ii) The curves and the arcs in H are neither null-homotopic nor homotopic into the

boundary.
(iii) Any curves and arcs in H are minimally intersecting. This means that for any

˛ ¤ ˇ in H , j˛ \ ˇj D i.˛; ˇ/.
(iv) Two curves or arcs of the same label do not intersect.
(v) For each boundary component @iS , there exists a complete subgraph K � �

such that any arc ˛ intersecting with @iS satisfies �.˛/ 2 V.K/.

From Proposition 2.1 and Lemma 2.3, any relative embedding � W �1.S/! A.�/

is induced by a regular label-reading pair .H ; �/ possibly after a conjugation inA.�/.
This is the first step to simplify a given label-reading pair.

Definition 4.2 (Normalized label-reading pair). (1) Let .H ; �/ be a regular label-
reading pair on a hyperbolic surface S , and B be the set of properly embedded arcs
in H . Define the complexity of H to be the 4-tuple of the nonnegative integers

c.H ; �/

D
�
j.[B/ \ @S j; P

a2V.�/

j��1.a/=� j; P
a2V.�/

j��1.a/ \B=� j; P
˛;ˇ2H

˛¤ˇ

j˛ \ ˇj
�

where� denotes the homotopy equivalence relation on H , and also on B. We denote
the lexicographical ordering of the complexities by 
.

(2) A regular label-reading pair .H ; �/ is normalized if for any other regular
label-reading pair .H 0; �0/ which is equivalent to .H ; �/, c.H ; �/ 
 c.H 0; �0/.
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In the above definition, j.[B/ \ @S j denotes the number of intersection points
between @S and the arcs in B. This means, j.[B/ \ @S j D j.[H / \ @S j is the
number of the endpoints of arcs in B. It is obvious that any regular label-reading pair
is equivalent to a normalized one. We start with a simple observation on normalized
label-reading pairs.

Lemma 4.3 (Normalization I). Let .H ; �/ be a normalized label-reading pair on
a compact hyperbolic surface S with the underlying graph � . B denotes the set
of properly embedded arcs in H . If ˛; ˇ 2 B have the same label and intersect
with @iS for some i , then the transverse orientation of ˛ and that of ˇ induce the
same orientation on @iS at their intersections with @iS . In particular, each properly
embedded arc in H intersects with two distinct boundary components of S .

Proof. Let a D �.˛/ D �.ˇ/. Suppose that the transverse orientations of ˛ and
ˇ do not induce the same orientation on @iS at their intersection points fP˛; Pˇ g.
By choosing a nearest one among such pairs of intersection points on @iS , we may
assume a component of @iSnfP˛; Pˇ g does not intersect with any a-arc (Figure 7 (a)).
By Lemma 2.3, one can reduce j.[B/\ @S j by 2 without changing the equivalence
class of .H ; �/, if one replaces ˛ and ˇ by another curve or arc ˛0 as in Figure 7 (b).
Note that this new label-reading pair can be further simplified to become regular,
again by Lemma 2.3.

Remark 4.4. During the proof of Lemma 4.3, one might have increased the number
of homotopy classes of simple closed curves in ��1.a/, when ˛ and ˇ are replaced by
˛0. But the proof is still valid, since we are considering the lexicographical ordering
of the complexity.

@i S

S P˛

Pˇ

a&
b"

c"

˛

ˇ
a
%

(a)

@i S

S

a&
b"

c"

˛0

a
%

(b)

Figure 7. Reducing complexity. In (a), the labels b and c are adjacent to a in � by the
regularity of .H ; �/. Hence in (b), the intersections of ˛0 with b- and c-arcs are allowed to
occur. Consequently, ˛ and ˇ can be replaced by ˛0 without changing the equivalence class
of the label-reading pair.

To state properties of normalized label-reading pairs, it will be convenient to define
certain terms regarding a set of disjoint properly embedded arcs on S , as follows. Let
I denote the unit interval Œ0; 1�.
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Definition 4.5 (Strips and channels). Let A be a set of disjoint properly embedded
arcs on a compact surface S .

(1) We choose an embedding 	˛ W I � Œ�1; 1� ! S for each arc ˛ 2 A, such that
the following conditions hold.

(i) 	˛.I � s/ is a properly embedded arc for each s 2 Œ�1; 1�.
(ii) ˛ � 	˛.I � .�1; 1//.

(iii) If ˛ � ˛0 2 A, then 	˛ D 	˛0 .
(iv) If ˛ 6� ˛0 2 A, then the image of 	˛ and that of 	˛0 are disjoint.

We call f	˛ j ˛ 2 Ag a set of strips for A. For convenience, the image of 	˛ is
also denoted by 	˛ when there is no danger of confusion.

(2) A channel is a connected component of .[˛2A 	˛/[@S . For ˛ 2 A, we denote
the unique channel containing ˛ by ch.˛/. An induced simple closed curve of
˛ is a boundary component Ǫ of the closure of S n ch.˛/ such that Ǫ \ 	˛ ¤ ¿
and Ǫ 6� @S . Note that there exist at most two induced simple closed curves of
˛ for each ˛ 2 A.

(3) An arc ˛ 2 A is one-sided with respect to A, if 	˛.I � f�1g/ and 	˛.I � f1g/
are contained in the same induced simple closed curve (see Figure 8).

S

˛

Ǫ

Ǫ 0

@1S 0 @2S 0

@3S 0

@4S 0

(a) ˛ is not one-sided.

S

˛

Ǫ

@1S 0 @2S 0

@3S 0

@4S 0

(b) ˛ is one-sided.

Figure 8. Strips and channels of a set A of disjoint properly embedded arcs. Curves in A

are drawn bold. The dotted arcs bound strips, along with some intervals on @S . Ǫ and Ǫ 0
are induced simple closed curves. They do intersect @S and the boundaries of strips, but for
convenience of drawing, the figures show curves parallel to Ǫ and Ǫ 0, in the interior of the
surface. In (a), Ǫ and Ǫ 0 are distinct induced simple closed curves of ˛ 2 A. In (b), Ǫ is the
unique induced simple closed curve of ˛.

Remark 4.6. Let A be a set of disjoint properly embedded arcs on a compact surface
S , and let ˛ 2 A.

(1) Any induced simple closed curve Ǫ of ˛ can be written as a concatenation of



294 S. Kim

paths
Ǫ D ˛0

1 � ı1 � ˛0
2 � ı2 � ˛0

3 : : : ır

such that

(i) ˛0
1 � ˛,

(ii) ˛0
i � ˛i for some ˛i 2 A, and ˛0

i is an interval on the boundary of the
strip of ˛i ,

(iii) ıi is an interval on a boundary component of S that intersects with ˛0
i and

˛0
iC1.

In particular, an induced simple closed curve consists of subarcs which lie on @S
or the boundaries of strips. Moreover, if ˛ is not one-sided, then the transverse
orientation of ˛ uniquely determines a transverse orientation of Ǫ that respects
the homotopy ˛0

1 � ˛.
(2) For a sufficiently small closed regular neighborhood N of ch.˛/, there exist

disjoint annuli A1; A2; : : : ; Ar in the closure of S n ch.˛/, such that N D
ch.˛/ [ A1 [ A2 [ � � � [ Ar . The intersection of each Ai with ch.˛/ is an
induced simple closed curve, and conversely, any induced simple closed curve
intersecting with ch.˛/ is a boundary component of some Ai .

(3) Let .H ; �/ be a label-reading pair on S with the underlying graph � . Consider
any arc ˛ 2 H , and let a D �.˛/. Denote the set of a-arcs by Aa. We may
assume that the arcs in Aa are disjoint (Lemma 2.3 (3)). Then the strip, the
channel, and the induced simple closed curves of ˛ are defined to be those of
˛ with respect to the set Aa. Furthermore, ˛ is said to be one-sided if it is
one-sided with respect to Aa.

Lemma 4.7 (Normalization II). Let .H ; �/ be a normalized label-reading pair on a
compact hyperbolic surface S with the underlying graph � . Then each arc ˛ in H

is one-sided (see Remark 4.6 (3)).

Proof. Let a D �.˛/. For abbreviation, we simply let A denote the set of a-arcs.
Suppose that there exists an arc ˛ 2 A, which is not one-sided in A. Let Ǫ be
one of the two induced simple closed curves of ˛ with respect to A. Write Ǫ D
˛0

1 �ı1 �˛0
2 �ı2 : : : ˛

0
r �ır , where ıi � @S , and ˛0

i is a properly embedded arc homotopic
to an a-arc ˛i 2 A, as in Remark 4.6 (1). Here, ˛0

1 � ˛. The transverse orientation
of Ǫ is given by that of ˛.

First, consider the case when no other curve in A is homotopic to ˛. Choose an
embedding g W S1� I ! S n ch.˛/ such that g.S1�f0g/ D Ǫ , as in Remark 4.6 (2).
Put ˇ D g.S1 � f1

2
g/ and � D g.S1 � f1g/. One may assume that � is sufficiently

close to Ǫ , so that if any � 0 2 H intersects with � , then � 0 also intersects with Ǫ .
Let � have the transverse orientation which the homotopy � � Ǫ respects, and give
ˇ the opposite orientation (Figure 9 (a)). Label ˇ and � by a and add them to H ;
this results in a new label-reading pair .H1; �1/. Note that .H1; �1/ is equivalent to
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.H ; �/, since the homotopic curves ˇ and � have the same label and the opposite
transverse orientations.

Note that the transverse orientations of ˛2; ˛3; ˛4; ˛5; : : : are completely deter-
mined by that of ˛, according to Lemma 4.3. Obtain another label-reading pair
.H2; �2/ from .H1; �1/ by removing ˇ; ˛; ˛3; ˛5; : : : and adding a-arcs homotopic
to ˛2; ˛4; : : : . Here, newly added arcs will have the transverse orientations respecting
the homotopies to ˛2; ˛4; : : : , as in Figure 9 (c). One sees that .H2; �2/ is equivalent
to .H1; �1/ by successive applications of Lemma 2.3 (3). Figure 9 (b) illustrates an
intermediate step between .H1; �1/ and .H2; �2/.

#

.

"
#

˛

˛2

-

˛3%

˛r
%

ˇ�

@S@S

@S

@S

(a) .H1; �1/

.

#

˛2

-
-

˛3% .

˛r
%

�

@S@S

@S

@S

(b) a reduction of
.H1; �1/

#

˛2

-- ˛r
%
%

. .

�

@S@S

@S

@S

(c) .H2; �2/

Figure 9. All the curves and arcs drawn here are labeled by a.

Since ˛ is not one-sided, ˛i 6� ˛ for each i > 1. We have assumed that ˛
is the only arc in its homotopy class, contained in A. Hence, .H2; �2/ does not
contain any a-arc homotopic to ˛. This means, H2 has a strictly smaller number
of homotopy classes of properly embedded arcs, than H does. H2 has the same
number of, or one more, homotopy classes of simple closed curves than H does,
according to whether there exists any a–curve homotopic to � in H or not. This
implies, j��1

2 .a/
ı � j � j��1.a/

ı � j. Moreover, jH \ @S j D jH2 \ @S j. Hence,
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c.H2; �2/ � c.H ; �/. This is a contradiction to the minimality of c.H ; �/.
In the case when there exist l > 1properly embedded arcs in H homotopic to˛, fix

a small annulus A � S n ch.˛/, of which Ǫ is a boundary component. Consider a set
of disjoint, transversely oriented, simple closed curves ˇ1; ˇ2; : : : ; ˇl ; �1; �2; : : : ; �l

contained in A with this order, such that ˇ1 is the closest to Ǫ . Here, we let
ˇ1; ˇ2; : : : ; ˇl have the opposite transverse orientations to that of Ǫ , and �1; �2; : : : ; �l

have the transverse orientations coinciding with that of Ǫ . By letting H1 D H [
fˇ1; ˇ2; : : : ; ˇl ; �1; �2; : : : ; �lg, the same argument implies that c.H ; �/ is not mini-
mal.

Now we state a lemma regarding a set of disjoint properly embedded arcs on a
compact surface, such that each arc is one-sided. In view of Lemma 4.7, this result
will be applied to the study of normalized label-reading pairs in the next section.
Note, the conclusion of Lemma 4.8 is not true without the hypothesis that each arc is
one-sided.

Lemma 4.8. Let A be a set of disjoint properly embedded arcs on a surface S , such
that each arc in A is one-sided. Denote the union of the boundary components of
S intersecting with arcs in A by @�S . Fix ˛ 2 A, and let Ǫ be the unique induced
simple closed curve of ˛. For a sufficiently small closed regular neighborhood N of
ch.˛/, the following hold.

(1) N has a unique boundary component, say Ǫ 0, that is not a boundary component
of S . Ǫ 0 separates S , and Ǫ 0 � Ǫ .

(2) Any properly embedded arc or closed curve, not intersecting with .[A/[ @�S ,
can be homotoped into S nN .

(3) If we further assume that Ǫ is null-homotopic, then @�S D @S and any essential
closed curve on S intersects with [A.

Proof. (1) We use the notations in Definition 4.5. We will say that a boundary
component of S or a strip of A is good if it intersects with Ǫ (Remark 4.6 (1)).

Claim 1. If a strip is good, then so is any boundary component of S intersecting
with that strip.

If a strip 	ˇ W I � Œ�1; 1� ! S is good for some ˇ 2 A, then 	ˇ .I � �1/ or
	ˇ .I �1/ is contained in Ǫ . Since ˇ is one-sided, 	ˇ .I �f�1; 1g/ � Ǫ . In particular,
	ˇ .f0; 1g � f�1; 1g/ � Ǫ . Hence, the boundary components of S that intersect with
the good strip 	ˇ intersects with Ǫ .

Now we denote the boundary components of S by @1S; @2S; : : : ; @mS .

Claim 2. If @iS is good, then so is any strip intersecting with @iS .

Suppose that @iS is good. Ǫ \@iS is a union of intervals on @iS , and the endpoints
of any of those intervals are contained in good strips. Assume that @iS also intersects
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with a strip that is not good. On @iS , one can choose a nearest pair of a good strip
	ˇ1

and a strip 	ˇ2
that is not good, for some ˇ1; ˇ2 2 A. This implies, there exists

a closed interval u on @iS such that u intersects with 	ˇ1
and 	ˇ2

, but not with any
other strips. Since 	ˇ1

is good, the unique induced simple closed curve of ˇ1 is Ǫ ,
and so, u � Ǫ . Since u intersects with the induced simple closed curve of ˇ2, we
have a contradiction to the assumption that 	ˇ2

is not good.

@i S

u�ˇ1

�ˇ2

ˇ1

ˇ2

Figure 10. Proof of Claim 2.

By Claim 1 and 2, if @iS and @jS are connected by an arc in A, and @iS is good,
then so is @jS . Since ch.˛/ is connected, it follows that a boundary component of S
or a strip is good if and only if it is contained in ch.˛/.

Now choose any component 
 of @N n @S . There exists ˇ 2 A, such that 
 and
the induced simple closed curve Ǒ of ˇ bound an annulus contained in the closure
of N n ch.˛/, and Ǒ � ch.˛/ (Remark 4.6 (2)). The strip 	ˇ of ˇ intersects with Ǒ.
Since Ǒ � ch.˛/, 	ˇ \ ch.˛/ ¤ ¿. This implies that 	ˇ � ch.˛/, and so, 	ˇ is
good; that is, 	ˇ intersects also with Ǫ . Since ˇ is assumed to be one-sided, Ǒ D Ǫ .
Hence, 
 is the unique boundary component of N that bounds an annulus with Ǫ .
This proves that @N contains only one component that is not in @S .

Note that N is a proper subsurface of S such that the frontier, namely 
, is
connected. This implies 
 separates S .

(2) Suppose that � is a curve or an arc on S , not intersecting with .[A/ [ @�S .
Let A0 be a minimal set of arcs in A satisfying the following:

for each ˇ 2 A, there uniquely exists ˇ0 2 A0 such that ˇ � ˇ0.

Case 1. � is a closed curve.
We have

� � S n .[A/ � S n .[A0/ � S n .[ˇ2A 	ˇ / � S n ch.˛/ � S nN:
The first homotopy is obtained by enlarging each arc in A0 to a strip, and the second
one is a deformation retract of the annuli discussed in Remark 4.6 (2) onto circles.
Clearly, S nN can be homotoped into S nN .

Case 2. � is a properly embedded arc.
The argument for this case is almost the same as Case 1. One has only to show

that that there exists a homotopy that sends � into S n N , leaving the endpoints on
@S . For this, we chooseN as a sufficiently small regular neighborhood of ch.˛/ such
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that @� \ N D ¿. This is possible since � does not intersect @�S . Then we have
only to note that the homotopies in the proof of Case 1 do not move @� .

(3) Suppose that Ǫ � 0. From (1), there exists 
 � Ǫ such that @N � f
g [ @�S .
Since 
 separates, one can write S D N [ S 0 such that N \ S 0 D 
. N contains
at least one boundary component of S , namely any of the boundary components that
˛ intersects. Hence, N is not a disk. Now for 
 to be null-homotopic, S 0 must be a
disk and @S � @N . So @N D f
g [ @S , and @�S D @S .

Let � be any closed curve, not intersecting with any arc in A. By (2), � is
homotopic into S n N , which is the interior of S 0. This implies that � is null-
homotopic.

5. Adding bisimplicial edges

An edge fa; bg is bisimplicial if any vertex in link.a/ is either equal or adjacent to
any vertex in link.b/. For an edge e of a graph, Ve denotes the interior of e. In this
section, we prove the following theorem.

Theorem 5.1. Let e be a bisimplicial edge of a graph � . If � n Ve 2 N 0, then � 2 N 0.

Proof. Write e D fa; bg, and let � 0 D � n Ve. Assume that � 62 N 0. One can find
a compact hyperbolic surface S , and a relative embedding � W �1.S/ ! A.�/ with
respect to a normalized label-reading pair .H ; �/.

First, consider the case when �.H / � link.a/ [ fag. �link.a/[fag 62 N 0, since
the image of � is inA.�link.a/[fag/. �link.a/[fag is the join of the single vertex a and
�link.a/. Since a single vertex is in N 0, Proposition 3.2 implies that �link.a/ 62 N 0.
Note that �link.a/ � �V.�/nfag � � 0. Hence, � 0 is not in N 0, which contradicts to
the assumption. The case when �.H / � link.b/ [ fbg is similar.

Now assume that �.H / 6� link.a/[fag and �.H / 6� link.b/[fbg. We denote
the boundary components of S by @1S; @2S; : : : ; @mS . For a based curve or arc �
on S , we let w� denote the label-reading of � with respect to the label-reading pair
.H ; �/ as in Section 2.

Claim 1. Suppose that ˛ and ˇ are essential simple closed curves on S such that
˛ \ ˇ ¤ ¿, w˛ 2 hlink.a/i and wˇ 2 hlink.b/i. Then ˛ � ˇ˙1.

We may choose the base point of�1.S/ in˛\ˇ. �ŒŒ˛�; Œˇ�� D Œw˛; wˇ � D 1, since
any vertex in link.a/ is equal or adjacent to any vertex in link.b/. By Lemma 3.1,
˛ � ˇ˙1. Here, we have assumed that ˛ and ˇ are transverse to H . If not, one may
consider ˛0 � ˛ and ˇ0 � ˇ such that ˛0 and ˇ0 are sufficiently close to ˛ and ˇ
respectively, and transversely intersecting H . The claim is proved.

For v 2 V.�/, recall that simple closed curves and properly embedded arcs in H

labeled by v are called v-curves and v-arcs, respectively. Cv and Av will denote the
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set of v-curves and the set of v-arcs, respectively. Let @vS denote the union of the
boundary components of S that intersect with v-arcs.

Claim 2. .[Ca/ \ .[Cb/ D ¿.

Suppose that ˛ and ˇ intersect at a point p, for some ˛ 2 Ca and ˇ 2 Cb . One
can find simple closed curves ˛1 � ˛ and ˇ1 � ˇ, intersecting at a point p0 near p,
such that ˛1 and ˇ1 are transverse to H . By requiring that ˛1 is sufficiently close
to ˛, we may assume that the label-reading of ˛1 with the base point p0, is same as
the label-reading of ˛ with a suitable choice of the base point. If � 2 H intersects
with ˛, then �.�/ 2 link.a/, by the definition of a label-reading pair. Hence, w˛1

2
hlink.a/i. Similarly, wˇ1

2 hlink.b/i. By Claim 1, ˛ � ˛1 � ˇ˙1
1 � ˇ˙1, which

contradicts to the assumption that curves and arcs in H are minimally intersecting
(Remark 2.4 (1)).

Claim 3. If ˛ 2 Aa and ˇ 2 Ab , then ˛ 6� ˇ.

Suppose that an a-arc ˛ and a b-arc ˇ are homotopic. They join the same pair of
boundary components, say @1S and @2S . ˛ � ˇ implies that if � 2 H intersects with
˛, then � also intersects with ˇ, and so, �.�/ 2 link.a/ \ link.b/. It follows that
w˛ 2 hlink.a/\link.b/i. Note thatw@1S andw@2S are in ha; b; link.a/\link.b/i.
As in the proof of Lemma 3.4, consider ı1 � @1S and ı2 � @2S with the same
base point such that ı1 and ı2 transversely intersect H (Figure 3). We assume that
ı1 and ı2 are sufficiently close to @1S and ˛ � @2S � ˛�1 respectively, so that wı1

and wı2
are in ha; b; link.a/ \ link.b/i. �.Œı1; ı2�/ D Œwı1

; wı2
� D 1, since

fa; bg [ .link.a/ \ link.b// induces a complete subgraph in � . This leads to
a contradiction again, since @1S ¤ @2S (Lemma 4.3) implies that Œı1; ı2� ¤ 1

(Lemma 3.1).

Claim 4. If a b-arc ˇ joins two components in @aS , then ˇ intersects some � 2 H

that is not labeled by a vertex in link.a/ [ fag.
As in the proof of Claim 3, choose ˇ1 sufficiently close to ˇ such that ˇ1 � ˇ,

wˇ1
D wˇ 2 hlink.b/i, and ˇ1 transversely intersects H . Assume that whenever

� 2 H and ˇ1 \ � ¤ ¿, �.�/ 2 link.a/ [ fag. This implies wˇ1
2 h.link.a/ [

fag/ \ link.b/i D ha; link.a/ \ link.b/i. Let @1S and @2S be the boundary
components joined by ˇ. @iS � @aS \ @bS for i D 1; 2, by the assumption of
the claim. This means w@1S ; w@2S 2 ha; b; link.a/ \ link.b/i. As in the proof
of Claim 3, ŒŒ@1S�; Œˇ1 � @2S � ˇ�1

1 �� D 1, which is a contradiction. So, there exists
� 2 H such that ˇ1 \ � ¤ ¿ (hence, ˇ \ � ¤ ¿) and �.�/ 62 link.a/ [ fag.

Now, we recall the notations and the terms from Definition 4.5 and Remark 4.6.
For each ˛ 2 Aa, ch.˛/ denotes the channel of ˛ with respect to the set Aa and
N.ch.˛// denotes a sufficiently small closed regular neighborhood of ch.˛/ satisfy-
ing the conclusion of Lemma 4.8. This implies that Ǫ is homotopic to the unique
component of @N.ch.˛// n @S (Lemma 4.8 (1)).
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Claim 5. Let ˛ be an a-arc, and Ǫ be the unique induced simple closed curve of ˛
with respect to Aa. Then w Ǫ 2 hlink.a/i.

From Remark 4.6 that Ǫ can be written as

Ǫ D ˛0
1 � ı1 � ˛0

2 � ı2 : : : ˛
0
r

where for each i , ˛0
i is homotopic to an a-arc ˛i , and ıi is an interval on a boundary

component of S which is intersecting with the a-arcs ˛i and ˛iC1. Moreover, Ǫ does
not intersect with any a-curves or a-arcs. It follows that w Ǫ 2 hlink.a/i.
Claim 6. The induced simple closed curve of an a- or b-arc is essential.

Suppose that the induced simple closed curve Ǫ of an a-arc ˛ is null-homotopic.
By Lemma 4.8 (3), @aS D @S , and any simple closed curve in H is labeled by a
vertex in link.a/. This implies that the label of any curve or arc in H is either a or
adjacent to a. Hence, �.H / 2 link.a/[ fag, which was excluded. The case for the
induced simple closed curve of a b-arc is similar, by symmetry.

Claim 7. .[Aa/ \ .[Cb/ D ¿, and .[Ab/ \ .[Ca/ D ¿.

Suppose ˛ 2 Aa and ˇ 2 Cb intersect at p. Let Ǫ be the induced simple closed
curve of ˛. Ǫ 0 � Ǫ denotes the unique boundary component of N.ch.˛// that is not
in @S (Lemma 4.8 (1)). Ǫ 0 6� 0 by Claim 6. By Claim 5, w Ǫ 0 2 hlink.a/i. Since
˛ \ ˇ ¤ ¿, Ǫ 0 \ ˇ ¤ ¿. Moreover, wˇ 2 hlink.b/i. By Claim 1, Ǫ 0 � ˇ˙1,
and so, i.˛; ˇ/ D i.˛; Ǫ 0/ D 0. This contradicts to the assumption that ˛ and ˇ are
minimally intersecting. .[Ab/ \ .[Ca/ D ¿ follows from the symmetry.

Claim 8. Let ˛ 2 Aa and ˇ 2 Ab . Denote the induced simple closed curves of ˛
and ˇ by Ǫ and Ǒ, respectively. Suppose that either

(i) ˛ and ˇ intersect, or

(ii) Ǫ and Ǒ intersect, and there exists a boundary component which intersects with
both ˛ and ˇ.

Then Ǫ � Ǒ˙1 and N.ch.˛// \ @S D N.ch.ˇ// \ @S . Moreover, there exists a
homotopy from N.ch.˛// onto N.ch.ˇ// fixing N.ch.˛// \ @S D N.ch.ˇ// \ @S .

As in Claim 7, let Ǫ 0 and Ǒ0 be the boundary components of N.ch.˛// and
N.ch.ˇ//, that are not boundary components of S , respectively. Assuming (i) or
(ii), two essential curves Ǫ 0 and Ǒ0 intersect. Here, we have also assumed that
Ǫ 0 and Ǒ0 are sufficiently close to Ǫ and Ǒ. By Claim 5, w Ǫ 0 2 hlink.a/i and
w Ǒ 0 2 hlink.b/i. From Claim 1, it follows that Ǫ 0 � Ǒ0˙1. By Lemma 4.8 (1), both

Ǫ 0 and Ǒ0 are separating simple closed curves on S . So eitherN.ch.˛// � N.ch.ˇ//
or N.ch.˛// � S n N.ch.ˇ//. Suppose that N.ch.˛// � S n N.ch.ˇ//. Then any
boundary component of S contained inN.ch.˛// will not be contained inN.ch.ˇ//.
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So no boundary component of S can intersect both ˛ and ˇ. Since ˛ � N.ch.˛//,
˛ is homotopic into S n N.ch.ˇ// and so, i.˛; ˇ/ D 0. So neither (i) nor (ii) of the
given conditions hold. Therefore, N.ch.˛// � N.ch.ˇ//, and the rest of the claim
follows immediately.

Claim 9. Let ˛ be an a-arc. Suppose that a b-arc ˇ joins two boundary components
of S that are contained in N.ch.˛//. Let Ǫ and Ǒ denote the induced simple closed
curves of ˛ and ˇ, respectively. Then Ǫ \ Ǒ D ¿.

Suppose that ˇ joins @1S and @2S , and @1S [ @2S � N.ch.˛//. Assume that
Ǫ \ Ǒ ¤ ¿. For i D 1 or 2, @iS � N.ch.˛// and so, @iS intersects with some a-arc.
By Claim 4, there exists � 2 H such that ˇ \ � ¤ ¿ and �.�/ 62 link.a/ [ fag.
This implies that � can not intersect any a-curve or a-arc, and � \ @aS D ¿. In
particular, � \ .[Aa/ D ¿. By Lemma 4.8 (2), � Ý S n N.ch.˛// (Notation 2.2).
By choosing a suitable arc in ch.˛/, we may assume that ˛ intersects with either @1S

or @2S . From Claim 8 (with condition (ii)), � Ý S n N.ch.ˇ//. So i.ˇ; �/ D 0,
which is a contradiction.

Claim 10. .[Aa/ \ .[Ab/ D ¿.

Suppose that ˛ 2 Aa and ˇ 2 Ab intersect. By Claim 8 (with condition (i)), Ǫ �
Ǒ˙1 andN.ch.˛// � N.ch.ˇ//. This implies thatN.ch.˛//\@S D N.ch.ˇ//\@S ,

and so, ˇ � N.ch.ˇ// joins two boundary components contained in N.ch.˛//. By
Claim 9, Ǫ \ Ǒ D ¿, which contradicts to the assumption that ˛ \ ˇ ¤ ¿.

Claim 11. @aS \ @bS D ¿.

Suppose that @iS intersects with ana-arc˛ and a b-arcˇ. By considering a nearest
pair of such arcs on @iS , we may assume that the induced simple closed curves Ǫ and
Ǒ of ˛ and ˇ intersect (Figure 11). By Claim 8 again, N.ch.˛// D N.ch.ˇ//, and

hence as in the proof of Claim 10, ˇ joins two boundary components of N.ch.˛//.
By Claim 9, Ǫ and Ǒ are disjoint, which is a contradiction. This proves Claim 11.

V
V

Ǫ \ Ǒ

	
@i S

Ǫ
Ǒ

˛

ˇ .
b

a

&

Figure 11. Proof of Claim 11.

Recall � 0 D � n Ve. By Claim 2, 7 and 10, ˛ and ˇ are disjoint for any ˛ 2 ��1.a/

and ˇ 2 ��1.b/. Hence, .H ; �/ can be considered as a label-reading pair with the
underlying graph� 0, inducing�0 W �1.S/! A.� 0/. Injectivity of�0 can be seen from
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the following commutative diagram. Here, A.� 0/ ! A.�/ is the natural quotient
map, obtained by adding the relator Œa; b� D 1.

A.� 0/

Œa; b� 7! 1
����

�1.S/

�0
��

� �� A.�/

By Claim 11, no boundary components of S intersect with an a-arc and a b-arc at the
same time. So the labels of the arcs intersecting with a fixed boundary component @iS

are pairwise adjacent not only in � , but also in � 0. Hence, �0 is a relative embedding,
and � 0 62 N 0.

Recall that a graph � is chordal bipartite if � does not contain a triangle or an
induced cycle of length at least 5.

Corollary 5.2. Choral bipartite graphs are in N 0.

Proof. By applying Theorem 3.12 to K0 (D ¿) amalgamation, one sees that N 0
is closed under disjoint union. In particular, discrete graphs are in N 0. Golumbic
and Goss proved that by removing bisimplicial edges from a chordal bipartite graph
successively, one obtains a discrete graph [13]. By Theorem 5.1, it follows that any
chordal bipartite graph is in N 0.

6. N and N 0

We have shown several properties of the graph class N 0, which is a subclass of N .
In this section, we give a lower bound for N 0 to illustrate that N 0 already contains a
large number of graphs. Also, we prove that two specific graphs are not in N (hence
not in N 0), providing new examples not covered by the results that we have discussed
so far. Finally, we show equivalent formulations of Conjecture 1.1.

Let � be a graph. Suppose that B is a subset of V.�/ such that the comple-
ment graph of the induced subgraph �B is connected. Recall from [22] that the
co-contraction CO.�; B/ of � relative to B is defined as

CO.�; B/ D x�=�B ;

where x�=�B denote the graph obtained from x� by topologically contracting all the
edges in �B onto a vertex and removing loops or multi-edges thus obtained, succes-
sively. In [22], it is shown that A.CO.�; B// embeds into A.�/. Using this, we first
prove that N 0 is closed under co-contraction.

Proposition 6.1. Let � be a graph that co-contracts onto � 0. If � 2 N 0, then
� 0 2 N 0.
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Proof. Assume that � 0 62 N 0. One can find a compact hyperbolic surface S and a
relative embedding � W �1.S/ ! A.� 0/ induced by a normalized label-reading pair
.H 0; �0/. Let @1S; : : : ; @mS be the boundary components of S . Using induction, we
have only to consider the case when � 0 is obtained from x� by contracting an edge
fa; bg 2 E.x�/ onto a vertex v 2 V.� 0/. By [22], the map A.� 0/! A.�/ sending v
to b�1ab, while sending the other vertices onto themselves, is an embedding. From
the definition of a co-contraction, link.v/ D link.a/ \ link.b/. If �0�1.v/ D ¿,
then � W �1.S/ ! A.� 0 n fvg/ D A.� n fa; bg/ � A.�/, and hence � 62 N 0.
Now assume �0�1.v/ ¤ ¿ and choose any ˛ 2 �0�1.v/. First, consider the case
when ˛ is an arc. Suppose that ˛ intersects with @iS . By the definition of a relative
embedding, any arc intersecting with @iS is labeled by a vertex in fvg [ link.v/ D
fvg [ .link.a/ \ link.b//. Consider the strip 	˛ W I � Œ�1; 1� ! S containing ˛.
We replace ˛ in H 0 by three homotopic arcs ˛1 D 	˛.I ��1/; ˛2 D 	˛.I � 0/ and
˛3 D 	˛.I � 1/ such that the following hold as in Figure 12 (a).

(i) ˛1 and ˛3 are labeled by b.
(ii) ˛2 is labeled by a.

(iii) ˛2 and ˛3 have the transverse orientations induced by the homotopies ˛2 � ˛
and ˛3 � ˛, while ˛1 has the opposite orientations.

@i S

.H 0;�0/

@i S

.H;�/

#
Ý

#
#

"
˛

˛1

˛2

˛3v

b

a

b

(a)

@i S

.H;�/

@i S

.H1;�1/

#
"
"

ˇ1

b

a

b

Ý

 !c d

"
#
#

ˇ2
b

a

b
#
"
"
b

a

b

 !c d

#
ˇ

a

(b)

Figure 12. In (b), c and d belong to link.a/ \ link.b/ in A.�/. Hence, c–and d -arcs are
allowed to intersect with the b–curve or b-arc ˇ in .H1; �1/.

Apply this process for each v-arc, and also similarly for each v-curve. This results in
a new label-reading pair .H ; �/ with underlying graph � . The induced label-reading
map W �1.S/!A.�/ is the composition of embeddings�1.S/ ,!A.� 0/ ,!A.�/.
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In .H ; �/, suppose that a b-arc intersects with @iS for some i . Any arcs inter-
secting with @iS are labeled by either a, b or vertices in link.a/\link.b/. One can
pair b-arcs intersecting with @iS , such that for each pair fˇ1; ˇ2g:

(i) the transverse orientations of ˇ1 and ˇ2 induce opposite orientations on @iS ,
(ii) one of the intervals on @iS n .ˇ1 [ ˇ2/ intersects only with the arcs labeled by

link.a/ \ link.b/.

Then one can remove intersections between @iS and b-arcs, without altering the
equivalence class of .H ; �/ as is illustrated in Figure 12 (b). By applying this process
to any @iS intersecting with a b-arc, we obtain another label-reading pair .H1; �1/

such that the labels of the arcs intersecting with each boundary component induce a
complete subgraph of � . Hence,  is a relative embedding, and � 62 N 0.

Define F to be the smallest family of graphs satisfying the following conditions.

(i) Kn 2 F .
(ii) If �1; �2 2 F , then join.�1; �2/ 2 F .

(iii) If �1; �2 2 F , and � is a complete graph amalgamation of �1 and �2, then
� 2 F .

(iv) Suppose that e is a bisimplicial edge of a graph � . If � n Ve 2 F , then � 2 F .
(v) Let � 2 F and B � V.�/ such that �B is connected. Then CO.�; B/ 2 F .

By the Dirac’s result in [8] which was used in the proof of Corollary 3.13, (i) and
(iii) imply that chordal graphs are in F . The result of Golumbic and Goss [13] quoted
in the proof of Corollary 5.2, along with (iv), implies that any chordal bipartite graphs
are in F .

Corollary 6.2. N 0 contains F .

Proof. Proposition 3.2, Proposition 6.1, Theorem 3.12 and Theorem 5.1 imply that N 0
is closed under taking a join, taking a co-contraction, amalgamating along a complete
subgraph and adding a bisimplicial edge, respectively. Since F is the smallest of such
a graph class, F � N 0.

So, F provides a lower bound for N 0. As Corollary 6.2 summarizes techniques
introduced in this paper, it seems likely that determining whether F D N 0 will
require new insights.

Crisp, Sageev and Sapir proposed several reductionmoves on underlying graphs of
label-reading maps which they successfully used to classify all the graphs in N with at
most 8 vertices [5]. More precisely, they described eight forbidden graphs, and proved
that a graph with at most 8 vertices is in N if and only if the graph does not contain
any forbidden graph as an induced subgraph. Their beautiful arguments, especially
of finding candidates for kernel elements of label-reading maps, also excluded many
graphs with 9 or more vertices from N . However, the question of classifying all the
graphs on which right-angled Artin groups contain closed hyperbolic surface groups
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currently seems wide-open. Here, we provide two new examples of graphs that are
not in N .

Example 6.3. Crisp, Sageev and Sapir proved that the right-angled Artin group on
the graph P1.8/ (in their notation) contains a closed hyperbolic surface group [5];
the complement graph of P1.8/ is drawn in Figure 13 (a). Consider the graphs �1

and �2, whose complements are drawn in Figure 13 (b) and (c), respectively. If we
topologically contract the edge fa; bg in the complement of �1, and remove multi-
edges thus obtained, then we have the complement graph of P1.8/. This means �1

co-contracts onto P1.8/; hence, we have an embedding A.P1.8// ,! A.�1/ [22].
Similarly, �2 contracts onto �1 by contracting the edge fc; dg onto a; so, A.�1/

embeds into A.�2/. This implies that A.�1/ and A.�2/ contain closed hyperbolic
surface groups, since so does A.P1.8//. One can easily check that �1 and �2 do
not contain any forbidden subgraphs considered in [5]. This gives new examples of
graphs not in N , hence not in N 0.
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(c) �2

Figure 13. The complement graphs of P1.8/; �1 and �2.

One of the key obstructions for the question of classifying graphs in N is Con-
jecture 1.1. Note that N is closed under disjoint union and amalgamating along
a vertex [21], [5]. We conclude this article by listing equivalent formulations to
Conjecture 1.1.

Proposition 6.4. The following are equivalent.

(i) N is closed under complete graph amalgamation.

(ii) If � 0 is obtained from � by removing a simplicial vertex, and � 0 2 N , then
� 2 N .

(iii) N 0 D N .

Proof. (i) H) (ii) is Obvious, since adding a simplicial vertex to � 0 is same as
amalgamating � 0 with a complete graph Kn along Kn�1 for some n.

For (ii) H) (iii), first note that N 0 � N by definition. To prove N � N 0,
suppose that � 62 N 0. By Lemma 3.10, �� is not in N . Note that �� is obtained
from � by adding independent simplicial vertices to � . Assuming (ii), � 62 N .

(iii) H) (i) is an immediate from Theorem 3.12.
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