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Abstract. The Product Conjecture for the homological Bieri–Neumann–Strebel–Renz invari-
ants is proved over a field. Under certain hypotheses the Product Conjecture is shown to also
hold over Z, even though D. Schütz has recently shown that the Conjecture is false in general
over Z. Our version over Z is applied in a joint paper with D. Kochloukova [5] to show that
for all n Thompson’s group F contains subgroups of type Fn which are not of type FPnC1.
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1. Introduction

Let G be a group. A (real additive) character on G is a homomorphism � W G ! R
from G to the additive group of real numbers. Two non-zero characters �; �0 W G ! R
are equivalent if they differ by a positive multiple, i.e., �0 D r� for some r > 0.
The equivalence class of � is denoted by Œ��. The equivalence class of a non-zero
character � should be thought of as the straight open ray from 0 through � in the
real vector space Hom.G; R/ of all characters. The dimension of this vector space is
the torsion-free rank of the abelianization G=G0 of G. Thus, when G=G0 is finitely
generated, the set of equivalence classes of non-zero characters, denoted by S.G/, is
a geometric sphere on which we can do spherical geometry.

Our ground ring R is assumed to be a domain, i.e., a commutative ring with
1 ¤ 0 which is without zero divisors. When we consider R as an RG-module,
we always refer to the trivial action of G on R. Each Œ�� defines a submonoid
G� ´ fg 2 G j �.g/ � 0g, and R will also be considered as a trivial RG�-module.
In the paper [7] of Bieri and Renz1 the Sigma-invariants (or geometric invariants)
are defined for each integer n � 0 by

†n.GI R/ ´ fŒ�� 2 S.G/ j R is of type FPn over RG�g:
�This work was partially supported by a grant from the Deutsche Forschungsgemeinschaft.
1In [7] things are done over the ground ring Z, but everything in that paper goes through over R. In our

application to Thompson’s Group in [5] we will need to compare the situation over Z with that over Q.
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The basic reference for these is [7]. A less economical but more intuitive definition
is given in Section 3. While it is clear that †0.GI R/ D S.G/ the case n D 0 will
play a role in what follows.

There are also homotopical versions of these invariants, denoted †n.G/, which
were introduced in [7]2, Remark 6.1. The relationship between †n.GI R/ and †n.G/

is the usual relationship in topology between homology with R-coefficients and ho-
motopy; see Theorem 3.2.

This paper is about the behavior of the †-invariants with respect to direct products
of groups. Consider two groups G and H . The vector spaces Hom.G � H; R/ and
Hom.G; R/ ˚ Hom.H; R/ are identified in the usual way. This embeds the spheres
S.G/ and S.H/ canonically as subspheres of S.G�H/ so that when � 2 Hom.G; R/

and �0 2 Hom.H; R/ the notations � C �0 and .�; �0/ both describe the character
.g; h/ 7! �.g/ C �0.h/. Thus, as the non-zero characters � and �0 vary in their
respective rays Œ�� and Œ�0�, the point Œ� C �0� 2 S.G � H/ varies among the points
of the open spherical geodesic whose end points are Œ�� and Œ�0�. With the usual
interpretation of S.G � H/ as the join of S.G/ and S.H/, this spherical geodesic is
the join-segment from Œ�� to Œ�0�. Thus, when P � S.G/ and Q � S.H/ their join
is

P � Q ´ fŒ� C �0� j Œ�� 2 P; Œ�0� 2 Qg [ P [ Q:

It is sometimes convenient to extend the notations � C �0 and .�; �0/ to include the
possibility � D 0 or �0 D 0 thus collecting the two endpoints of the geodesic in the
same notation. (The reason is that when �0 D 0 and � ¤ 0, or vice versa, � C �0 is
a non-zero character on G � H .)

Recall that the group G has type FPn.R/ if there is a free RG-resolution of R

which is finitely generated in dimensions � n; when R D Z one simply says that
G has type FPn. When we discuss †n.GI R/, we will always assume that the group
in question has type FPn.R/. Similarly, †n.G/ is only defined when G has the
topological finiteness type3 Fn.

The question of a formula for the homotopical †-invariants of direct products of
groups is reduced to the corresponding question for the homological invariants by the
following:

Theorem 1.1.

†n.G � H/ D .†n.G � H I Z/ � .S.G/ [ S.H/// [ .†n.G/ [ †n.H//:

This first appeared in [13]; see [2], Proposition 4.6, for a proof.

2In [7] these are denoted by �†n.G/. Again, we have †0.G/ D S.G/. The case n D 1 is a
recasting of the Bieri–Neumann–Strebel Invariant introduced earlier in [6].

3G has type Fn if there is a K.G; 1/-complex with finite n-skeleton. For details on finiteness properties
of groups see for example [11].
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We denote the complement of any subset A of a sphere by Ac . The Direct Product
Formula (whether true or false – that is the subject of this paper) reads as follows:

†n.G � H I R/c D
nS

pD0

†p.GI R/c � †n�p.H I R/c :

The � inclusion of this statement is a theorem due to H. Meinert:

Theorem 1.2 (Meinert’s inequality).

†n.G � H I R/c �
nS

pD0

†p.GI R/c � †n�p.H I R/c

and

†n.G � H/c �
nS

pD0

†p.G/c � †n�p.H/c :

Meinert did not publish this, but a proof can be found in [10], Section 9. The
paper [2] also contains a proof of the homotopy version4.

In this paper we consider the � inclusion of the Direct Product Formula. Here,
caution is needed as there are counterexamples. A counterexample to the homotopy
version was given by Meier, Meinert and vanWyk in [12], Section 6. Recently, a
counterexample to the homological version has been given by D. Schütz in [15] for
the case where R D Z. This involves the product of two right-angled Artin groups.
(The article [2] contains the incorrect statement – for which the first author owes an
apology – that the computation of †n.G; Z/ for right angled Artin groups G given
in [12] – see also [8] – establishes the � direction of the Direct Product Formula for
those groups when R D Z.)

In this paper we prove:

Theorem 1.3. When R is a field, the Direct Product Formula is true.

As a corollary we have:

Theorem 1.4. When †p.GI Z/ D †p.GI Q/ and †p.H I Z/ D †p.H I Q/ for all
p � n then the Z-version of the Direct Product Formula is true; i.e.,

†n.G � H I Z/c D
nS

pD0

†p.GI Z/c � †n�p.H I Z/c :

Proof. This follows from Meinert’s Inequality (Theorem 1.2) together with the fact
that one always has: †p. 	 I Z/ � †p. 	 I Q/.

4That our statement of Meinert’s Inequality is equivalent to the statement in [10] requires a little work.
The case where one of the characters is zero is covered by our Proposition 5.1. The other case is a
straightforward exercise.
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Theorem 1.4 is applied in [5] to get information about subgroups of Thompson’s
Group F . There the †-invariants of F are computed, and one has †p.F I Z/ D
†p.F I Q/ for all p, so that, by Theorem 1.4, the Z version of the Direct Product
Formula is true with G D H D F . A consequence is that, for all n, F contains
subgroups of type5 Fn which are not of type FPnC1

A corollary of the proof of Theorem 1.3, also proved by Schütz in [15], is:

Theorem 1.5. The Direct Product Formula is true when R D Z provided that n � 3.

This is explained in Remark 5.3.

We wish to acknowledge the roots of the present paper. Computing †n.G�H I Z/

was a much discussed theme in Frankfurt around 1990, and in this paper we take full
advantage of those discussions, more than we are able to track down in the literature.
We can certainly refer to Holger Meinert’s diploma thesis [14] which contains the
Z-version of his inequality, stated above in Theorem 1.2. We can also refer to Ralf
Gehrke’s doctoral thesis [9] and [10] which implies equality in the Z-version in some
special cases. The survey article [2] contains more details, including a proof of
Gehrke’s result.

2. Valuations extending a character

Let � W G ! R be a character on G. If M is an RG-module, a valuation on M

extending � is a function v W M ! R [ f1g satisfying the axioms

v.m C m0/ � minfv.m/; v.m0/g;
v.gm/ D �.g/ C v.m/;

v.rm/ D v.m/ when r is a unit in R;

v.0/ D 1
for all m; m0 2 M , g 2 G, r 2 R.

The support of c 2 Fi is the subset supp.c/ of the R-basis GXi consisting of
those members which appear with non-zero coefficients in the unique expansion of c.

The most important example of a valuation involves extension via supports: Given
a free RG-module F and an RG-basis X for F , every function v W X ! R extends
to a unique function v W GX ! R [ f1g by v.gx/ ´ �.g/ C v.x/, and then to a
valuation on F by defining, for each non-zero c 2 F , v.c/ D minfv.supp.c//g.

Let F � R be a free resolution of the trivial RG-module R. We call this
resolution admissible if: (i) each free RG-module Fi in F comes with a given basis
Xi , and (ii) for each x 2 Xi , @x ¤ 0 2 Fi�1, while for x 2 X0, �.x/ D 1 2 R,
where � W F0 ! R denotes the augmentation map. We write F .n/ for the n-skeleton

5In general the Fn property is stronger than the FPn property.
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Ln
iD0Fi which is free with basis X.n/ D `

iD0Xi . When G has type FPn there is
always an admissible free resolution with finitely generated n-skeleton.

If F � R is admissible we think of F as
L

i�0Fi , a free module with basis X D`
i�0Xi . The basic valuation on F extending � is the function v� W F ! R [ f1g

of the kind described above, where the values on X are chosen inductively, skeleton
by skeleton, to satisfy

v�.x/ D
´

0 if i D 0;

v�.@x/ if i > 0;

and v�.gx/ D �.g/ C v�.x/ when g 2 G. It follows that v�.c/ � v�.@c/ for all
c 2 F , and v�.c/ D 1 if and only if c D 0.

One shows easily that if F has finitely generated n-skeleton then every valuation
v W F .n/ ! R on the n-skeleton extending � is dominated by the basic valuation v�

in the sense that there is a number � � 0 with v.c/ � v�.c/ � � for all c 2 F .n/.
We note that when � D 0 then v takes all non-zero elements of F to 0.

3. The invariant †n.G I R/

In this section we recall another definition of †n.GI R/. Let F � R be an admissible
free resolution with X.n/ finite. We denote by zF the augmented (exact) chain complex
F ! R ! 0; i.e., zFi D Fi for i ¤ �1, zF�1 D R, and we write � W F0 ! R for
the augmentation map. All valuations v on F are extended to zF by the convention
v.r/ D 1 for every r 2 R.

If v is a basic valuation extending the non-zero character �, the property v.c/ �
v@.c/ ensures that zF carries an R-graded filtration by R-subcomplexes zF Œt;1�

v where
t 2 R and zF Œt;1�

v;i ´ fc 2 zFi j v.c/ � tg. In particular, zF Œt;1�
v;�1 D R for all t .

We say that zF is controlled .n � 1/- acyclic (abbrev. CAn�1) with respect to v if
there exists � � 0 such that, for all t and all 0 � p � n � 1, the inclusion induces
the zero homomorphism

Hp. zF Œt;1�
v / ! Hp. zF Œt��;1�

v /:

This condition should be considered vacuous when n D 0; i.e., zF is always CA�1

with respect to v.

Remark 3.1. If the CAn�1-condition holds for some t then � can be chosen so that
it holds, using this same �, for every t . This is because a non-zero character defines
a cocompact action on R.

The following is the content of [7], Theorem 3.2.
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Theorem 3.2. Let � W G ! R be a non-zero character. If F � R is an admissible
free resolution with finitely generated n-skeleton, and v W F ! R [ f1g is a basic
valuation extending �, then Œ�� 2 †n.GI R/ if and only if zF is CAn�1 with respect
to v.

4. Valuations on tensor products

We now consider the product G � H of two groups. Let F � R be an admissible
free resolution of the RG-module R with basis X, and let F 0 � R be an admissible
free resolution of the RH -module R with basis X0. Then, with respect to the product
action, F ˝R F 0 � R is a free resolution, and fx ˝ x0 j x 2 X; x0 2 X0g is a basis
for F ˝R F 0. Since @.x ˝ x0/ D @x ˝ x0 ˙ x ˝ @x0, simple considerations show
that F ˝R F 0 � R is admissible.

Let � W G ! R and �0 W H ! R be characters. Let v� and v0
�0 be the basic

valuations on F and F 0 extending � and �0 respectively. Denote by w the basic
valuation v.�;�0/ W F ˝R F 0 ! R [ f1g extending .�; �0/.

Proposition 4.1. w.c ˝ c0/ D v�.c/ C v0
�0.c/

Proof. We abbreviate v� to v and v0
�0 to v0. The proof is by induction on the degree n

of w.c ˝ c0/. The case n D 0 is easy, so we assume the proposition is true for n � 1.
Let x ˝ x0 have degree n � 1. Then

w.x ˝ x0/ D w.@.x ˝ x0//
D w.@x ˝ x0 C x ˝ @x0/
D minfw.@x ˝ x0/; w.x ˝ @x0/g
D minfv.@x/ C v0.x0/; v.x/ C v0.@x0/g (by induction, since the

supports are disjoint)

D v.x/ C v0.x0/;

so
w.gx ˝ hx0/ D v.gx/ C v0.hx0/:

Since R is a domain, supp.c ˝ c0/ D supp.c/�supp.c0/. Thus

w.c ˝ c0/ D v�.c/ C v�0.c/:

5. Sigma invariants of products

It is convenient to split the proof of Theorem 1.3 into two propositions.

Proposition 5.1. Œ.�; 0/� 2 †n.G � H I R/ if and only if Œ�� 2 †n.GI R/.
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Proof. The “if” part of the proposition follows from Meinert’s inequality. We are to
prove the “only if” part.

With notation as in Section 4 we assume that F and F 0 have finitely generated
n-skeleta. Then F ˝R F 0 also has finitely generated n-skeleton. Let v denote the
basic valuation on F extending the character � on G. By Proposition 4.1, w, defined
by w.c ˝ c0/ D v.c/, is the basic valuation extending the character .�; 0/ on G � H .

The chain complex F is a retract of F ˝R F 0 as follows. We may assume (for
convenience) that F 0

0 is generated by a single generator x0 and that x0 is mapped by
�0 to 1 2 R. Define i W F ! F ˝R F 0 by i.c/ D c ˝ x0. Define p W F ˝R F 0 ! F

by p.c ˝ c0/ D �.c0/c when c0 has degree 0, and p.c ˝ c0/ D 0 when c0 has degree
> 0. One checks that i and p are chain maps and that p B i is the identity map. The
composition v B p is a valuation on F ˝R F 0 and is therefore dominated by the basic
valuation w.

Let z 2 F be a k-cycle where k < n. By assumption there is a number � � 0

and a .k C 1/-chain d 2 F ˝R F 0 with @d D i.z/ and w.d/ � w.i.z// � �: Hence
we have

@p.d/ D p.@d/ D p.i.z// D z

and

v.p.d// D .v B p/.d/

� w.d/ � �

� w.i.z// � � � �

D v.z/ � � � �: �
In view of Meinert’s Inequality, the new content of Theorem 1.3 is:

Proposition 5.2. Let R be a field. Then

†n.G � H I R/c �
nS

pD0

†p.GI R/c � †n�p.H I R/c :

Proof. The cases p D 0 and p D n (mutatis mutandis) are covered by Proposition 5.1,
so we will assume 1 � p � n � 1. As before, v denotes a basic valuation on F

extending the character � on G, and v0 denotes a basic valuation on F 0 extending the
character �0 on H . We are to show that if Œ�� 2 †p.GI R/c and Œ�0� 2 †n�p.H I R/c

then Œ.�; �0/� 2 †n.G � H I R/c .
We view GX � HX0 as the R-basis of F ˝R F 0. We denote by p and p0

the projections onto the two factors GX and HX0. Given u 2 R, each chain
y 2 F ˝R F 0 has a unique decomposition y D y� C y� where

v.p.supp.y�/// < u � v.p.supp.y�///:

Thus, y� is the “subchain” obtained from y by setting equal to zero the coefficients

of all basis elements gx ˝ hx0 such that gx does not lie in F
Œu;1�
v . (We think of �

and � as standing for “left” and “right” – see Figure 2.) We observe:
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(1) For all y 2 F ˝R F 0, y� D 0 if and only if v.p.supp.y/// � u.
(2) Thus, in particular, .c ˝ c0/� D 0 if and only if v.c/ D 0.
(3) If d and e in F ˝R F 0 have disjoint supports then .d C e/� D d� C e�.

Similarly, given u0 2 R, each chain y has a unique decomposition y D yˇ C y�

where
v0.p0.supp.yˇ /// < u0 � v0.p0.supp.yˇ ///:

Thus, y� is the “subchain” obtained from y by setting equal to zero the coefficients
of all basis elements gx ˝ hx0 such that hx0 does not lie in F

0Œu0;1�
v . (We think of

ˇ and � as standing for “bottom” and “top”.) We call the (fixed) numbers u and u0
splitters; they must be specified before this notation can be used.

Without loss of generality we may assume zF is CAp�2 with respect to v and zF 0
is CAn�p�2 with respect to v0. For a chosen .p � 1/-cycle z 2 F and a chosen
.n � p � 1/-cycle z0 2 F 0 define

	.z/ ´ inffv.z/ � v.c/ j @c D zg
and

	0.z0/ ´ inffv0.z0/ � v0.c0/ j @c0 D z0g:
The numbers 	.z/ and 	0.z0/ can be made arbitrarily large by suitable choice of z

and z0. Once z and z0 have been chosen, we choose positive numbers � < 	.z/ and
�0 < 	0.z0/. Then choose chains c and c0 such that @c D z, @c0 D z0, v.z/ � � � 1 <

v.c/ � v.z/ � � and v0.z0/ � �0 � 1 < v0.c0/ � v0.z0/ � �0. See Figure 1.

   

.
. . . ..

c z.
v.z/v.z/ � 	.z/u D v.z/ � �v.z/ � � � 1 v.c/

Figure 1.

Since c ˝ c0 is an n-chain, and @.c ˝ c0/ D z ˝ c0 ˙ c ˝ z0 we have

w.@.c ˝ c0// D w.z ˝ c0 ˙ c ˝ z0/
� minfw.z ˝ c0/; w.c ˝ z0/g
D minfv.z/ C v0.c0/; v.c/ C v0.z0/g
> minfv.z/ C v0.z0/ � �0 � 1; v.z/ C v0.z0/ � � � 1g
D w.z ˝ z0/ � 1 � maxf�; �0g:

Now we take as our splitters u ´ v.z/ � � and u0 ´ v0.z0/ � �0. We consider
an arbitrary n-chain d such that @d D @.c ˝ c0/. Define

b ´ @.d�/ � .@d/�



Sigma invariants of direct products of groups 259

and define e ´ @.bˇ /. Thus e is an .n � 2/-cycle. See Figure 2.

....

.. top

bottom

left right

c ˝ z0

z ˝ z0

d�

b D @.d�/ � .@d/�
c0 ˝ z

e D @bˇ

bˇ

d

Figure 2.

Claim 1: .@d/� D ˙.c ˝ z0/�.
Proof. @d D @.c ˝ c0/ D z ˝ c0 ˙ c ˝ z0. Since v.p.supp.z ˝ c0/// �

v.supp.z// > u we have .z ˝ c0/� D 0. Thus

.@d/� D .z ˝ c0/� ˙ .c ˝ z0/� D ˙.c ˝ z0/�;

as claimed.
Claim 1 is used in

z ˝ z0 D @.c ˝ z0/
D @..c ˝ z0/�/ C @..c ˝ z0/�/

D ˙@..@d/�/ C @..c ˝ z0/�/

D ˙@.b/ C @..c ˝ z0/�/

D ˙@.bˇ / ˙ @.b� / C @..c ˝ z0/�/

D ˙e ˙ @.b� / C @..c ˝ z0/�/:

Next we show that the indicated homology between z ˝ z0 and e takes place in
the chain complex

C ´ F Œu;1�
v ˝ F 0Œu0;1�

v0 :

Claim 2: b D .@.d�//�.
Proof. d D d� C d�. So @d D @.d�/ C @.d�/. Thus .@d/� D .@.d�//�, because

F
Œu;1�
v is a chain complex, so .@.d�//� D 0: Since b D .@.d�//� C.@.d�//� �.@d/�

the claim follows.
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Claim 3: c ˝ z0 D .c ˝ z0/� .
Proof. This is because v0p0.supp.c ˝ z0// > u0.
It follows from Claims 2 and 3 that b� D .b�/� and .c ˝ z0/� D ..c ˝ z0/� /�, so

e and z ˝ z0 are homologous in C .
We now use the fact that z does not bound in zF Œu;1�

v and z0 does not bound in
zF 0Œu0;1�

v0 . Because R is a field, the Künneth Formula ([16], Lemma 5.3.1) applied to
C implies that the homology class of z ˝ z0 in C could only be zero if the homology
class of either z or z0 is zero in the appropriate tensor factor of C ; and neither is zero,
as we have just seen. Thus the homology class of e is non-zero, and hence the cycle
e D @.bˇ / is non-zero. It follows that bˇ is non-zero. Then Claim 2 implies that
.@.d�/�/ˇ is non-zero.

Claim 4: .d�/ˇ ¤ 0.
Proof. Since the support of .@.d�/�/ˇ is non-zero, the support of .@.d�/�/ contains

some gx ˝ hx0 with v0.hx0/ < u0. So the same is true of @.d�/. Hence the support
of d� contains some Qg Qx ˝ Qh Qx0 with v0. Qh Qx0/ < u0. Thus .d�/ˇ ¤ 0, as claimed.

By Claim 4, we get

w.d/ � w. Qg Qx ˝ Qh Qx0/
D v. Qg Qx/ C v0. Qh Qx0/
� v.z/ � � C v0.z0/ � �0

D w.z ˝ z0/ � � � �0:

Summarizing, since @d D @.c ˝ c0/ we conclude that

w.@d/ � w.d/ � w.z ˝ z0/ � 1 � maxf�; �0g � w.z ˝ z0/ C � C �0;

i.e.,
w.@d/ � w.d/ � minf�; �0g:

Since � and �0 can be chosen arbitrarily large, say > N , the cycle @.c ˝ c0/ has
the property that for any d with @d D @.c ˝ c0/, w.@d/ � w.d/ > N � 1. In other
words,

CF ˝R F 0 is not CAn�1 with respect to w:

Remark 5.3. The only place where we needed R to be a field was to ensure that
(referring to homology classes) fz ˝ z0g D 0 forces fzg D 0 or fz0g D 0. This also
holds when R D Z provided fzg and fz0g have infinite order. Thus our proof also
gives Theorem 1.4 because under the hypotheses of Theorem 1.4 the Z-cycles z and
z0 can always be chosen so that their homology classes have infinite order. (This is
just a variant on the proof given in Section 1.) We also get Theorem 1.5 because in
the cases where both sides of the join are non-empty the dimensions of the relevant
cycles are 0 and 1, and the 0-cycle can always be chosen to be indivisible.
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