Groups Geom. Dyn. 4 (2010), 419–432 DOI 10.4171/GGD/89

Groups, Geometry, and Dynamics © European Mathematical Society

The ergodic theory of free group actions: entropy and the f **-invariant**

Lewis Bowen

Abstract. Previous work introduced two measure-conjugacy invariants: the f-invariant (for actions of free groups) and Σ -entropy (for actions of sofic groups). The purpose of this paper is to show that the f-invariant is essentially a special case of Σ -entropy. There are two applications: the f -invariant is invariant under group automorphisms and there is a uniform lower bound [on](#page-13-0) [the](#page-13-0) f -invariant of a factor in terms of the original system.

Mathematics Subject Classification (2010). 37A35.

Keywords. Free groups, entropy, f -invariant.

1. Introduction

The paper [Bo08b] introduced a measure-conjugacy invariant, called Σ -entropy, for measure-preserving actions of a sofic group. This was applied, for example, to classify Bernoulli shifts over an arbitrary countable linear group. Previously, [Bo08a] introduced the f -invariant for measure-preserving actions of free groups. The invariants of both papers have strong analogies with classical Kolmogorov–Sinai entropy. The purpose of this paper is to show that the f -invariant is essentially a special case of Σ -entropy. We apply this result to show the f-invariant does not change under group automorphisms and that there is a lower bound on the f -invariant of a factor in terms of the f [-inv](#page-13-0)ariant of the system. The introductions to $[B008a]$ – $[B008b]$ provide further background and motivation for Σ -entropy and the f-invariant.

To define Σ -entropy precisely, let G be a countable group and let $\Sigma = {\{\sigma_i\}}_{i=1}^{\infty}$ io denne 2-entropy precisely, let G be a countable group and let $\Sigma = {\sigma_i}_{i=1}^T$
be a sequence of homomorphisms $\sigma_i : G \to Sym(m_i)$ where $Sym(m_i)$ denotes the
full symmetric group of the set $\{1, ..., m_i\}$. Σ is asymptotically fr full symmetric group of the set $\{1, \ldots, m_i\}$. Σ is *asymptotically free* if

$$
\lim_{i\to\infty}\frac{|\{1\leq j\leq m_i\mid \sigma_i(g_1)j=\sigma_i(g_2)j\}|}{m_i}=0.
$$

for every pair $g_1, g_2 \in G$ with $g_1 \neq g_2$. The treatment of Σ -entropy given next differs from [Bo08b] in two respects: for simplicity, we assume that each σ_i is a homomorphism and we use observables rather than partitions to define it.

We will write $G \curvearrowright^T (X, \mu)$ to mean (X, μ) is a standard probability measure space and $T = (T_g)_{g \in G}$ is an action of G on (X, μ) by measure-preserving transformations. This means that for each $g \in G$, $T_g : X \to X$ is a measure-preserving transformation and $T_{g_1} T_{g_2} = T_{g_1g_2}$. An *observable* of (X, μ) is a measurable map $\phi: X \to A$ where A is a finite or countably infinite set. We will say that ϕ is *finite* if A is finite. Roughly speaking, the Σ -entropy rate of ϕ is the exponential rate of growth of the number of observables $\psi: \{1, \ldots, m_i\} \rightarrow A$ that approximate ϕ . In order to make precise what it means to approximate, we need to introduce some definitions.

If $\phi: X \to A$ and $\psi: X \to B$ are two observables, then the *join* of ϕ and ψ is the observable $\phi \lor \psi : X \to A \times B$ defined by $\phi \lor \psi(x) = (\phi(x), \psi(x))$.
If $g \in G$ then $T_g \phi : X \to A$ is defined by $T_g \phi(x) = \phi(T_g x)$. If $H \subset G$ is If $g \in G$ then $T_g \phi: X \to A$ is defined by $T_g \phi(x) = \phi(T_g x)$. If $H \subset G$ is finite, then let $\phi^H \to \vee \vee$, $T_g \phi \phi^H$ mans X into A^H , the direct product of finite, then let $\phi^{\tilde{H}} := \bigvee_{h \in H} T_h \phi$. ϕ^H maps X into A^H , the direct product of $H \circ \phi^H$ conjes of A. Let ϕ^H u denote the pushforward of μ on A^H . In other words |H| copies of A. Let $\phi_*^H \mu$ denote the pushforward of μ on A^H . In other words, $\phi^H(\mu)(S) = \mu((\phi^H)^{-1}(S))$ for $S \subset A^H$ $\phi_*^H(\mu)(S) = \mu((\phi^H)^{-1}(S))$ for $S \subset A^H$.
For each *i* let ζ denote the uniform

For each i, let ζ_i denote the uniform probability measure on $\{1, \ldots, m_i\}$. If $\psi: \{1, \ldots, m_i\} \to A$ is an observable and $H \subset G$ then let $\psi^H := \bigvee_{h \in H} \sigma_i(h)\psi$,
where $\sigma_i(h)\psi: \{1, \ldots, m_i\} \to A$ is defined by $\sigma_i(h)\psi(i) = \psi(\sigma_i(h)i)$. Of course where $\sigma_i(h)\psi$: $\{1,\ldots,m_i\} \to A$ is defined by $\sigma_i(h)\psi(j) = \psi(\sigma_i(h)j)$. Of course, ψ^H deneds on σ_i but to keep the notation simple, we will leave this dependence ψ^H depends on σ_i but, to keep the notation simple, we will leave this dependence implicit. Let $\psi_*^H \zeta_i$ be the pushforward of ζ_i on A^H . Finally, let $d_{\sigma_i}^H(\phi, \psi)$ be the l^1 -distance between $\phi_*^H \mu$ and $\psi_*^H \zeta_i$. In other words,

$$
d_{\sigma_i}^H(\phi, \psi) = \sum_{a \in A^H} |\phi_*^H \mu(a) - \psi_*^H \zeta_i(a)|.
$$

Definition 1. If $\phi: X \to A$ is an observable and A is finite then define the Σ -entropy *rate* of ϕ by

$$
h(\Sigma, T, \phi) := \inf_{H \subset G} \inf_{\varepsilon > 0} \limsup_{i \to \infty} \frac{1}{m_i} \log(|\{\psi : \{1, \ldots, m_i\} \to A \mid d_{\sigma_i}^H(\phi, \psi) \leq \varepsilon\}|).
$$

The first infimum above is over all finite subsets $H \subset G$.

Definition 2. Define the *entropy* of ϕ by

$$
H(\phi) := -\sum_{a \in A} \mu(\phi^{-1}(a)) \log(\mu(\phi^{-1}(a))).
$$

Definition 3. If $\phi: X \to A$ is an observable and A is countably infinite then let π_n : $A \to A_n$ be a sequence of maps such that

- (1) A_n is a finite set for all *n*;
- (2) for each $i > j$ there is a map $\pi_{ij} : A_i \to A_j$ such that $\pi_j = \pi_{ij} \circ \pi_i$;
- (3) π_n is asymptotically injective in the sense that for all $a, b \in A$ with $a \neq b$ there exists N such that $n > N$ implies $\pi_n(a) \neq \pi_n(b)$.

Now define

$$
h(\Sigma,T,\phi):=\lim_{n\to\infty}h(\Sigma,T,\pi_n\circ\phi).
$$

In [Bo08b] it is proven that if $H(\phi) < \infty$ then this limit exists and is independent of the choice of sequence $\{\pi_n\}$.

An observable ϕ is *generating* if the smallest G-invariant σ -algebra on X that contains $\{\phi^{-1}(a)\}_{a \in A}$ is equal to the σ -algebra of all measurable sets up to sets of measure zero. The next theorem is (part of) the main result of [Bo08b] measure zero. The next theorem is (part of) the main result of [Bo08b].

Theorem 1.1. *Let* $\Sigma = {\sigma_i}$ *be an asymptotically free sequence of homomorphisms*
 $\sigma_i : G \longrightarrow Sym(m_i)$ for a group $G = \int_{\sigma_i} f_i (G \cap G)$ *If* ϕ_i *and* ϕ_i are two $\sigma_i: G \to \text{Sym}(m_i)$ for a group G. Let $G \curvearrowright^T (X, \mu)$. If ϕ_1 and ϕ_2 are two finite-entropy generating observables then $h(\Sigma, T, \phi_1) = h(\Sigma, T, \phi_2)$ *finite-entropy generating observables then* $h(\Sigma, T, \phi_1) = h(\Sigma, T, \phi_2)$.

This motivates the following definition.

Definition 4. If Σ and T are as above then the Σ -entropy of the action T is defined by $h(\Sigma, T) := h(\Sigma, \phi)$, where ϕ is any finite-entropy generating observable (if one exists).

Next let us discuss a slight variation on Σ -entropy. Let $\{m_i\}_{i=1}^{\infty}$ be a sequence
patural numbers. For each $i \in \mathbb{N}$ let μ ; be a probability measure on the set of of natural numbers. For each $i \in \mathbb{N}$, let μ_i be a probability measure on the set of homomorphisms from G to Sym (m_i) . Let $\sigma_i : G \to Sym(m_i)$ be chosen at random
according to μ_i . The sequence $\Sigma = \{ \mu_i \}^{\infty}$ is said to be asymptotically free if for according to μ_i . The sequence $\Sigma = {\mu_i}_{i=1}^{\infty}$ is said to be *asymptotically free* if for every pair $g_1, g_2 \in G$ with $g_1 \neq g_2$ every pair $g_1, g_2 \in G$ with $g_1 \neq g_2$,

$$
\lim_{i\to\infty}\frac{\mathbb{E}[\left|\{1\leq j\leq m_i\mid \sigma_i(g_1)j=\sigma_i(g_2)j\}\right|]}{m_i}=0
$$

where $\mathbb{E}[\cdot]$ denotes expected value. The Σ -entropy rate [of an o](#page-13-0)bservable $\phi: X \to A$ with A finite is defined by

$$
h(\Sigma, T, \phi)
$$

 := $\inf_{H \subset G} \inf_{\varepsilon > 0} \limsup_{i \to \infty} \frac{1}{m_i} \log(\mathbb{E}[|\{\psi : \{1, ..., m_i\} \to A \mid d_{\sigma_i}^H(\phi, \psi) \le \varepsilon\}|]).$

With these definitions in mind, Theorem 1.1 is still true if "homomorphisms" is replaced with "probability measures on the set of homorphisms".

Let us note one more generalization. If G is a semigroup with identity then the above definitions still make sense. Using results from [Bo08c] it can be shown that Theorem 1.1 remains true.

Now let us recall the f-invariant from [Bo08a]. Let $G = \langle s_1, \ldots, s_r \rangle$ be either a free group or free semigroup of rank r. Let $G \curvearrowright^T (X, \mu)$. Let α be a partition of X into at most countably many measurable sets. The *entropy* of α is defined by

$$
H(\alpha) := -\sum_{A \in \alpha} \mu(A) \log(\mu(A))
$$

where, by convention, $0 \log(0) = 0$. If α and β are partitions of X then the *join* is the partition $\alpha \vee \beta := \{A \cap B \mid A \in \alpha, B \in \beta\}$. Let $B(e, n)$ denote the ball of radius

 n in G with respect to the word metric induced by its generating set (which is either $\{s_1, \ldots, s_r\}$ if G is a semigroup or $\{s_1^{\pm 1}, \ldots, s_r^{\pm 1}\}$ is G is a group). Define

$$
F(T, \alpha) := (1 - 2r)H(\alpha) + \sum_{i=1}^{r} H(\alpha \vee T_{s_i}^{-1} \alpha),
$$

\n
$$
\alpha^{n} := \bigvee_{\substack{g \in B(e, n) \\ n}} T_g^{-1} \alpha,
$$

\n
$$
f(T, \alpha) := \inf_{n} F(T, \alpha^{n}).
$$

The partition α is *generating* if the smallest G-invariant σ -algebra containing α equals the σ -algebra of all measurable sets up to sets of measure zero.

Theorem 1.2. Let $G = \langle s_1, \ldots, s_r \rangle$ be a free group or free semigroup. Let $G \sim^T$ (X, μ) . If α_1 *and* α_2 *are two generating partitions with* $H(\alpha_1) + H(\alpha_2) < \infty$ *then* $f(T, \alpha_1) = f(T, \alpha_2)$.

This theorem was proven in $[Bo08c]$. The special case in which G is a group and α_1 , α_2 are finite is the main result of [Bo08a]. Because of this theorem, we define the f-invariant of the action by $f(T) := f(T, \alpha)$, where α is any finite-entropy generating partition of X (if one exists).

In order to relate this result with Σ -entropy, let us make the following definitions. If $\phi: X \to A$ is an observable, then let $\overline{\phi} = {\phi^{-1}(a)}_{a \in A}$ be the corresponding partition of X. Define $F(T, \phi) := F(T, \bar{\phi})$ and $f(T, \phi) := f(T, \bar{\phi})$. The main result of this paper is:

Theorem 1.3. Let $G = \langle s_1, \ldots, s_r \rangle$ be a free group or free semigroup of rank $r \geq 1$ *. Let* $G \curvearrowright^T (X, \mu)$ *. Let* ϕ *be a finite observable. For* $i \geq 1$ *, let* μ_i *be the uniform probability measure on the set of all homomorphisms from* G *to* Sym(*i*). Let $\Sigma = {\mu_i}_{i=1}^{\infty}$. Then $h(\Sigma, T, \phi) = f(T, \phi)$.

We will prove a refined version of this theorem as follows. Recall the definition of $d_{\sigma_i}^H(\phi, \psi)$ given above. Define

$$
d_{\sigma_i}^*(\phi, \psi) := \sum_{i=1}^r d_{\sigma_i}^{\{e, s_i\}}(\phi, \psi).
$$

Theorem 1.4. Let G and T be as in the previous theorem. Let $\phi: X \to A$ be a finite $observedble.$ Let $\sigma_i: G \to \text{Sym}(i)$ be a homomorphism chosen uniformly at random.
Then *Then*

$$
F(T,\phi) = \inf_{\varepsilon>0} \limsup_{i\to\infty} \frac{1}{i} \log(\mathbb{E}[|\{\psi:\{1,\ldots,i\}\to A \mid d^*_{\sigma_i}(\phi,\psi)\leq \varepsilon\}|]).
$$

This theorem is proven in Section 2. In Section 3 we deduce Theorem 1.3 from it.

1.1. Application I: automorphism invariance. Let G be a countable group or semigroup. Let $G \curvearrowright^T (X, \mu)$. Let $\omega : G \to G$ be an automorphism. Let $T^{\omega} =$ $(T_g^{\omega})_{g \in G}$ where $T_g^{\omega} x := T_{\omega(g)} x$ f[or al](#page-3-0)l $x \in X$. This new action of G is not necessarily isomorphic to the original action. That is there might not exist a man necessarily isomorphic to the original action. That is, there might not exist a map $\phi: X \to X$ such that $\phi(T_g x) = T_g^{\omega} \phi(x)$ for a[.e.](#page-3-0) $x \in X$ and all $g \in G$.
Suppose that $\Sigma = \{x_i\}$ is an asymptotically free sequence of home

Suppose that $\Sigma = {\sigma_i}$ is an asymptotically free sequence of homomorphisms $G \to Sym(m)$. Let $\Sigma^{\omega} = {\sigma_i \circ \omega}$. A short exercise reveals that $h(\Sigma, T, \phi)$. $\sigma_i : G \to \text{Sym}(m_i)$. Let $\Sigma^{\omega} = {\{\sigma_i \circ \omega\}}$. A short exercise reveals that $h(\Sigma, T, \phi) = h(\Sigma^{\omega} T^{\omega} \phi)$ for any ϕ . $h(\Sigma^{\omega}, T^{\omega}, \phi)$ for any ϕ .

If $\sigma_i : G \to \text{Sym}(i)$ is chosen uniformly at random, it follows that the law of σ_i .
See is the same as the law of σ_j . Therefore, if μ_j is the uniform probability $\sigma_i \circ \omega$ is the same as the law of σ_i . Therefore, if μ_i is the uniform probability
measure on the set of homomorphisms from G to Sym(i) and $\Sigma = \{u\}$, then measure on the set of homomorphisms from G to Sym (i) and $\Sigma = \{\mu_i\}$, then $h(\Sigma, T, \phi) = h(\Sigma, T^{\omega}, \phi)$. Theorem 1.3 now implies:

Theorem 1.5. Let G and T be as in Theorem 1.3. Let $\omega: G \to G$ be an automor*phism. Then* $f(T, \phi) = f(T^{\omega}, \phi)$ *for any finite observable* ϕ *.*

This implies that $f(T, \phi)$ does not depend on the choice of free generator set $\{s_1,\ldots,s_r\}$ for G since any t[wo](#page-13-0) [free](#page-13-0) generating sets are related by an automorphism.

1.2. Application II: lower bounds on the f **-invariant of a factor**

Definition 5. [Le](#page-13-0)t $G \curvearrowright^T (X, \mu)$ and $G \curvearrowright^S (Y, \nu)$. Then S is a *factor* of T if there exists a measurable map $\phi: X \to Y$ such that $\phi_* \mu = \nu$ and $\phi(T_g x) = S_g \phi(x)$ for all $g \in G$ and $g \circ x \in Y$ all $g \in G$ and a.e. $x \in X$.

To motivate this section, let us point out two curious facts.

First, Ornstein proved in [Or70] that every factor of a Bernoulli shift over $\mathbb Z$ is measurably conjugate to a Bernoulli shift. It is not known whether this holds when $\mathbb Z$ is repl[aced wi](#page-13-0)th a nonabelian free group. A counterexample due to Sorin Popa [Po08] (based on [PS07]) shows that if G is an infinite property T group then there exists a factor of a Bernoulli shift over G that is not measurably conjugate to a Bernoulli shift.

Second, the f -invariant of an action can be negative. For example, if X is a set with *n* elements, μ is the uniform measure on X and $T = (T_g)_{g \in G}$ is a measurepreserving action of $G = \langle s_1, \ldots, s_r \rangle$ on X then $f(T) = -(r - 1)\log(n)$.

From these two facts a natural question arises: can the f -invariant of a factor of a Bernoulli shift over G be negative? To answer this, let us recall the following result from [Bo08b], Corollary 8.3.

Lemma 1.6. Let G be a countable group. Let $\Sigma = {\sigma_i}_{i=1}^{\infty}$ be an asymptotically free
sequence of homomorphisms $\sigma: G \to \text{Sym}(m)$. Let T be a measure-preserving *sequence of homomorphisms* $\sigma_i : G \to \text{Sym}(m_i)$ *. Let* T *be a measure-preserving* action of G and let S be a factor of T. Assume that there exist finite-entrony *action of* G *and let* S *be a factor of* T *. Assume that there exist finite-entropy*

generating partitions for T *and* S*. Also let be a generating observable for* T *with* $H(\phi) < \infty$. Then

$$
h(\Sigma, S) \ge h(\Sigma, T) - H(\phi).
$$

So Theorem 1.3 implies:

Theorem 1.7. Let $G = \langle s_1, \ldots, s_r \rangle$ be a free group on r generators. Let T be a *measure-preserving [action o](#page-13-0)f* G *and let* S *be a factor of* T *. Assume there exists finite generating partitions for* T *and* S*. Let* ˛ *be a finite generating partition for* T *. Then*

$$
f(S) \ge f(T) - H(\alpha).
$$

In order to apply this to Bernoulli shifts, let us recall the definitions. Let K be a finite or countable set and κ a probability measure on K. Let (K^G, κ^G) denote the product measure space. Define $T_g : K^G \to K^G$ by $T_g(x)(h) = x(hg)$. This defines a measure-preserving action of G on (K^G, κ^G) . It is the *Bernoulli shift* over G with base measure κ . In [Bo08a] it was shown that $f(T) = H(\kappa)$ where

$$
H(\kappa) := -\sum_{k \in K} \mu({k}) \log(\mu({k}).
$$

Let α [be th](#page-13-0)e canonical partition of K^G , i.e., $\alpha = \{A_k : k \in K\}$ where $A_k = K^G \mid r(\alpha) = k!$ Note $H(\alpha) = H(\alpha) = f(T)$. So the theorem above implies ${x \in K^G \mid x(e) = k}$. Note $H(\alpha) = H(\kappa) = f(T)$. So the theorem above implies the following result the following result.

Corollary 1.8. *If* S *is a factor of the Bernoulli shift and if there exists a finite generating parti[tion fo](#page-13-0)r* S *then* $f(S) \geq 0$ *.*

It is unknown whether there exists a nontrivial factor S of a Bernoulli shift over a free group G such that $f(S) = 0$.

In [Bo08c], classical Markov chains are generalized to Markov chains over free groups. An explicit example was given of a Markov chain with finite negative f invariant. It follows that this Markov chain cannot be measurably conjugate to a factor of a Bernoulli shift. It can be shown that this Markov chain is uniformly mixing. To contrast this with the classical case, recall that Friedman and Ornstein proved in [FO70] that every mixing Markov chain over the integers is isomorphic to a Bernoulli shift.

Now we can construct a mixing Markov chain with positive f -invariant that is not isomorphic to a Bernoulli shift as follows. Let T denote a mixing Markov chain with negative f-invariant. Let S denote a Bernoulli shift with $f(S) > -f(T)$. Consider the product action $T \times S$. A short computation reveals that, in general, $f(T \times S) = f(T) + f(S)$. Therefore $T \times S$ has positive f-invariant. It can be shown that $T \times S$ is a mixing Markov chain. However it cannot be isomorphic to a Bernoulli shift since it factors onto T which has negative f -invariant.

2. Proof of Theorem 1.4

Let $G = \langle s_1, \ldots, s_r \rangle$ be a free group or free semigroup of rank r. Let $G \sim^T (X, \mu)$. Let $\phi: X \to A$ be a finite observable.

We will need to consider certain perturbations of the measure μ with respect to the given observable $\phi: X \to A$. For this purpose we introduce the notion of weights on the graph $\mathcal{G} = (V, E)$ that is defined as follows. The vertex set V equals A. For every $a, b \in A$ and every $i \in \{1, \ldots, r\}$ there is a *directed* edge from a to b labeled i. This edge is denoted $(a, b; i)$. We allow the possibility that $a = b$. A *weight* on $\mathcal G$ is a function $W: V \sqcup E \rightarrow [0, 1]$ satisfying

$$
W(a) = \sum_{b \in A} W(a, b; i) = \sum_{b \in A} W(b, a; i) \text{ for all } i = 1...r, a \in A,
$$

$$
1 = \sum_{a \in A} W(a).
$$

For example,

$$
W_{\mu}(a) := \mu(\phi^{-1}(a)),
$$

\n
$$
W_{\mu}(a, b; i) := \mu({x \in X \mid \phi(x) = a, \phi(T_{s_i}x) = b})
$$

is the weight associated to μ . For a homomorphism $\sigma : G \to \text{Sym}(n)$ and a function $u \mapsto A$ we define the weight $W \to \text{tw}$ $\psi: \{1, \ldots, n\} \to A$ we define the weight $W_{\sigma,\psi}$ by

$$
W_{\sigma,\psi}(a) := |\psi^{-1}(a)|/n,
$$

\n
$$
W_{\sigma,\psi}(a,b;i) := |\{j \mid \psi(j) = a, \ \psi(\sigma(s_i)j) = b\}|/n.
$$

Note that

$$
d_{\sigma}^{*}(\phi, \psi) = \sum_{i=1}^{r} \sum_{a,b \in A} |W_{\mu}(a,b;i) - W_{\sigma,\psi}(a,b;i)|.
$$

So given two weights W_1 , W_2 define

$$
d_*(W_1, W_2) := \sum_{i=1}^r \sum_{a,b \in A} |W_1(a, b; i) - W_2(a, b; i)|.
$$

Proposition 2.1. *Let* n *be a positive integer. Let* W *be a weight. Suppose that* $W(a, b; i)$ $n \in \mathbb{Z}$ *for every* $a, b \in A$ *and every* $i = 1...r$ *. If* $\sigma: G \rightarrow \text{Sym}(n)$ *is* chosen uniformly at random then *chosen uniformly at random then*

$$
\mathbb{E}[|\{\psi:\{1,\ldots,n\}\to A \mid d_*(W,W_{\sigma,\psi})=0\}|] = \frac{n!^{1-r} \prod_{a\in A} (n W(a))!^{2r-1}}{\prod_{i=1}^r \prod_{a,b\in A} (n W(a,b;i))!}.
$$

Proof. Note that if $d_*(W, W_{\sigma,\psi}) = 0$ then $W_{\sigma,\psi}(a) = W(a)$ for all $a \in A$. Equivalently lently,

$$
|\psi^{-1}(a)| = nW(a) \quad \text{for all } a \in A. \tag{1}
$$

The number of f[un](#page-6-0)ctions $\psi: \{1, \ldots, n\} \rightarrow A$ that satisfy this requirement is

$$
\frac{n!}{\prod_{a\in A}(nW(a))!}.
$$

If ψ_1, ψ_2 are two different functions that satisfy equation (1) then there is a permutation $\tau \in \text{Sym}(n)$ such that $\psi_1 = \psi_2 \circ \tau$. If $\sigma^{\tau} : G \to \text{Sym}(n)$ is the homomorphism
defined by $\sigma^{\tau}(\sigma) = \tau \sigma(\sigma) \tau^{-1}$ then $W = W \tau$. Since $\sigma : G \to \text{Sym}(n)$ is defined by $\sigma^{\tau}(g) = \tau \sigma(g) \tau^{-1}$ then $W_{\sigma,\psi_1} = W_{\sigma^{\tau},\psi_2}$. Since $\sigma: G \to \text{Sym}(n)$ is chosen uniformly at random, this implies that the probability that $d_{\sigma}(W, W, \tau) = 0$ chosen uniformly at random, this implies that the probability that $d_*(W, W_{\sigma, \psi_1}) = 0$
is the same as the probability that $d_*(W, W_{\sigma, \psi_1}) = 0$. So fix a particular function $u|_{\mathcal{E}}$ is the same as the probability that $d_*(W, W_{\sigma, \psi_2}) = 0$. So fix a particular function ψ_0 satisfying equation (1). Then satisfying equation (1). Then

$$
\mathbb{E}[|\{\psi:\{1,\ldots,n\}\to A \mid d_*(W,W_{\sigma,\psi})=0\}|] = \frac{n! \operatorname{Prob}[d_*(W,W_{\sigma,\psi_0})=0]}{\prod_{a\in A}(nW(a))!}.
$$

For any two weights W_1, W_2 and $1 \le i \le r$, define

$$
d_i(W_1, W_2) := \sum_{a,b \in A} |W_1(a,b;i) - W_2(a,b;i)|.
$$

So $d_* = \sum_{i=1}^r d_i$.
The homomorp

The homomorphism $\sigma: G \to \text{Sym}(n)$ is determined by its values $\sigma(s_1), \ldots, \sigma(s_r)$.
So if $i \neq i$ then the events The event $d_i(W, W_{\sigma, \psi_0}) = 0$ is determined by $\sigma(s_i)$. So if $i \neq j$ then the events $d_i(W, W_{\sigma, \psi_0}) = 0$ and $d_i(W, W_{\sigma, \psi_0}) = 0$ are independent. Therefore $d_i(W, W_{\sigma, \psi_0}) = 0$ and $d_j(W, W_{\sigma, \psi_0}) = 0$ are independent. Therefore,

$$
\mathbb{E}[|\{\psi : \{1, ..., n\} \to A \mid d_*(W, W_{\sigma,\psi}) = 0\}|] \n= \frac{n! \prod_{i=1}^r \text{Prob}[d_i(W, W_{\sigma,\psi_0}) = 0]}{\prod_{a \in A} (n W(a))!}.
$$
\n(2)

Fix $i \in \{1, ..., r\}$. We will compute Prob $[d_i(W, W_{\sigma, \psi_0}) = 0]$. The element $\sigma(s_i)$
uses a pair of partitions α, β of $i_1, ..., n_k$ as follows: $\alpha := \{P_{i,j} | a, b \in A\}$ and induces a pair of partitions α , β of $\{1, \ldots, n\}$ as follows: $\alpha := \{P_{a,b} \mid a, b \in A\}$ and $\beta := \{Q_{a,b} \mid a,b \in A\}$, where

$$
P_{a,b} = \{j \mid \psi_0(j) = a \text{ and } \psi_0(\sigma(s_i)j) = b\},
$$

$$
Q_{a,b} = \{j \mid \psi_0(j) = b \text{ and } \psi_0(\sigma(s_i)^{-1}j) = a\}.
$$

Also there is a bijection from $M_{a,b}$: $P_{a,b} \to Q_{a,b}$ defined by $M_{a,b}(j) = \sigma(s_i)j$.
Conversely $\sigma(s_i)$ is uniquely determined by these partitions and bijections Conversely, $\sigma(s_i)$ is uniquely determined by these partitions and bijections.

Note that $|P_{a,b}| = |Q_{a,b}| = nW_{\sigma,\psi_0}(a, b; i)$. Thus $d_i(W, W_{\sigma,\psi_0}) = 0$ if and only $|A| = |Q_{a,b}| = nW(a, b; i)$ for all $a, b \in A$. If this occurs then $|A| = |B_{a,b}| = n$ $|P_{a,b}| = |Q_{a,b}| = nW(a,b;i)$ for all $a, b \in A$. If this occurs then $|\bigcup_{b \in A} P_{a,b}| =$
 $nW(a)$ for all $a \in A$. So the number of pairs of partitions α , β that satisfy this $nW(a)$ for all $a \in A$. So the number of pairs of partitions α, β that satisfy this requirement is

$$
\frac{\prod_{a\in A}(nW(a))!^2}{\prod_{a,b\in A}(nW(a,b;i))!)^2}.
$$

Given such a pair of partitions, the number of collections [of](#page-7-0) bijections

$$
M_{a,b} \colon P_{a,b} \to Q_{a,b}
$$

(for $a, b \in A$) equals $\prod_{a,b \in A} (nW(a, b; i))!$. Since there are n! elements in Sym(n) it follows that it follows that

Prob[
$$
d_i(W, W_{\sigma, \psi_0}) = 0
$$
] =
$$
\frac{\prod_{a \in A} (n W(a))!^2}{n! \prod_{a, b \in A} (n W(a, b; i))!}.
$$

The proposition now follows from this equality and equation (2).

Let W be the set of all weights on \mathcal{G} . It is a compact convex subset of \mathbb{R}^d for some $d > 0$. Define $F : W \to \mathbb{R}$ by

$$
F(W) := -(\sum_{i=1}^{r} \sum_{a,b \in A} W(a,b;i) \log(W(a,b;i))) + (2r - 1) \sum_{a \in A} W(a) \log(W(a)).
$$

We follow the usual convention that $0 \log(0) = 0$. Observe that $F(T, \phi) = F(W_\mu)$.

Given a weight W , let q_W denote the smallest positive integer such that $W(a, b; i)$ q $w \in \mathbb{Z}$ for all $a, b \in A$ and for all $i \in \{1, \ldots, r\}$. If no such integer exists then set $q_W := +\infty$. If p and q are integers, $p \neq 0$ and $\frac{q}{p} \in \mathbb{Z}$ then we write $p|q$. Otherwise we write $p \nmid q$.

Lemma 2.2. $F: W \to \mathbb{R}$ *is continuous. Also, there exist constants* $0 < c_1 < c_2$ *and* $p_1 < p_2$ *such that for every weight* W *with* $q_W < \infty$ *and every* $n \ge 1$ *such that* $q_W | n$, if $\sigma : G \to \text{Sym}(n)$ is chosen uniformly at random then

$$
c_1n^{p_1}e^{F(W)n} \leq \mathbb{E}[|\{\psi: \{1,\ldots,n\} \to A \mid d_*(W, W_{\sigma,\psi}) = 0\}|] \leq c_2n^{p_2}e^{F(W)n}.
$$

Proof. It is obvious that F is continuous. The second statement follows from the previous proposition and Stirling's approximation. The constants depend only on $|A|$ and the rank r of G. and the rank r of G .

Lemma 2.3. *There exists a constant* $k > 0$ *such that the following holds. Let* W *be a weight and let* n>0 *be a positive integer. Then there exists a weight* W- *such that* $q_{\widetilde{W}} < \infty$, $q_{\widetilde{W}} | n \text{ and } d_*(W, W) < k/n$.

Proof. Choose $a_0 \in A$. For $b, c \in A - \{a_0\}$ and $i \in \{1, ..., r\}$ define

$$
\widetilde{W}(b) := \frac{\lfloor W(b)n \rfloor}{n},
$$

$$
\widetilde{W}(a_0) := 1 - \sum_{b \in A - \{a_0\}} \widetilde{W}(b),
$$

 \Box

$$
\widetilde{W}(b, c; i) := \frac{\lfloor W(b, c; i) n \rfloor}{n},
$$
\n
$$
\widetilde{W}(a_0, b; i) := \widetilde{W}(b) - \sum_{a \in A - \{a_0\}} \widetilde{W}(a, b; i),
$$
\n
$$
\widetilde{W}(b, a_0; i) := \widetilde{W}(b) - \sum_{a \in A - \{a_0\}} \widetilde{W}(b, a; i),
$$
\n
$$
\widetilde{W}(a_0, a_0; i) := \widetilde{W}(a_0) - \sum_{b \in A - \{a_0\}} \widetilde{W}(a_0, b; i).
$$

Let us check that \widetilde{W} is a weight. It is clear that $\sum_{a \in A} \widetilde{W}(a) = 1$. If $b \in A - \{a_0\}$ $a \in A$ then $W(b)$ $= \sum_{a \in A} \widetilde{W}(a, b)$ $\sum \widetilde{W}(a_0, b; i)$. Als $(i) = \sum_{a \in A}$ $W(b, a; i)$. It is immediate that $W(a_0) =$ $b \in A$ $W(a_0, b; i)$. Also \sum $b \in A$ $\widetilde{W}(b, a_0; i) = \widetilde{W}(a_0, a_0; i) + \sum_{b \in A_{\text{max}}} \widetilde{W}(b, a_0; i)$ $b \in A - \{a_0\}$ $=\widetilde{W}(a_0)-\sum_{b\in A-\{a_0\}}$ $\widetilde{W}(a_0, b; i) + \sum_{b \in A - \{a_0\}}$ $W(b, a_0; i)$

$$
= \widetilde{W}(a_0) + \sum_{b \in A - \{a_0\}} \widetilde{W}(b, a_0; i) - \widetilde{W}(a_0, b; i)
$$

\n
$$
= \widetilde{W}(a_0) + \sum_{b \in A - \{a_0\}} (\widetilde{W}(b)
$$

\n
$$
- \sum_{a \in A - \{a_0\}} \widetilde{W}(b, a; i)) - (\widetilde{W}(b) - \sum_{a \in A - \{a_0\}} \widetilde{W}(a, b; i))
$$

\n
$$
= \widetilde{W}(a_0).
$$

This proves that W is a weight. It is clear that $q_{\widetilde{W}} < \infty$ and $q_{\widetilde{W}} | n$. Lastly observe that if $a, b \in A - \{a_0\}$ then $|W(a, b; i) - W(a, b; i)| \le 1/n$. Since $|W(b) - W(b)| \le$
too, $|W(a, b; i) - \widetilde{W}(a, b; i)| \le |A|/n$ and $|W(b, a; i) - \widetilde{W}(b, a; i)| \le |A|/n$ $\leq 1/n$ too, $|W(a_0, b; i) - W(a_0, b; i)| \le |A|/n$ and $|W(b, a_0; i) - W(b, a_0; i)| \le |A|/n$.
Since $|W(a_0) - \widetilde{W}(a_0)| \le |A|/n$ $|W(a_0, a_0; i) - \widetilde{W}(a_0, a_0; i)| \le |A|^2/n$. Thus Since $|W(a_0) - \widetilde{W}(a_0)| \leq |A|/n$, $|W(a_0, a_0; i) - \widetilde{W}(a_0, a_0; i)| \leq |A|^2/n$. Thus
d. $(W|\widetilde{W}| \leq r|A|^2/n$ $d_*(W, \widetilde{W}) \leq r|A|^2/n.$

We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. Recall that $\phi: X \rightarrow A$ is an observable and A is a finite set. Let $n \ge 0$ and let $\sigma_n : G \to \text{Sym}(n)$ be a homomorphism chosen uniformly at random. Given a weight W let random. Given a weight W , let

$$
Z_n(W) := |\{\psi : \{1, \ldots, n\} \to A \mid d_*(W_{\sigma_n, \psi}, W) = 0\}|.
$$

For any $\varepsilon > 0$,

$$
\mathbb{E}[|\{\psi:\{1,\ldots,n\}\to A \mid d^*_{\sigma_n}(\phi,\psi)\leq \varepsilon\}|] = \sum_{W:\ d_*(W,W_\mu)\leq \varepsilon} \mathbb{E}[Z_n(W)].\tag{3}
$$

Let $\delta > 0$. Since $F: W \to \mathbb{R}$ is continuous, there exists $\varepsilon_0 > 0$ such that if $d_*(W, W_{\mu}) \leq \varepsilon_0$ then $|F(W) - F(W_{\mu})| < \delta$. So let us fix ε with $0 < \varepsilon < \varepsilon_0$.
By the previous lemma, if n is sufficiently large then there exists a weight M

By the previous le[mma](#page-8-0), if n is suffici[ent](#page-9-0)ly large then there exists a weight W such that $d_*(W, W_\mu) \leq \varepsilon$ and $q_W | n$. Lemma 2.2 implies

$$
\mathbb{E}[\{\psi: \{1,\ldots,n\} \to A \mid d^*_{\sigma_n}(\phi,\psi) \leq \varepsilon\}]] \geq \mathbb{E}[Z_n(W)] \geq c_1 n^{p_1} e^{F(W_\mu)n - \delta n},\tag{4}
$$

where $c_1 > 0$ and p_1 are constants.

If *W* is a weight such that q_W ∤ *n* then $Z_n(W) = 0$. If $q_W | n$ then $W(a, b; i) \in \mathbb{Z}[1/n]$ for all $a, b \in A$ and $i \in \{1, ..., r\}$. The space of all weights lies inside the $\mathbb{Z}[1/n]$ for all $a, b \in A$ and $i \in \{1, ..., r\}$. The space of all weights lies inside the cube $[0, 1]^d \subset \mathbb{R}^d$ for some d. So the number of weights W such that $Z(W) \neq 0$ cube $[0, 1]^d \subset \mathbb{R}^d$ for some d. So the number of weights W such that $Z_n(W) \neq 0$
is at most n^d . Lemma 2.2 and equation (3) now imply that is at most n^d . Lemma 2.2 and equation (3) now imply that

$$
\mathbb{E}\left[\left\{\psi:\{1,\ldots,n\}\to A \mid d^*_{\sigma_n}(\phi,\psi)\leq \varepsilon\}\right]\right] \leq c_2 n^{p_2+d} e^{F(W_\mu)n+\delta n}.\tag{5}
$$

Here $c_2 > 0$ and p_2 are constants. Equations (4) and (5) imply

$$
\limsup_{n\to\infty} |\frac{1}{n} \log(\mathbb{E}[|\{\psi:\{1,\ldots,n\}\to A \mid d_{\sigma_n}^*(\phi,\psi)\leq \varepsilon\}|]) - F(W_\mu)| \leq \delta.
$$

Since δ δ δ is arbitrary, it follows that

$$
\inf_{\varepsilon>0}\lim_{n\to\infty}\frac{1}{n}\log(\mathbb{E}[|\{\psi:\{1,\ldots,n\}\to A\mid d_{\sigma_n}^*(\phi,\psi)\leq\varepsilon\}|])=F(W_\mu)=F(T,\phi).
$$

3. Proof of Theorem 1.3

As in the statement of Theorem 1.3, let $G = \langle s_1, \ldots, s_r \rangle$ be a free group or free semigroup of rank $r \geq 1$. Let $G \curvearrowright^T (X, \mu)$. Let $\phi: X \to A$ be a finite observable. Let $\Sigma = {\mu_i}_{i=1}^{\infty}$ where each μ_i is the uniform probability measure on the set of ho-
momorphisms from G to Sym(i) Let $\sigma : G \to Sym(i)$ be a homomorphism chosen momorphisms from G to Sym(*i*). Let $\sigma_i : G \to \text{Sym}(i)$ be a homomorphism chosen
uniformly at random among all homomorphisms of G into Sym(*i*). Theorem 1.3 is uniformly at random among all homomorphisms of G into $Sym(i)$. Theorem 1.3 is an immediate consequence of the next two propositions.

Proposition 3.1. $h(\Sigma, T, \phi) \leq f(T, \phi)$.

Proof. Let $S = \{e, s_1, \ldots, s_r\}$. Observe that for any n, if $\psi : \{1, \ldots, n\} \rightarrow A$ is any function then $d_{\sigma_n}^S(\phi, \psi) r \geq d_{\sigma_n}^*(\phi, \psi)$. So if $\varepsilon > 0$ then

$$
\mathbb{E}[|\{\psi: \{1,\ldots,n\} \to A \mid d_{\sigma_n}^S(\phi, \psi) \leq \varepsilon\}|] \leq \mathbb{E}[|\{\psi: \{1,\ldots,n\} \to A \mid d_{\sigma_n}^*(\phi, \psi) \leq r\varepsilon\}|].
$$

This implies $h(\Sigma, T, \phi) \leq F(T, \phi)$.

Recall that $B(e, n)$ denotes the ball of radius n in G. Furthermore we have $f(T, \phi) = \inf_n F(T, \phi^{B(e,n)})$, and thus $\inf_n h(\Sigma, T, \phi^{B(e,n)}) \leq f(T, \phi)$. Since ϕ
and $\phi^{B(e,n)}$ generate the same σ -algebra. Theorem 1.1 implies that $h(\Sigma, T, \phi)$. and $\phi^{B(e,n)}$ generate the same σ -algebra, Theorem 1.1 implies that $h(\Sigma,T,\phi) = h(\Sigma, T, \phi^{B(e,n)})$ for all *n*. This implies the proposition $h(\Sigma, T, \phi^{B(e,n)})$ for all n. This implies the proposition.

Proposition 3.2. $h(\Sigma, T, \phi) \geq f(T, \phi)$.

Proof. Given a finite set $K \subset G$, define

$$
h(\Sigma, T, \phi; K) := \inf_{\varepsilon > 0} \limsup_{n \to \infty} \frac{1}{n} \log(\mathbb{E}[|\{\psi : \{1, \ldots, n\} \to A \mid d_{\sigma_n}^K(\phi, \psi) \leq \varepsilon\}|]).
$$

Claim 1. $h(\Sigma, T, \phi; B(e, m)) \geq F(T, \phi^{B(e,m)})$ for all $m \geq 0$.

Note that if $K \subset L$ then $h(\Sigma, T, \phi; K) \ge h(\Sigma, T, \phi; L)$ holds. It follows that $h(\Sigma,T,\phi) = \inf_m h(\Sigma,T,\phi; B(e,m))$. Thus claim 1 implies the proposition.

To simplify notation, let B denote $B(e, m)$. To prove claim 1, for $m, n, \varepsilon \ge 0$, let $P(m, n, \varepsilon)$ be the set of all pairs (σ, ω) with $\sigma : G \to \text{Sym}(n)$ a homomorphism and $\omega : \mathcal{L} \to A$ a map such that $d^B(\phi, \omega) \leq \varepsilon$. Since there are $n!^r$ homomorphism $\omega: \{1, \ldots, n\} \to A$ a map such that $d_{\sigma}^{B}(\phi, \omega) \leq \varepsilon$. Since there are $n!^{r}$ homomor-
phisms from G into Sym(n) phisms from G into $Sym(n)$,

$$
h(\Sigma, T, \phi; \mathbf{B}) = \inf_{\varepsilon > 0} \limsup_{n \to \infty} \frac{1}{n} \log \left(\frac{|P(m, n, \varepsilon)|}{n!} \right). \tag{6}
$$

Let $Q(m, n, \varepsilon)$ be the set of all pairs (σ, ψ) with $\sigma : G \to \text{Sym}(n)$ a homomorphism
and $\psi : \{1, \dots, n\} \to A^B$ a map such that $d^*(\phi^B, \psi) < \varepsilon$. By Theorem 1.4. and $\psi: \{1, ..., n\} \to A^B$ a map such that $d_{\sigma}^*(\phi^B, \psi) \leq \varepsilon$. By Theorem 1.4,

$$
F(T, \phi^{\mathcal{B}}) = \inf_{\varepsilon > 0} \limsup_{n \to \infty} \frac{1}{n} \log \left(\frac{|\mathcal{Q}(m, n, \varepsilon)|}{n!^r} \right). \tag{7}
$$

For $g \in B$ let $\pi_g : A^B \to A$ denote the projection map $\pi_g((a_h)_{h\in B}) = a_g$. For $(\sigma, \psi) \in Q(m, n, \varepsilon)$, define $R(\sigma, \psi) = (\sigma, \pi_e \circ \psi)$. Define $H(x) := -x \log(x) - (1 - x) \log(1 - x)$ $(1 - x) \log(1 - x)$.

Claim 2. If $c = 1 + |B|$ then the image of R is contained in $P(m, n, \varepsilon c)$.

Claim 3. There are constants $C, k > 0$ depending only on m such that if $\varepsilon < \frac{1}{4D}$ $\frac{4|B|}{2}$ then R is at most $C \exp(nk\varepsilon + nH(2|B|\varepsilon))$ to 1, i.e., for any (σ, ω) in the image of R $|B^{-1}(\sigma, \omega)| \leq C \exp(nk\varepsilon + nH(2|B|\varepsilon))$. $R, |R^{-1}(\sigma, \omega)| \leq C \exp(nk\varepsilon + nH(2|B|\varepsilon)).$
Claims 2 and 3 imply

Claims 2 and 3 imply

$$
C \exp(k n \varepsilon + n H(2|B|\varepsilon))|P(m, n, \varepsilon c))| \ge |Q(m, n, \varepsilon)|.
$$

Together with equations (6) and (7), this implies claim 1 and hence the proposition.

Next we prove claim 2. For this purpose, fix a homomorphism $\sigma: G \to \text{Sym}(n)$.
Serve that for any $x \in X$ and any $t \in \{s_1, \ldots, s_n\}$ Observe that for any $x \in X$ and any $t \in \{s_1, \ldots, s_r\}$,

$$
\pi_g \phi^{\mathcal{B}}(x) = \phi(T_g x) = \pi_{g^t} \phi^{\mathcal{B}}(T_t x) \quad \text{for all } g \in \mathcal{B} \cap \mathcal{B}t.
$$

Therefore if $i \in \{1, ..., n\}$ and, for some $g \in B \cap Bt$, $\psi : \{1, ..., n\} \to A^B$ satisfies

$$
\pi_g \psi(i) \neq \pi_{gt^{-1}} \psi(\sigma(t)i),
$$

then $\psi \lor \psi^t(i) \neq \phi^B \lor \phi^{Bt}(x)$ for any $x \in X$.
So let \mathcal{C} be the set of all $i \in \{1, \ldots, n\}$ such

So let G be the set of all $i \in \{1, \ldots, n\}$ such that for all $t \in \{s_1, \ldots, s_r\}$,

$$
\pi_g \psi(i) = \pi_{gt^{-1}} \psi(\sigma(t)i) \quad \text{for all } g \in B \cap Bt.
$$

Thus

$$
d_{\sigma}^*(\phi^{\mathcal{B}}, \psi) \ge \frac{|\mathcal{G}^c|}{n} = \zeta(\mathcal{G}^c),
$$

where \mathcal{G}^c denotes the complement of \mathcal{G} and ζ denotes the uniform probability measure on $\{1, \ldots, n\}$.

Let \mathcal{G}_m be the set of all $i \in \{1, ..., n\}$ such that $\sigma(g)i \in \mathcal{G}$ for all $g \in B$. Note that

$$
\zeta(\mathcal{G}_{m}^{c}) \leq |\mathbf{B}|\zeta(\mathcal{G}^{c}) \leq |\mathbf{B}|d_{\sigma}^{*}(\phi^{\mathbf{B}}, \psi). \tag{8}
$$

If $i \in \mathcal{G}_m$ then $\psi(i) = (\pi_e \circ \psi)^B(i)$. Therefore

$$
\sum_{a \in A^{\mathcal{B}}} |\psi_* \zeta(a) - (\pi_e \circ \psi)_*^{\mathcal{B}} \zeta(a)| \leq \frac{1}{n} |\{i \mid \psi(i) \neq (\pi_e \circ \psi)^{\mathcal{B}}(i)\}|
$$

$$
\leq \zeta(\mathcal{G}_m^c) \leq |\mathcal{B}| d^*_{\sigma}(\phi^{\mathcal{B}}, \psi).
$$

Suppose that $d_{\sigma}^{*}(\phi^{\text{B}}, \psi) \leq \varepsilon$. Then

$$
d_{\sigma}^{\mathcal{B}}(\phi, \pi_{e} \circ \psi) = \sum_{a \in A^{\mathcal{B}}} |\phi_{*}^{\mathcal{B}}\mu(a) - (\pi_{e} \circ \psi)_{*}^{\mathcal{B}}\zeta(a)|
$$

\n
$$
\leq \sum_{a \in A^{\mathcal{B}}} |\phi_{*}^{\mathcal{B}}\mu(a) - \psi_{*}\zeta(a)| + |\psi_{*}\zeta(a) - (\pi_{e} \circ \psi)_{*}^{\mathcal{B}}\zeta(a)|
$$

\n
$$
\leq d_{\sigma}^{*}(\phi^{\mathcal{B}}, \psi)(1 + |\mathcal{B}|) \leq \varepsilon(1 + |\mathcal{B}|).
$$

This proves claim 2.

Let (σ, ω) be in the image of R.

Claim 4. For every ψ with $R(\sigma, \psi) = (\sigma, \omega)$, there exists a set $L(\psi) \subset \{1, ..., n\}$
eximplify $\{n(1 - |B(\varepsilon)| \text{ such that } \psi(i) = \omega^B(i) \text{ for all } i \in I(\psi)\}$ of cardinality $[n(1 - |B|\varepsilon)]$ such that $\psi(i) = \omega^{B}(i)$ for all $i \in L(\psi)$.

To prove claim 4, observe that if \mathcal{G}_m is defined as above, then $\psi(i) = \omega^B(i)$ for all $i \in \mathcal{G}_m$. By equation (8),

$$
|\mathcal{G}_m| = n(1 - \zeta(\mathcal{G}_m^c)) \ge n(1 - |B|d^*_{\sigma}(\phi^B, \psi)) \ge n(1 - |B|\varepsilon).
$$

So let $L(\psi)$ be any subset of \mathcal{G}_m with cardinality $\lfloor n(1 - |B|\varepsilon) \rfloor$. This proves claim 4. Next we prove claim 3. Claim 4 implies

$$
|R^{-1}(\sigma,\omega)| \le |A|^{|B|(n-|n(1-|B|\varepsilon)|)} \binom{n}{\lfloor n(1-|B|\varepsilon)\rfloor}.
$$
 (9)

$$
43^{\circ}
$$

This is because there are $\binom{n}{\lfloor n(1-|B|\varepsilon)\rfloor}$ $\binom{n}{\lfloor n(1-|B|\varepsilon)\rfloor}$ $\binom{n}{\lfloor n(1-|B|\varepsilon)\rfloor}$ sets in $\{1,\ldots,n\}$ with cardinality equal to $\lfloor n(1-|B|\varepsilon)\rfloor$
 \leq (1 $[n(1 - |B|\varepsilon)]$ and for each $i \in \{1, ..., n\} - L(\psi)$, there are at most $|A|^{|B|}$ possible values for $\psi(i)$ values for $\psi(i)$.

Because H is monotone increasing for $0 < x < 1/2$ it follows from Stirling's approximation that if $\varepsilon < \frac{1}{4|B|}$ then

$$
\binom{n}{\lfloor n(1-|B|\varepsilon)\rfloor} \leq C \exp(nH(2|B|\varepsilon)),
$$

where $C > 0$ is a constant. This and equat[ion \(](http://www.emis.de/MATH-item?)[9\) now imply](http://www.ams.org/mathscinet-getitem?mr=2552252) claim 3 and hence the proposition. \Box

Refer[ences](http://www.emis.de/MATH-item?0203.05801)

- [Bo08a] L. Bowe[n, A measure-con](http://www.emis.de/MATH-item?0227.28015)[jugacy invarian](http://www.ams.org/mathscinet-getitem?mr=0274717)t for actions of free groups. *Ann. of Math,*, to appear.
- [Bo08b] L. Bowen, Measure conjugacy invariants for actions of countable sofic groups. *J. Amer. Math. Soc.* **23** (2010), 217–245. Zbl MR 2552252
- [Bo08c] L. Bowen, Nonabelian free group act[ions:](http://www.emis.de/MATH-item?05144564) [Markov](http://www.emis.de/MATH-item?05144564) [p](http://www.emis.de/MATH-item?05144564)[rocesses,](http://www.ams.org/mathscinet-getitem?mr=2297095) [the](http://www.ams.org/mathscinet-getitem?mr=2297095) Abramov-Rohlin formula and Yuzvinskii's formula. Preprint 2008. arXiv:0806.4420
- [FO70] N. A. Friedman and D. S. Ornstein, On isomorphism of weak Bernoulli transformations. *Adv. Math.* **5** (1970), 365–394. Zbl 0203.05801 MR 0274718
- [Or70] D. Ornstein, Factors of Bernoulli shifts are Bernoulli shifts. *Adv. Math.* **5** (1970), 349–364. Zbl 0227.28015 MR 0274717
- [Po08] S. Popa, Private communication.
- [PS07] S. Popa and R. Sasyk, On the cohomology of Bernoulli actions. *Ergodic Theory Dynam. Systems* **27** (2007), 241–251. Zbl 05144564 MR 2297095

Received March 11, 2009; revised June 24, 2009

L. Bowen, University of Hawai'i, Mānoa, 2565 McCarthy Mall, Keller 401A, Honolulu, Hawaii 96822, U.S.A., and Mathematics Department, MS-3368, Texas A&M University, College Station, TX 77843-3368, U.S.A.

E-mail: lpbowen@math.tamu.edu

