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Abstract. We introduce two series of finite automata starting from the so-called Aleshin and
Bellaterra automata. We prove that transformations defined by automata from the first series
generate a free non-Abelian group of infinite rank, while automata from the second series give
rise to the free product of infinitely many groups of order 2.
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1. Introduction

A (Mealy) automaton over a finite alphabet X is determined by the set of internal
states, the state transition function and the output function. A finite (or finite-state)
automaton has finitely many internal states. An initial automaton has a distinguished
initial state. Any initial automaton over X defines a transformation T of the set X�
of finite words in the alphabet X . That is, the automaton transduces any input word
w 2 X� into the output word T .w/. The transformation T preserves the lengths
of words and common beginnings. The set X� is endowed with the structure of a
regular rooted tree so that T is an endomorphism of the tree. A detailed account of
the theory of Mealy automata is given in [GNS].

The set of all endomorphisms of the regular rooted tree X� is of continuum car-
dinality. Any endomorphism can be defined by an automaton. However the most
interesting are finite automaton transformations that constitute a countable subset. If
T1 and T2 are mappings defined by finite initial automata over the same alphabet X ,
then their composition is also defined by a finite automaton overX . If a finite automa-
ton transformation T is invertible, then the inverse transformation is also defined by
a finite automaton. Furthermore, there are simple algorithms to construct the corre-
sponding composition automaton and inverse automaton. In particular, all invertible
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transformations defined by finite automata over X constitute a transformation group
G .X/. This fact was probably first observed by Hořejš [Hoř].

A finite non-initial automaton A over an alphabet X defines a finite collection of
transformations of X� corresponding to various choices of the initial state. Assum-
ing all of them are invertible, these transformations generate a group G.A/, which
is a finitely generated subgroup of G .X/. We say that the group G.A/ is defined by
the automaton A. The groups defined by finite automata were introduced by Grig-
orchuk [Gri] in connection with the Grigorchuk group of intermediate growth. The
finite automaton nature of this group has great impact on its properties. The formal-
ization of these properties has resulted in the notions of a branch group (see [BGS]),
a fractal group (see [BGN]), and, finally, the most general notion of a self-similar
group [Nek], which covers all automaton groups.

The main issue of this paper are free non-Abelian groups of finite automaton
transformations. Also, we are interested in the free products of groups of order 2
(such a product contains a free subgroup of index 2). Brunner and Sidki [BS] proved
that the free group embeds into the group of finite automaton transformations over
a 4-letter alphabet. Olijnyk [Oli1], [Oli2] showed that the group of finite automaton
transformations over a 2-letter alphabet contains a free group as well as free products
of groups of order 2. In the above examples, all automata are of linear algebraic
origin.

A harder problem is to present the free group as the group defined by a single finite
non-initial automaton. This problem was solved by Glasner and Mozes [GM]. They
constructed infinitely many finite automata of algebraic origin that define transforma-
tion groups with various properties, in particular, free groups. A finite automaton that
defines the free product of 3 groups of order 2 was found by Muntyan and Savchuk
(see [Nek] and Theorem 1.5 below).

Actually, the first attempt to embed the free non-Abelian group into a group of finite
automaton transformations was made by Aleshin [Ale] a long ago. He introduced two
finite initial automata over alphabet f0; 1g and claimed that two automorphisms of the
rooted binary tree f0; 1g� defined by these automata generate a free group. However
the argument in [Ale] seems to be incomplete. Aleshin’s automata are depicted in
Figure 1 by means of Moore diagrams. The Moore diagram of an automaton is a
directed graph with labeled edges. The vertices are the states of the automaton and
edges are state transition routes. Each label consists of two letters from the alphabet.
The left one is the input field, it is used to choose a transition route. The right one is
the output generated by the automaton. Aleshin considered these automata as initial,
with initial state b.

The Aleshin automata are examples of bi-reversible automata. This notion, which
generalizes the notion of invertibility, was introduced in [MNS] (see also [GM]). The
class of bi-reversible automata is in a sense opposite to the class of automata defining
branch groups. All automata considered in this paper are bi-reversible.

In this article we are looking for finite automata that define free non-Abelian
groups of maximal rank, i.e., the free rank of the group is equal to the number of
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Figure 1. Aleshin’s automata.

states of the automaton. Note that the automata constructed by Glasner and Mozes
do not enjoy this property. For any of those automata, the transformations assigned
to various internal states form a symmetric generating set so that the free rank of the
group is half of the number of the states. Brunner and Sidki conjectured (see [Sid])
that the first of two Aleshin’s automata shown in Figure 1 is the required one. The
conjecture was proved in [VV].

Theorem 1.1 ([VV]). The first Aleshin automaton defines a free group on 3 genera-
tors.

In this article we generalize and extend Theorem 1.1 in several directions.
The two automata of Aleshin are related as follows. When the first automaton is in

the state c, it is going to make transition to the state a independently of the next input
letter, which is sent directly to the output. The second automaton is obtained from
the first one by inserting two additional states on the route from c to a (see Figure 1).

For any integer n � 1 we define a .2nC 1/-state automaton A.n/ of Aleshin type.
Up to renaming of internal states, A.n/ is obtained from the first Aleshin automaton
by inserting 2n� 2 additional states on the route from c to a (for a precise definition,
see Section 4); in particular, A.1/ and A.2/ are the Aleshin automata. The Moore
diagram of the automaton A.3/ is depicted in Figure 6 below. Note that the number
of internal states of an Aleshin type automaton is always odd. This is crucial for the
proof of the following theorem.

Theorem 1.2. Automorphisms of the rooted binary tree defined by automata of
Aleshin type generate a free non-Abelian group of infinite rank. Moreover, all these
automorphisms are free generators of the group.

In particular, any automaton of Aleshin type defines a free transformation group
of maximal rank.
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Theorem 1.3. For any n � 1 the automaton A.n/ defines a free group on 2n C 1

generators.

Given a finite number of automata Y .1/; : : : ; Y .k/ over the same alphabet with
disjoint sets of internal states S1; : : : ; Sk , we can regard them as a single automaton
Y with the set of internal states S1 [ � � � [Sk . The automaton Y is called the disjoint
union of the automata Y .1/; : : : ; Y .k/ as its Moore diagram is the disjoint union of
the Moore diagrams of Y .1/; : : : ; Y .k/. The group defined by Y is generated by the
groups G.Y .1//; : : : ; G.Y .k//.

We define theAleshin type automata so that their sets of internal states are disjoint.
Hence the disjoint union of any finite number of distinct automata of Aleshin type is
well defined. Clearly, Theorem 1.2 implies that such a disjoint union defines a free
group of maximal rank.

Theorem 1.4. LetN be a nonempty finite set of positive integers and denote byA.N /

the disjoint union of automata A.n/, n 2 N . Then the automaton A.N / defines a free
group on

P
n2N .2nC 1/ generators.

It is easy to see that Theorem 1.4 is actually equivalent to Theorem 1.2.
Another consequence of Theorem 1.2 is that the 8 transformations defined by the

two Aleshin automata generate a free group on 8 generators. In particular, any two
of them generate a free non-Abelian group. Thus Aleshin’s claim is finally justified.

The Bellaterra automaton B is a 3-state automaton over a 2-letter alphabet. Its
Moore diagram is depicted in Figure 2. The automaton B coincides with its inverse
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Figure 2. The Bellaterra automaton.

automaton and hence all 3 transformations defined by B are involutions. Otherwise
there are no more relations in the group G.B/.

Theorem 1.5 ([Nek]). The Bellaterra automaton defines the free product of 3 groups
of order 2.
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Theorem 1.5 is due to Muntyan and Savchuk. It was proved during the 2004
summer school on automata groups at the Autonomous University of Barcelona and
so the automaton B was named after the location of the university.

The Bellaterra automatonB is closely related to theAleshin automatonA. Namely,
the two automata share the alphabet, internal states, and the state transition function
while their output functions never coincide. We use this relation to define a series
B.1/; B.2/; : : : of automata of Bellaterra type. By definition, B.n/ is a .2nC 1/-state
automaton obtained from A.n/ by changing values of the output function at all ele-
ments of its domain. Also, we define a one-state automaton B.0/ that interchanges
letters 0 and 1 of the alphabet. All transformations defined by a Bellaterra type
automaton are involutions.

Theorem 1.6. Automorphisms of the rooted binary tree defined by automata of Bel-
laterra type freely generate the free product of infinitely many groups of order 2.

An equivalent, more detailed formulation of Theorem 1.6 is as follows.

Theorem 1.7. (i) For any n � 0 the automaton B.n/ defines the free product of
2nC 1 groups of order 2.

(ii) Let N be a nonempty finite set of nonnegative integers and denote by B.N /

the disjoint union of automata B.n/, n 2 N . Then the automaton B.N / defines the
free product of

P
n2N .2nC 1/ groups of order 2.

Theorems 1.4 and 1.7 have the following obvious corollary.

Corollary 1.8. (i) Let n be an integer such that n D 3 or n D 5 or n � 7. Then there
exists an n-state automaton over alphabet f0; 1g that define a free transformation
group on n generators.

(ii) For any integer n � 3 there exists an n-state automaton over alphabet f0; 1g
that define a transformation group freely generated by n involutions.

We prove Theorem 1.2 using the dual automaton approach. Namely, each finite
automaton Y is assigned a dual automaton Y 0 obtained from Y by interchanging
the alphabet with the set of internal states and the state transition function with the
output function. It turns out that there is a connection between transformation groups
defined by Y and Y 0. As intermediate results, we obtain some information on the
dual automata of the Aleshin type automata.

Proposition 1.9. (i) The dual automaton of the Aleshin automaton defines a group
that acts transitively on each level of the rooted ternary tree fa; b; cg�.

(ii) For any n � 1 the dual automaton ofA.n/ defines a group that acts transitively
on each level of the rooted .2nC 1/-regular treeQ�

n.
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The proof of Theorem 1.5 given in [Nek] also relies on the dual automaton ap-
proach. In particular, it involves a statement on the dual automaton yD ofB . Since the
group G.B/ is generated by involutions, it follows that the set of double letter words
over the alphabet fa; b; cg is invariant under the action of the group G. yD/. Hence
G. yD/ does not act transitively on levels of the rooted tree fa; b; cg.

Proposition 1.10 ([Nek]). The dual automaton of the Bellaterra automaton defines
a transformation group that acts transitively on each level of the rooted subtree of
fa; b; cg� formed by no-double-letter words.

We derive Theorem 1.6 from Theorem 1.2. This does not involve dual automata.
Nonetheless we obtain a new proof of Proposition 1.10 that also works for all Bel-
laterra type automata.

Proposition 1.11. For any n � 1 the dual automaton of B.n/ defines a group that
acts transitively on each level of the rooted subtree ofQ�

n formed by no-double-letter
words.

Finally, we establish relations between groups defined by automata of Aleshin
type and of Bellaterra type.

Proposition 1.12. (i) The group G.A/ is an index 2 subgroup of G.B.f0;1g//.
(ii) For any n � 1 the group G.A.n// is an index 2 subgroup of G.B.f0;ng//.
(iii) For any nonempty finite set N of positive integers the group G.A.N // is an

index 2 subgroup of G.B.N [f0g//.

Proposition 1.13. (i) G.A/ \ G.B/ is a free group on 2 generators and an index 2
subgroup of G.B/.

(ii) For any n � 1, G.A.n// \ G.B.n// is a free group on 2n generators and an
index 2 subgroup of G.B.n//.

(iii) For any nonempty finite setN of positive integers,G.A.N //\G.B.N // is an
index 2 subgroup ofG.B.N //. Also, G.A.N //\G.B.N // is a free group of rank less
by 1 than the free rank of G.A.N //.

The article is organized as follows. Section 2 addresses some general construc-
tions concerning automata and their properties. In Section 3 we recall constructions
and arguments of the paper [VV] where Theorem 1.1 was proved. In Section 4 they
are applied to the Aleshin type automata and their disjoint unions, which results in
the proof of Theorem 1.4 (Theorem 4.10). Besides, Proposition 1.9 is established in
Sections 3 and 4 (see Corollaries 3.6 and 4.9). Section 5 is devoted to the study of the
Bellaterra automaton, automata of Bellaterra type, and their relation to automata of
Aleshin type. Here we prove Theorems 1.5 and 1.7 (Theorems 5.3 and 5.4), Propo-
sitions 1.10 and 1.11 (Propositions 5.9 and 5.10), Proposition 1.12 (Proposition 5.2),
and Proposition 1.13 (Propositions 5.6, 5.7, and 5.8).
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2. Automata

An automaton A is a quadruple .Q;X; �;  / formed by two nonempty sets Q and
X along with two maps � W Q � X ! Q and  W Q � X ! X . The set X is to
be finite, it is called the (input/output) alphabet of the automaton. We say that A is
an automaton over the alphabet X . Q is called the set of internal states of A. The
automaton A is called finite (or finite-state) if the set Q is finite. � and  are called
the state transition function and the output function, respectively. One may regard
these functions as a single map .�;  / W Q �X ! Q �X .

The automaton A canonically defines a collection of transformations. First we
introduce the set on which these transformations act. This is the set of words over
the alphabetX , which is denoted byX�. A word w 2 X� is merely a finite sequence
whose elements belong to X . The elements of w are called letters and w is usually
written so that its elements are not separated by delimiters. The number of letters
of w is called its length. It is assumed that X� contains the empty word ¿. The
set X is embedded in X� as the subset of one-letter words. If w1 D x1 : : : xn and
w2 D y1 : : : ym are words over the alphabetX thenw1w2 denotes their concatenation
x1 : : : xny1 : : : ym. The operation .w1; w2/ 7! w1w2 makesX� into the free monoid
generated by all elements of X . The unit element of the monoid X� is the empty
word. Another structure on X� is that of a rooted k-regular tree, where k is the
cardinality ofX . Namely, we consider a graph with the set of verticesX� where two
vertices w1; w2 2 X� are joined by an edge if w1 D w2x or w2 D w1x for some
x 2 X . The root of the tree is the empty word. For any integer n � 0 the n-th level
of a rooted tree is the set of vertices that are at distance n from the root. Clearly, the
n-th level of the rooted tree X� is formed by all words of length n in the alphabet X .

Now let us explain how the automatonA functions. First we choose an initial state
q 2 Q and prepare an input word w D x1x2 : : : xn 2 X�. Then we set the automaton
to the state q and start inputting the word w into it, letter by letter. After reading a
letter x0 in a state q0, the automaton produces the output letter  .q0; x0/ and makes
transition to the state �.q0; x0/. Hence the automaton’s job results in two sequences:
a sequence of states q0 D q; q1; : : : ; qn, which describes the internal work of the
automaton, and the output word v D y1y2 : : : yn 2 X�. Here qi D �.qi�1; xi / and
yi D  .qi�1; xi / for 1 � i � n.

For every choice of the initial state q 2 Q ofAwe get a mappingAq W X� ! X�
that sends any input word to the corresponding output word. We say that Aq is
the transformation defined by the automaton A with the initial state q. Clearly, Aq

preserves the length of words. Besides, Aq transforms words from the left to the
right, that is, the first n letters of Aq.w/ depend only on the first n letters of w.
This implies that Aq is an endomorphism of X� as a rooted tree. If Aq is invertible
then it belongs to the group Aut.X�/ of automorphisms of the rooted tree X�. The
set of transformations Aq , q 2 Q is self-similar in the following sense. For any
q 2 Q, x 2 X , and w 2 X� we have that Aq.xw/ D yAp.w/, where p D �.q; x/,
y D  .q; x/.
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It must be noted that in many papers on automata the transformationAq is denoted
simply q. However that short notation is not appropriate in our paper as we are going
to consider different automata with the same set of states.

The semigroup of transformations of X� generated by Aq , q 2 Q is denoted by
S.A/. The automaton A is called invertible if Aq is invertible for all q 2 Q. If
A is invertible then Aq , q 2 Q generate a transformation group G.A/, which is a
subgroup of Aut.X�/. We say that S.A/ (resp.G.A/) is the semigroup (resp. group)
defined by the automaton A.

IfA is an invertible automaton then the restriction of any transformationg 2 G.A/
to a level of the rooted tree X� is a permutation on this finite set. As a consequence,
the restriction of the semigroup S.A/ to any level of the tree is actually a group (while
the semigroup itself need not be a group). This implies that the actions of S.A/ and
G.A/ on X� have the same orbits.

One way to picture an automaton, which we use in this paper, is the Moore
diagram. The Moore diagram of an automaton A D .Q;X; �;  / is a directed graph
with labeled edges defined as follows. The vertices of the graph are states of the
automaton A. Every edge carries a label of the form xjy, where x; y 2 X . The left
field x of the label is referred to as the input field while the right field y is referred to
as the output field. The set of edges of the graph is in a one-to-one correspondence
with the set Q � X . Namely, for any q 2 Q and x 2 X there is an edge that goes
from the vertex q to �.q; x/ and carries the label xj .q; x/. The Moore diagram of
an automaton can have loops (edges joining a vertex to itself) and multiple edges.
To simplify pictures, we do not draw multiple edges in this paper. Instead, we use
multiple labels.

The transformations Aq , q 2 Q can be defined in terms of the Moore diagram of
the automatonA. For any q 2 Q andw 2 X� we find a path � in the Moore diagram
such that � starts at the vertex q and the word w can be obtained by reading the input
fields of labels along � . Such a path exists and is unique. Then the word Aq.w/ is
obtained by reading the output fields of labels along the path � .

Let � denote the Moore diagram of the automaton A. We associate to � two
directed graphs�1 and�2 with labeled edges. �1 is obtained from� by interchanging
the input and output fields of all labels. That is, a label xjy is replaced by yjx. �2 is
obtained from � by reversing all edges. The inverse automaton ofA is the automaton
whose Moore diagram is �1. The reverse automaton of A is the automaton whose
Moore diagram is �2. The inverse and reverse automata of A share the alphabet
and internal states with A. Notice that any automaton is completely determined by
its Moore diagram. However neither �1 nor �2 must be the Moore diagram of an
automaton. So it is possible that the inverse automaton or the reverse automaton (or
both) of A is not well defined.

Lemma 2.1 ([GNS]). An automatonA D .Q;X; �;  / is invertible if and only if for
any q 2 Q the map  .q; � / W X ! X is bijective. The inverse automaton I of A is
well defined if and only if A is invertible. In this case, Iq D A�1

q for all q 2 Q.
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An automatonA is called reversible if the reverse automaton ofA is well defined.

Lemma 2.2 ([VV]). An automaton A D .Q;X; �;  / is reversible if and only if for
any x 2 X the map �. � ; x/ W Q ! Q is bijective.

Let A D .Q;X; �;  / be an automaton. Let A� D Aqn
: : : Aq2

Aq1
for any

nonempty word � D q1q2 : : : qn 2 Q�. Set A¿ D 1 (here 1 stands for the unit
element of the group Aut.X�/, i.e., the identity mapping on X�). Clearly, any
element of the semigroup S.A/ is represented as A� for a nonempty word � 2 Q�.
The map X� � Q� ! X� given by .w; �/ 7! A�.w/ defines a right action of the
monoid Q� on the rooted regular tree X�. That is, A�1�2

.w/ D A�2
.A�1

.w// for all
�1; �2 2 Q� and w 2 X�.

To each finite automaton A D .Q;X; �;  / we associate a dual automaton D,
which is obtained from A by interchanging the alphabet with the set of internal
states and the state transition function with the output function. To be precise, D D
.X;Q; z�; z /, where z�.x; q/ D  .q; x/ and z .x; q/ D �.q; x/ for all x 2 X and
q 2 Q. Unlike the inverse and reverse automata, the dual automaton is always well
defined. It is easy to see that A is the dual automaton of D.

The dual automaton D defines a right action of the monoid X� on Q� given by
.�; w/ 7! Dw.�/. This action and the action ofQ� onX� defined by the automatonA
are related in the following way.

Proposition 2.3 ([VV]). For any w; u 2 X� and � 2 Q�,

A�.wu/ D A�.w/ADw.�/.u/:

Corollary 2.4 ([VV]). Suppose that A� D 1 for some � 2 Q�. Then Ag.�/ D 1 for
every g 2 S.D/.

A finite automaton A D .Q;X; �;  / is called bi-reversible if the map
�. � ; x/ W Q ! Q is bijective for any x 2 X , the map  .q; � / W X ! X is bi-
jective for any q 2 Q, and the map .�;  / W Q�X ! Q�X is bijective as well. All
automata that we consider in this paper are bi-reversible. Below we formulate some
basic properties of bi-reversible automata (see also [Nek]).

Lemma 2.5. Given a finite automaton A, the following are equivalent:

(i) A is bi-reversible.

(ii) A is invertible, reversible, and its reverse automaton is invertible.

(iii) A is invertible, reversible, and its inverse automaton is reversible.

(iv) A is invertible, its dual automaton is invertible, and the dual automaton of its
inverse is invertible.

Proof. Suppose that A D .Q;X; �;  / is a finite automaton. By Lemma 2.1, A is
invertible if and only if maps  .q; � / W X ! X are bijective for all q 2 Q. By
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Lemma 2.2, A is reversible if and only if maps �. � ; x/ W Q ! Q are bijective for all
x 2 X . Let � be the Moore diagram of A and � 0 be the graph obtained from � by
reversing all edges and interchanging fields of all labels. The graph � 0 is the Moore
diagram of an automaton if for any q 2 Q and x 2 X there is exactly one edge of
� 0 that starts at the vertex q and has x as the input field of its label. By definition
of � 0 the number of edges with the latter property is equal to the number of pairs
.p; y/ 2 Q�X such that q D �.p; y/ and x D  .p; y/. Therefore � 0 is the Moore
diagram of an automaton if and only if the map .�;  / W Q�X ! Q�X is bijective.
Thus A is bi-reversible if and only if it is invertible, reversible, and � 0 is the Moore
diagram of an automaton.

Assume that the automaton A is invertible and reversible. Let I and R be the
inverse and reverse automata ofA, respectively. If the graph � 0 is the Moore diagram
of an automaton then the automaton is both the inverse automaton ofR and the reverse
automaton of I . On the other hand, if � 0 is not the Moore diagram of an automaton
then R is not invertible and I is not reversible. It follows that conditions (i), (ii), and
(iii) are equivalent.

It follows from Lemmas 2.1 and 2.2 that a finite automaton is reversible if and
only if its dual automaton is invertible. This implies that conditions (iii) and (iv) are
equivalent.

Lemma 2.6. If an automaton is bi-reversible then its inverse, reverse, and dual
automata are also bi-reversible.

Proof. It follows directly from definitions that an automaton is bi-reversible if and
only if its dual automaton is bi-reversible.

Suppose that A is a bi-reversible automaton. By Lemma 2.5, A is invertible and
reversible. Let I and R denote the inverse and reverse automata of A, respectively.
By Lemma 2.5, I is reversible and R is invertible. It is easy to see that A is both the
inverse automaton of I and the reverse automaton ofR. Therefore the automata I and
R are invertible and reversible. Moreover, the inverse automaton of I is reversible
and the reverse automaton of R is invertible. By Lemma 2.5, the automata I and R
are bi-reversible.

Suppose that A.1/ D .Q1; X; �1;  1/; : : : ; A
.k/ D .Qk; X; �k;  k/ are automata

over the same alphabet X such that their sets of internal states Q1;Q2; : : : ;Qk are
disjoint. The disjoint union of automata A.1/; A.2/; : : : ; A.k/ is an automaton U D
.Q1 [ � � � [Qk; X; �;  /, where the functions �,  are defined so that � D �i and
 D  i onQi �X for 1 � i � k. Obviously, Uq D A

.i/
q for all q 2 Qi , 1 � i � k.

The Moore diagram of the automaton U is the disjoint union of the Moore diagrams
of A.1/; A.2/; : : : ; A.k/. This observation easily leads to the following statement.

Lemma2.7. Thedisjoint unionof automataA.1/; A.2/; : : : ; A.k/ is invertible (resp. re-
versible, bi-reversible) if and only if each A.i/ is invertible (resp. reversible, bi-
reversible).
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3. The Aleshin automaton

In this section we recall constructions and results of the paper [VV] where the Aleshin
automaton was studied. Some constructions are slightly modified.

The Aleshin automaton is an automaton A over the alphabet X D f0; 1g with the
set of internal states Q D fa; b; cg. The state transition function � and the output
function ofA are defined as follows: �.a; 0/ D �.b; 1/ D c, �.a; 1/ D �.b; 0/ D
b, �.c; 0/ D �.c; 1/ D a;  .a; 0/ D  .b; 0/ D  .c; 1/ D 1,  .a; 1/ D  .b; 1/ D
 .c; 0/ D 0. The Moore diagram of A is depicted in Figure 1. It is easy to verify
that the automaton A is invertible and reversible. Moreover, the inverse automaton
of A can be obtained from A by renaming letters 0 and 1 of the alphabet to 1 and 0,
respectively. The reverse automaton of A can be obtained from A by renaming its
states a and c to c and a, respectively. Lemma 2.5 implies that A is bi-reversible.

a

b

c

1|0

1|0

0|1
0|1 0|0

1|1

a−1

b−1

c−1

0|1

0|1

1|0
1|0 0|0

1|1

Figure 3. Automaton U .

Let I denote the automaton obtained from the inverse of A by renaming its states
a, b, c to a�1, b�1, c�1, respectively. Here, a�1, b�1, and c�1 are assumed to be
elements of the free group on generators a, b, c. Further, let U denote the disjoint
union of automata A and I . The automaton U is defined over the alphabet X D
f0; 1g, with the set of internal states Q˙ D fa; b; c; a�1; b�1; c�1g. By definition
and Lemma 2.1, Ua D Aa, Ub D Ab , Uc D Ac , Ua�1 D A�1

a , Ub�1 D A�1
b

,
Uc�1 D A�1

c .
LetD denote the dual automaton of the automatonU . The automatonD is defined

over the alphabet Q˙, with two internal states 0 and 1. By �D denote its transition
function. Then �D.0; q/ D 1 and �D.1; q/ D 0 for q 2 fa; b; a�1; b�1g, while
�D.0; q/ D 0 and �D.1; q/ D 1 for q 2 fc; c�1g. Also, we consider an auxiliary
automatonE that is closely related toD. By definition, the automatonE shares with
D the alphabet, the set of internal states, and the state transition function. The output
function  E of E is defined so that  E .0; q/ D �0.q/ and  E .1; q/ D �1.q/ for all
q 2 Q˙, where �0 D .a�1b�1/ and �1 D .ab/ are permutations on the set Q˙.
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0 1

c|a
c−1|a−1

c|a
c−1|a−1

a|c
b|b

a−1|b−1

b−1|c−1

a−1|c−1

b−1|b−1
a|b
b|c

Figure 4. Automaton D.

0 1

c|c
c−1|c−1

c|c
c−1|c−1

a|a
b|b

a−1|b−1

b−1|a−1

a−1|a−1

b−1|b−1
a|b
b|a

Figure 5. Automaton E.

Lemmas 2.6 and 2.7 imply that I ,U , andD are bi-reversible automata. As for the
automaton E, it is easy to verify that E coincides with its inverse automaton while
the reverse automaton of E can be obtained from E by renaming its states 0 and 1 to
1 and 0, respectively. Hence E is bi-reversible due to Lemma 2.5.

To each permutation � on the setQ D fa; b; cg we assign an automorphism �� of
the free monoid .Q˙/�. The automorphism �� is uniquely defined by �� .q/ D �.q/,
�� .q

�1/ D .�.q//�1 for all q 2 Q. Let ha; b; ci denote the free group on generators
a, b, and c, let ı W .Q˙/� ! ha; b; ci be the homomorphism that sends each element
of Q˙ � .Q˙/� to itself, and let p� be the automorphism of ha; b; ci defined by
p� .q/ D �.q/, q 2 Q. Then ı.�� .�// D p� .ı.�// for all � 2 .Q˙/�.

Lemma 3.1 ([VV]). (i) E2
0 D E2

1 D 1, E0E1 D E1E0 D �.ab/.
(ii) D0 D �.ac/E0 D �.abc/E1, D1 D �.abc/E0 D �.ac/E1.

Proposition 3.2 ([VV]). The group G.D/ contains E0, E1, and all transformations
of the form �� . Moreover, G.D/ is generated by E0, �.ab/, and �.bc/.

As described in Section 2, the automatonU defines a right actionX� � .Q˙/� !
X� of the monoid .Q˙/� on the rooted binary tree X� given by .w; �/ 7! U�.w/.
Let 	 W .Q˙/� ! f�1; 1g be the unique homomorphism such that 	.a/ D 	.b/ D
	.a�1/ D 	.b�1/ D �1, 	.c/ D 	.c�1/ D 1.

Lemma 3.3 ([VV]). Given � 2 .Q˙/�, the automorphism U� of the rooted binary
tree f0; 1g� acts trivially on the first level of the tree (i.e., on one-letter words) if and
only if 	.�/ D 1.
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Now we introduce an alphabet consisting of two symbols � and ��1. A word
over the alphabet f�;��1g is called a pattern. Every word � over the alphabetQ˙ is
assigned a pattern v that is obtained from � by substituting � for each occurrence of
letters a; b; c and substituting ��1 for each occurrence of letters a�1, b�1, c�1. We
say that v is the pattern of � or that � follows the pattern v.

A word � D q1q2 : : : qn 2 .Q˙/� is called freely irreducible if none of its two-
letter subwords q1q2; q2q3; : : : ; qn�1qn coincides with one of the following words:
aa�1, bb�1, cc�1, a�1a, b�1b, c�1c. Otherwise � is called freely reducible.

Lemma 3.4 ([VV]). For any nonempty pattern v there exist words �1; �2 2 .Q˙/�
such that �1 and �2 are freely irreducible, follow the pattern v, and 	.�2/ D �	.�1/.

Proposition 3.5 ([VV]). Suppose that � 2 .Q˙/� is a freely irreducible word. Then
the orbit of � under the action of the group G.D/ on .Q˙/� consists of all freely
irreducible words following the same pattern as � .

Corollary 3.6. The group defined by the dual automaton of A acts transitively on
each level of the rooted ternary treeQ�.

Proof. Let DC denote the dual automaton of A. The rooted tree Q� is a subtree
of .Q˙/�. It is easy to see that Q� is invariant under transformations D0, D1 and
the restrictions of these transformations to Q� are DC

0 , DC
1 . In particular, the orbits

of the G.DC/ action on Q� are those orbits of the G.D/ action on .Q˙/� that are
contained in Q�. Any level of the tree Q� consists of words of a fixed length over
the alphabet Q. As elements of .Q˙/�, all these words are freely irreducible and
follow the same pattern. Proposition 3.5 implies that they are in the same orbit of the
G.DC/ action.

Lemmas 3.3, 3.4 and Proposition 3.5 lead to the following statement.

Theorem 3.7 ([VV]). The group G.A/ is the free non-Abelian group on generators
Aa, Ab , Ac .

4. Series of finite automata of Aleshin type

In this section we consider a series of finite automata starting from the Aleshin au-
tomaton. Also, we consider disjoint unions of such automata. We use the notation of
the previous section.

For any integer n � 1 we define an Aleshin type automaton A.n/. This is an
automaton over the alphabet X D f0; 1g with a set of states Qn of cardinality
2n C 1. The states of A.n/ are denoted so that Q1 D fa1; b1; c1g and Qn D
fan; bn; cn; qn1; : : : ; qn;2n�2g for n � 2. The state transition function �n of A.n/

is defined as follows: �n.an; 0/ D �n.bn; 1/ D cn, �n.an; 1/ D �n.bn; 0/ D bn,
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and �n.qni ; 0/ D �n.qni ; 1/ D qn;iC1 for 0 � i � 2n � 2, where by definition
qn0 D cn and qn;2n�1 D an. The output function  n of A.n/ is defined so that
for any x 2 X we have  n.q; x/ D 1 � x if q 2 fan; bng and  n.q; x/ D x if
q 2 Qn n fan; bng.

a3

b3

c3 q31 q32

q33q34

1|0

1|0

0|1
0|1

0|0
1|1

0|0
1|1

0|0
1|1

0|0
1|1

0|0
1|1

Figure 6. Automaton A.3/.

Up to renaming of the internal states, A.1/ and A.2/ are the two automata intro-
duced by Aleshin [Ale] (see Figure 1).

We shall deal with automata A.n/ by following the framework developed in the
paper [VV] and described in Section 3.

Let us fix a positive integer n. It is easy to see that the inverse automaton of the
automatonA.n/ can be obtained fromA.n/ by renaming letters 0 and 1 of the alphabet
to 1 and 0, respectively. Besides, the reverse automaton of A.n/ can be obtained
from A.n/ by renaming its states cn; qn1; : : : ; qn;2n�2; an to an; qn;2n�2; : : : ; qn1; cn,
respectively. Lemma 2.5 implies that A.n/ is bi-reversible.

Let I .n/ denote the automaton obtained from the inverse of A.n/ by renaming
each state q 2 Qn to q�1, where q�1 is regarded as an element of the free group on
generators an; bn; cn; qn1; : : : ; qn;2n�2. Now that the states of the inverse automaton
are renamed, we can form the disjoint union U .n/ of automata A.n/ and I .n/. The
automaton U .n/ is defined over the alphabet X D f0; 1g, with the set of internal
states Qṅ D S

q2Qn
fq; q�1g. By definition and Lemma 2.1, U .n/

q D A
.n/
q and

U
.n/

q�1 D .A
.n/
q /�1 for all q 2 Qn.

LetD.n/ denote the dual automaton of the automaton U .n/. The automatonD.n/

is defined over the alphabet Qṅ , with two internal states 0 and 1. By 
n denote its
transition function. Then 
n.0; q/ D 1 and 
n.1; q/ D 0 if q 2 fan; bn; a

�1
n ; b�1

n g,
while 
n.0; q/ D 0 and 
n.1; q/ D 1 otherwise. Also, we consider an auxiliary
automaton E.n/. By definition, the automaton E.n/ shares with D.n/ the alphabet,
the set of internal states, and the state transition function. The output function �n

of E.n/ is defined so that �n.0; q/ D �0.q/ and �n.1; q/ D �1.q/ for all q 2 Qṅ ,
where �0 D .a�1

n b�1
n / and �1 D .anbn/ are permutations on the set Qṅ .
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Lemmas 2.6 and 2.7 imply that I .n/, U .n/, and D.n/ are bi-reversible automata.
Further, it is easy to see that the automatonE.n/ coincides with its inverse automaton
while the reverse automaton ofE.n/ can be obtained fromE.n/ by renaming its states
0 and 1 to 1 and 0, respectively. By Lemma 2.5, E.n/ is bi-reversible.

To each permutation � on the setQn we assign an automorphism �
.n/
� of the free

monoid .Qṅ /
� such that �.n/

� .q/ D �.q/, �.n/
� .q�1/ D .�.q//�1 for all q 2 Qn.

The automorphism �
.n/
� is uniquely determined by � .

Lemma 4.1. (i) .E.n/
0 /2 D .E

.n/
1 /2 D 1, E.n/

0 E
.n/
1 D E

.n/
1 E

.n/
0 D �

.n/

.anbn/
.

(ii) D.n/
0 D �

.n/
�0
E

.n/
0 D �

.n/
�1
E

.n/
1 , D.n/

1 D �
.n/
�1
E

.n/
0 D �

.n/
�0
E

.n/
1 , where �0 D

.ancnqn1 : : : qn;2n�2/, �1 D .anbncnqn1 : : : qn;2n�2/.

Proof. Since the inverse automaton ofE.n/ coincides withE.n/, Lemma 2.1 implies
that .E.n/

0 /2 D .E
.n/
1 /2 D 1.

We have thatE.n/ D .X;Qṅ ; 
n; �n/, where the functions 
n and�n are defined
above. Note that the function 
n does not change when elements 0 and 1 of the setX
are renamed to 1 and 0, respectively. For any permutation � on the setQṅ we define
an automaton Y � D .X;Qṅ ; 
n; ��n/. The Moore diagram of Y � is obtained from
the Moore diagram ofE.n/ by applying � to the output fields of all labels. It is easy to
observe that Y �

0 D ˛�E
.n/
0 and Y �

1 D ˛�E
.n/
1 , where ˛� is the unique automorphism

of the monoid .Qṅ /
� such that ˛� .q/ D �.q/ for all q 2 Qṅ .

Let us consider the following permutations on Qṅ :

�0 D .a�1
n b�1

n /;

�1 D .anbn/;

�2 D .anbn/.a
�1
n b�1

n /;

�3 D .ancnqn1 : : : qn;2n�2/.a
�1
n b�1

n c�1
n q�1

n1 : : : q
�1
n;2n�2/;

�4 D .anbncnqn1 : : : qn;2n�2/.a
�1
n c�1

n q�1
n1 : : : q

�1
n;2n�2/;

�5 D .ancnqn1 : : : qn;2n�2/.a
�1
n c�1

n q�1
n1 : : : q

�1
n;2n�2/;

�6 D .anbncnqn1 : : : qn;2n�2/.a
�1
n b�1

n c�1
n q�1

n1 : : : q
�1
n;2n�2/:

Since �2�0 D �1 and �2�1 D �0, it follows that the automaton Y �2 can be ob-
tained from E.n/ by renaming its states 0 and 1 to 1 and 0, respectively. Therefore
E

.n/
0 D Y

�2

1 D ˛�2
E

.n/
1 and E.n/

1 D Y
�2

0 D ˛�2
E

.n/
0 . Consequently, E.n/

0 E
.n/
1 D

˛�2
.E

.n/
1 /2 D ˛�2

and E.n/
1 E

.n/
0 D ˛�2

.E
.n/
0 /2 D ˛�2

. Clearly, ˛�2
D �

.n/

.anbn/
.

Since �5�0 D �3 and �5�1 D �4, it follows that Y �5 D D.n/. Hence D.n/
0 D

˛�5
E

.n/
0 andD.n/

1 D ˛�5
E

.n/
1 . Furthermore, the equalities�6�0 D �4 and�6�1 D �3

imply that the automaton Y �6 can be obtained fromD.n/ by renaming its states 0 and
1 to 1 and 0, respectively. Therefore D.n/

0 D Y
�6

1 D ˛�6
E

.n/
1 and D.n/

1 D Y
�6

0 D
˛�6

E
.n/
0 . It remains to notice that ˛�5

D �
.n/
�0

and ˛�6
D �

.n/
�1

.
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Proposition 4.2. The group G.D.n// contains E.n/
0 , E.n/

1 , and all transformations

of the form �
.n/
� . Moreover, G.D.n// is generated by E.n/

0 , �.n/
�0

, and �.n/
�1

, where
�0 D .ancnqn1 : : : qn;2n�2/, �1 D .anbncnqn1 : : : qn;2n�2/.

Proof. It is easy to see that �.n/
�� D �

.n/
� �

.n/
� for any permutations � and � on the set

Qn. It follows that �.n/

��1 D .�
.n/
� /�1 for any permutation � on Qn.

By Lemma 4.1, the group generated by E.n/
0 , �.n/

�0
, and �.n/

�1
contains G.D.n//.

Besides, D.n/
0 .D

.n/
1 /�1 D �

.n/
�0
E

.n/
0 .�

.n/
�1
E

.n/
0 /�1 D �

.n/
�0
.�

.n/
�1
/�1. By the above

�
.n/
�0
.�

.n/
�1
/�1 D �

.n/
�2

, where �2 D �0�
�1
1 D .bncn/. Similarly,

.D
.n/
0 /�1D

.n/
1 D .�.n/

�0
E

.n/
0 /�1�.n/

�1
E

.n/
0 D .E

.n/
0 /�1�.n/

�3
E

.n/
0 ;

where �3 D ��1
0 �1 D .anbn/. Lemma 4.1 implies that E.n/

0 and �.n/
�3

commute,

hence .D.n/
0 /�1D

.n/
1 D �

.n/
�3

. Consider two more permutations onQn: �4 D .ancn/

and �5 D .cnqn1 : : : qn;2n�2/. Note that �4 D �2�3�2 and �5 D �4�0. By the above
�

.n/
�2
; �

.n/
�3

2 G.D.n//, hence �.n/
�4

2 G.D.n//. Then �.n/
�5
E

.n/
0 D �

.n/
�4
�

.n/
�0
E

.n/
0 D

�
.n/
�4
D

.n/
0 2 G.D.n//. Since �5.an/ D an and �5.bn/ D bn, it easily follows that

transformations �.n/
�5

and E.n/
0 commute. As �5 is a permutation of odd order 2n� 1

while E.n/
0 is an involution, we have that .�.n/

�5
E

.n/
0 /2n�1 D E

.n/
0 . In particular,

E
.n/
0 2 G.D.n//. Now Lemma 4.1 implies that �.n/

�0
; �

.n/
�1
; E

.n/
1 2 G.D.n//.

It is easy to observe that the group of all permutations on the set Qn is generated
by permutations �1 D .anbncnqn1 : : : qn;2n�2/ and �3 D .anbn/. Since �.n/

�1
; �

.n/
�3

2
G.D.n//, it follows that G.D.n// contains all transformations of the form �

.n/
� .

Now we proceed to disjoint unions ofAleshin type automata. LetN be a nonempty
finite set of positive integers. We denote byA.N / the disjoint union of automataA.n/,
n 2 N . Then A.N / is an automaton over the alphabet X D f0; 1g with the set of
internal states QN D S

n2N Qn. It is bi-reversible since each A.n/ is bi-reversible.
If the set N consists of a single integer n then A.N / D A.n/.

Let I .N / denote the disjoint union of automata I .n/, n 2 N . The automaton I .N /

can be obtained from the inverse of A.N / by renaming each state q 2 QN to q�1.
Further, let U .N / denote the disjoint union of automata A.N / and I .N /. Obviously,
the automaton U .N / is also the disjoint union of automata U .n/, n 2 N . It is defined
over the alphabet X D f0; 1g, with the set of internal states QṄ D S

n2N Qṅ .

Clearly, U .N /
q D A

.N /
q and U .N /

q�1 D .A
.N /
q /�1 for all q 2 QN

LetD.N / denote the dual automaton of the automatonU .N /. The automatonD.N /

is defined over the alphabet QṄ , with two internal states 0 and 1. Also, we consider
an auxiliary automaton E.N /. By definition, the automaton E.N / shares with D.N /

the alphabet, the set of internal states, and the state transition function. The output
function �N ofE.N / is defined so that �N .0; q/ D �0.q/ and �N .1; q/ D �1.q/ for
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all q 2 QṄ , where �0 D Q
n2N .a

�1
n b�1

n / and �1 D Q
n2N .anbn/ are permutations

on the set QṄ .
Lemmas 2.6 and 2.7 imply that I .N /, U .N /, andD.N / are bi-reversible automata.

Further, it is easy to see that the automatonE.N / coincides with its inverse automaton
while the reverse automaton ofE.N / can be obtained fromE.N / by renaming its states
0 and 1 to 1 and 0, respectively. By Lemma 2.5, E.N / is bi-reversible.

To each permutation � on the setQN we assign an automorphism �
.N /
� of the free

monoid .QṄ /
� such that �.N /

� .q/ D �.q/, �.N /
� .q�1/ D .�.q//�1 for all q 2 QN .

The automorphism �
.N /
� is uniquely determined by � .

Lemma 4.3. (i) .E.N /
0 /2 D .E

.N /
1 /2 D 1, E.N /

0 E
.N /
1 D E

.N /
1 E

.N /
0 D �

.N /
� , where

� D Q
n2N .anbn/.

(ii) D.N /
0 D �

.N /
�0

E
.N /
0 D �

.N /
�1

E
.N /
1 , D.N /

1 D �
.N /
�1

E
.N /
0 D �

.N /
�0

E
.N /
1 , where

�0 D Q
n2N .ancnqn1 : : : qn;2n�2/, �1 D Q

n2N .anbncnqn1 : : : qn;2n�2/.

The proof of Lemma 4.3 is completely analogous to the proof of Lemma 4.1 and
we omit it.

Proposition 4.4. The group G.D.N // contains transformations E.N /
0 , E.N /

1 , �.N /
�1

,

�
.N /
�2

, �
.N /
�3

, and �
.N /
�4

, where �1 D Q
n2N .anbncnqn1 : : : qn;2n�2/, �2 DQ

n2N .cnqn1 : : : qn;2n�2/, �3 D Q
n2N .anbn/, and �4 D Q

n2N .bncn/.

Proof. We follow the proof of Lemma 4.2. First let us notice that �.N /
�� D �

.N /
� �

.N /
�

and �.N /

��1 D .�
.N /
� /�1 for any permutations � and � on the set QN .

By Lemma 4.3, D.N /
0 .D

.N /
1 /�1 D �

.N /
�0

E
.N /
0 .�

.N /
�1

E
.N /
0 /�1 D �

.N /
�0

.�
.N /
�1

/�1,
where �0 D Q

n2N .ancnqn1 : : : qn;2n�2/. In view of �0�
�1
1 D �4 it follows that

D
.N /
0 .D

.N /
1 /�1 D �

.N /
�4

. Similarly,

.D
.N /
0 /�1D

.N /
1 D .�.N /

�0
E

.N /
0 /�1�.N /

�1
E

.N /
0 D .E

.N /
0 /�1�.N /

�3
E

.N /
0

since �3 D ��1
0 �1. Lemma 4.3 implies that E.N /

0 and �.N /
�3

commute. Therefore

.D
.N /
0 /�1D

.N /
1 D �

.N /
�3

. Consider the permutation �5 D Q
n2N .ancn/ on QN .

Notice that �5 D �4�3�4 and �2 D �5�0. By the above �.N /
�3

; �
.N /
�4

2 G.D.N //,

hence �.N /
�5

2 G.D.N //. Then �.N /
�2

E
.N /
0 D �

.N /
�5

�
.N /
�0

E
.N /
0 D �

.N /
�5

D
.N /
0 2

G.D.N //. Since �2.an/ D an and �2.bn/ D bn for all n 2 N , it easily follows
that transformations �.N /

�2
and E.N /

0 commute. As �2 is the product of commuting

permutations of odd orders 2n� 1, n 2 N , whileE.N /
0 is an involution, we have that

.�
.N /
�2

E
.N /
0 /m D E

.N /
0 , where m D Q

n2N .2n � 1/. In particular, E.N /
0 and �.N /

�2

are contained in G.D.N //. Now Lemma 4.3 implies that �.N /
�1

; E
.N /
1 2 G.D.N //.
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Recall that words over the alphabet f�;��1g are called patterns. Every word
� 2 .QṄ /

� is assigned a pattern v that is obtained from � by substituting � for each
occurrence of letters q 2 QN and substituting ��1 for each occurrence of letters q�1,
q 2 QN . We say that � follows the pattern v.

Now we introduce an alphabet PṄ that consists of symbols �n and ��1
n for all

n 2 N . A word over the alphabet PṄ is called a marked pattern. Every word
� 2 .QṄ /

� is assigned a marked pattern v 2 .PṄ /
� that is obtained from � as

follows. For any n 2 N we substitute �n for each occurrence of letters q 2 Qn

in � and substitute ��1
n for each occurrence of letters q�1, q 2 Qn. We say that �

follows the marked pattern v. Clearly, the pattern of � is uniquely determined by its
marked pattern. Notice that each letter of the alphabetPṄ corresponds to a connected
component of the Moore diagram of the automaton U .N /. Since D.N / is the dual
automaton of U .N /, it easily follows that the G.D.N // action on .QṄ /

� preserves
marked patterns of words.

A word � D q1q2 : : : qk 2 .QṄ /
� is called freely irreducible if none of its two-

letter subwords q1q2; q2q3; : : : ; qk�1qk is of the form qq�1 or q�1q, where q 2 QN .
Otherwise � is called freely reducible.

Lemma 4.5. For any nonempty word v 2 .PṄ /
� there exists a freely irreducible

word � 2 .QṄ /
� such that v is the marked pattern of � and the transformation U .N /

�

acts nontrivially on the first level of the rooted binary tree X�.

Proof. For any n 2 N let us substitute an for each occurrence of �n in v and b�1
n

for each occurrence of ��1
n . We get a nonempty word � 2 .QṄ /

� that follows the
marked pattern v. Now let us modify � by changing its last letter. If this letter is an

(n 2 N ), we change it to cn. If the last letter of � is b�1
n , we change it to c�1

n . This
yields another word � 2 .QṄ /

� that follows the marked pattern v. By construction,

� and � are freely irreducible. Furthermore, U .N /
� D A

.n/
cn
.A

.n/
an
/�1U

.N /

�
if the last

letter of v is �n, n 2 N , while U .N /
� D .A

.n/
cn
/�1A

.n/

bn
U

.N /

�
if the last letter of v

is ��1
n . For any n 2 N both A.n/

cn
.A

.n/
an
/�1 and .A.n/

cn
/�1A

.n/

bn
interchange one-letter

words 0 and 1. It follows that one of the transformations U .N /

�
and U .N /

� also acts
nontrivially on the first level of the rooted tree f0; 1g�.

Given a nonempty, freely irreducible word � 2 .QṄ /
�, let ZN .�/ denote the set

of all freely irreducible words in .QṄ /
� that follow the same marked pattern as �

and match � completely or except for the last letter. Obviously, � 2 ZN .�/, and
� 2 ZN .�/ if and only if � 2 ZN .�/.

Lemma 4.6. For any nonempty word v 2 .PṄ /
� there exists a freely irreducible

word � 2 .QṄ /
� such that v is the marked pattern of � an the setZN .�/ is contained

in one orbit of the G.D.N // action on .QṄ /
�.
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Proof. Let zQṄ D S
n2N fan; bn; cn; a

�1
n ; b�1

n ; c�1
n g. The set . zQṄ /

� of words in

the alphabet zQṄ is a submonoid of .QṄ /
�. Let hN W . zQṄ /

� ! .Q˙/� be the
homomorphism of monoids such that hN .an/ D a, hN .bn/ D b, hN .cn/ D c,
hN .a

�1
n / D a�1, hN .b

�1
n / D b�1, hN .c

�1
n / D c�1 for all n 2 N . For any

 2 . zQṄ /
� the word hN ./ follows the same pattern as . The word  is uniquely

determined by hN ./ and the marked pattern of . If hN ./ is freely irreducible then
so is  (however hN ./ can be freely reducible even if  is freely irreducible). It
is easy to see that E0.hN .// D hN .E

.N /
0 .//, �.ab/.hN .// D hN .�

.N /
�1

.//, and

�.bc/.hN .// D hN .�
.N /
�2

.//, where �1 D Q
n2N .anbn/ and �2 D Q

n2N .bncn/

are permutations on QN . By Proposition 3.2, the group G.D/ is generated by
E0, �.ab/, and �.bc/. On the other hand, E.N /

0 ; �
.N /
�1

; �
.N /
�2

2 G.D.N // due to

Proposition 4.4. Let zG denote the subgroup of G.D.N // generated by E.N /
0 , �.N /

�1
,

and �
.N /
�2

. It follows that for any g0 2 G.D/ there exists g 2 zG such that
g0.hN .// D hN .g.// for all  2 . zQṄ /

�. Now Proposition 3.5 implies that
words 1; 2 2 . zQṄ /

� are in the same orbit of the G.D.N // action on .QṄ /
� when-

ever they follow the same marked pattern and the words hN .1/, hN .2/ are freely
irreducible.

Given a nonempty marked pattern v 2 .PṄ /
�, let v0 be the word obtained by

deleting the last letter of v. For any n 2 N we substitute an for each occurrence of
�n in v0 and b�1

n for each occurrence of ��1
n . This yields a word � 2 .QṄ /

� that
follows the marked pattern v0. Now let � D �cn if the last letter of v is �n, n 2 N

and let � D �c�1
n if the last letter of v is ��1

n . Clearly, � is a freely irreducible word
following the marked pattern v. Moreover, � 2 . zQṄ /

� and the word hN .�/ is also
freely irreducible.

We shall show that the setZN .�/ is contained in the orbit of � under theG.D.N //

action on .QṄ /
�. Take any  2 ZN .�/. If  is a word over the alphabet zQṄ and

hN ./ is freely irreducible, then it follows from the above that  D g.�/ for some
g 2 zG � G.D.N //. On the other hand, suppose that the last letter of  is qni or
q�1

ni , where n 2 N , 1 � i � 2n � 2. In this case we have  D .�
.N /
� /i .�/, where

� D Q
n2N .cnqn1 : : : qn;2n�2/. By Proposition 4.4, �.N /

� 2 G.D.n//.
It remains to consider the case when the last letter of  belongs to zQṄ but the word

hN ./ is freely reducible. There is at most one  2 ZN .�/ with such properties. It
exists if the last two letters of v are �l��1

m or ��1
l

�m, where l; m 2 N , l ¤ m. Assume
this is the case. Then the last letter of the word � is either al or b�1

l
. Let us change

this letter to cl or c�1
l

, respectively. The resulting word �1 follows the marked pattern
v0. Also, the words hN .�/ and hN .�1/ are freely irreducible. By Proposition 3.5,
hN .�1/ D g1.hN .�// for some g1 2 G.D/. There exists a unique 1 2 . zQṄ /

�
such that hN .1/ D g1.hN .// and v is the marked pattern of 1. By the above
there exists Qg1 2 zG such that Qg1.�/ D �1 and Qg1./ D 1. Since the word hN ./ is
freely reducible, so is hN .1/. On the other hand, the word hN .�1/, which can be
obtained by deleting the last letter of hN .1/, is freely irreducible. It follows that the
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last two letters of hN .1/ are cc�1 or c�1c. Then the last two letters of 1 are clc
�1
m

or c�1
l
cm. If 2m� 1 does not divide 2l � 1 then the word .�.N /

� /2l�1.1/matches 1

except for the last letter. Consequently, the word 0 D Qg�1
1 .�

.N /
� /2l�1 Qg1./matches

 except for the last letter. Since the G.D.N // action preserves marked patterns, the
word 0 follows the marked pattern v. Hence 0 2 ZN .�/. As 0 ¤ , it follows
from the above that 0 D g.�/ for some g 2 G.D.N //. Then  D g0.�/, where
g0 D Qg�1

1 .�
.N /
� /1�2l Qg1g 2 G.D.N //.

Now suppose that 2m�1 divides 2l�1. Then .�.N /
� /2l�1.1/ D 1 and the above

argument does not apply. Recall that the last two letters ofhN .1/ are cc�1 or c�1c. If
these letters are preceded by b�1, we let 2 D �

.N /
�1

.1/. Otherwise they are preceded
by a or hN .1/ has length 2. In this case, we let 2 D 1. Further, consider the
permutation �1 D �2m�1�2�

�.2m�1/�2�
2m�1 onQN . Since�.N /

� ; �
.N /
�2

2 G.D.n//,

we have that �.N /
�1

D .�
.N /
� /2m�1�

.N /
�2

.�
.N /
� /1�2m�

.N /
�2

.�
.N /
� /2m�1 2 G.D.N //. It

is easy to see that �1.cm/ D cm and �1.an/ D an for alln 2 N . Since 2m�1 < 2l�1,
we have �1.cl/ D bl . Also, for any n 2 N we have �1.bn/ D bn if 2n � 1 divides
2m � 1 and �1.bn/ D cn otherwise. It follows that 3 D �

.N /
�1

.2/ is a word in the
alphabet zQṄ such that hN .3/ is freely irreducible. Since 3 follows the marked
pattern v, we obtain that 3 belongs to the orbit of � under the G.D.N // action. So
does the word .

Proposition 4.7. Suppose that � 2 .QṄ /
� is a freely irreducible word. Then the

orbit of � under the action of the group G.D.N // on .QṄ /
� consists of all freely

irreducible words following the same marked pattern as � .

Proof. First we shall show that the G.D.N // action on .QṄ /
� preserves marked

patterns and free irreducibility of words. Let �Ṅ and  Ṅ denote the state transition
and output functions of the automatonU .N /. By z�N and z N denote the state transition
and output functions of its dual D.N /. Take any q 2 QṄ and x 2 X . For every
n 2 N we have that �Ṅ .q; x/ 2 Qn (resp. �Ṅ .q; x/ 2 Qṅ ) if and only if q 2
Qn (resp. q 2 Qṅ ). Since �Ṅ .q; x/ D z N .x; q/, it follows that transformations

D
.N /
0 and D.N /

1 preserve marked patterns of words. So does any g 2 G.D.N //.
Further, let p D �Ṅ .q; x/ and y D  Ṅ .q; x/. Then �Ṅ .q

�1; y/ D p�1 and

 Ṅ .q
�1; y/ D x. Consequently, D.N /

x .qq�1/ D z N .x; q/ z N .z�N .x; q/; q
�1/ D

�Ṅ .q; x/�Ṅ .q
�1;  Ṅ .q; x// D pp�1. It follows that the set P D fqq�1 j q 2

QṄ g � .QṄ /
� is invariant under D.N /

0 and D.N /
1 . Any freely reducible word � 2

.QṄ /
� is represented as �1�0�2, where �0 2 P and �1; �2 2 .QṄ /

�. For any x 2 X
we have D.N /

x .�/ D D
.N /
x .�1/D

.N /
x0
.�0/D

.N /
x1
.�2/, where x0; x1 2 X . By the above

D
.N /
x .�/ is freely reducible. ThusD.N /

0 andD.N /
1 preserve free reducibility of words.

Since these transformations are invertible, they also preserve free irreducibility, and
so does any g 2 G.D.N //.
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Now we are going to prove that for any freely irreducible words �1; �2 2 .QṄ /
�

following the same marked pattern v there exists g 2 G.D.N // such that �2 D g.�1/.
The claim is proved by induction on the length of the marked pattern v. The empty
marked pattern is followed only by the empty word. Now let k � 1 and assume that
the claim holds for all marked patterns of length less than k. Take any marked pattern
v of length k. By Lemma 4.6, the marked pattern v is followed by a freely irreducible
word � 2 .QṄ /

� such that the set ZN .�/ is contained in an orbit of the G.D.N //

action. Suppose that �1; �2 2 .QṄ /
� are freely irreducible words following the

marked pattern v. Let �, �1, �2 be the words obtained by deleting the last letter of � ,
�1, �2, respectively. Then �, �1, �2 are freely irreducible and follow the same marked
pattern of length k � 1. By the inductive assumption there are g1; g2 2 G.D.N //

such that � D g1.�1/ D g2.�2/. Since the G.D.N // action preserves marked
patterns and free irreducibility, it follows that g1.�1/; g2.�2/ 2 ZN .�/. As ZN .�/

is contained in an orbit, there exists g0 2 G.D.N // such that g0.g1.�1// D g2.�2/.
Then �2 D g.�1/, where g D g�1

2 g0g1 2 G.D.N //.

Corollary 4.8. Let n be a positive integer. Suppose that � 2 .Qṅ /
� is a freely

irreducible word. Then the orbit of � under the action of the group G.D.n// on
.Qṅ /

� consists of all freely irreducible words following the same pattern as � .

Corollary 4.9. The group defined by the dual automaton of anAleshin type automaton
A.n/ acts transitively on each level of the rooted treeQ�

n.

Corollary 4.8 is a particular case of Proposition 4.7, whenN D fng. Furthermore,
Corollary 4.9 follows from Corollary 4.8 in the same way as Corollary 3.6 follows
from Proposition 3.5. We omit the proof.

Theorem 4.10. For any nonempty set N of positive integers the group G.A.N // is

the free non-Abelian group on generators A.N /
q , q 2 QN .

Proof. The group G.A.N // is the free non-Abelian group on generators Aq , q 2
QN , if and only if .A.N /

q1
/m1.A

.N /
q2
/m2 : : : .A

.N /
qk
/mk ¤ 1 for any pair of sequences

q1; : : : ; qk andm1; : : : ; mk such thatk > 0, qi 2 QN andmi 2 Znf0g for 1 � i � k,

and qi ¤ qiC1 for 1 � i � k � 1. Since U .N /
q D A

.N /
q and U .N /

q�1 D .A
.N /
q /�1

for all q 2 QN , an equivalent condition is that U .N /

�
¤ 1 for any nonempty freely

irreducible word � 2 .QṄ /
�.

Suppose that U .N /

�
D 1 for some freely irreducible word � 2 .QṄ /

�. By

Corollary 2.4, U .N /

g.�/
D 1 for all g 2 S.D.N //. Since the transformation semigroup

S.D.N // has the same orbits as the transformation group G.D.N //, it follows that
U

.N /

g.�/
D 1 for all g 2 G.D.N //. Now Proposition 4.7 implies that U .N /

� D 1 for

any freely irreducible word � 2 .QṄ /
� following the same marked pattern as � .
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In particular, U .N /
� acts trivially on the first level of the rooted binary tree f0; 1g�.

Finally, Lemma 4.5 implies that � follows the empty marked pattern. Then � itself is
the empty word.

5. The Bellaterra automaton and its series

In this section we consider the Bellaterra automaton, a series of automata of Bellaterra
type, and their disjoint unions. We use the notation of Sections 3 and 4.

The Bellaterra automaton B is an automaton over the alphabet X D f0; 1g with
the set of internal statesQ D fa; b; cg. The state transition function y� and the output
function y of B are defined as follows: y�.a; 0/ D y�.b; 1/ D c, y�.a; 1/ D y�.b; 0/ D
b, y�.c; 0/ D y�.c; 1/ D a; y .a; 0/ D y .b; 0/ D y .c; 1/ D 0, y .a; 1/ D y .b; 1/ D
y .c; 0/ D 1. The Moore diagram of B is depicted in Figure 2. It is easy to verify
that the inverse automaton of B coincides with B . Besides, the reverse automaton
of B can be obtained from B by renaming its states a and c to c and a, respectively
Lemma 2.5 implies that B is bi-reversible.

The Bellaterra automatonB is closely related to theAleshin automatonA. Namely,
the two automata share the alphabet, the set of internal states, and the state transition
function. On the other hand, the output function y of B never coincides with the
output function  of A, that is, y .q; x/ ¤  .q; x/ for all q 2 Q and x 2 X .

For any integern � 1we define a Bellaterra type automatonB.n/ as the automaton
that is related to the Aleshin type automaton A.n/ in the same way as the automaton
B is related to A. To be precise, B.n/ is an automaton over the alphabet X D f0; 1g
with the set of states Qn. The state transition function of B.n/ coincides with that
of A.n/. The output function y n of B.n/ is defined so that for any x 2 X we have
y n.q; x/ D x if q 2 fan; bng and y n.q; x/ D 1 � x if q 2 Qn n fan; bng. Then
y n.q; x/ D 1� n.q; x/ for all q 2 Qn and x 2 X , where  n is the output function
ofA.n/. Note that the automatonB.1/ coincides withB up to renaming of the internal
states.

In addition, we define a Bellaterra type automaton B.0/. This is an automaton
over the alphabet X with the set of internal states Q0 consisting of a single element
c0. The state transition function y�0 and the output function y 0 of B.0/ are defined as
follows: y�0.c0; 0/ D y�0.c0; 1/ D c0; y 0.c0; 0/ D 1, y 0.c0; 1/ D 0.

It is easy to see that each Bellaterra type automatonB.n/ coincides with its inverse
automaton. The reverse automaton of B.0/ coincides with B.0/ as well. In the case
n � 1, the reverse automaton of B.n/ can be obtained from B.n/ by renaming its
states cn; qn1; : : : ; qn;2n�2; an to an; qn;2n�2; : : : ; qn1; cn, respectively. Lemma 2.5
implies that each B.n/ is bi-reversible.

Let N be a nonempty finite set of nonnegative integers. We denote by B.N / the
disjoint union of automataB.n/, n 2 N . ThenB.N / is an automaton over the alphabet
X D f0; 1g with the set of internal states QN D S

n2N Qn. It is bi-reversible since
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c0

0|1
1|0

a2

b2

c2 q21

q22

1|1

1|1

0|0
0|0

0|1
1|0

0|1
1|0

0|1
1|0

Figure 7. Automaton B.f0;2g/.

each B.n/ is bi-reversible. If 0 … N , then the automaton B.N / shares its alphabet,
its internal states, and its state transition function with the automaton A.N / while the
output functions of these automata never coincide.

The relation between automata of Aleshin type and of Bellaterra type induces a
relation between transformations defined by automata of these two types.

Lemma 5.1. Let h D B
.0/
c0

. Then

(i) Aq D hBq and Bq D hAq for any q 2 fa; b; cg;

(ii) A.n/
q D hB

.n/
q and B.n/

q D hA
.n/
q for any n � 1 and q 2 Qn;

(iii) A.N /
q D hB

.N /
q and B.N /

q D hA
.N /
q for any nonempty finite set N of positive

integers and any q 2 QN .

Proof. The transformation h is the automorphism of the free monoid f0; 1g� that
interchanges the free generators 0 and 1. For any w 2 X� the word h.w/ can be
obtained from w by changing all letters 0 to 1 and all letters 1 to 0.

Suppose that zA and zB are two automata over the alphabet X such that their sets
of internal states and state transition functions are the same but their output functions
never coincide. It is easy to see that zAq D h zBq and zBq D h zAq for any internal state
q of the automata zA and zB . The lemma follows.

Proposition 5.2. (i) The group G.A/ is an index 2 subgroup of G.B.f0;1g//.
(ii) For any n � 1 the group G.A.n// is an index 2 subgroup of G.B.f0;ng//.
(iii) For any nonempty finite set N of positive integers the group G.A.N // is an

index 2 subgroup of G.B.N [f0g//.

Proof. Note that the statement (i) is a particular case of the statement (ii) asG.A/ D
G.A.1//. Furthermore, the statement (ii) is a particular case of the statement (iii)
since A.n/ D A.fng/ for any integer n � 1.

Let N be a nonempty finite set of positive integers. The group G.A.N // is gen-
erated by transformations A.N /

q , q 2 QN . The group G.B.N [f0g// is generated by
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transformations h D B
.0/
c0

and B.N /
q , q 2 QN . By Lemma 5.1, A.N /

q D hB
.N /
q and

B
.N /
q D hA

.N /
q for any q 2 QN . It follows that the group G.B.N [f0g// is generated

by transformations h and A.N /
q , q 2 QN . In particular, G.A.N // � G.B.N [f0g//.

For any n � 0 the automaton B.n/ coincides with its inverse. Lemma 2.1 implies
that h2 D 1 and .B.N /

q /2 D 1, q 2 QN . Then hA.N /
q h�1 D B

.N /
q h D .A

.N /
q /�1 for

any q 2 QN . It follows that G.A.N // is a normal subgroup of G.B.N [f0g//. Since
h2 D 1, the index of the group G.A.N // in G.B.N [f0g// is at most 2. On the other
hand, G.A.N // ¤ G.B.N [f0g// as G.B.N [f0g// contains a nontrivial involution h,
while G.A.N // is a free group due to Theorem 4.10. Thus G.A.N // is an index 2
subgroup of G.B.N [f0g//.

The relation between groups defined by automata ofAleshin type and of Bellaterra
type allows us to establish the structure of the groups defined by automata of the latter
type. As the following two theorems show, these groups are free products of groups
of order 2.

Theorem 5.3 ([Nek]). The groupG.B/ is freely generated by involutionsBa,Bb ,Bc .

Theorem 5.4. (i) For any n � 1 the group G.B.n// is freely generated by 2n C 1

involutions B.n/
q , q 2 Qn.

(ii) For any nonempty finite set N of nonnegative integers the group G.B.N // is
freely generated by involutions B.N /

q , q 2 QN .

To prove Theorems 5.3 and 5.4, we need the following lemma.

Lemma 5.5. Suppose that a groupG is generated by elements g0; g1; : : : ; gk (k � 1)
of order at most 2. Let H be the subgroup of G generated by elements hi D g0gi ,
1 � i � k. Then G is freely generated by k C 1 involutions g0; g1; : : : ; gk if and
only ifH is the free group on k generators h1; : : : ; hk .

Proof. Consider an element h D h
"1

i1
h

"2

i2
: : : h

"l

il
, where l � 1, 1 � ij � k, "j 2

f�1; 1g, and "j D "j C1 whenever ij D ij C1. Since hi D g0gi and h�1
i D gig0

for 1 � i � k, and g2
0 D 1, we obtain that h D g0

0gi1g
0
1 : : : gilg

0
l
, where each g0

j is
equal to g0 or 1. Moreover, g0

j D g0 whenever "j D "j C1. In particular, h ¤ 1 if G
is freely generated by involutions g0; g1; : : : ; gk . It follows that H is the free group
on generators h1; : : : ; hk if G is freely generated by involutions g0; g1; : : : ; gk .

Now assume thatH is the free group on generators h1; : : : ; hk . Then each hi has
infinite order. Since hi D g0gi and g2

0 D g2
i D 1, it follows that g0 ¤ 1 and gi ¤ 1.

Hence each of the elements g0; g1; : : : ; gk has order 2. In particular, none of these
elements belongs to the free group H .

The group G is freely generated by involutions g0; g1; : : : ; gk if g ¤ 1 for any
g D gi1 : : : gil such that l � 1, 0 � ij � k, and ij ¤ ij C1. First consider the
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case when l is even. Note that gigj D h�1
i hj for 0 � i; j � n, where by definition

h0 D 1. Therefore g D h�1
i1
hi2 : : : h

�1
il�1

hil 2 H . Since h0 D 1, the sequence
h�1

i1
; hi2 ; : : : ; h

�1
il�1

; hil can contain the unit elements. After removing all of them,
we obtain a nonempty sequence in which neighboring elements are not inverses of
each other. Since h1; : : : ; hk are free generators, we conclude that g ¤ 1. In the
case when l is odd, it follows from the above that g D gi1h, where h 2 H . Since
gi1 … H , we have that g … H , in particular, g ¤ 1.

Proof of Theorem 5.3 and Theorem 5.4. First we observe that Theorem 5.3 is a par-
ticular case of Theorem 5.4 since the automata B and B.1/ coincide up to renaming
of their internal states. Further, the statement (i) of Theorem 5.4 is a particular case
of the statement (ii) since B.n/ D B.fng/ for any n � 1.

Suppose that N is a nonempty finite set of nonnegative integers such that 0 2 N .
For any n 2 N the automaton B.n/ coincides with its inverse. Lemma 2.1 implies
that .B.N /

q /2 D 1 for all q 2 QN . If N D f0g then QN D fc0g and G.B.N // is a

group of order 2 generated by the involution h D B
.0/
c0

. Now assume that N ¤ f0g.
Then K D N n f0g is a nonempty set of positive integers. The group G.B.N // is
generated by transformations h and B.K/

q , q 2 QK . All generators are of order at

most 2. The group G.A.K// is the free group on generators A.K/
q , q 2 QK due to

Theorem 4.10. By Lemma 5.1, A.K/
q D hB

.K/
q for any q 2 QK . Then Lemma 5.5

implies that G.B.N // is freely generated by involutions h and B.K/
q , q 2 QK .

Now consider the case whenN is a nonempty finite set of positive integers. By the
above the groupG.B.N [f0g// is freely generated by involutions h andB.N /

q , q 2 QN .

Clearly, this implies that the groupG.B.N // is freely generated by involutions B.N /
q ,

q 2 QN .

Now we shall establish a relation between transformation groups defined by the
Aleshin type and the Bellaterra type automata with the same set of internal states.

Since G.A/ is the free group on generators Aa, Ab , Ac , there is a unique homo-
morphism � W G.A/ ! G.B/ such that �.Aa/ D Ba, �.Ab/ D Bb , �.Ac/ D Bc .
Likewise, for any n � 1 there is a unique homomorphism �n W G.A.n// ! G.B.n//

such that �n.A
.n/
q / D B

.n/
q for all q 2 Qn. Also, for any nonempty finite set N of

positive integers there is a unique homomorphism �N W G.A.N // ! G.B.N // such
that �N .A

.N /
q / D B

.N /
q for all q 2 QN .

Proposition 5.6. (i) G.A/ \G.B/ D fg 2 G.A/ j �.g/ D gg.
(ii) G.A/ \G.B/ is the free group on generators BaBb and BaBc .
(iii) G.A/ \G.B/ is an index 2 subgroup of G.B/.
(iv) A�1

p Aq D BpBq for all p; q 2 fa; b; cg.

Proof. Let h D B
.0/
c0

. By Lemma 5.1, Aq D hBq for all q 2 fa; b; cg. Since
the inverse automaton of B coincides with B , Lemma 2.1 implies that B2

a D B2
b

D
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B2
c D 1. Then for anyp; q 2 fa; b; cg we haveA�1

p Aq D .hBp/
�1hBq D B�1

p Bq D
BpBq .

It is easy to see that fg 2 G.A/ j �.g/ D gg is a subgroup of G.A/ \ G.B/.
Let zG be the group generated by transformations BaBb and BaBc . By the above
�.A�1

a Ab/ D B�1
a Bb D BaBb D A�1

a Ab and �.A�1
a Ac/ D B�1

a Bc D BaBc D
A�1

a Ac . It follows that zG is a subgroup of fg 2 G.A/ j �.g/ D gg.
By Theorem 5.3, the group G.B/ is freely generated by involutions Ba, Bb ,

Bc . Then Lemma 5.5 implies that zG is the free group on generators BaBb and
BaBc . Note that BaBq 2 zG for all q 2 Q. Then for any p; q 2 Q we have
BpBq D .BaBp/

�1BaBq 2 zG. It follows that for any g 2 G.B/ at least one of the
transformations g and Bag belongs to zG. Therefore the index of zG in G.B/ is at
most 2.

Note that Ba … G.A/ as Ba is a nontrivial involution while G.A/ is a free group.
HenceG.A/\G.B/ ¤ G.B/. Now it follows from the above that zG D fg 2 G.A/ j
�.g/ D gg D G.A/ \G.B/ and this is an index 2 subgroup of G.B/.

Proposition 5.7. Let n be a positive integer. Then

(i) G.A.n// \G.B.n// D fg 2 G.A.n// j �n.g/ D gg;

(ii) G.A.n//\G.B.n// is the free group on 2n generatorsB.n/
an
B

.n/
q , q 2 Qn nfang;

(iii) G.A.n// \G.B.n// is an index 2 subgroup of G.B.n//;

(iv) .A.n/
p /�1A

.n/
q D B

.n/
p B

.n/
q for all p; q 2 Qn.

Proposition 5.8. Let N be a nonempty finite set of positive integers. Then

(i) G.A.N // \G.B.N // D fg 2 G.A.N // j �N .g/ D gg;
(ii) for any n 2 N the group G.A.N // \ G.B.N // is the free group on generators

B
.N /
an

B
.N /
q , q 2 QN n fang;

(iii) G.A.N // \G.B.N // is an index 2 subgroup of G.B.N //;

(iv) .A.N /
p /�1A

.N /
q D B

.N /
p B

.N /
q for all p; q 2 QN .

The proofs of Propositions 5.7 and 5.8 are completely analogous to the proof of
Proposition 5.6 and we omit them.

Now let us consider the dual automata of the Bellaterra automaton and automata
of Bellaterra type.

Let yD denote the dual automaton of the Bellaterra automaton B . The automaton
yD is defined over the alphabet Q D fa; b; cg, with two internal states 0 and 1. The

Moore diagram of yD is depicted in Figure 8. The automaton yD is bi-reversible since
B is bi-reversible.

A word � over an arbitrary alphabet is called a double letter word if there are
two adjacent letters in � that coincide. Otherwise we call � a no-double-letter word.
The set of no-double-letter words over the alphabet Q forms a subtree of the rooted
ternary tree Q�. As an unrooted tree, this subtree is 3-regular. However it is not
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0 1

c|a

c|a

a|c
b|b

a|b
b|c

Figure 8. The dual automaton yD.

regular as a rooted tree. The following proposition shows that the group G. yD/ acts
transitively on each level of the subtree.

Proposition 5.9 ([Nek]). Suppose that � 2 Q� is a no-double-letter word. Then the
orbit of � under the action of the group G. yD/ onQ� consists of all no-double-letter
words of the same length as �.

Proof. Let 
 and � denote the state transition and output functions of the automaton
B . By Q
 and Q� denote the state transition and output functions of its dual yD. Take
any q 2 Q and x 2 X . Let p D 
.q; x/ and y D �.q; x/. Since B coincides
with its inverse automaton, it follows that p D 
.q; y/. Consequently, yDx.qq/ D
Q�.x; q/ Q�. Q
.x; q/; q/ D 
.q; x/
.q; �.q; x// D pp. It follows that the set P D
fqq j q 2 Qg � Q� is invariant under yD0 and yD1. Any double letter word � 2 Q�
is represented as �1�0�2, where �0 2 P and �1; �2 2 Q�. For any x 2 X we have
yDx.�/ D yDx.�1/ yDx0

.�0/ yDx1
.�2/, where x0; x1 2 X . By the above yDx.�/ is a

double letter word. Thus yD0 and yD1 map double letter words to double letter words.
Since these transformations are invertible, they also map no-double-letter words to
no-double-letter words, and so does any g 2 G. yD/.

Now we are going to prove that for any no-double-letter words �1; �2 2 Q� of
the same length l there exists g 2 G. yD/ such that �2 D g.�1/. The empty word is
the only word of length 0 so it is no loss to assume that l > 0. First consider the
case when l is even. We have �1 D q1q2 : : : ql�1ql and �2 D p1p2 : : : pl�1pl for
some qi ; pi 2 Q, 1 � i � l . Consider two words �1 D q1q

�1
2 : : : ql�1q

�1
l

and
�2 D p1p

�1
2 : : : pl�1p

�1
l

over the alphabetQ˙. Clearly, �1 and �2 follow the same
pattern. Furthermore, they are freely irreducible since �1 and �2 are no-double-letter
words. By Proposition 3.5, �2 D g0.�1/ for some g0 2 G.D/ (recall that D is
the dual of the automaton U , which is the disjoint union of the Aleshin automaton
A and its inverse). Since the G.D/ action on .Q˙/� has the same orbits as the
action of the semigroup S.D/, we may assume that g0 2 S.D/. Then g0 D Dw

for some word w 2 X�. Proposition 2.3 implies that U�1
.wu/ D U�1

.w/U�2
.u/

for any u 2 X�. By Proposition 5.6, A�1
p Aq D BpBq for all p; q 2 Q. It follows

that U�1
D B�1

and U�2
D B�2

. In particular, B�1
.wu/ D B�1

.w/B�2
.u/ for any

u 2 X�. Now Proposition 2.3 implies that B�2
D Bg.�1/, where g D yDw 2 G. yD/.

By the above g.�1/ is a no-double-letter word. By Theorem 5.3, the group G.B/ is
freely generated by involutions Bq , q 2 Q. Since �2 and g.�1/ are no-double-letter
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words in the alphabet Q, the equality B�2
D Bg.�1/ implies that �2 D g.�1/.

Now consider the case when �1 and �2 have odd length. Obviously, there exist
letters q0; p0 2 Q such that �1q0 and �2p0 are no-double-letter words. Since �1q0

and �2p0 are of the same even length, it follows from the above that �2p0 D g.�1q0/

for some g 2 G. yD/. Then �2 D g.�1/.

For any integer n � 0 let yD.n/ denote the dual automaton of the automaton B.n/.
The automaton yD.n/ is defined over the alphabetQn, with two internal states 0 and 1.
It is bi-reversible since B.n/ is bi-reversible.

Proposition 5.10. Let n � 1 and suppose that � 2 Q�
n is a no-double-letter word.

Then the orbit of � under the action of the group G. yD.n// on Q�
n consists of all

no-double-letter words of the same length as � .

The proof of Proposition 5.10 is completely analogous to the above proof of
Proposition 5.9 and we omit it.
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