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Amenable actions of amalgamated free products
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Abstract. We prove that the amalgamated free product of two free groups of rank two over a
common cyclic subgroup admits an amenable, faithful, transitive action on an infinite countable
set. We also show that any finite index subgroup admits such an action, which applies for
example to surface groups and fundamental groups of surface bundles over S1.
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1. Introduction

An action of a groupG on a setX is amenable if there exists aG-invariant mean onX ,
i.e., a map� W 2X D P .X/ ! Œ0; 1� such that�.X/ D 1,�.A[B/ D �.A/C�.B/
for every pair of disjoint subsets A, B of X , and �.gA/ D �.A/ for all g 2 G and
for all A � X .

The study of amenability goes back to von Neumann [13] and has spanned over
the 20th century in various fields of mathematics, such as geometric group theory,
harmonic analysis, graph theory, operator algebra, etc. F. P. Greenleaf asked in [8]
whether the presence of a G-invariant mean on a set on which G acts faithfully
implies that the groupG is amenable (i.e., if the action on itself by left multiplication
is amenable), and the first counter example was given in [5], where E. K. van Douwen
constructed an interesting amenable action of the non-abelian free group.

The above definition is due to Greenleaf [8]. We should mention that Zimmer [17]
has also introduced a notion of amenability for a group action that is different from
ours; an action by homeomorphisms of a countable discrete group G on a compact
Hausdorff space X is (topologically) Zimmer amenable if there exists a sequence of
continuous mapsmn W X ! Proba.G/ such that limn!1 supx2X kgmn

x �mn
gxk1 D

0 for all g 2 G (cf. [14], [10], [2]). With this definition, a group is amenable if and
only if the action on an one-point space is Zimmer amenable, while such an action
is always Greenleaf amenable. On the other hand, the action of G on itself by left
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multiplication is always Zimmer amenable (by taking mn W G ! Proba.G/ defined
by mn

g D ıg ). More generally, the action of G on a homogenous space G=H is
Zimmer amenable if and only if the subgroupH is amenable. From now on, we will
use the term of an amenable action as mean of Greenleaf amenable action.

For the study of amenable actions of a group G, we should require some restric-
tions on theG-action in order to avoid trivial cases. One should assume that the action
is faithful, otherwise one would take immediately a free group Fn, n � 2, and any
non-trivial normal subgroup N G Fn such that the quotient group Fn=N is amenable
(e.g. N D F 0

n the commutator subgroup), so that the natural action of Fn on Fn=N

is amenable but not faithful. In addition, one should require that G acts transitively,
otherwise one could take any groupG andX D GtY whereG acts on Y amenably,
so that theG-action onX is faithful and amenable (since there is aG-equivariant map
from Y into X ). In this direction, Y. Glasner and N. Monod [7] proposed to study
the class A of all countable groups which admit a faithful, transitive and amenable
action. The class A is closed under direct products and free products, and a group
is in A if it has a co-amenable subgroup which is in A (Proposition 1.7 in [7]). On
the other hand, in general the class is neither closed under passing to subgroups (the
case of finite index subgroups is open), nor closed under semidirect products. As an
example for semidirect product, one may take the group SL2.Z/ËZ2; while SL2.Z/
is in A since it contains a free group of finite index, the pair .SL2.Z/ËZ2;Z2/ has the
relative property (T) (cf. [3]), so that the group SL2.Z/Ë Z2 is not in A (Lemma 4.3
in [7]). Besides, this group is another example which shows that the class A is not
closed under amalgamated free products; one may see the group SL2.Z/Ë Z2 as the
amalgamated free product G �A H of G D Z=4Z Ë Z2 andH D Z=6Z Ë Z2 along
A D Z=2Z Ë Z2 and notice that the three groups G, H and A are in A since they
are amenable.

In particular, Y. Glasner and N. Monod showed that the free product of any two
countable groups is in A unless one factor has the fixed point property and the other
has the virtual fixed point property1; for this, they used an argument of genericity
in Baire’s sense (Theorem 3.3 in [7]). Let us mention that another construction
of amenable action of a non-abelian free group is obtained by R. Grigorchuk and
V. Nekrashevych in [9].

The main result of this paper is, motivated by this method of genericity, to give
another example of non-amenable group which is in A (see Theorem 17 and Theo-
rem 19):

Theorem. The amalgams F2 �Z F2 belong to A, where Z embeds in each factor as
subgroup generated by some common word on the generating sets.

Such amalgams are known as doubles of F2. The key point of the proof is to fix
a transitive permutation ˇ and to take a generic element ˛ (i.e., an element in the

1A group G has the fixed point property if any amenable G-action has a fixed point, and G has the
virtual fixed point property if it has a finite index subgroup having the fixed point property.
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intersection of countably many generic sets) in order to construct F2 D h˛; ˇi in a
way that the amalgamated free product of two copies of F2 along a cyclic group has
the desired properties. Therefore, the difficulty of the proof resides in the choice of
the generic sets because they can be very “nasty” (see Proposition 1).

As we mentioned before, in general it is not known whether the class A is closed
under passing to finite index subgroups or not. But it is true for our case (see Theo-
rem 20):

Theorem. For any finite index subgroupH of F2 �Z F2 as above,H belongs to A.

A surface group �g is the fundamental group of a closed oriented surface of genus
g � 2. The group �2 can be viewed as an amalgamated free product of two copies of
F2 along the subgroup generated by the commutator, i.e., �2 D ha1; b1i �hci ha2; b2i
where c D Œa1; b1� D Œa2; b2�. For g � 3, �g injects into �2 as a finite index
subgroup. Therefore, by applying our results, we have the following theorem (see
Theorem 21):

Theorem. The surface group �g belongs to A for all g � 2.

As a corollary, we obtain that the fundamental group of a 3-manifold which
virtually fibers over the circle is in A. Indeed, let M be a 3-manifold which fibers
over the circle. Then there is a short exact sequence

0 ! �g ! �1.M/ ! Z ! 0;

so that the subgroup �g is co-amenable in �1.M/. Moreover, if M is a 3-manifold
which virtually fibers over the circle, then it contains a finite index subgroup which is
in A, so that �1.M/ is also in A. Some examples of the fundamental group of such
manifolds are given in [1], which includes the Bianchi groups PSL.2;Od /, where
Od is the ring of integers of the imaginary quadratic field Q.

p�d/with d a positive
integer.

Acknowledgement. I would like to thank Nicolas Monod for suggesting the question
and for helpful discussions, Alain Valette for his constant help and encouragement,
and the referee for useful comments on the first version of this paper.

2. Baire spaces

For the importance of the idea of generic choice, we briefly discuss Baire spaces in
this section.

Definition 2.1. A topological spaceX is a Baire space if every intersection of count-
ably many dense open subsets is dense in X .
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Equivalently, X is a Baire space if every union of countably many closed subsets
with empty interior has empty interior.

Definition 2.2. A Polish space is a separable completely metrizable topological space,
i.e., it is a space homeomorphic to a complete space that has a countable dense subset.

Observe that any closed subspace of a Polish space is Polish.
Let X be an infinite countable set. Equipped with the discrete topology, X is a

complete topological space. Let us denote by XX the set of all self-maps of X and
endow it with the topology of pointwise convergence (i.e., ˛n converges to ˛ if for
all finite subset F of X , there exists n0 such that ˛njF D ˛jF , for all n � n0). This
is the product of the topologies of X . Hence XX is complete being a product of
complete spaces, and it is separable and metrizable since it is a countable product of
separable, metrizable spaces. So XX is a Polish space and by Baire’s theorem it is a
Baire space.

Let us denote by Sym.X/ � XX the group of permutations ofX . Equipped with
the induced topology of XX , Sym.X/ is a topological group. Indeed, let f˛ngn�1

be a sequence converging to ˛ in Sym.X/. Let F � X be a finite subset of X .
There exists n0 such that ˛njF [˛�1F D ˛jF [˛�1F for all n � n0. Then for all
x 2 F , we have ˛n.˛

�1.x// D ˛.˛�1.x// D x, so ˛�1
n .x/ D ˛�1.x/ for all

n � n0. Therefore ˛�1
n converges to ˛�1, so that the map ˛ 7! ˛�1 is continuous.

Moreover, let fˇmgm�1 be a sequence converging to ˇ in Sym.X/. Let F � X be
a finite subset of X . There exists n1 such that ˛njF [ˇF D ˛jF [ˇF for all n � n1.
In addition, there exists n2 such that ˇmjF D ˇjF for all m � n2. Then for all
x 2 F , ˛n.ˇm.x// D ˛n.ˇ.x// D ˛ˇ.x/ for allm � maxfn1; n2g. Therefore ˛nˇm

converges to ˛ˇ, so that the map .˛; ˇ/ 7! ˛ˇ is continuous.
Consequently, the injection i W Sym.X/ ! XX � XX , ˛ 7! .˛; ˛�1/, is a

homeomorphism onto its image which is closed. Thus Sym.X/ is a Polish space, in
particular it is a Baire space.

Definition 2.3. A subset Y � Sym.X/ is called

� meagre or first category if it is a union of countably many closed subsets with
empty interior;

� generic or dense Gı if its complement Sym.X/ n Y is meagre, i.e., it is an
intersection of countably many dense open subsets.

By definition of the topology on Sym.X/, a subset Y � Sym.X/ has empty
interior if for all ˛0 2 Y and for all finite subsetF � X , there exists ˛ 2 Sym.X/nY
such that ˛0jF D ˛jF .
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3. Construction of F2

Let X be an infinite countable set. Let ˇ be a simply transitive permutation of X .
Let c D c.˛; ˇ/ be a weakly cyclically reduced word (i.e., if c D gm : : : g1, then
gm ¤ g�1

1 ) on the alphabet f˛˙1, ˇ˙1g such that c … hˇi.
Proposition 1. The set

U1 D f˛ 2 Sym.X/ j for all w 2 h˛; ˇi n hci there exist infinitely many

x 2 X such that cx D x; cwx D wx and wx ¤ xg
is generic in Sym.X/.

Proposition 2. The set

U2 D f˛ 2 Sym.X/ j for all k 2 Z n f0g there exists x 2 X such that ckx ¤ xg
is generic in Sym.X/.

Note that U2 is the set of ˛’s such that c has infinite order.

Definition 3.1. Let c D c.˛; ˇ/ be a weakly cyclically reduced word. Let S.˛/ be
the sum of exponents of ˛, and S.ˇ/ be the sum of exponents of ˇ. We say that c is
special if c is one of the following types:

(1) S.˛/ D S.ˇ/ D 0;
(2) S.˛/ divides S.ˇ/.

Let fAng1
nD1 be a pairwise disjoint Følner sequence for ˇ, that is

lim
n!1

jAn M ˇ � Anj
jAnj D 0:

Proposition 3. Let c be a special word. The set

U3 D f˛ 2 Sym.X/ j there exists a subsequence fAnk
g1

kD1 of fAng1
nD1

such that Ank
� Fix.c/ for all k � 1

and fAnk
g1

kD1is a Følner sequence for ˛g
is generic in Sym.X/.

Proposition 4. The set

U4 D f˛ 2 Sym.X/ j theH -action on X is transitive for

all finite index subgroupsH of h˛; ˇig
is generic in Sym.X/.
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From the previous four propositions, one deduces immediately:

Corollary 5. Let c be a special word on f˛˙1, ˇ˙1g. Let ˛ 2 U1 \ U2 \ U3 \ U4.
Then h˛, ˇi ' F2 and the following holds:

(1) The action of F2 on X is transitive and faithful.

(2) For all w 2 h˛, ˇi n hci, there exist infinitely many x 2 X such that cx D x,
cwx D wx and wx ¤ x. In particular, there are infinitely many fixed points of
c in X .

(3) There exists a pairwise disjoint Følner sequence for h˛, ˇi which is fixed by c.

(4) For all finite index subgroupH of h˛; ˇi, theH -action on X is transitive.

3.1. Proofs of Propositions 1 and 2. Propositions 1 and 2 are sufficient conditions
for faithfulness of F2-action with some additional “unnatural looking” properties that
will be needed for construction of F2 �Z F2 in Section 4. As we resort to the graph
theory for these proofs, we begin by fixing the notations on graphs that will be used
in the section. The fundamental notions are based on [15].

3.1.1. Graph extension. A graphG consists of the set of vertices V.G/ and the set
of edges E.G/, and two maps E.G/ ! E.G/, e 7! Ne, such that NNe D e and Ne ¤ e,
and E.G/ ! V.G/ � V.G/, e 7! .i.e/; t.e//, such that i.e/ D t . Ne/. An element
e 2 E.G/ is a directed edge of G and Ne is the inverse edge of e. For all e 2 E.G/,
i.e/ is the initial vertex of e and t .e/ is the terminal vertex of e.

LetS be a set. A labelingof a graphG D .V .G/;E.G//on the setS˙1 D S[S�1

is a map
l W E.G/ ! S˙1; e 7! l.e/;

such that l. Ne/ D l.e/�1. A labeled graph G D .V .G/;E.G/; S; l/ is a graph with
a labeling l on the set S˙1. A labeled graph is well labeled if for any edges e,
e0 2 E.G/, �

i.e/ D i.e0/ and l.e/ D l.e0/
�

implies that e D e0. If a group � D hSi
acts onX , a labeled graph with set of verticesX and set of edges S˙1 is well labeled
if and only if it is a Schreier graph.

A word w D wm : : : w1 on f˛˙1; ˇ˙1g is called reduced if wkC1 ¤ w�1
k

for all
1 	 k 	 m � 1. A word w D wm : : : w1 on f˛˙1; ˇ˙1g is called weakly cyclically
reduced if w is reduced and wm ¤ w�1

1 ; this definition allows that wm and w1 to
be equal. We denote by jwj the word length of w. Given a reduced word, we shall
define two finite graphs labeled on f˛˙1; ˇ˙1g as follows:

Definition 3.2. Let w D wm : : : w1 be a reduced word on f˛˙1; ˇ˙1g. The path of
w is a finite labeled graph P.w; v0/ consisting of jwj C 1 vertices and jwj directed
edges fe1, : : : , emg such that

� i.ej C1/ D t .ej / for all 1 	 j 	 m � 1;
� v0 D i.e1/ ¤ t .em/;
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� l.ej / D wj for all 1 	 j 	 m.

e1 e2 ei eiC1 em

v0

Figure 1. The path of w.

Definition 3.3. Let w D wm : : : w1 be a reduced word on f˛˙1; ˇ˙1g. The cycle of
w is a finite labeled graph C.w; v0/ consisting of jwj vertices and jwj directed edges
fe1, : : : , emg such that

� i.ej C1/ D t .ej / for all 1 	 j 	 m � 1;
� v0 D i.e1/ D t .em/;
� l.ej / D wj for all 1 	 j 	 m.

e1

e2

v0

em

em�1

Figure 2. The cycle of w.

Notice that since w is a reduced word, the graph P.w; v0/ is well labeled. If w is
weakly cyclically reduced, then C.w; v0/ is also well labeled.

Reciprocally, if P D fe1, e2, : : : , eng is a well-labeled path with i.e1/ D v0,
labeled by l.ei / D gi for all i , then there exists a unique reduced wordw D gn : : : g1

such that P.w; v0/ is P . If C D fe1, e2, : : : , eng is a well-labeled cycle with
t .en/ D i.e1/ D v0, labeled by l.ei / D gi for all i , then there exists a unique weakly
cyclically reduced word w D gn : : : g1 such that C.w; v0/ is C .

LetX be an infinite countable set. Let ˇ be a simply transitive permutation ofX .
We shall represent the ˇ-action onX as an infinite 2-regular well-labeled graph. The
pre-graph G0 is a labeled graph consisting of the set of vertices V.G0/ D X and
the set of edges E.G0/ where for all e 2 E.G0/, l.e/ 2 fˇ˙1g and such that every
vertex has exactly one entering edge and one leaving edge. One can imagine G0 as
the Cayley graph of Z with 1 as a generator.

Definition 3.4. An extension ofG0 is a well-labeled graphG labeled by f˛˙1; ˇ˙1g,
containing G0. We will denote it by G0 � G.
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In order to have a transitive action with some additional properties of the h˛; ˇi-
action onX , we shall extendG0 by adding finitely many directed edges labeled by ˛
on G0 where the edges labeled by ˇ are already prescribed. In order that the added
edges represent an action on X , we put the edges in such a way that the extended
graph is well labeled, and moreover we put an additional edge labeled by ˛ on every
endpoint of the extended edges by ˛; more precisely, if we have added n edges labeled
by ˛ between x0, x1, : : : , xn successively, we put an ˛-edge from xn to x0 to have
a cycle consisting of n C 1 edges (see Figure 3). On the points where no ˛-edges
are involved, we put a loop labeled by ˛; this means that these points are the fixed
points of ˛. In the end, every point has a entering edge and a leaving edge labeled
by ˛ (the entering edge is equal to the leaving edge if the edge is a loop), so that the
graph represents an h˛; ˇi-action on X , and every ˛-orbit is finite.

x1

˛

˛

˛

˛

˛

x2

xn

x0

Figure 3. The ˛-orbit of x0 that has the size nC 1.

Definition 3.5. Let G, G0 be graphs labeled by f˛˙1, ˇ˙1g. A homomorphism
f W G ! G0 is a map sending vertices to vertices, edges to edges, such that

� f .i.e// D i.f .e// and f .t.e// D t .f .e//,
� l.e/ D l.f .e//,

for all e 2 E.G/.
If there exists an injective homomorphism f W G ! G0, we say that f is an

embedding, andG embeds inG0. If there exists a bijective homomorphism f W G !
G0, we say that f is an isomorphism, and G is isomorphic to G0.

Proposition 6. Let w D wm : : : w1 be a reduced word on f˛˙1, ˇ˙1g, and let
P.w; v0/ D fe1; : : : ; emg be the path defined in Definition 3.2. There exists an exten-
sionG ofG0 such thatP.w; v0/ embeds inG, andP.w; v0/ is isomorphic to its image
by the corresponding embedding. In particular, the image ofP.w; v0/ is a path inG.

Proof. It is enough to consider the case where w D ˛a2nˇb2n�1 : : : ˛a4ˇb3˛a2ˇb1 ,
withm D Pn

iD1.jb2i�1j C ja2i j/. Indeed, the other three cases follow from this case
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by taking n large enough since we are treating all subwords ofw. LetN D maxj jbj j.
For z 2 X , denote by BN .z/ D fˇlz j �N 	 l 	 N g a segment in the ˇ-orbit of z.

Choose z0 2 X . For all 1 	 k 	 n, we extend G0 inductively by applying the
following algorithm.

Algorithm (A)

(1) Let z2k�1 D ˇb2k�1z2k�2;
(2) choose z2k 2 X such that BN .z2k/ is outside of the finite set of all used points;

(3) choose ja2kj � 1 points fp.a2k/
1 , : : : , p.a2k/

ja2k j�1
g outside of the finite set of all

points used so far;
(4) put the directed edges labeled by ˛sign.a2k/ from

� z2k�1 to p.a2k/
1 ;

� p
.a2k/
j to p.a2k/

j C1 for all 1 	 j 	 ja2kj � 2;

� p
.a2k/

ja2k j�1
to z2k ,

so that we have ˛a2kz2k�1 D z2k .

In the end, we have added
Pn

iD1 ja2i j new directed edges labeled by ˛ (or ˛�1)
on G0 (see Figure 4). Let G be the extended graph of G0. In this construction,
we have considered jwj C 1 points

˚
z0, ˇsign.b1/z0, ˇ2 sign.b1/z0, : : : , ˇb1z0 D z1,

˛sign.a2/ˇb1z0, : : : , ˛a2ˇb1z0 D z2, : : : , wz0

�
in X that are

fz0; w1z0; w2w1z0; : : : ; wz0g
with l..wk�1 : : : w1z0/; .wkwk�1 : : : w1z0// D wk , where .p1; p2/ symbolizes the
edge e with i.e/ D p1 and t .e/ D p2.

Now we define an embedding f W P.w; v0/ ,! G by

E.P.w; v0// ! E.G/;

e1 D .v0; t .e1// 7! .z0; w1z0/;

ek D .i.ek/; t.ek// 7! .wk�1 : : : w1z0; wk : : : w1z0/ for all 2 	 k 	 m:

By construction, P.w; v0/ is isomorphic to its image.

Proposition 7. Let w D wm : : : w1 be a weakly cyclically reduced word on f˛˙1,
ˇ˙1g with w … hˇi. Let C.w; v0/ D fe1; : : : ; emg be the cycle defined in Defini-
tion 3.3. There exists an extension G of G0 such that C.w; v0/ embeds in G, and
C.w; v0/ is isomorphic to its image by the corresponding embedding. In particular,
the image of C.w; v0/ is a cycle in G.

Proof. It is enough to consider the case where w D ˛a2nˇb2n�1 : : : ˛a4ˇb3˛a2ˇb1 ,
with m D Pn

iD1.jb2i�1j C ja2i j/. Let N D maxj jbj j.
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˛

˛

˛˛

˛

˛

˛

ˇ

ˇ

ˇ

ˇ

ˇ

ˇb1z0 D z1

˛a2ˇb1z0 D z2

z3

z4

ˇb2n�1 : : : ˛a2ˇb1z0 D z2n�1

wz0 D z2n

Figure 4. Construction of a path in G.
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Choose z0 2 X . We extend G0 inductively by applying Algorithm (A) for 1 	
k 	 n � 1. Let z2n�1 D ˇb2n�1z2n�2. Choose ja2nj � 1 points fp1, : : : , pja2nj�1g
outside of the finite set of all points used so far. Put the directed edges labeled by
˛sign.a2n/ from

� z2n�1 to p1;
� pj to pj C1 for all 1 	 j 	 ja2nj � 2;
� pja2nj�1 to z0.

We define an embedding f W C.w; v0/ ,! G by

E.C.w; v0// ! E.G/;

e1 D .v0; t .e1// 7! .z0; w1z0/;

ek D .i.ek/; t.ek// 7! .wk�1 : : : w1z0; wk : : : w1z0/ for all 2 	 k 	 m � 1;
em D .i.em/; v0/ 7! .wm�1 : : : w1z0; z0/:

By construction, C.w; v0/ is isomorphic to its image.

Corollary 8. Let w be a reduced word. Let F � G0 be a finite subset of X . There
exists an extension G of G0 such that P D P.w; v0/ embeds in G, the image xP of
P is isomorphic to P , and the intersection of xP and F is empty. In addition, we can
replace P.w; v0/ by C.w; v0/ if w is weakly cyclically reduced and w … hˇi.

Proof. The construction of the extension consists of choosing some finite points inX .
Therefore, it is enough to choose all considering points far enough outside of F .

3.1.2. Property (FF). Let c D cm : : : c1 be a weakly cyclically reduced word such
that c … hˇi. Let w D wk : : : w1 be a reduced word such that w … hci. Let
C.c; v0/ be the cycle defined in Definition 3.3. Let P.w; v0/ be the path defined in
Definition 3.2 such that every vertex ofP.w; v0/ (other than v0) is distinct from every
vertex in C.c; v0/. Letwv0 be the endpoint of P.w; v0/. Let C.c;wv0/ be the cycle
with i.c1/ D t .cm/ D wv0 such that every vertex of C.c;wv0/ (other than wv0) is
distinct from every vertex inP.w; v0/[C.c; v0/ (see Figure 5). Let us denote byQ0

the union of C.c; v0/, P.w; v0/ and C.c;wv0/. In general, this finite labeled graph

C.c; v0/
v0 P.w; v0/ wv0

C.c;wv0/

Figure 5. The graph Q0 D C.c; v0/ [ P.w; v0/ [ C.c;wv0/.
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Q0 is not well labeled. However, by identifying the successive edges with the same
initial vertex and the same label, Q0 becomes a well-labeled graph Q (See Figure 6
for an example of the process).

˛

˛˛

˛

˛
˛

˛ ˛

˛

˛

˛

˛ ˛ ˛

˛

˛

˛ ˛˛

˛

˛ ˛

˛

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

c D ˛2ˇ˛; w D ˛�1ˇ�1

˛�1ˇ�1

ˇ�1

v0

v0

v0

v0

wv0

wv0

wv0

wv0

Figure 6. Example of gluing double edges.

In the end of the process of identification of “double edges”, Q has fewer edges
than Q0; however, the cycle C.c; v0/ and C.c;wv0/ are not modified, in the sense
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that the “shapes” of C.c; v0/ and C.c;wv0/ in Q0 are the same as in Q. In other
word, the quotient mapQ0 � Q restricted to C.c; v0/ and to C.c;wv0/ is injective
(each one separately).

By construction, in each process, the graph has the following property.

Property (FF)

(1) The starting point of C.c; v0/ is equal to its endpoint which is v0.
(2) The starting point of P.w; v0/ is different from its endpoint.
(3) The starting point of C.c;wv0/ is equal to its endpoint which is wv0.

The acronym (FF) stands for “Faithfulness for w and fixed points of c”. Notice
that .2/ comes from the fact that w … hci. When this process is finished, Q will
be one of the following four types (Figure 7) of well-labeled graph satisfying the
property (FF):

Type 1 Type 4Type 3Type 2

Figure 7. Four types of Q.

Proposition9. For every oneof the four types ofwell-labeledgraphQ D Q.c;w; v0/,
there exists an extensionG ofG0 such thatQ embeds inG and the imageQ.c;w; z0/

of Q by the embedding has the property (FF), i.e., there exists ˛ such that the word
w satisfies 8̂

<
:̂

cz0 D z0;

wz0 ¤ z0;

cwz0 D wz0;

where z0 is the image of v0 in G.

We have to prove that every cycle in each type in Figure 7 contains at least
one directed edge labeled by ˛ or ˛�1. This is clear for the type 1, 2 and 4 since
they have at most 2 cycles that represent C.c; v0/ and C.c;wv0/, and c … hˇi by
assumption. For type 3, we can read around two subgraphs representing C.c; v0/

and P.w; v0/
�1C.c;wv0/P.w; v0/ from the vertex v0. The labeling of the graph

P.w; v0/
�1C.c;wv0/P.w; v0/ is w�1cw.

Let us recall the well-known theorem concerning the test for conjugacy of two
words (see Theorem 1.3 in [12]).

Theorem 10. Two words in the free group Fn define conjugate elements of Fn if and
only if their cyclic reductions in Fn are cyclic permutations of one another.
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Lemma 11. Let c be a weakly cyclically reduced word such that c … hˇi. Let
w be a reduced word such that w … hci. If c has the form �ˇl with � … hˇi,
then w�1cw cannot be reduced to neither the form �ˇ�k nor the form ��1ˇk with
sign.k/ D sign.l/ for all k 2 Z.

Proof. Let �ˇl with � D �n : : : �1 … hˇi. By contradiction, let us suppose that
�n : : : �1ˇ

l is conjugate to �n : : : �1ˇ
�k with k; l > 0. Without loss of generality,

we can suppose that �1, �n … fˇ˙1g. There are four types of cyclic permutations
of �n : : : �1ˇ

l , which are �n : : : �1ˇ
l ; ˇl�n : : : �1; ˇl1�n : : : �1ˇ

l2 with l1 C l2 D l ;
and �p : : : �1ˇ

l�n : : : �pC1 for a certain 1 	 p 	 n. Obviously, �n : : : �1ˇ
�k cannot

be of the first three types; so let us suppose that there exists 1 	 p 	 n such that
�p : : : �1ˇ

l�n : : : �pC1 D �n : : : �1ˇ
�l (since the two conjugate elements have the

same length). By identification of the l th letter on the right of the two words, we have
ˇ�1 D �pCl D �j , for every j multiple of p C l modulo n C l , so in particular
ˇ�1 D �n�p . However, by identifying the .n�pC l/th letter, which is ˇ for the left
side, and �n�p for the right side, we have ˇ D �n�p which contradicts with the first
identification. The second case can be treated similarly.

Proof of Proposition 9. As we mentioned before, it remains to consider type 3.

P1 P2 P3

Figure 8. Type 3 of Q.

In this graph, there are three cycles C D P1 [ P2, P2 [ P3 and P1 [ P3.
Claim. If one of the three paths P1, P2 and P3 has only edges labeled by ˇ˙1,

then the other two paths both contains edges labeled by ˛˙1.
The claim allows to conclude. In fact, without loss of generality, suppose that

P1 has only edges labeled by ˇ˙1 and P2 … hˇi and P3 … hˇi. We first take an
extension G1 
 G0 such that the image of P1 is a path in G1. Then we take an
extension G2 
 G1 such that P2 is a path in G2 which connects the starting point
and the endpoint of P1 outside of the finite subset P1; that is possible since the graph
is well labeled and P2 contains edges labeled by ˛. Finally, we take an extension
G3 
 G2 such that P3 is a path in G3 joining these two points outside of P1 [ P2.

We now prove the claim. Indeed, if two of these three paths were labeled by ˇ˙1,
then c would be the form of �ˇl up to cyclic permutation and w�1cw would be the
form of �ˇ�k or ��1ˇk with sign.l/ D sign.k/ up to cyclic permutation, which
contradicts Lemma 11.
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Corollary 12. Let Q D Q.c;w; v0/ be a well-labeled graph. Let F � G0 be a
finite subset ofX . There exists an extensionG ofG0 such that the imageQ.c;w; z0/

ofQ.c;w; v0/ in G preserves the property (FF), and the intersection ofQ.c;w; z0/

and F is empty.

3.1.3. Proof of Proposition 1. Let c D ˛a1ˇb1 : : : ˛anˇbn be a weakly cyclically
reduced word on f˛˙1, ˇ˙1g (the other three types are similar). Letw 2 h˛; ˇi n hci
be a reduced word on f˛˙1, ˇ˙1g. We shall prove that the set

Vw D f˛ 2 Sym.X/ j there exists a finite number of x 2 X such that

cx D x; cwx D wx and wx ¤ xg
is meagre. For K � X a finite subset of X , let

Vw;K D f˛ 2 Sym.X/ j .Fix.c/ \ w�1 Fix.c/ \ supp.w// � Kg;
where supp.w/ D fx 2 X j wx ¤ xg.

The set Vw;K is closed since if ˛n converges to ˛, then c.˛n; ˇ/ converges to
c.˛; ˇ/ and w.˛n; ˇ/ converges to w.˛; ˇ/. We shall prove that the interior of Vw;K

is empty.

Lemma 13. Let ˛0 2 Sym.X/ and F � X be a finite subset of X . There exists
˛ 2 Sym.X/ such that ˛jF D ˛0jF and supp.˛/ � F [ ˛0.F /.

Proof. We partitionF into finitely many piecesF D Fm
iD1 Pi according to the orbits

of ˛0. If ˛0.Pi / D Pi , put ˛jPi
D ˛0jPi

; if not, let Pi D fpi , ˛0.pi /; : : : ; ˛
0ki .pi /g

with ˛0ki C1.pi / … F . Then define ˛jPi
D ˛0jPi

and ˛.˛0ki C1.pi // D pi .

We seeX as the pre-graphG0, where theˇ˙1-edges ofG0 are seen as the transitive
action of ˇ˙1 on X , which is fixed from the beginning.

Let ˛0 2 Vw;K and let F � X be a finite subset of X . Let Y D F [ ˛0.F / [
K be a finite subset of X . We construct a well-labeled graph Q.c;w; v0/ as in
Section 3.1.2. We choose z0 … Y and take ˛ which is defined on F as in Lemma 13,
and which satisfies the property (FF) without touching any point of Y (Corollary 12).
Consequently, ˛ … Vw;K and ˛jF D ˛0jF .

3.1.4. Proof of Proposition 2. We want to prove that for all k 2 Z n f0g, the set

Vk D f˛ 2 Sym.X/ j ck D Idg
is closed and of empty interior.

Indeed, it is clearly closed. Moreover, let ˛0 2 Vk and let F � X be a finite
subset of X . Let P.ck; v0/ be the path defined in Definition 3.2. We choose z0 …
F [ ˛0.F / μ Y and take ˛, which is defined on F as in Lemma 13, such that
P.ck; z0/ is a path in X not touching any point of Y . Consequently, ˛ … Vk and
˛jF D ˛0jF .
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3.2. Proof of Proposition 3. Let c be a special word. Let fAngn�1 be a pairwise
disjoint Følner sequence for ˇ. Let f"lgl�1 > 0 be a sequence tending to 0. Let us
write

U3 D T
l

T
N 2N

f˛ 2 Sym.X/ j there exists k � N such that Ak � Fix.c/

and jAk M ˛Akj < "l jAkjg:
Set "l D ". We want to prove that the set

VN ´ f˛ 2 Sym.X/ j for all k � N; Ak ª Fix.c/ or jAk M ˛Akj � "jAkj g
is closed and of empty interior. We treat the case c D ˛a1ˇb1 : : : ˛anˇbn (the other
three types are similar). Let M D maxj jbj j and set

Ek ´ [M
iD�Mˇ

i .Ak/;

a finite set of X .

VN is closed. Since VN D T
k�N VN;k , where

VN;k ´ f˛ 2 Sym.X/ j Ak ª Fix.c/ or jAk M ˛Akj � "jAkjg;
it is enough to prove that VN;k is closed. So let f˛ngn�1 be a sequence in VN;k that
converges to ˛ 2 Sym.X/. SinceEk is finite, there exists n0 such that ˛jEk

D ˛njEk

for all n � n0. Therefore, ˛ 2 VN;k because Ak � Ek .

VN is of empty interior. Let us distinguish two cases:
First, suppose that S.˛/ D S.ˇ/ D 0. Let ˛0 2 VN . LetF � X be a finite subset

of X . We choose m � N such that .F [ ˛0.F // \ Em D ;. We define ˛jEm
D Id

and ˛jF D ˛0jF . Then Am � Fix.c/ since S.ˇ/ D 0, and jAm M ˛Amj D 0 since
˛.Am/ D Am. So ˛ … VN .

Second, suppose that S.˛/ divides S.ˇ/. Let ˛0 2 VN . Let F � X be a
finite subset of X . We choose m � N such that .F [ ˛0.F // \ Em D ; and

jAm M ˇ� S.ˇ/
S.˛/ .Am/j < "jAmj; this is possible as fAmg is a Følner sequence for ˇ.

We define
˛.x/ D ˇ� S.ˇ/

S.˛/ .x/ for all x 2 Em;

and ˛jF D ˛0jF . Then

c.x/ D ˇ� S.ˇ/
S.˛/

a1ˇb1 : : : ˇ� S.ˇ/
S.˛/

anˇbn.x/ D ˇ� S.ˇ/
S.˛/

S.˛/ˇS.ˇ/.x/ D x;

for all x 2 Em. In particular, Am � Fix.c/. In addition,

jAm M ˛Amj D jAm M ˇ� S.ˇ/
S.˛/ .Am/j < "jAmj;

so ˛ … VN .
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3.3. Proof of Proposition 4. The proof follows from the three claims:

Claim 1. Let G be a group and H < G be a finite index subgroup of G. Then,
for all g 2 G, there exists n � 1 such that gn 2 H .

Indeed, let N be the core of H , that is N D T
x2G x

�1Hx � H . The subgroup
N is a finite index normal subgroup of G. Then gm 2 N , where m D ŒG W N�, for
all g 2 G.

Claim 2. The set

U5 D f˛ 2 Sym.X/ j the h˛n; ˇmi-action on X is transitive for all n;m 2 Z n f0gg
is in U4.

Indeed, let ˛ 2 U5. LetH < h˛; ˇi be a finite index subgroup. Then by Claim 1
there exist n0, m0 such that ˛n0 and ˇm0 are in H , so h˛n0 ; ˇm0i < H . Since
the h˛n0 ; ˇm0i-action on X is transitive by hypothesis, the H -action on X is also
transitive.

Claim 3. The set U4 is generic in Sym.X/.
It is enough to prove that the set U5 is generic since U5 � U4. So let us prove

that the set Vn;m D f˛ 2 Sym.X/ j the h˛n; ˇmi-action on X is not transitiveg is
closed for all n and m, and has empty interior.

Vn;m is closed.

Vn;m D f˛ 2 Sym.X/ j 9x; y 2 X such that wx ¤ y for all w 2 h˛n; ˇmig
D f˛ 2 Sym.X/ j 9.xi ; xj / 2 S � S such that wxi ¤ xj

for all w 2 h˛n; ˇmig
D S

.xi ;xj /2S�S

f˛ 2 Sym.X/ j wxi ¤ xj for all w 2 h˛n; ˇmig;

where S is a finite family of representatives for ˇm-orbits. It is clear that the set
f˛ 2 Sym.X/ j wxi ¤ xj for all w 2 h˛n; ˇmig is closed. So Vn;m is closed as a
finite union of closed sets.

Vn;m is of empty interior. Let ˛0 2 Vn;m and let F � X be a finite subset of X .
Let Y ´ F [˛0.F / be a finite subset ofX . We choose representatives for ˇm-orbits
outside of Y , and form a finite family S D fx1, : : : , xmg of X ; this is possible
since the ˇm-orbits are infinite. We define ˛ on F as in Lemma 13. Inductively on
1 	 i 	 m � 1, in each ˇm-orbit O.xi / of xi , we choose n � 1 points fpi;1, pi;2,
: : : , pi;n�1g outside of Y and define

� ˛.xi / D pi;1;
� ˛.pi;j / D pi;j C1, for all 1 	 j 	 n � 2;
� ˛.pi;n�1/ D xiC1.

Then, inO.xm/, we choose n� 1 points fpm;1, : : : , pm;n�1g outside of Y and define

� ˛.xm/ D pm;1;
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� ˛.pm;j / D pm;j C1 for all 1 	 j 	 n � 2;
� ˛.pm;n�1/ D x1.

By construction, ˛n.xi / D xiC1 for all 1 	 i 	 m � 1, and ˛n.xm/ D x1, so the
h˛n; ˇmi-action is transitive.

4. Construction of F2 �Z F2

LetX be a countable infinite set. Let c D c.˛; ˇ/ be a special word. LetG ´ F2 D
h˛, ˇi be constructed as in Section 3. Let fAng1

nD1 be a Følner sequence such that
c.An/ D An for all n � 1. Let Zc D f� 2 Sym.X/ j �c D c�g be the centralizer
of c. Let ˛0 D ��1˛� , ˇ0 D ��1ˇ� , and let H ´ h˛0, ˇ0i. Let A D hci be the
subgroup of G generated by c. We consider F2 �Z F2 D G �A H the amalgamated
free product ofG andH alongA. For all � 2 Z, the action ofG �AH onX is given
by g � x D g.˛; ˇ/x D gx, and h � x D h.˛0; ˇ0/x D ��1h.˛; ˇ/�x D ��1h�x for
all g 2 G and h 2 H .

Lemma 14. The set Zc is closed in Sym.X/. In particular, Zc is a Baire space.

Proof. The map p W Sym.X/ ! Sym.X/, � 7! Œ�; c�, is continuous. So Zc D
p�1fIdg is closed since fIdg is closed in Sym.X/.

Proposition 15. The set

O1 D f� 2 Zc j the action of G �A H on X is faithfulg
is generic in Zc .

Proof. For allw 2 G�AH , let us denote byw� the corresponding element of Sym.X/
given by the above action, i.e., if w D agnhn : : : g1h1, with a 2 A, gi ¤ e 2 G n A
and hi ¤ e 2 H n A for all i , then

w� D agn�
�1hn� : : : g1�

�1h1�:

We want to prove that the set

O1 D T
w¤e2G�AH

f� 2 Zc j there exists x 2 X such that w�x ¤ xg

is generic in Zc . Therefore, we shall prove that the set

Vw D f� 2 Zc j w� D IdXg
is closed and of empty interior in Zc .

The set Vw is closed in Zc because the map Z� ! Sym.X/, � 7! w� , is
continuous.
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To see that the set Vw is of empty interior, let � 0 2 Vw , and let F � X be a finite
subset of X . Notice that if F D F1 t F2 with F1 � Fix(c) and F2 \ Fix.c/ D ;,
then � 0.F1/ � Fix(c) and � 0.F2/ \ Fix.c/ D ; because � 0.Fix.c// D Fix.c/ for all
� 0 2 Zc . So we define � jF1

D � 0jF1
as in Lemma 13, and � jXnFix.c/ D � 0jXnFix.c/.

Therefore, we have defined � onY ´ .F [� 0.F //[.XnFix.c//, and � jY commutes
with cjY . Let us now define � onX nY in a way that � 2 Zc nVw . For all g 2 G nA
and h 2 H n A, let

Og D fx 2 X j cx D x; cgx D gx and gx ¤ xg;
Oh D fx 2 X j cx D x; chx D hx and hx ¤ xg:

Recall that we are considering the word w� D agn�
�1hn� : : : g1�

�1h1� . Choose
any x0 2 X n Y . By induction on 1 	 i 	 n, we choose x4i�3 2 yhi such that x4i�3

is different from the finite set of points x1; : : : ; x4i�4 chosen until the .i � 1/-th step.
This is possible since yhi is infinite by Proposition 1. Then we define �x4i�4 ´ x4i�3

and �x4i�3 ´ x4i�4. This is well defined because x4i�4, x4i�3 2 Fix.c/. We set
hix4i�3 μ x4i�2 which is different from x4i�3 and which is fixed by c, by definition
of yhi . We choose x4i�1 2 ygi such that x4i�1 is different from the finite set of points
chosen so far. This is again possible since ygi is infinite (Proposition 1). Then we
define �x4i�2 ´ x4i�1 and �x4i�1 ´ x4i�2. This is also well defined because
x4i�2, x4i�1 2 Fix.c/. We finally set gix4i�1 μ x4i . By construction, the 4n
points defined by the subwords on the right of w� are all distinct. In particular,
w�x0 D ax4n D x4n ¤ x0. Besides, this construction works also for the other three
types of wordw since we are treating all subwords ofw. At last, ifw D g 2 G nfIdg,
then there exists x 2 X such that gx ¤ x since G acts faithfully on X . Therefore, �
constructed in this way is beautifully in Zc n Vw and � 0jF D � jF .

Proposition 16. The set

O2 D f� 2 Zc j there exists a subsequence fAnk
gk�1 of fAngn�1

such that �.Ank
/ D Ank

for all k � 1g
is generic in Zc .

Proof. We want to prove that the set

O2 D T
N 2N

f� 2 Zc j there exists n � N such that �.An/ D Ang

is generic in Zc . So we shall prove that the set

VN D f� 2 Zc j �.An/ ¤ An for all n � N g
is closed and of empty interior in Zc .
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VN is closed. It is enough to prove that the set

Vn;N D f� 2 Zc j �.An/ ¤ Ang
is closed since VN D T

n�N Vn;N . Let f�mgm�1 � Vn;N be a sequence converging
to � in Zc . Since An is finite, there exists m0 such that �m.An/ D �.An/ for all
m � m0. Thus we have �.An/ ¤ An since �m.An/ ¤ An.

VN is of empty interior. Let � 0 2 VN and let F � X be a finite subset of X . Let
Y ´ .F [ � 0.F // [ .X n Fix.c//. Since An � Fix.c/ (Proposition 3), there exists
n � N such thatAn \Y D ;. We take then � 2 Zc which fixesAn and � jY D � 0jY .
Therefore, � 2 Zc n VN and � jF D � 0jF .

Let� 2 O1\O2. Let fAnk
gk�1 be a subsequence of fAngn�1 such that�.Ank

/ D
Ank

for all k � 1. We claim that fAnk
gk�1 is a Følner sequence forG �AH . Indeed,

for all g 2 G and for all h 2 H , we have

lim
k!1

jAnk
M g � Ank

j
jAnk

j D lim
k!1

jAnk
M g.˛; ˇ/Ank

j
jAnk

j D 0;

lim
k!1

jAnk
M h � Ank

j
jAnk

j D lim
k!1

jAnk
M h.˛0; ˇ0/Ank

j
jAnk

j
D lim

k!1
jAnk

M ��1h.˛; ˇ/�Ank
j

jAnk
j

D lim
k!1

j�Ank
M h.˛; ˇ/�Ank

j
jAnk

j
D lim

k!1
jAnk

M h.˛; ˇ/Ank
j

jAnk
j D 0;

since fAnk
g is Følner for G and �.Ank

/ D Ank
. Therefore, we have:

Theorem 17. There exists a transitive, faithful and amenable action of the group
h˛; ˇi �hci h˛0; ˇ0i on X .

Lemma 18. Let c D c.˛; ˇ/ be any word (not necessarily special) on f˛˙1; ˇ˙1g.
There exists an automorphism a of F2 such that a.c/ is a special word.

Proof. Let us recall some properties of automorphisms of free groups. The reader
can find more details in [11]. Let Fn be a free group with a finite basis X of n
elements. We consider the following endomorphisms of Fn. For any x 2 X , let 'x

be the endomorphism defined by 'x W x 7! x�1, y 7! y, for all y 2 X n fxg. For
any x ¤ y 2 X , let  xy W x 7! xy, z 7! z, for all z 2 X n fxg. In both cases, the
image of X is another basis for Fn, and 'x and  xy are automorphisms of Fn, called
the Nielsen generators for Aut.Fn/, and they generate Aut.Fn/. Let Fn=F 0

n ' Zn be
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the abelianization of Fn. We have Aut.Zn/ ' GLn.Z/. The Nielsen generators for
Aut.Fn/ induce the following generators for Aut.Zn):

x'x W x 7! �x; y 7! y for all y 2 X n fxgI
x xy W x 7! x C y; z 7! z for all z 2 X n fxg:

Thus, we conclude that the natural maps from Aut.Fn/ into Aut.Zn/ is an epimor-
phism. Notice that for a word c to be a special word depends only on its image in Z2.
Therefore, in order to prove the lemma, it is enough to find a matrix M 2 GL2.Z/
such that the exponent sum S.˛/0 ´ Sa.c/.˛/ of exponents of ˛ in the word a.c/ di-
vides the exponent sum S.ˇ/0 ´ Sa.c/.ˇ/ of exponents of ˇ in the word a.c/, where
a 2 Aut.F2/ is a reciprocal image of M by the epimorphism Aut.F2/ ! Aut.Z2/.
In fact, once we have c D c.˛; ˇ/ with S.˛/ dividing S.ˇ/, we can obtain a weakly
cyclically reduced word by conjugating c, and the conjugation is an automorphism
of F2.

If S.ˇ/ D 0, c is already a special word. If S.˛/ D 0 and S.ˇ/ ¤ 0, then we
apply the matrix

�
0 1
1 0

� 2 GL2.Z/ which exchanges S.˛/ and S.ˇ/. So suppose that
S.˛/ ¤ 0 ¤ S.ˇ/. Let d D gcd.S.˛/; S.ˇ// be the greatest common divisor of
S.˛/ and S.ˇ/. By Bézout’s identity, there exist relatively prime integers p, q such
thatpS.˛/CqS.ˇ/ D d . Since gcd.p;�q/ D 1, there exist r , t such that rp�tq D 1

again by Bézout’s identity. Then the matrix M D �
p q
t r

�
is in GL2.Z/ and it sends�

S.˛/
S.ˇ/

�
to

�
d

tS.˛/CrS.ˇ/

�
. Therefore, S.˛/0 D d divides S.ˇ/0 D tS.˛/ C rS.ˇ/.

From Theorem 17 and the previous lemma, we have:

Theorem 19. Let c D c.˛; ˇ/ be any word on f˛˙1; ˇ˙1g. Then the group h˛; ˇi�hci
h˛0; ˇ0i admits a transitive, faithful and amenable action.

A result of G. Baumslag [4] shows that these groups are residually finite.
Furthermore, let H be a finite index subgroup of F2 �Z F2. Then K ´ H \ F2

is a finite index subgroup of F2 so that the H -action on X is transitive since the
K-action is transitive by Proposition 4. Therefore we have:

Theorem 20. For any finite index subgroup H of h˛; ˇi �hci h˛0; ˇ0i, H admits a
transitive, faithful and amenable action.

5. Applications

Let us recall the class of all countable groups that appeared in [7]:

A D fG countable j G admits a faithful transitive amenable actiong:
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Let †g be a closed oriented surface of genus g � 2. It is well known that the
fundamental group �g D �1.†g/ of †g has a presentation

�1.†g/ D ha1; b1; : : : ; ag ; bg j Qg
iD1Œai ; bi �i:

In particular, we have �1.†2/ D ha1; b1i�hci ha2; b2i where c D Œa1; b1� D Œa2; b2�.
Therefore, �1.†2/ 2 A by Theorem 19 (or already by Theorem 17 since c D Œa1; b1�

is a special word). Now, let†g be a closed oriented surface of genus g � 3. Viewing
†g as .g�1/ tori glued on a central one, the cyclic group Z=.g�1/Z acts properly and
freely on †g , and the quotient space is †2. Therefore �1.†g/ injects into �1.†2/

as a subgroup of index .g � 1/ (in other words, †g is a .g � 1/-sheeted regular
covering of †2). Consequently, �1.†g/ is in A by Theorem 20. Moreover, the
fundamental group of a torus �1.T 2/ D �1.†1/ is isomorphic to Z2, an amenable
group. Therefore, we have:

Theorem 21. Let†g be a closed oriented surface of genus g � 1. The fundamental
group �g D �1.†g/ of †g admits a transitive, faithful and amenable action for all
g � 1.

Corollary 22. For any compact surface S , the fundamental group �1.S/ is in A.

Proof. First of all, we can suppose that S is oriented. In fact, it is well known that if
S is a non-oriented connected surface, then there exists a oriented 2-sheeted covering
space zS (cf. [6]). Then �1. zS/ is a subgroup of index 2 of �1.S/ so that it is co-
amenable in �1.S/ (a subgroup H < G is co-amenable if the G-action on G=H is
amenable). Therefore, in order that �1.S/ 2 A, it suffices to have �1. zS/ 2 A by
Proposition 1 (vi) in [7].

If S is a closed oriented surface (i.e., without boundary), S is either a sphere or
a finite connected sum of tori †g , g � 1; so �1.S/ 2 A in both cases. If S is
a surface with boundary components, then �1.S/ is a free group (the fundamental
group of a sphere with p boundary components is a free group of rank p � 1, and
the fundamental group of †g with p boundary components is a free group of rank
2g C p � 1 for all g � 1), so it is again in A by van Douwen’s theorem.

Example 5.1 (Surface bundles over S1). A surface bundle over S1 is a closed 3-
manifold which is constructed as a fiber bundle over the circle with fiber a closed
surface. The fundamental groupG of such bundle can be viewed as an HNN-extension

G D �1.M�/ D h�g ; t j txt�1 D ��.x/ for all x 2 �gi;
where � W †g ! †g is a homeomorphism. Thus, we have a short exact sequence

0 ! �g ! G ! Z ! 0:

The subgroup �g is co-amenable in G since it is normal in G and G=�g ' Z is
amenable. Therefore, we have G 2 A.

The Thurston’s virtual fibration conjecture states that [16]:
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Every closed, irreducible, atoroidal 3-manifold M has a finite-sheeted
cover which fibres over the circle.

It follows from the conjecture that the fundamental group �1.M/ is in A since it
contains a finite index subgroup which is in A.
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