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The ergodic theory of free group actions:
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Abstract. Previous work introduced two measure-conjugacy invariants: the f -invariant (for
actions of free groups) and †-entropy (for actions of sofic groups). The purpose of this paper
is to show that the f -invariant is essentially a special case of †-entropy. There are two
applications: the f -invariant is invariant under group automorphisms and there is a uniform
lower bound on the f -invariant of a factor in terms of the original system.
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1. Introduction

The paper [Bo08b] introduced a measure-conjugacy invariant, called †-entropy, for
measure-preserving actions of a sofic group. This was applied, for example, to clas-
sify Bernoulli shifts over an arbitrary countable linear group. Previously, [Bo08a]
introduced the f -invariant for measure-preserving actions of free groups. The invari-
ants of both papers have strong analogies with classical Kolmogorov–Sinai entropy.
The purpose of this paper is to show that the f -invariant is essentially a special case
of †-entropy. We apply this result to show the f -invariant does not change under
group automorphisms and that there is a lower bound on the f -invariant of a factor
in terms of the f -invariant of the system. The introductions to [Bo08a]–[Bo08b]
provide further background and motivation for †-entropy and the f -invariant.

To define †-entropy precisely, let G be a countable group and let † D f�ig1
iD1

be a sequence of homomorphisms �i W G ! Sym.mi / where Sym.mi / denotes the
full symmetric group of the set f1; : : : ; mig. † is asymptotically free if

lim
i!1

jf1 � j � mi j �i .g1/j D �i .g2/j gj
mi

D 0:

for every pair g1; g2 2 G with g1 ¤ g2. The treatment of †-entropy given next
differs from [Bo08b] in two respects: for simplicity, we assume that each �i is a
homomorphism and we use observables rather than partitions to define it.
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We will write G ÕT .X;�/ to mean .X;�/ is a standard probability measure
space and T D .Tg/g2G is an action of G on .X;�/ by measure-preserving trans-
formations. This means that for each g 2 G, Tg W X ! X is a measure-preserving
transformation and Tg1

Tg2
D Tg1g2

. An observable of .X;�/ is a measurable map
� W X ! AwhereA is a finite or countably infinite set. We will say that � is finite ifA
is finite. Roughly speaking, the†-entropy rate of � is the exponential rate of growth
of the number of observables  W f1; : : : ; mig ! A that approximate �. In order to
make precise what it means to approximate, we need to introduce some definitions.

If � W X ! A and  W X ! B are two observables, then the join of � and
 is the observable � _  W X ! A � B defined by � _  .x/ D .�.x/;  .x//.
If g 2 G then Tg� W X ! A is defined by Tg�.x/ D �.Tgx/. If H � G is
finite, then let �H ´ W

h2H Th�: �H maps X into AH , the direct product of
jH j copies of A. Let �H� � denote the pushforward of � on AH . In other words,
�H� .�/.S/ D �..�H /�1.S// for S � AH .

For each i , let �i denote the uniform probability measure on f1; : : : ; mig. If
 W f1; : : : ; mig ! A is an observable and H � G then let  H ´ W

h2H �i .h/ ,
where �i .h/ W f1; : : : ; mig ! A is defined by �i .h/ .j / D  .�i .h/j /. Of course,
 H depends on �i but, to keep the notation simple, we will leave this dependence
implicit. Let  H� �i be the pushforward of �i on AH . Finally, let dH�i

.�;  / be the
l1-distance between �H� � and  H� �i . In other words,

dH�i
.�;  / D P

a2AH

j�H� �.a/ �  H� �i .a/j:

Definition 1. If � W X ! A is an observable andA is finite then define the†-entropy
rate of � by

h.†; T; �/ ´ inf
H�G inf

">0
lim sup
i!1

1
mi

log.jf W f1; : : : ; mig ! A j dH�i
.�;  / � "gj/:

The first infimum above is over all finite subsets H � G.

Definition 2. Define the entropy of � by

H.�/ ´ � P
a2A

�.��1.a// log.�.��1.a///:

Definition 3. If � W X ! A is an observable and A is countably infinite then let
�n W A ! An be a sequence of maps such that

(1) An is a finite set for all n;
(2) for each i > j there is a map �ij W Ai ! Aj such that �j D �ij B �i ;
(3) �n is asymptotically injective in the sense that for all a; b 2 A with a ¤ b there

exists N such that n > N implies �n.a/ ¤ �n.b/.

Now define
h.†; T; �/ ´ lim

n!1 h.†; T; �n B �/:
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In [Bo08b] it is proven that ifH.�/ < 1 then this limit exists and is independent of
the choice of sequence f�ng.

An observable � is generating if the smallest G-invariant � -algebra on X that
contains f��1.a/ga2A is equal to the � -algebra of all measurable sets up to sets of
measure zero. The next theorem is (part of) the main result of [Bo08b].

Theorem 1.1. Let † D f�ig be an asymptotically free sequence of homomorphisms
�i W G ! Sym.mi / for a group G. Let G ÕT .X;�/. If �1 and �2 are two
finite-entropy generating observables then h.†; T; �1/ D h.†; T; �2/.

This motivates the following definition.

Definition 4. If † and T are as above then the †-entropy of the action T is defined
by h.†; T / ´ h.†; �/, where � is any finite-entropy generating observable (if one
exists).

Next let us discuss a slight variation on †-entropy. Let fmig1
iD1 be a sequence

of natural numbers. For each i 2 N, let �i be a probability measure on the set of
homomorphisms from G to Sym.mi /. Let �i W G ! Sym.mi / be chosen at random
according to �i . The sequence † D f�ig1

iD1 is said to be asymptotically free if for
every pair g1; g2 2 G with g1 ¤ g2,

lim
i!1

EŒjf1 � j � mi j �i .g1/j D �i .g2/j gj�
mi

D 0

where EŒ � � denotes expected value. The†-entropy rate of an observable � W X ! A

with A finite is defined by

h.†; T; �/

´ inf
H�G inf

">0
lim sup
i!1

1
mi

log.EŒjf W f1; : : : ; mig ! A j dH�i
.�;  / � "gj�/:

With these definitions in mind, Theorem 1.1 is still true if “homomorphisms” is
replaced with “probability measures on the set of homorphisms”.

Let us note one more generalization. If G is a semigroup with identity then the
above definitions still make sense. Using results from [Bo08c] it can be shown that
Theorem 1.1 remains true.

Now let us recall the f -invariant from [Bo08a]. Let G D hs1; : : : ; sri be either a
free group or free semigroup of rank r . Let G ÕT .X;�/. Let ˛ be a partition of X
into at most countably many measurable sets. The entropy of ˛ is defined by

H.˛/ ´ � P
A2˛

�.A/ log.�.A//

where, by convention, 0 log.0/ D 0. If ˛ and ˇ are partitions of X then the join is
the partition ˛_ˇ ´ fA\B j A 2 ˛;B 2 ˇg. LetB.e; n/ denote the ball of radius
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n in G with respect to the word metric induced by its generating set (which is either
fs1; : : : ; srg if G is a semigroup or fs˙1

1 ; : : : ; s˙1
r g is G is a group). Define

F.T; ˛/ ´ .1 � 2r/H.˛/C
rP
iD1

H.˛ _ T �1
si
˛/;

˛n ´ W
g2B.e;n/

T �1
g ˛;

f .T; ˛/ ´ inf
n
F.T; ˛n/:

The partition˛ is generating if the smallestG-invariant � -algebra containing˛ equals
the � -algebra of all measurable sets up to sets of measure zero.

Theorem 1.2. Let G D hs1; : : : ; sri be a free group or free semigroup. Let G ÕT

.X;�/. If ˛1 and ˛2 are two generating partitions with H.˛1/CH.˛2/ < 1 then
f .T; ˛1/ D f .T; ˛2/.

This theorem was proven in [Bo08c]. The special case in whichG is a group and
˛1, ˛2 are finite is the main result of [Bo08a]. Because of this theorem, we define
the f -invariant of the action by f .T / ´ f .T; ˛/, where ˛ is any finite-entropy
generating partition of X (if one exists).

In order to relate this result with†-entropy, let us make the following definitions.
If � W X ! A is an observable, then let N� D f��1.a/ga2A be the corresponding
partition of X . Define F.T; �/ ´ F.T; N�/ and f .T; �/ ´ f .T; N�/. The main
result of this paper is:

Theorem 1.3. Let G D hs1; : : : ; sri be a free group or free semigroup of rank
r � 1. Let G ÕT .X;�/. Let � be a finite observable. For i � 1, let �i be the
uniform probability measure on the set of all homomorphisms fromG to Sym.i/. Let
† D f�ig1

iD1. Then h.†; T; �/ D f .T; �/:

We will prove a refined version of this theorem as follows. Recall the definition
of dH�i

.�;  / given above. Define

d�
�i
.�;  / ´

rP
iD1

d
fe;si g
�i

.�;  /:

Theorem 1.4. LetG and T be as in the previous theorem. Let � W X ! A be a finite
observable. Let �i W G ! Sym.i/ be a homomorphism chosen uniformly at random.
Then

F.T; �/ D inf
">0

lim sup
i!1

1
i

log.EŒjf W f1; : : : ; ig ! A j d�
�i
.�;  / � "gj�/:

This theorem is proven in Section 2. In Section 3 we deduce Theorem 1.3 from
it.
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1.1. Application I: automorphism invariance. Let G be a countable group or
semigroup. Let G ÕT .X;�/. Let ! W G ! G be an automorphism. Let T ! D
.T !g /g2G where T !g x ´ T!.g/x for all x 2 X . This new action of G is not
necessarily isomorphic to the original action. That is, there might not exist a map
� W X ! X such that �.Tgx/ D T !g �.x/ for a.e. x 2 X and all g 2 G.

Suppose that † D f�ig is an asymptotically free sequence of homomorphisms
�i W G ! Sym.mi /. Let †! D f�i B !g. A short exercise reveals that h.†; T; �/ D
h.†! ; T ! ; �/ for any �.

If �i W G ! Sym.i/ is chosen uniformly at random, it follows that the law of
�i B ! is the same as the law of �i . Therefore, if �i is the uniform probability
measure on the set of homomorphisms from G to Sym.i/ and † D f�ig, then
h.†; T; �/ D h.†; T ! ; �/. Theorem 1.3 now implies:

Theorem 1.5. Let G and T be as in Theorem 1.3. Let ! W G ! G be an automor-
phism. Then f .T; �/ D f .T ! ; �/ for any finite observable �.

This implies that f .T; �/ does not depend on the choice of free generator set
fs1; : : : ; srg forG since any two free generating sets are related by an automorphism.

1.2. Application II: lower bounds on the f -invariant of a factor

Definition 5. Let G ÕT .X;�/ and G ÕS .Y; �/. Then S is a factor of T if there
exists a measurable map � W X ! Y such that ��� D � and �.Tgx/ D Sg�.x/ for
all g 2 G and a.e. x 2 X .

To motivate this section, let us point out two curious facts.
First, Ornstein proved in [Or70] that every factor of a Bernoulli shift over Z is

measurably conjugate to a Bernoulli shift. It is not known whether this holds when Z
is replaced with a nonabelian free group. A counterexample due to Sorin Popa [Po08]
(based on [PS07]) shows that if G is an infinite property T group then there exists
a factor of a Bernoulli shift over G that is not measurably conjugate to a Bernoulli
shift.

Second, the f -invariant of an action can be negative. For example, if X is a set
with n elements, � is the uniform measure on X and T D .Tg/g2G is a measure-
preserving action of G D hs1; : : : ; sri on X then f .T / D �.r � 1/ log.n/.

From these two facts a natural question arises: can the f -invariant of a factor of
a Bernoulli shift overG be negative? To answer this, let us recall the following result
from [Bo08b], Corollary 8.3.

Lemma 1.6. LetG be a countable group. Let† D f�ig1
iD1 be an asymptotically free

sequence of homomorphisms �i W G ! Sym.mi /. Let T be a measure-preserving
action of G and let S be a factor of T . Assume that there exist finite-entropy
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generating partitions for T and S . Also let � be a generating observable for T with
H.�/ < 1. Then

h.†; S/ � h.†; T / �H.�/:

So Theorem 1.3 implies:

Theorem 1.7. Let G D hs1; : : : ; sri be a free group on r generators. Let T be a
measure-preserving action ofG and let S be a factor of T . Assume there exists finite
generating partitions for T and S . Let ˛ be a finite generating partition for T . Then

f .S/ � f .T / �H.˛/:

In order to apply this to Bernoulli shifts, let us recall the definitions. Let K be a
finite or countable set and 	 a probability measure on K. Let .KG ; 	G/ denote the
product measure space. Define Tg W KG ! KG by Tg.x/.h/ D x.hg/. This defines
a measure-preserving action of G on .KG ; 	G/. It is the Bernoulli shift over G with
base measure 	. In [Bo08a] it was shown that f .T / D H.	/ where

H.	/ ´ � P
k2K

�.fkg/ log.�.fkg/:

Let ˛ be the canonical partition of KG , i.e., ˛ D fAk W k 2 Kg where Ak D
fx 2 KG j x.e/ D kg. Note H.˛/ D H.	/ D f .T /. So the theorem above implies
the following result.

Corollary 1.8. If S is a factor of the Bernoulli shift and if there exists a finite gener-
ating partition for S then f .S/ � 0.

It is unknown whether there exists a nontrivial factor S of a Bernoulli shift over
a free group G such that f .S/ D 0.

In [Bo08c], classical Markov chains are generalized to Markov chains over free
groups. An explicit example was given of a Markov chain with finite negative f -
invariant. It follows that this Markov chain cannot be measurably conjugate to a
factor of a Bernoulli shift. It can be shown that this Markov chain is uniformly
mixing. To contrast this with the classical case, recall that Friedman and Ornstein
proved in [FO70] that every mixing Markov chain over the integers is isomorphic to
a Bernoulli shift.

Now we can construct a mixing Markov chain with positive f -invariant that is
not isomorphic to a Bernoulli shift as follows. Let T denote a mixing Markov chain
with negative f -invariant. Let S denote a Bernoulli shift with f .S/ > �f .T /.
Consider the product action T � S . A short computation reveals that, in general,
f .T � S/ D f .T / C f .S/. Therefore T � S has positive f -invariant. It can be
shown that T � S is a mixing Markov chain. However it cannot be isomorphic to a
Bernoulli shift since it factors onto T which has negative f -invariant.
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2. Proof of Theorem 1.4

LetG D hs1; : : : ; sri be a free group or free semigroup of rank r . LetG ÕT .X;�/.
Let � W X ! A be a finite observable.

We will need to consider certain perturbations of the measure � with respect to
the given observable � W X ! A. For this purpose we introduce the notion of weights
on the graph G D .V;E/ that is defined as follows. The vertex set V equals A. For
every a; b 2 A and every i 2 f1; : : : ; rg there is a directed edge from a to b labeled i .
This edge is denoted .a; bI i/. We allow the possibility that a D b. A weight on G is
a function W W V tE ! Œ0; 1� satisfying

W.a/ D P
b2A

W.a; bI i/ D P
b2A

W.b; aI i/ for all i D 1 : : : r; a 2 A;

1 D P
a2A

W.a/:

For example,

W�.a/ ´ �.��1.a//;
W�.a; bI i/ ´ �.fx 2 X j �.x/ D a; �.Tsix/ D bg/

is the weight associated to �. For a homomorphism � W G ! Sym.n/ and a function
 W f1; : : : ; ng ! A we define the weight W�; by

W�; .a/ ´ j �1.a/j=n;
W�; .a; bI i/ ´ jfj j  .j / D a;  .�.si /j / D bgj=n:

Note that

d�
� .�;  / D

rP
iD1

P
a;b2A

jW�.a; bI i/ �W�; .a; bI i/j:

So given two weights W1, W2 define

d�.W1; W2/ ´
rP
iD1

P
a;b2A

jW1.a; bI i/ �W2.a; bI i/j:

Proposition 2.1. Let n be a positive integer. Let W be a weight. Suppose that
W.a; bI i/n 2 Z for every a; b 2 A and every i D 1 : : : r . If � W G ! Sym.n/ is
chosen uniformly at random then

EŒjf W f1; : : : ; ng ! A j d�.W;W�; / D 0gj� D nŠ1�r Q
a2A.nW.a//Š2r�1Qr

iD1
Q
a;b2A.nW.a; bI i//Š :

Proof. Note that if d�.W;W�; / D 0 then W�; .a/ D W.a/ for all a 2 A. Equiva-
lently,

j �1.a/j D nW.a/ for all a 2 A: (1)
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The number of functions  W f1; : : : ; ng ! A that satisfy this requirement is

nŠQ
a2A.nW.a//Š

:

If  1,  2 are two different functions that satisfy equation (1) then there is a permuta-
tion 
 2 Sym.n/ such that  1 D  2 B 
 . If � � W G ! Sym.n/ is the homomorphism
defined by � � .g/ D 
�.g/
�1 then W�; 1

D W�� ; 2
. Since � W G ! Sym.n/ is

chosen uniformly at random, this implies that the probability that d�.W;W�; 1
/ D 0

is the same as the probability that d�.W;W�; 2
/ D 0. So fix a particular function  0

satisfying equation (1). Then

EŒjf W f1; : : : ; ng ! A j d�.W;W�; / D 0gj� D nŠProbŒd�.W;W�; 0
/ D 0�Q

a2A.nW.a//Š
:

For any two weights W1; W2 and 1 � i � r , define

di .W1; W2/ ´ P
a;b2A

jW1.a; bI i/ �W2.a; bI i/j:

So d� D Pr
iD1 di .

The homomorphism� W G!Sym.n/ is determined by its values�.s1/; : : : ; �.sr/.
The event di .W;W�; 0

/ D 0 is determined by �.si /. So if i ¤ j then the events
di .W;W�; 0

/ D 0 and dj .W;W�; 0
/ D 0 are independent. Therefore,

EŒjf W f1; : : : ; ng ! A j d�.W;W�; / D 0gj�
D nŠ

Qr
iD1 ProbŒdi .W;W�; 0

/ D 0�Q
a2A.nW.a//Š

:
(2)

Fix i 2 f1; : : : ; rg. We will compute ProbŒdi .W;W�; 0
/ D 0�. The element �.si /

induces a pair of partitions ˛, ˇ of f1; : : : ; ng as follows: ˛ ´ fPa;b j a; b 2 Ag and
ˇ ´ fQa;b j a; b 2 Ag, where

Pa;b D fj j  0.j / D a and  0.�.si /j / D bg;
Qa;b D fj j  0.j / D b and  0.�.si /

�1j / D ag:
Also there is a bijection from Ma;b W Pa;b ! Qa;b defined by Ma;b.j / D �.si /j .
Conversely, �.si / is uniquely determined by these partitions and bijections.

Note that jPa;bj D jQa;bj D nW�; 0
.a; bI i/. Thusdi .W;W�; 0

/ D 0 if and only
jPa;bj D jQa;bj D nW.a; bI i/ for all a; b 2 A. If this occurs then j S

b2A Pa;bj D
nW.a/ for all a 2 A. So the number of pairs of partitions ˛; ˇ that satisfy this
requirement is Q

a2A.nW.a//Š2Q
a;b2A.nW.a; bI i//Š/2 :
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Given such a pair of partitions, the number of collections of bijections

Ma;b W Pa;b ! Qa;b

(for a; b 2 A) equals
Q
a;b2A.nW.a; bI i//Š: Since there are nŠ elements in Sym.n/

it follows that

ProbŒdi .W;W�; 0
/ D 0� D

Q
a2A.nW.a//Š2

nŠ
Q
a;b2A.nW.a; bI i//Š :

The proposition now follows from this equality and equation (2).

Let W be the set of all weights on G . It is a compact convex subset of Rd for
some d > 0. Define F W W ! R by

F.W / ´ �.
rP
iD1

P
a;b2A

W.a; bI i/ log.W.a; bI i///C .2r � 1/ P
a2A

W.a/ log.W.a//:

We follow the usual convention that 0 log.0/ D 0. Observe that F.T; �/ D F.W�/.
Given a weight W , let qW denote the smallest positive integer such that

W.a; bI i/qW 2 Z for all a; b 2 A and for all i 2 f1; : : : ; rg. If no such integer
exists then set qW ´ C1. If p and q are integers, p ¤ 0 and q

p
2 Z then we write

p jq. Otherwise we write p−q.

Lemma 2.2. F W W ! R is continuous. Also, there exist constants 0 < c1 < c2
and p1 < p2 such that for every weightW with qW < 1 and every n � 1 such that
qW jn, if � W G ! Sym.n/ is chosen uniformly at random then

c1n
p1eF.W /n � EŒjf W f1; : : : ; ng ! A j d�.W;W�; / D 0gj� � c2n

p2eF.W /n:

Proof. It is obvious that F is continuous. The second statement follows from the
previous proposition and Stirling’s approximation. The constants depend only on jAj
and the rank r of G.

Lemma 2.3. There exists a constant k > 0 such that the following holds. Let W be
a weight and let n > 0 be a positive integer. Then there exists a weight �W such that
q �W < 1, q �W jn and d�.W; �W / < k=n.
Proof. Choose a0 2 A. For b; c 2 A � fa0g and i 2 f1; : : : ; rg define

�W .b/ ´ bW.b/nc
n

;

�W .a0/ ´ 1 � P
b2A�fa0g

�W .b/;
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�W .b; cI i/ ´ bW.b; cI i/nc
n

;

�W .a0; bI i/ ´ �W .b/ � P
a2A�fa0g

�W .a; bI i/;

�W .b; a0I i/ ´ �W .b/ � P
a2A�fa0g

�W .b; aI i/;

�W .a0; a0I i/ ´ �W .a0/ � P
b2A�fa0g

�W .a0; bI i/:

Let us check that �W is a weight. It is clear that
P
a2A

�W .a/ D 1. If b 2 A � fa0g
then �W .b/ D P

a2A
�W .a; bI i/ D P

a2A
�W .b; aI i/: It is immediate that �W .a0/ DP

b2A
�W .a0; bI i/:Also

P
b2A

�W .b; a0I i/ D �W .a0; a0I i/C
X

b2A�fa0g
�W .b; a0I i/

D �W .a0/ � P
b2A�fa0g

�W .a0; bI i/C P
b2A�fa0g

�W .b; a0I i/
D �W .a0/C P

b2A�fa0g
�W .b; a0I i/ � �W .a0; bI i/

D �W .a0/C P
b2A�fa0g

.�W .b/
� P
a2A�fa0g

�W .b; aI i// � .�W .b/ � P
a2A�fa0g

�W .a; bI i//

D �W .a0/:
This proves that �W is a weight. It is clear that q �W < 1 and q �W jn. Lastly observe that

if a; b 2 A�fa0g then jW.a; bI i/� �W .a; bI i/j � 1=n. Since jW.b/� �W .b/j � 1=n

too, jW.a0; bI i/ � �W .a0; bI i/j � jAj=n and jW.b; a0I i/ � �W .b; a0I i/j � jAj=n.
Since jW.a0/ � �W .a0/j � jAj=n, jW.a0; a0I i/ � �W .a0; a0I i/j � jAj2=n. Thus
d�.W; �W / � r jAj2=n.

We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. Recall that � W X ! A is an observable and A is a finite
set. Let n � 0 and let �n W G ! Sym.n/ be a homomorphism chosen uniformly at
random. Given a weight W , let

Zn.W / ´ jf W f1; : : : ; ng ! A j d�.W�n; ; W / D 0gj:
For any " > 0,

EŒjf W f1; : : : ; ng ! A j d�
�n
.�;  / � "gj� D P

W W d�.W;W�/�"
EŒZn.W /�: (3)
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Let ı > 0. Since F W W ! R is continuous, there exists "0 > 0 such that if
d�.W;W�/ � "0 then jF.W / � F.W�/j < ı. So let us fix " with 0 < " < "0.

By the previous lemma, if n is sufficiently large then there exists a weightW such
that d�.W;W�/ � " and qW jn. Lemma 2.2 implies

EŒjf W f1; : : : ; ng ! A j d�
�n
.�;  / � "gj� � EŒZn.W /� � c1n

p1eF.W�/n�ın;
(4)

where c1 > 0 and p1 are constants.
IfW is a weight such that qW − n then Zn.W / D 0. If qW j n thenW.a; bI i/ 2

ZŒ1=n� for all a; b 2 A and i 2 f1; : : : ; rg. The space of all weights lies inside the
cube Œ0; 1�d � Rd for some d . So the number of weights W such that Zn.W / ¤ 0

is at most nd . Lemma 2.2 and equation (3) now imply that

EŒjf W f1; : : : ; ng ! A j d�
�n
.�;  / � "gj� � c2n

p2CdeF.W�/nCın: (5)

Here c2 > 0 and p2 are constants. Equations (4) and (5) imply

lim sup
n!1

j 1
n

log.EŒjf W f1; : : : ; ng ! A j d�
�n
.�;  / � "gj�/ � F.W�/j � ı:

Since ı is arbitrary, it follows that

inf
">0

lim
n!1

1
n

log.EŒjf W f1; : : : ; ng ! A j d�
�n
.�;  / � "gj�/ D F.W�/ D F.T; �/:

3. Proof of Theorem 1.3

As in the statement of Theorem 1.3, let G D hs1; : : : ; sri be a free group or free
semigroup of rank r � 1. Let G ÕT .X;�/. Let � W X ! A be a finite observable.
Let† D f�ig1

iD1 where each �i is the uniform probability measure on the set of ho-
momorphisms fromG to Sym.i/. Let �i W G ! Sym.i/ be a homomorphism chosen
uniformly at random among all homomorphisms of G into Sym.i/. Theorem 1.3 is
an immediate consequence of the next two propositions.

Proposition 3.1. h.†; T; �/ � f .T; �/.

Proof. Let S D fe; s1; : : : ; srg. Observe that for any n, if  W f1; : : : ; ng ! A is any
function then dS�n

.�;  /r � d�
�n
.�;  /. So if " > 0 then

EŒjf W f1; : : : ; ng ! A j dS�n
.�;  / � "gj�

� EŒjf W f1; : : : ; ng ! A j d�
�n
.�;  / � r"gj�:

This implies h.†; T; �/ � F.T; �/.
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Recall that B.e; n/ denotes the ball of radius n in G. Furthermore we have
f .T; �/ D infn F.T; �B.e;n//, and thus infn h.†; T; �B.e;n// � f .T; �/. Since �
and �B.e;n/ generate the same � -algebra, Theorem 1.1 implies that h.†; T; �/ D
h.†; T; �B.e;n// for all n. This implies the proposition.

Proposition 3.2. h.†; T; �/ � f .T; �/.

Proof. Given a finite set K � G, define

h.†; T; �IK/ ´ inf
">0

lim sup
n!1

1
n

log.EŒjf W f1; : : : ; ng ! A j dK�n
.�;  / � "gj�/:

Claim 1. h.†; T; �IB.e;m// � F.T; �B.e;m// for all m � 0.
Note that if K � L then h.†; T; �IK/ � h.†; T; �IL/ holds. It follows that

h.†; T; �/ D infm h.†; T; �IB.e;m//. Thus claim 1 implies the proposition.
To simplify notation, let B denote B.e;m/. To prove claim 1, for m; n; " � 0, let

P.m; n; "/ be the set of all pairs .�; !/ with � W G ! Sym.n/ a homomorphism and
! W f1; : : : ; ng ! A a map such that dB

� .�; !/ � ". Since there are nŠr homomor-
phisms from G into Sym.n/,

h.†; T; �I B/ D inf
">0

lim sup
n!1

1

n
log

� jP.m; n; "/j
nŠr

�
: (6)

LetQ.m; n; "/ be the set of all pairs .�;  / with � W G ! Sym.n/ a homomorphism
and  W f1; : : : ; ng ! AB a map such that d�

� .�
B;  / � ". By Theorem 1.4,

F.T; �B/ D inf
">0

lim sup
n!1

1

n
log

� jQ.m; n; "/j
nŠr

�
: (7)

For g 2 B let �g W AB ! A denote the projection map �g..ah/h2B/ D ag . For
.�;  / 2 Q.m; n; "/, define R.�; / D .�; �e B  /. Define H.x/ ´ �x log.x/ �
.1 � x/ log.1 � x/.

Claim 2. If c D 1C jBj then the image of R is contained in P.m; n; "c/.
Claim 3. There are constants C; k > 0 depending only onm such that if " < 1

4jBj
then R is at most C exp.nk"C nH.2jBj"// to 1, i.e., for any .�; !/ in the image of
R, jR�1.�; !/j � C exp.nk"C nH.2jBj"//.

Claims 2 and 3 imply

C exp.kn"C nH.2jBj"//jP.m; n; "c//j � jQ.m; n; "/j:
Together with equations (6) and (7), this implies claim 1 and hence the proposition.

Next we prove claim 2. For this purpose, fix a homomorphism � W G ! Sym.n/.
Observe that for any x 2 X and any t 2 fs1; : : : ; srg,

�g�
B.x/ D �.Tgx/ D �gt�1�B.Ttx/ for all g 2 B \ Bt:
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Therefore if i 2 f1; : : : ; ng and, for some g 2 B \ Bt ,  W f1; : : : ; ng ! AB satisfies

�g .i/ ¤ �gt�1 .�.t/i/;

then  _  t .i/ ¤ �B _ �Bt .x/ for any x 2 X .
So let G be the set of all i 2 f1; : : : ; ng such that for all t 2 fs1; : : : ; srg,

�g .i/ D �gt�1 .�.t/i/ for all g 2 B \ Bt:

Thus

d�
� .�

B;  / � jG cj
n

D �.G c/;

where G c denotes the complement of G and � denotes the uniform probability measure
on f1; : : : ; ng.

Let Gm be the set of all i 2 f1; : : : ; ng such that �.g/i 2 G for all g 2 B. Note
that

�.G cm/ � jBj�.G c/ � jBjd�
� .�

B;  /: (8)

If i 2 Gm then  .i/ D .�e B  /B.i/. ThereforeP
a2AB

j ��.a/ � .�e B  /B��.a/j � 1
n
jfi j  .i/ ¤ .�e B  /B.i/gj

� �.G cm/ � jBjd�
� .�

B;  /:

Suppose that d�
� .�

B;  / � ". Then

dB
� .�; �e B  / D P

a2AB

j�B��.a/ � .�e B  /B��.a/j

� P
a2AB

j�B��.a/ �  ��.a/j C j ��.a/ � .�e B  /B��.a/j

� d�
� .�

B;  /.1C jBj/ � ".1C jBj/:
This proves claim 2.

Let .�; !/ be in the image of R.
Claim 4. For every withR.�; / D .�; !/, there exists a setL. / � f1; : : : ; ng

of cardinality bn.1 � jBj"/c such that  .i/ D !B.i/ for all i 2 L. /.
To prove claim 4, observe that if Gm is defined as above, then  .i/ D !B.i/ for

all i 2 Gm. By equation (8),

jGmj D n.1 � �.G cm// � n.1 � jBjd�
� .�

B ;  // � n.1 � jBj"/:
So letL. / be any subset of Gm with cardinality bn.1� jBj"/c. This proves claim 4.

Next we prove claim 3. Claim 4 implies

jR�1.�; !/j � jAjjBj.n�bn.1�jBj"/c/
�

n

bn.1 � jBj"/c
�
: (9)
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This is because there are
�

n
bn.1�jBj"/c

�
sets in f1; : : : ; ng with cardinality equal to

bn.1 � jBj"/c and for each i 2 f1; : : : ; ng � L. /, there are at most jAjjBj possible
values for  .i/.

Because H is monotone increasing for 0 < x < 1=2 it follows from Stirling’s
approximation that if " < 1

4jBj then

�
n

bn.1 � jBj"/c
�

� C exp.nH.2jBj"//;

where C > 0 is a constant. This and equation (9) now imply claim 3 and hence the
proposition.
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