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Abstract. Previous work introduced two measure-conjugacy invariants: the f-invariant (for
actions of free groups) and X-entropy (for actions of sofic groups). The purpose of this paper
is to show that the f-invariant is essentially a special case of X-entropy. There are two
applications: the f-invariant is invariant under group automorphisms and there is a uniform
lower bound on the f-invariant of a factor in terms of the original system.
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1. Introduction

The paper [BoO8b] introduced a measure-conjugacy invariant, called X-entropy, for
measure-preserving actions of a sofic group. This was applied, for example, to clas-
sify Bernoulli shifts over an arbitrary countable linear group. Previously, [BoO8a]
introduced the f-invariant for measure-preserving actions of free groups. The invari-
ants of both papers have strong analogies with classical Kolmogorov—Sinai entropy.
The purpose of this paper is to show that the f-invariant is essentially a special case
of X-entropy. We apply this result to show the f-invariant does not change under
group automorphisms and that there is a lower bound on the f-invariant of a factor
in terms of the f-invariant of the system. The introductions to [Bo0O8a]-[Bo08b]
provide further background and motivation for X-entropy and the f-invariant.

To define X-entropy precisely, let G be a countable group and let ¥ = {0;}72,
be a sequence of homomorphisms g; : G — Sym(m;) where Sym(m;) denotes the
full symmetric group of the set {1, ...,m;}. X is asymptotically free if

1 =j<miloi(g)j =0i(g2)j}l
1lim = 0.
1—>00 m;

for every pair g1,g>, € G with g; # g»>. The treatment of X-entropy given next
differs from [BoO8b] in two respects: for simplicity, we assume that each o; is a
homomorphism and we use observables rather than partitions to define it.
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We will write G ~,7 (X, 1) to mean (X, ut) is a standard probability measure
space and T = (Tg)gec is an action of G on (X, ;) by measure-preserving trans-
formations. This means that for each g € G, T, : X — X is a measure-preserving
transformation and Tg, Tg, = Tg,4,. An observable of (X, i) is a measurable map
¢: X — A where A is afinite or countably infinite set. We will say that ¢ is finite if A
is finite. Roughly speaking, the X-entropy rate of ¢ is the exponential rate of growth
of the number of observables ¥: {1,...,m;} — A that approximate ¢. In order to
make precise what it means to approximate, we need to introduce some definitions.

If¢: X - Aand ¥: X — B are two observables, then the join of ¢ and
Y is the observable ¢ vV ¥ : X — A x B defined by ¢ Vv ¥ (x) = (¢(x), ¥ (x)).
If g € Gthen Tg¢p: X — A is defined by Tep(x) = ¢(Tgx). f H C G is
finite, then let ¢ := Ve Thd- ¢ maps X into A¥, the direct product of
|H| copies of A. Let ¢ i denote the pushforward of y on A7 . In other words,
¢ (1)(S) = p((@)~1(S)) for S € AT

For each i, let {; denote the uniform probability measure on {1,...,m;}. If
¥:{l,...,m;} — Ais an observable and H C G thenlet Y7 :=\/,_y 0i (W)Y,
where o; (W)Y : {1,...,m;} — Aisdefined by o; ()Y (j) = ¥(0;(h)j). Of course,
v depends on o; but, to keep the notation simple, we will leave this dependence
implicit. Let ¥/ ¢; be the pushforward of §; on A, Finally, let df (¢. ) be the

I'-distance between ¢ ; and ¥ ¢;. In other words,

dal (@ ¥) = 3 |¢ i) — I Gi(a)l.

acAH

Definition 1. If ¢: X — A is an observable and A is finite then define the X-entropy
rate of ¢ by

h(Z,T,¢) = inf_inflimsup L log([{y: {1.....m;} — A | dZ (¢, ¥) < &}]).
HCG e>0 ;_ o0 M i
The first infimum above is over all finite subsets H C G.

Definition 2. Define the entropy of ¢ by
H(¢) = — ZAM(qﬁ‘l(a)) log(n(¢~ ().

Definition 3. If ¢: X — A is an observable and A is countably infinite then let
mn: A — A, be a sequence of maps such that
(1) A, is a finite set for all n;
(2) foreachi > j thereis amap m;j: A; — Aj such that n; = m;j o 73
(3) my is asymptotically injective in the sense that for all a, b € A with a # b there
exists N such that n > N implies 7, (a) # 7w, ().

Now define
hZ, T,¢):= lim (X, T, 7w, 0¢).
n—>o0
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In [BoO8b] it is proven that if H(¢) < oo then this limit exists and is independent of
the choice of sequence {7, }.

An observable ¢ is generating if the smallest G-invariant o-algebra on X that
contains {¢~'(a)}ae4 is equal to the o-algebra of all measurable sets up to sets of
measure zero. The next theorem is (part of) the main result of [BoO8b].

Theorem 1.1. Let 3 = {0;} be an asymprotically free sequence of homomorphisms
0;: G — Sym(m;) for a group G. Let G ~T (X, ). If ¢y and ¢ are two
finite-entropy generating observables then h(X, T, ¢1) = h(Z, T, ¢»).

This motivates the following definition.

Definition 4. If X and T are as above then the X-entropy of the action 7 is defined
by h(XZ,T) := h(X, ¢), where ¢ is any finite-entropy generating observable (if one
exists).

Next let us discuss a slight variation on X-entropy. Let {m;}72, be a sequence
of natural numbers. For each i € N, let u; be a probability measure on the set of
homomorphisms from G to Sym(m;). Let o; : G — Sym(m;) be chosen at random
according to p;. The sequence ¥ = {yu; 72, is said to be asymptotically free if for
every pair g1, g2 € G with g1 # g,

lim E[{1 < j <m; | 0i(g1)] = 0i(g2) ] }]

i—00 m;

=0

where E[ -] denotes expected value. The X-entropy rate of an observable ¢p: X — A
with A finite is defined by

h(Z,T,¢)

= inf_inf lim sup - log 1y : {L.....mi} — 4 | 5 (4. 9) < &3]
With these definitions in mind, Theorem 1.1 is still true if “homomorphisms” is
replaced with “probability measures on the set of homorphisms”.

Let us note one more generalization. If G is a semigroup with identity then the
above definitions still make sense. Using results from [Bo0S8c] it can be shown that
Theorem 1.1 remains true.

Now let us recall the f-invariant from [BoO8a]. Let G = (s1, ..., s,) be either a
free group or free semigroup of rank r. Let G R, (X, it). Let a be a partition of X
into at most countably many measurable sets. The entropy of « is defined by

H(a) :=— 3 pu(A4)log(pu(A))

Aca

where, by convention, 01log(0) = 0. If « and B are partitions of X then the join is
the partitiona vV 8 := {ANB | A € a, B € B}. Let B(e, n) denote the ball of radius
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n in G with respect to the word metric induced by its generating set (which is either
{s1,...,5.}if G is a semigroup or {sF!,...,sE!} is G is a group). Define

-
F(T,a) :=(1-2r)H(@)+ >_ H(a Vv Tslfla),
i=1
"=\ Tle,
g€B(e,n)
f(T,a) :=inf F(T,a").
n

The partition « is generating if the smallest G-invariant o -algebra containing « equals
the o-algebra of all measurable sets up to sets of measure zero.

Theorem 1.2. Let G = (s1,...,s,) be a free group or free semigroup. Let G ~,T
(X, w). If oy and on are two generating partitions with H(o1) + H(a) < oo then

J(T 1) = f(T, a2).

This theorem was proven in [BoO8c]. The special case in which G is a group and
o1, oo are finite is the main result of [BoO8a]. Because of this theorem, we define
the f-invariant of the action by f(T) := f(T,«), where « is any finite-entropy
generating partition of X (if one exists).

In order to relate this result with X-entropy, let us make the following definitions.
If ¢: X — A is an observable, then let ¢ = {¢'(a)}qca be the corresponding
partition of X. Define F(T,¢) := F(T,¢) and f(T,¢) := f(T,¢). The main
result of this paper is:

Theorem 1.3. Let G = (s1,...,5,) be a free group or free semigroup of rank
r>1 Let G AT (X, ). Let ¢ be a finite observable. Fori > 1, let y; be the
uniform probability measure on the set of all homomorphisms from G to Sym(i). Let
Y ={pi}{2,. Then h(Z,T,¢) = f(T, ).

We will prove a refined version of this theorem as follows. Recall the definition
of d(f (¢, V) given above. Define

;
A3 (¢ 9) = Y de " . v).
i=1
Theorem 1.4. Let G and T be as in the previous theorem. Let ¢ : X — A be a finite

observable. Let 0; : G — Sym(i) be a homomorphism chosen uniformly at random.
Then

F(T.¢) = inf limsup } log(E[|{y: {1......7} —> 4 | d5,(¢.v) < &}]].

This theorem is proven in Section 2. In Section 3 we deduce Theorem 1.3 from
it.
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1.1. Application I: automorphism invariance. Let G be a countable group or
semigroup. Let G AT (X, ). Let w: G — G be an automorphism. Let 79 =
(T¢)gec where T@x = Tyyx for all x € X. This new action of G is not
necessarily isomorphic to the original action. That is, there might not exist a map
¢: X — X suchthat (Tgx) = T ¢(x) forae. x € X andall g € G.

Suppose that ¥ = {o;} is an asymptotically free sequence of homomorphisms
oi: G — Sym(m;). Let Z“ = {0; o w}. A short exercise reveals that #(Z, T, ¢) =
h(Z®,T®, ¢) for any ¢.

If 0;: G — Sym(i) is chosen uniformly at random, it follows that the law of
0; o w is the same as the law of o;. Therefore, if w; is the uniform probability
measure on the set of homomorphisms from G to Sym(i) and ¥ = {u;}, then
h(Z,T,¢) =h(X,T?®,¢). Theorem 1.3 now implies:

Theorem 1.5. Let G and T be as in Theorem 1.3. Let w: G — G be an automor-
phism. Then f(T,¢) = f(T?, @) for any finite observable .

This implies that f (7T, ¢) does not depend on the choice of free generator set
{s1,...,s,} for G since any two free generating sets are related by an automorphism.

1.2. Application II: lower bounds on the f -invariant of a factor

Definition 5. Let G A7 (X, ) and G A5 (Y, v). Then S is a factor of T if there
exists a measurable map ¢: X — Y such that ¢, = v and ¢(Tgx) = Sg¢p(x) for
allg € Gandae. x € X.

To motivate this section, let us point out two curious facts.

First, Ornstein proved in [Or70] that every factor of a Bernoulli shift over Z is
measurably conjugate to a Bernoulli shift. It is not known whether this holds when Z
is replaced with a nonabelian free group. A counterexample due to Sorin Popa [Po08]
(based on [PS07]) shows that if G is an infinite property 7' group then there exists
a factor of a Bernoulli shift over G that is not measurably conjugate to a Bernoulli
shift.

Second, the f-invariant of an action can be negative. For example, if X is a set
with n elements, p is the uniform measure on X and 7" = (Tg)g4eG is a measure-
preserving action of G = (s1,...,s,) on X then f(T) = —(r — 1) log(n).

From these two facts a natural question arises: can the f -invariant of a factor of
a Bernoulli shift over G be negative? To answer this, let us recall the following result
from [Bo08b], Corollary 8.3.

Lemma 1.6. Let G be a countable group. Let ¥ = {0; }72 | be an asymptotically free
sequence of homomorphisms o;: G — Sym(m;). Let T be a measure-preserving
action of G and let S be a factor of T. Assume that there exist finite-entropy
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generating partitions for T and S. Also let ¢ be a generating observable for T with
H(¢) < oo. Then
hZ,S) = h(X,T)— H(®).

So Theorem 1.3 implies:

Theorem 1.7. Let G = (s1,...,8,) be a free group on r generators. Let T be a
measure-preserving action of G and let S be a factor of T. Assume there exists finite
generating partitions for T and S. Let o be a finite generating partition for T. Then

f(8) = fA(T) — H(@).

In order to apply this to Bernoulli shifts, let us recall the definitions. Let K be a
finite or countable set and k a probability measure on K. Let (K¢, « %) denote the
product measure space. Define T, : K¢ — K9 by Ty (x)(h) = x(hg). This defines
a measure-preserving action of G on (K, «9). It is the Bernoulli shift over G with
base measure «. In [Bo08a] it was shown that f(7) = H (k) where

H(k) === ) p(k})log(n(tk}).
keK

Let o be the canonical partition of K€, ie,a = {4; : k € K} where Ay =
{x € K9 | x(e) = k}. Note H(e) = H(x) = f(T). So the theorem above implies
the following result.

Corollary 1.8. If S is a factor of the Bernoulli shift and if there exists a finite gener-
ating partition for S then f(S) > 0.

It is unknown whether there exists a nontrivial factor S of a Bernoulli shift over
a free group G such that f(S) = 0.

In [Bo08c], classical Markov chains are generalized to Markov chains over free
groups. An explicit example was given of a Markov chain with finite negative f-
invariant. It follows that this Markov chain cannot be measurably conjugate to a
factor of a Bernoulli shift. It can be shown that this Markov chain is uniformly
mixing. To contrast this with the classical case, recall that Friedman and Ornstein
proved in [FO70] that every mixing Markov chain over the integers is isomorphic to
a Bernoulli shift.

Now we can construct a mixing Markov chain with positive f-invariant that is
not isomorphic to a Bernoulli shift as follows. Let 7" denote a mixing Markov chain
with negative f-invariant. Let S denote a Bernoulli shift with f(S) > — f(T).
Consider the product action 7 x S. A short computation reveals that, in general,
f(T x8) = f(T) + f(S). Therefore T x S has positive f-invariant. It can be
shown that 7" x S is a mixing Markov chain. However it cannot be isomorphic to a
Bernoulli shift since it factors onto 7" which has negative f-invariant.
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2. Proof of Theorem 1.4

Let G = (s1,...,s,) be afree group or free semigroup of rank 7. Let G ~ T (X, ).
Let ¢: X — A be a finite observable.

We will need to consider certain perturbations of the measure p with respect to
the given observable ¢ : X — A. For this purpose we introduce the notion of weights
on the graph § = (V, E) that is defined as follows. The vertex set V' equals A. For
everya,b € Aandeveryi € {1,...,r}thereis adirected edge froma to b labeled i.
This edge is denoted (a, b; i). We allow the possibility that a = b. A weight on § is
a function W: V U E — [0, 1] satisfying

W(a) = > W(a,b;i)= > W(b,a;i) foralli =1...r, a €A,
beA beA

1= > W(a).

acA

For example,

Wy(a) := n(¢~ " (a)).
Wyula,bii) = p({x € X | ¢(x) = a, ¢(Ty;x) = b})

is the weight associated to p. For a homomorphism o : G — Sym(n) and a function
Vv {l,...,n} — A we define the weight W, y by

Woy (@) := [y~ (a)|/n,
Wopla,bii) = [{j | ¥(j) =a, ¥(o(si)j) = b}|/n.

Note that

r

dy(p.v) = > X Wula,b;i) — Woy(a,b;i).

i=1a,bed

So given two weights Wy, W, define

14

AW Wa) = 3 Y [Wila, b:i) — Waa, b:i).
=1a,bed

Proposition 2.1. Let n be a positive integer. Let W be a weight. Suppose that
Wi(a,b;i)n € Z for every a,b € Aandeveryi = 1...r. Ifo: G — Sym(n) is
chosen uniformly at random then

' [uea(nW(@))1? !
[Ti=i [apea@W(a bii)t

Proof. Note that if du(W, Wy ) = 0 then Wy y (a) = W(a) for all a € A. Equiva-
lently,

E[{y:{1,....n} = A | ds(W, W5 y) =0}]] =

v~ Ya)| =nW(a) foralla € A. (1)
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The number of functions ¥ : {1,...,n} — A that satisfy this requirement is
n!
[TaesamW ()

If Y1, ¥» are two different functions that satisfy equation (1) then there is a permuta-
tion T € Sym(n) such that ¢y = Ypot. If 6°: G — Sym(n) is the homomorphism
defined by 6%(g) = to(g)r™! then Wy y, = Wyr y,. Since 6: G — Sym(n) is
chosen uniformly at random, this implies that the probability that dy« (W, Wy ) = 0
is the same as the probability that d« (W, Wy y,) = 0. So fix a particular function o
satisfying equation (1). Then

n! Prob[ds(W, Wg.y,) = 0]

E[{y:{l,....n} —> A | d«(W, W5 y) = 0}]] = [acs(nW(a))!

For any two weights Wy, W, and 1 <i < r, define

di(Wl,Wz) = Z |W1(a,b;i)—W2(a,b;i)|.
a,beA

So d* = Z::l di.

The homomorphismo : G — Sym(n) is determined by its values o (s1), ..., o (sy).
The event d; (W, Wy y,,) = 0 is determined by o(s;). Soif i # j then the events
di (W, W5 y,) = 0and d; (W, Wy y,,) = 0 are independent. Therefore,

E[{y: {1,....n} = A | d«(W, Wy y) = 0}]]

_ n!TT;—, Prob[d; (W, Wy 4,) = 0] ()

[Taea(mW(a))! '
Fixi € {1,...,r}. We will compute Prob[d; (W, Wy y,,) = 0]. The element o (s;)
induces a pair of partitions &, B of {1,...,n} as follows: a :={P, 5 | a,b € A} and

B:=1{04p | a b e A}, where

Pap =1{j | Yo(j) =aand Yo(o(s;)j) = b},
Qap =1{j | Yo(j) =band yo(o(s)~"j) = a}.

Also there is a bijection from M, 5: P, — Qg defined by M, 5(j) = o(s;)].
Conversely, o (s;) is uniquely determined by these partitions and bijections.

Notethat | Py p| = |Qap| = n W,y (a, b;i). Thusd; (W, Wy y,,) = Oif and only
|Pap| = |Qap| =nW(a,b;i)foralla,b € A. If this occurs then || pc 4 Pap| =
nW(a) for all a € A. So the number of pairs of partitions «, 8 that satisfy this
requirement is

[Taea(W(@)?
[apea@Wia bii)h?
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Given such a pair of partitions, the number of collections of bijections

Ma,b: Pa,b - Qa,b

(fora,b € A)equals [], pc4(nW(a,b;i))!. Since there are n! elements in Sym(n)
it follows that

[Taea(nW(a))!?
Prob[d; (W, W, =0] = ac .
robldi (W Wouyo) = O = i iW(a. b )]
The proposition now follows from this equality and equation (2). (|

Let ‘W be the set of all weights on . It is a compact convex subset of R? for
some d > 0. Define F: W — R by

FW)i=—(% 3 Wia,bii)log(W(a,b:1) + 2r —1) ¥ W(a)log(W(a)).

i=la,beA acd

We follow the usual convention that 01log(0) = 0. Observe that F(T, ¢) = F(W,,).

Given a weight W, let qw denote the smallest positive integer such that
Wi(a,b;i)qw € Z for all a,b € A and for all i € {1,...,r}. If no such integer
exists then set q := +4o00. If p and ¢ are integers, p # 0 and % € Z then we write
P |q. Otherwise we write p {q.

Lemma 2.2. F: W — R is continuous. Also, there exist constants 0 < ¢1 < ¢a
and py < pp such that for every weight W with qw < oo and every n > 1 such that
qw |n, ifo: G — Sym(n) is chosen uniformly at random then

cn?1ef M < E[l{y: {1,....n} = A| du(W, Wyy) = 0}]] < conP2eF W,

Proof. 1t is obvious that F is continuous. The second statement follows from the
previous proposition and Stirling’s approximation. The constants depend only on | A|
and the rank r of G. O

Lemma 2.3. There exists a constant k > 0 such that the following holds. Let W be
a weight and let n > 0 be a positive integer. Then there exists a weight W such that
Qi < 00, qp |n and d (W, W) < k/n.

Proof. Choose ag € A. Forb,c € A—{ap}andi € {1,...,r} define

Wn]

~ n ’ ~
W):=1- Y Wb).
beA—{ao}

W (b) =



428 L. Bowen

i Wb7 ;.

W (b.cii) = %

W(ag.bii):=WbH)— Y W(a.b:i),
acA—{ap}

Wb,ap:i):=Wmb)— Y Wb.ai),
acA—{ap}

W(ag.ao;i) = Wi(ag)— Y. Wiao.b;i).
beA—{ao}

Let us check that W is a weight. It is clear that ) W(a) =1.1Ifb € A—{ao}

acA
then W(b) = > W(a,b;i) = > W (b,a;i). It is immediate that W (ag) =
a€A a€A
S W(ag. b:i). Also
beA
Y W(b.ap:i) = W(ao.ap:i) + »_  W(b.ao:i)
bed beA—{ao}
=W(o)— Y Wo.biiy+ Y W(b.aoi)
beA—{ao} beA—{ao}
=W+ Y. Wb, ae:i)—Wao. b:i)
beA—{ap}
=W(o)+ Y (W)
beA—{ao}
— Y Whai)-Wek) - Y Wabi)
acA—{ap} acA—{ap}
= W(Cl()).

This proves that W is aweight. Itisclear thatqy < ooandqp |n. Lastly observe that
ifa,b € A—{ao}then |W(a,b;i)—W (a,b:i)| < 1/n. Since [W(b)—W (b)| < 1/n
too, |W(ag, b;i) — W(ao, b;i)| < |A|/n and |W(b,ag;i) — W(b,ap;i)| < |A|/n.
Since |W(ao) — W (ao)| < |Al/n, [W(ao.ao:i) — W(ao.ao:i)| < |A*/n. Thus
d«(W, W) < r|A*/n. O

We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. Recall that ¢: X — A is an observable and A is a finite
set. Letn > 0 and let 0, : G — Sym(n) be a homomorphism chosen uniformly at
random. Given a weight W, let

Zy(W):=|{y:{l,....n} = A| ds(Wy, . W) = 0}].
For any ¢ > 0,

El{y:{l.....n} > Al d; ($.¥) < &}]] = 2 E[Z,(W)].  (3)

W:de«(W,Wy)<e
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Let § > 0. Since F: W — R is continuous, there exists &g > 0 such that if
d«(W,W,) < gg then |F (W) — F(W,)| < 4. Soletus fix e with 0 < & < &o.

By the previous lemma, if # is sufficiently large then there exists a weight W such
that dy« (W, W) < ¢ and qw |n. Lemma 2.2 implies

E[{y: {1,....n} = A | dg, (¢, 9) < &}f] = E[Z,(W)] = cyn? " PWin=in,
“)
where ¢; > 0 and p; are constants.

If W is a weight such that qi + n then Z,,(W) = 0. If qw | n then W(a, b;i) €
Z[1/n] foralla,b € Aandi € {1,...,r}. The space of all weights lies inside the
cube [0, 1]¢ c R¥ for some d. So the number of weights W such that Z,(W) # 0
is at most n¢. Lemma 2.2 and equation (3) now imply that

E[{y: {L.....n} > A | dg, (@) < e}]] < conP2HdFFomtin ()
Here ¢, > 0 and p, are constants. Equations (4) and (5) imply

limsup |7 log(E[[{y: {1.....n} — A | dg ($.¥) < &}[) = FW)| < 6.

n—>o00
Since § is arbitrary, it follows that

inf lim Llog(E[I{y: {1.....n} > A | g, (#.¥) = e}l) = FW,) = F(T.¢).
O

3. Proof of Theorem 1.3

As in the statement of Theorem 1.3, let G = (s1,...,S,) be a free group or free
semigroup of rank r > 1. Let G /7 (X, ). Let ¢: X — A be a finite observable.
Let X = {u;}72, where each ; is the uniform probability measure on the set of ho-
momorphisms from G to Sym(i). Leto; : G — Sym(i) be a homomorphism chosen
uniformly at random among all homomorphisms of G into Sym(i). Theorem 1.3 is
an immediate consequence of the next two propositions.

Proposition 3.1. #(X, T, ¢) < f(T, ¢).

Proof. LetS = {e,s1,...,sr}. Observe that for any n, if y: {1,...,n} — Aisany
function then d(;gn (¢, ¥)r > dy (¢, V). Soif e > 0 then

E[{y:{l,....n} > A dy ($.9) < &}]
<E[{y:{l.....n} > A1d; ($.¥) <re}l.

This implies (X2, T, ¢) < F(T, ¢).
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Recall that B(e,n) denotes the ball of radius » in G. Furthermore we have
f(T,¢) = inf, F(T,$B€™m), and thus inf, h(Z, T, pBEM) < f(T,$). Since ¢
and ¢B(" generate the same o-algebra, Theorem 1.1 implies that h(Z, T, ¢) =
h(Z, T, ¢B@m) for all n. This implies the proposition. O

Proposition 3.2. 1(X,T,¢) > f(T, ¢).
Proof. Given a finite set K C G, define

h(Z. T, ¢: K) := inf lim sup ;- log(E[|{y: {1.....n} > A | d K. %) < e}l]).

n—>oo

Claim 1. h(2, T, ¢; B(e,m)) > F(T, pB€™) for all m > 0.

Note that if K C L then h(X,T,¢; K) > h(X, T, ¢; L) holds. It follows that
WX, T,¢) =inf, h(2, T, ¢; B(e,m)). Thus claim 1 implies the proposition.

To simplify notation, let B denote B(e, m). To prove claim 1, form,n, e > 0, let
P(m,n, ¢) be the set of all pairs (0, w) with o0 : G — Sym(n) a homomorphism and
w:{l,...,n} > A amap such that d®(¢, w) < e. Since there are n!" homomor-
phisms from G into Sym(n),

1 P
h(XZ,T,¢;B) = inf lim sup — log (L'?’E)l) (6)
e>0 psoo N n:

Let Q(m,n, €) be the set of all pairs (o, {) with o : G — Sym(n) a homomorphism
and ¥ : {1,...,n} - A® a map such that d¥(¢®, ) < . By Theorem 1.4,

F(T, ¢®) = 1nf lim sup — ! log (M) @)

n—oo N n!r

For g € Blet my: AB — A denote the projection map 7g ((ap)pep) = ag. For
(0,¥) € Q(m,n,e¢), define R(o,¥) = (0,7 o ¥). Define H(x) := —xlog(x) —
(1 —x)log(1 — x).

Claim 2. If ¢ = 1 + |B| then the image of R is contained in P(m,n, ec).

Claim 3. There are constants C, k > 0 depending only on m such that if ¢ < 78] B‘
then R is at most C exp(nke + nH(2|B|e)) to 1, i.e., for any (0, @) in the image of
R, |R7'(0,w)| < C exp(nks +nH(2|B|s)).

Claims 2 and 3 imply

Cexplkne + nH(2|B|e))|P(m,n,ec))| = |Q(m,n,¢)|.

Together with equations (6) and (7), this implies claim 1 and hence the proposition.
Next we prove claim 2. For this purpose, fix a homomorphism o : G — Sym(n).
Observe that for any x € X and any ¢ € {s1,...,S,},

ng(pB(x) =¢(Tgx) = ng,—1¢B(T,x) for all g € B N Br.
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Therefore ifi € {1,...,n} and, forsome g € BN B¢, ¥: {1,...,n} — AP satisfies

ng Y (i) # g1 (0 (0)i),

then v vV Y' (i) # ¢B v ¢P(x) for any x € X.
Solet & be the setof alli € {1,...,n} suchthat forallt € {sy,...,s,},

g (i) = wg—1Y(o(2)i) forall g € BN B,

Thus

151

dg(@°.y) = =559,

where §¢ denotes the complement of & and ¢ denotes the uniform probability measure
on{l,...,n}.

Let &, be the setof all i € {1,...,n} such that o(g)i € § for all g € B. Note
that

n

¢(8y) < IB[E(8°) < IBldy (¢ ¥). )
Ifi €, then ¥ (i) = (e o ¥)B(i). Therefore

Y (@) = (e 0 W) (@) < 114 [ Y Q) # (e 0 ¥)P ()]

acAB
< ¢(8y) < Bld; (¢, ¥).

Suppose that d(¢®, ¥) < &. Then

d2@. e o) = 3 |9pBu(a) — (e o ¥)Be(a)|

acAB

= X Igin@) — ¥L(@)] + ¥t (a) — (e 0 )35 (@)

acAB

< dg (¢, ¥)(1 + B|) < e(1 + [B)).

This proves claim 2.

Let (0, w) be in the image of R.

Claim 4. Forevery ¥ with R(0, ¥) = (0, w), thereexistsaset L(y¥) C {1,...,n}
of cardinality [n(1 — |Ble)] such that (i) = wB (i) foralli € L(¥).

To prove claim 4, observe that if &, is defined as above, then ¥ (i) = w® (i) for
alli € §,,. By equation (8),

1G] = n(1 = £(85) = n(1 — |BldZ(@5.v¥)) = n(1 —|Ble).

So let L () be any subset of §,, with cardinality |7 (1 —|B|e)|. This proves claim 4.
Next we prove claim 3. Claim 4 implies

-1 B|(n—[n(1—[Ble)]) n
R (0.0)| < |4] (i "1 ) ©)
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This is because there are (Ln(l—nIB\e)J) sets in {1, ..., n} with cardinality equal to
|n(1 — |Ble)| and for each i € {1,...,n} — L(¥), there are at most | A|!Bl possible
values for ¥ (i).

Because H is monotone increasing for 0 < x < 1/2 it follows from Stirling’s

approximation that if ¢ < ﬁ then

( " )5Cexp(nH<2|B|e>),

[n(1—Ble)]
where C > 0 is a constant. This and equation (9) now imply claim 3 and hence the
proposition. O
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