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Abelian state-closed subgroups of automorphisms of m-ary trees

Andrew M. Brunner and Said N. Sidki�

Abstract. The group Am of automorphisms of a one-rooted m-ary tree admits a diagonal
monomorphism which we denote by x. Let A be an abelian state-closed (or self-similar)
subgroup of Am. We prove that the combined diagonal and tree-topological closure A� of
A is additively a finitely presented ZmŒŒx��-module, where Zm is the ring of m-adic integers.
Moreover, if A� is torsion-free then it is a finitely generated pro-m group. Furthermore, the
group A splits over its torsion subgroup. We study in detail the case where A� is additively a
cyclic ZmŒŒx��-module, and we show that when m is a prime number then A� is conjugate by
a tree automorphism to one of two specific types of groups.
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1. Introduction

Automorphisms of one-rooted regular trees T .Y / indexed by finite sequences from
a finite set Y of size m � 2 have a natural interpretation as automata on the alphabet
Y , with states which are again automorphisms of the tree. A subgroup of the group of
automorphisms A.Y / of the tree is said to be state-closed in the language of automata
(or self-similar in the language of dynamics) of degree m, provided that the states
of its elements are themselves elements of the same group. If the group is not state-
closed then we may consider its state-closure. The prime example of a state-closed
group is the group generated by the binary adding machine � D .e; �/� , where � is
the transposition .0; 1/.

We study in this paper representations of general abelian groups as state-closed
groups of degree m. For this purpose we use topological and diagonal closure oper-
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ations in the automorphism group of the tree. Representations of free abelian groups
of finite rank as state-closed groups of degree 2 were characterized in [4].

An automorphism group G of the tree group is said to be transitive, provided that
the permutation group P.G/ induced by G on the set Y is transitive; actions of groups
on sets will be applied on the right. It will be shown that the structure of state-closed
groups can in a certain sense be reduced to those which are transitive.

The automorphism group A.Y / of the tree is a topological group with respect to
the topology inherited from the tree. This topology allows us to exponentiate elements
of A.Y / by m-ary integers from Zm. Given a subgroup G of A.Y /, its topological
closure xG with respect to the tree topology belongs to the same variety as G. Also,
if G is state-closed then so is xG.

The diagonal map ˛ ! ˛.1/ D .˛; ˛; : : : ; ˛/ is a monomorphism of Am. Define
inductively ˛.0/ D ˛, ˛.iC1/ D .˛.i//.1/ for i � 0. It is convenient to introduce a
symbol x and write ˛.i/ as ˛xi

for i � 0. This will permit more general exponen-
tiation, by formal power series p.x/ 2 ZmŒŒx��. Given a subgroup G of A.Y /, its
diagonal closure is the group zG D hG.i/ j i � 0i. Observe that the diagonal closure
operation preserves the state-closed property.

We will show that given an abelian transitive state-closed group A, its diagonal
closure QA is again abelian. The composition of the diagonal and topological closures
when applied to A produces an abelian group denoted by A�, which can be viewed
additively as a finitely generated ZmŒŒx��-module. This approach was first used in [2].

The prime decomposition m D Q
1�i�s p

ki

i provides us with the decomposi-
tion Zm D L

1�i�s "iZ
p

ki
i

, where "i are orthogonal idempotents such that 1 DP
1�i�s "i , and also gives us the decomposition ZmŒŒx�� D L

1�i�s "iZ
p

ki
i

ŒŒx��.

When m D pk and p a prime number, the rings ZmŒŒx�� and ZpŒŒx�� are isomorphic,
yet when k > 1 they are different representations of the same object and for this
reason we distinguish between them.

In Sections 3 and 4 we prove

Theorem 1. Let A be an abelian transitive state-closed group of degree m. Then
(1) the group A� is isomorphic to a finitely presented ZmŒŒx��-module;
(2) if A�is torsion-free then it is a finitely generated Zm-module which is also a

pro-m group.

Item (1) is part of Theorem 5 and item (2) is Corollary 1 of Theorem 6.
We consider in Section 5 torsion subgroups of state-closed abelian groups and use

methods from virtual endomorphisms of groups (see [3], [1]; reviewed in Section 5.1)
to prove the following structural result.

Theorem 2. Let A be an abelian transitive state-closed group of degree m and tor.A/

its torsion subgroup. Then
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(i) tor.A/ is a direct summand of A and has exponent a divisor of the exponent of
P.A/;

(ii) the action ofAon them-ary tree induces transitive state-closed representations
of tor.A/ on the m1-tree and of A

tor.A/
on the m2-tree, where m1 D jP.tor.A//j and

m2 D j P.A/
P.tor.A//

j;
(iii) if A D tor.A/ and P.A/ Š L

1�i�k
Z

mi Z , then A� Š L
1�i�k

Z
mi Z ŒŒx��.

The above results are analogous to Theorem 4.3.4 of [5] on the structure of finitely
generated pro-p groups. By item (i) of the theorem, an abelian torsion group G of
infinite exponent cannot have a faithful representation as a transitive state-closed
group for any finite degree. Put differently, the group G does not admit any simple
virtual endomorphism. On the other hand, the group of automorphisms of the p-adic
tree is replete with abelian p-subgroups of infinite exponent. Item (iii) follows from
Theorem 7, which is a conjugacy result and therefore more general than isomorphism.

We focus our attention in Section 6 on transitive state-closed abelian groups A,
for which A� is additively a cyclic ZmŒŒx��-module. We show

Theorem 3. (1) Let q1; : : : ; qm 2 ZmŒŒx�� and let � be the cycle .1; 2; : : : ; m/. Then
the expression

˛ D .˛q1 ; : : : ; ˛qm/�

is a well-defined automorphism of the m-ary tree and the state-closure A of h˛i is an
abelian transitive group. The group A� is additively isomorphic to the quotient ring
ZmŒŒx��

.r/
, where

r D m � xq and q D q1 C � � � C qm:

(2) Let A be a transitive state-closed abelian group of degree m such that A� is
additively a cyclicZmŒŒx��-module. ThenP.A/ is cyclic, say generated by� , andA� is
the state-diagonal-topological closure of an element of the form˛ D .˛q1 ; : : : ; ˛qm/�

for some q1; : : : ; qm 2 ZmŒŒx��.

Finally we provide a complete description of the group A� for state-closed groups
of prime degree. Let j � 1 and let Dm.j / be the group generated by the set of states

of the generalized adding machine ˛ D .e; : : : ; e; ˛xj �1
/� acting on the m-ary tree

with � D .1; 2; : : : ; m/. The topological closure of Dm.j / seen as Zm-module is
isomorphic to the ring ZmŒŒx��

.r/
, r D m � xj .

Theorem 4. Let A be an abelian transitive state-closed group of prime degree m and
let � be the m-cycle automorphism. If tor.A/ is nontrivial then A� is a torsion group
conjugate to h�i�.Š Z

mZ ŒŒx��/. If A is torsion-free then A� is a torsion-free group
conjugate to the topological closure of Dm.j / for some j .

One of the questions that has remained unanswered is whether a free abelian group
of infinite rank admits a faithful transitive state-closed representation, even of prime
degree.
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2. Preliminaries

We fix the notation Y D f1; 2; : : : ; mg, Tm D T .Y /, Am D A.Y / and we let
Perm.Y / be the group of permutations of Y . A permutation � 2 Perm.Y / is extended
to an automorphism of the tree by � W yu ! y�u, fixing the non-initial letters of every
sequence. An automorphism ˛ 2 Am is represented as ˛ D .˛1; ˛2; : : : ; ˛m/�.˛/,
where ˛i 2 Am and �.˛/ 2 Perm.Y /. Successive developments of ˛i produce for
us ˛u (a state of ˛) for every finite string u over Y .

The product of ˛ D .˛1; ˛2; : : : ; ˛m/�.˛/ and ˇ D .ˇ1; ˇ2; : : : ; ˇm/�.ˇ/ in Am

is
˛ˇ D .˛1ˇ.1/�.˛/; : : : ; ˛mˇ.m/�.˛//�.˛/�.ˇ/:

Let G be a subgroup of Am. Denote the subgroup of G which fixes the vertices of
the i -th level of the tree by StabG.i/. Given y 2 Y , denote by FixG.y/ the subgroup
of G consisting of the elements of G, which fix y. The group G is said to be recurrent
provided it is transitive and FixG.1/ projects in the 1st coordinate onto G.

The group Am is the inverse limit of its quotients by the i -th level stabilizers
StabAm

.i/ of the tree and is as such a topological group where each StabAm
.i/ is

an open and closed subgroup. For a subgroup G of automorphisms of the tree, its
topological closure xG coincides with the set of all infinite products : : : gi : : : g1g0,
or alternately, g0g1 : : : gi : : : , where gi 2 StabG.i /. The group xG satisfies the same
group identities as G. We note that the property of being state-closed is also preserved
by the topological closure operation.

Let ˛ be an automorphism of the tree. Then Sh˛i D f˛p j p 2 Zmg. More
generally, for q D P

i�0 qix
i 2 ZmŒŒx�� with qi 2 Zm, we write the expression

˛q D ˛q0˛q1x : : : ˛qi xi

: : : ;

which can be verified to be a well-defined automorphism of the tree.
We recall the reduction of group actions to transitive ones, with a view to a

similar reduction for state-closed groups of automorphisms of trees. Let G be a
subgroup of Perm.Y /, let fYi j i D 1; : : : ; sg be the set of orbits of G on Y and
let f�i W G ! Perm.Yi / j i D 1; : : : ; sg be the set of induced representations.
Then, each �i is transitive and � W G ! Q

1�i�s Perm.Yi / � Perm.Y / defined by
g ! .g�1 ; : : : ; g�s / is a monomorphism. The reduction for tree actions follows from

Lemma 1. Let G be a state-closed group of automorphisms of the tree T .Y / and let
X be a P.G/-invariant subset of Y . Then T .X/ is G-invariant and for the resulting
representation � W G ! A.X/ the group G� is state-closed. If G is diagonally
closed or is topologically closed then so is G�.

Proof. Let xu be a sequence from X and let ˛ 2 G. Then .xu/˛ D x�.˛/u˛x . As
x�.˛/ 2 X and ˛x 2 G, it follows that .xu/˛ is a sequence from X . Also, for any
sequence u from X , we have .˛�/u D .˛u/�. Thus, G� is state-closed. The last
assertion is clear.
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We note the following important properties of transitive state-closed abelian
groups A.

Proposition 1. Let A be an abelian transitive state-closed group of degree m. Then
StabA.i/ � A.i/ for all i � 0. The group QA is an abelian transitive state-closed group
and is aminimal recurrent group containing A. Moreover, the topological closure and
diagonal closure operations commute when applied to A. The diagonal-topological
closure A� of A is an abelian transitive state-closed group.

Proof. Let ˛ D .˛1; : : : ; ˛m/�; ˇ D .ˇ1; : : : ; ˇm/ 2 A. Then the conjugate of ˇ by
˛ is

ˇ˛ D .ˇ
˛1

1 ; : : : ; ˇ˛m
m /� :

As ˛i ; ˇi 2 A and A is abelian, it follows that ˇ D .ˇ1; : : : ; ˇm/� . Furthermore,
since A is transitive, ˇ D .ˇ1; : : : ; ˇ1/ D .ˇ1/.1/. Thus, StabA.i/ � A.i/ for all i .
A similar verification shows that QA D hA.i/ j i � 0i is abelian.

Let G be a recurrent group such that A � G � QA. Given ˛ 2 G, as G is recurrent,
there exists ˇ 2 StabG.1/ such that ˇ D .ˇ1; : : : ; ˇm/ with ˇ1 D ˛. Since G is
transitive and abelian, we have ˇ1 D � � � D ˇm D ˛; that is, ˇ D ˛.1/. Hence,
A.i/ � G and G D QA follows.

The last two assertions of the proposition are clear.

The following result indicates the smallness of recurrent transitive abelian groups
from the point of view of centralizers.

Proposition 2 (Theorem 7 [1]). (1) Let A be a recurrent abelian group of degree m

and let CAm
.A/ be the centralizer of A in Am. Then CAm

.A/ D NA.
(2) Let m be a prime number and A be an infinite transitive state-closed abelian

group. Then CAm
.A/ D NA.

This result will be used in the proofs of Lemma 3 and step 4 of Theorem 9.

3. A presentation for A�

Let A be a transitive abelian state-closed group of degree m and let A� be its diagonal-
topological closure. Then A� is additively a ZmŒŒx��-module having the following
properties. Given ˛ 2 A�, then

(i) x˛ D 0 implies ˛ D 0;
(ii) m˛ D x� for some � 2 A�.

Let P.A/ be given by its presentation

h�i .1 � i � k/ j �
mi

i D e; abeliani:
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Choose for each �i an element ˇi in A, which induces �i on Y ; denote ˇi by
ˇ.�i /. Then, for any n � 0, the automorphism of the tree ˇ.�i /

.n/ is an element of
QA which induces .�i /

.n/ on the .n C 1/-th level of the tree. Although the notation
ˇi has been used to indicate the i th entry in an automorphism ˇ, we hope this new
usage will not cause confusion.

Theorem 5. Let A be a transitive abelian state-closed group of degree m. Then A�
is additively a ZmŒŒx��-module generated by

fˇi j 1 � i � kg
subject to the set of defining relations

˚
ri D P

1�j �k miˇi � pij ǰ x D 0 j 1 � i � k
�

for some pij 2 ZmŒŒx��:

Moreover, there exist r; q 2 ZmŒŒx�� such that r D m � xq and rA� D .0/. The ele-
ments of A� can be represented additively as

P
1�i�k piˇi , where pi D P

j �0 pij xj

and each pij 2 Z with 0 � pij < m.

Proof. Let ˛ 2 A� and �.˛/ D Q
1�i�k �

ri1

i , 0 � ri1 < mi . Then either

˛
� Q

1�i�k ˇ
ri1

i

��1
is the identity element or there exists l2 � 1 such that

˛
� Q

1�i�k ˇ
ri1

i

��1 2 Stab.l2/n Stab.l2 C 1/

and so, ˛
� Q

1�i�k ˇ
ri1

i

��1 D .�/.l2/ for some � 2 A�. We treat � in the same
manner as ˛. In the limit, we obtain

˛ D Q
1�i�k

.ˇ
ri1

i .ˇ
ri2

i /.l2/ : : : .ˇ
rij

i /.lj / : : : / D Q
1�i�k

ˇ
qi

i ;

where 0 � rij < mi , 1 � l2 < l3 < � � � < lj < � � � , and qi D ri1 C P
j �2 rij xlj are

formal power series in x. Additively we then have

˛ D P
1�i�k

qiˇi 2 P
1�i�k

Zmi
ŒŒx��ˇi :

Each relation �
mi

i D e in P produces in A� a relation of the form

ˇ
mi

i D Q
1�j �k

ˇ
xpij

j ;

where pij are elements in the power series, as above; when written additively ˇ
mi

i

has the form
miˇi D x

� P
1�j �k pij ǰ

�
:
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Let F D L
1�i�k ZmŒŒx�� P̌

i be a free ZmŒŒx��-module of rank k. Define the ZmŒŒx��-
homomorphism

� W P
1�i�k

ZmŒŒx�� P̌
i ! A�;

P
1�i�k

pi
P̌
i 7! Q

1�i�k

ˇ
pi

i ;

and let R be the kernel �. Define J to be the ZmŒŒx��-submodule of R generated by

Pri D mi
P̌
i � x

� P
1�j �k pij

P̌
j

�
.1 � i � k/:

We will show that J D R. So let 	 2 R and write 	 D P
1�i�k 	i

P̌
i , where

	i D P
j �0

	ij xj ; 	ij D 	ij;0 C mwij 2 Zm:

Then mi j	i0;0, 	i0;0 D mi	
0
i0;0; factor m D mim

0
i . Therefore,

	i D 	i0 C � P
j �1 	ij xj �1

�
x;

	i0 D mi	
0
i0;0 C mwi0 D .	0

i0;0 C m0
iwi0/mi ;

	i
P̌
i D .	0

i0;0 C m0
iwi0/.mi

P̌
i / C � P

j �1 	ij xj �1
�
x P̌

i ;

� .	0
i0;0 C m0

iwi0/
�
x

P
1�j �k pij

P̌
j

� C � P
j �1 	ij xj �1

�
x P̌

i mod J:

Hence
	 D P

1�i�k

	i
P̌
i 2 x� C J; � D P

1�i�k

�i
P̌
i 2 R:

Hence, by repeating the argument, we obtain

	 2 � T
i�1 xiR

� C J D J; J D R:

On re-writing the relations miˇi D P
1�j �k pij x ǰ in the form

pi1xˇ1 C � � � C .pi ix � mi /ˇi C � � � C pkkxˇk D 0

we see that the k � k matrix of coefficients of these equations has determinant r D
m � xq for some q 2 ZmŒŒx�� and thus r annuls A�.

The last assertion of the theorem follows by using r D m � qx 2 R to reduce the
coefficients modulo m.

4. The m-congruence property

A group G of automorphisms of the m-ary tree is said to satisfy the m-congruence
property, provided that given mi there exists l.i/ � 1 such that StabG.l.i// � Gmi

for all i , in which case the topology on G inherited from A.Y / is equal to the pro-m
topology. Since when A� is written additively, we have StabG.l.i// D xl.i/A�, the
m-congruence property reads xl.i/A� � miA�.
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Theorem 6. Let r D m � qxj 2 ZmŒŒx�� with q 2 ZmŒŒx�� and j � 1. Let S be
quotient ring ZmŒŒx��

.r/
. Suppose that S is torsion-free. Then S is a finitely generated

pro-m group.

Proof. From the decomposition ZmŒŒx�� D L
1�i�s "iZ

p
ki
i

ŒŒx�� corresponding to the

prime decomposition m D Q
1�i�s p

ki

i , we obtain

r D P
1�i�s

ri ;

ri D "ir D p
ki

i � qi .x/xj ;

S D P
1�i�s

Si ; Si D
Z

p
ki
i

ŒŒx��

.ri /
;

where each Si is torsion-free. Thus, it is sufficient to address the case where m is a
prime power pk .

(1) First, we show that S is a pro-m group.
So let r D pk � qxj and decompose q D q.x/ D s.x/ C p � t .x/, where each

non-zero coefficient of s.x/ is an integer relatively prime to p. If s.x/ D 0 then
q.x/ D p � t .x/ and

r D pk � q.x/xj D pk � p:t.x/xj D p.pk�1 � t .x/xj / 2 .r/;

but as by hypothesis S is torsion free, we have pk�1 � t .x/xj 2 .r/, which is not
possible.

Write s.x/ D xlu.x/, where l � 0 and u.x/ is invertible in ZmŒŒx�� with inverse
u0.x/. Then q.x/ D xlu.x/ C p � t .x/ and

r D pk � .xlu.x/xj C p � t .x/xj / D p.pk�1 � t .x/xj / � xj Clu.x/:

Therefore, on multiplying by u0.x/, the inverse of u.x/, we obtain

p.pk�1 � t .x/xj /u0.x/ � xj Cl mod r:

It follows that

xj ClS � pS; xn.j Cl/S � pnS:

(2) Now we show that S is finitely generated as a Zm-module.
By the previous step there exist l � 1 and v.x/ 2 ZŒŒx�� such that

xl � mv.x/ mod r:

Decompose v.x/ D v1.x/ C v2.x/xl where the degree of v1.x/ is less that l . Then
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we deduce modulo r :

v.x/ � v1.x/ C v2.x/mv.x/;

v2.x/v.x/ � w.x/ 2 ZŒŒx��;

w.x/ D w1.x/ C w2.x/xl ;

v.x/ � v1.x/ C mw.x/

� v1.x/ C mw1.x/ C mw2.x/xl

:::

v.x/ � a0 C a1x C � � � C a.l�1/x
l�1; ai 2 Zm:

We have shown that S is generated by 1, x, : : : , xl�1 as a pro-m group.

Corollary 1. Let A be an abelian transitive state-closed group of degree m. Suppose
that the group A� is torsion-free. Then A� is a finitely generated pro-m group.

Proof. With previous notation, the group A� is a ZmŒŒx��-module generated by

fˇi D ˇ.�i / j 1 � i � kg
and is annihilated by r D m � qxj 2 ZmŒŒx�� for some q 2 ZmŒŒx�� and j � 1.

It follows that A� is an S -module, where S D ZmŒŒx��
.r/

. Since S satisfies the
m-congruence property, it follows that A� is a pro-m group.

That A� is a finitely generated Zm-module, is a consequence of S being a finitely
generated Zm-module.

5. Torsion in state-closed abelian groups

5.1. Preliminaries on virtual endomorphisms of groups. Let G be a transitive
state-closed subgroup of A.Y /, where Y D f1; 2; : : : ; mg. Then ŒG W FixG.1/� D m

and the projection on the 1st coordinate of FixG.1/ produces a subgroup of G; that
is, 
1 W FixG.1/ ! G is a virtual endomorphism of G. This notion has proven to be
effective in studying state-closed groups. We give a quick review below.

Let G be a group with a subgroup H of finite index m and a homomorphism
f W H ! G. A subgroup U of G is semi-invariant under the action of f , provided
that .U \ H/f � U . If U � H and U f � U then U is f -invariant.

The largest subgroup K of H which is normal in G and f -invariant is called the
f -core.H/. If the f -core.H/ is trivial then f and the triple .G; H; f / are said to
be a simple.

Given a triple .G; H; f / and a right transversal L D fx1; x2; : : : ; xmg of H in G,
the permutational representation 
 W G ! Perm.1; 2; : : : ; m/ is g� W i ! j , which
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is induced from the right multiplication Hxig D Hxj . We produce recursively a
representation ' W G ! A.m/ as follows:

g' D ..xig � .x.i/g� /�1/f '/1�i�mg� :

One further expansion of g' is

g' D ...xj gi � x�1
.j /g�

i
/f '/1�j �mg�

i /1�i�mg� ;

D ...xj gi :x
�1
.j /g�

i
/f '/1�j �m/1�i�m.g�

i /1�i�m g� ;

where gi D .xig:x�1
.i/g� /f .

The kernel of ' is precisely the f -core.H/, G' is state-closed and H ' D
FixG' .1/.

5.1.1. Changing transversals. We will show below that changing the transversal
of H in G produces another representation of G, conjugate to the original one by an
explicit automorphism of the m-ary tree.

Proposition 3. Let .G; H; f / be a triple and

L D fx1; x2; : : : ; xmg; L0 D fx0
1 D h1x1; x0

2 D h2x2; : : : ; x0
m D hmxmg

right transversals of H in G where hi 2 H . Let ' D 'xi
, '0 D 'hi xi

W G ! A.m/

be the corresponding tree representations and define the following elements of A.m/,

� D �hi ;'0 D ..hi /
f '0

/1�i�m;

� D �hi ;'0 D �� .1/ : : : � .n/ : : : :

Then
'hi xi

D 'xi
.�h�1

i
;'xi

/:

Proof. The representations '; '0 W G ! A.m/ are defined by

g' D ..xig � .x.i/g� /�1/f '/1�i�mg� ;

g'0 D ..x0
ig � .x0

.i/g� /�1/f '0

/1�i�mg� :

The relationship between '0 and ' is established as follows,

g'0 D ..hixig � .h.i/g� x.i/g� /�1/f '0

/1�i�mg�

D ..hi .xig � x�1
.i/g� /h�1

.i/g� /f '0

/1�i�mg�

D ..hi /
f '0

/1�i�m � ..xig:x�1
.i/g� /f '0

/1�i�m � ..h�1
.i/g� /f '0

/1�i�mg�

D ..hi /
f '0

/1�i�m � ..xig � x�1
.i/g� /f '0

/1�i�mg� � ..hi /
f '0

/�1
1�i�m:
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Therefore
g'0 D � � ..xig � x�1

.i/g� /f '0

/1�i�mg� � ��1;

where � D ..hi /
f '0

/1�i�m is independent of g. Repeating this development for each
gi D .xig � x�1

.i/g� /f , we find that

g'0 D �� .1/ � ...xj gi � x�1
.j /g�

i
/f '0

/1�j �mg�
i /1�i�mg� � ��.1/��1:

Thus in the limit we obtain � D �� .1/ : : : � .n/ : : : such that

g'0 D �g'��1 for all g 2 G;

' D '0�:

Introducing the explicit dependence of ', '0, � on the transversals, the previous
equation becomes

'xi
D .'hi xi

/.�hi ;'hi xi
/:

On replacing hi by h�1
i and on denoting h�1

i xi by x0
i , we obtain

'hi x0

i
D .'x0

i
/.�h�1

i
;'

x0

i

/:

Example 1. Let G D C D hai be the infinite cyclic group, let H D ha2i and let
f W H ! G be defined by a2 ! a. Given l; k � 0, then on choosing the transversal
Lk;l D fa2k; a2lC1g for H in G, we obtain the representation 'k;l W G ! A.m/,
where 'k;l W a ! ˛ D .˛k�l ; ˛�kClC1/� .

5.1.2. Subtriples, quotient triples. Given a triple .G; H; f / and given subgroups
V � G; U � H \ V such that .U /f � V , we call .V; U; f jU / a sub-triple of
G. If N is a normal semi-invariant subgroup of G, then Nf W HN

N
! G

N
given by

Nf W N h ! N hf is well defined and . G
N

; HN
N

; Nf / is a quotient triple.
Let .G; H; f / be a simple triple where G is abelian and ŒG W H� D m. Then

any sub-triple of G is simple. Let T D tor.G/ denote the torsion subgroup of G

and for l � 1 define G.l/ D fg 2 T j o.g/ j lg, H.l/ D G.l/ \ H . Then, clearly,
f W tor.H/ ! tor.G/ and f W H.l/ ! G.l/. Therefore, tor.G/ and G.l/ are
semi-invariant and .tor.G/; tor.H/; f jtor.H// and .G.l/; H.l/; f jH.l// are simple
sub-triples.

Lemma 2. Let .G; H; f / be a simple triple. The triple
�

G
G.l/

; HG.l/
G.l/

; Nf
�

is also
simple.

Proof. For suppose K � H is such that G.l/Kf � G.l/K. Then

.G.l/Kf /l D .Kf /l D .Kl/f � .G.l/K/l D .K/l I
that is, Kl is f -invariant. Since f is simple, Kl D feg, and so K � G.l/.
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5.2. The torsion subgroup

Proposition 4. Let A be transitive state-closed abelian group of degree m. Then
tor.A/ has finite exponent and is therefore a direct summand of A.

Proof. Let T D tor.A/, A1 D StabA.1/, T1 D T \ A1and ŒT W T1� D m0. Then the
projection on the 1st coordinate of T1 is a subgroup of T and the triple .T; T1; 
1jT1

/

is simple of degree m0jm; let m D m0m00. Hence, in this representation T is a torsion
transitive state-closed subgroup of Am0 , the automorphism group of the tree Tm0 .

Fixing this last representation of T , let Q D P.T / and let �i (1 � i � k) be
a minimal set of generators of Q and as before, let ˇi D ˇ.�i / 2 T be such that
�.ˇi / D �i . Let r be the maximum order of the elements ˇ1; : : : ; ˇk . As any ˛ 2 T

can be written in the form

˛ D Q
1�i�k

ˇ
ri1

i .ˇ
ri2

i /.l2/ : : : .ˇ
rij

i /.lj / : : : ;

it follows that ˛r D e.
Since T has finite exponent, it is a pure bounded subgroup of A and therefore it

is a direct summand of A ([6], Theorem 4.3.8).

We recall a classic example of an abelian group G which does not split over its
torsion subgroup (see [6], p. 108).

Example 2. Let G be the direct product of groups
Q

i�1 Ci , where Ci D hci i is cyclic
of order pi and let H be the direct sum

P
i�1 Ci . Then H � tor.G/ D S

l�1 G.pl/.
Moreover, H is a basic subgroup of G and in particular, G

H
is p-divisible. This

observation leads directly to a proof that G does not split over tor.G/.

The proof of the previous proposition did not establish the exponent of tor.A/.
This we do in the next two lemmas.

Lemma 3. Let m be a prime number and A an abelian transitive state-closed torsion
group of degree m. Then A is conjugate by a tree automorphism to a subgroup of the
diagonal-topological closure of h�i and so has exponent m.

Proof. We observe that A.m/ is not contained in A1 D StabA.1/. For otherwise,
A.m/ would be invariant under the projection on the first coordinate. Choose a 2
AnA1 of order m. Therefore, A D A1hai. On choosing fai j 0 � i � m � 1g
as a transversal of A1 in A, the image of a acquires the form � D .1; : : : ; m/ in
this tree representation of A. Thus, we may suppose by Proposition 3 that � 2 A.
Therefore, QA contains the subgroup �h�i D h� .i/ j i � 0i. By Proposition 2, we have
CA

�h�i D h�i� and thus, A � CA.A/ � h�i�.
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Lemma 4. Suppose that A is an abelian transitive state-closed torsion group of
degree m. Then the exponent of A is equal to the exponent of P.A/.

Proof. By induction on jP.A/j D m. The exponent of A is a multiple of the exponent
of P.A/. By the previous lemma, we may assume m to be composite. Let p be a
prime divisor of m and A.p/ D fa 2 A j ap D eg. Then A.p/ is a nontrivial
subgroup and P.A.p// � f� 2 P j �p D eg. By Lemma 2,

�
A

A.p/
; A1A.p/

A.p/
; S
0

�
is

simple; also, P. A
A.p/

/ D P.A/
P.A.p//

. The proof follows by induction.

Theorem 7. Suppose that A is an abelian transitive state-closed torsion group of
degree m. Then A is conjugate to a subgroup of the topological closure of

AP.A/ D h� .i/ j � 2 P.A/; i � 0i:

Proof. Let P D P.A/ have exponent r and let B be a maximal homogeneous
subgroup of P of exponent r (that is, B is a direct sum of cyclic groups of order r/,
minimally generated by f�i j 1 � i � sg. Choose for each �i an element ˇi D
ˇ.�i / 2 A and let PB D hˇi j 1 � i � si. Then, as the order of each ˇi is a
multiple of r , while the exponent of A is r , we conclude from the previous lemma
that o.ˇi / D o.�i / D r for 1 � i � s. Since ˇi ! �i defines a projection of PB onto
B we conclude that PB Š B and PB \ A1 D feg, where A1 D StabA.1/.

Clearly PB is a pure bounded subgroup and so it has a complement L in A, which
may be chosen to contain A1. Choose a right transversal W of A1 in L. Then the
set W PB is a right transversal of A1 in A. With respect to this transversal, the triple
.A; A1; 
1/ produces a transitive state-closed representation ' where PB' D B . By
Proposition 3, we may rewrite A' as A. Then the diagonal-topological closure A�
contains B�. Let V be a complement of B in P . Each ˛ 2 A� can be factored
as ˛ D ˇ� , where ˇ 2 B� and � is such that each of its states �u have activity
�.�u/ 2 V . Therefore, the set of these � ’s is a group � such that � D �� and
A� D � ˚ B�. Then .�; � \ A1; 
1/ is a simple triple with P.�/ having exponent
smaller than r . The proof is finished by induction on the exponent.

The example below illustrates some of the ideas developed so far.

Example 3. Let m D 4, Y D f1; 2; 3; 4g and let � be the cycle .1; 2; 3; 4/. Further-
more, let ˛ D .e; e; e; ˛2/� 2 A.4/ and let A D h˛i. Then

˛2 D .˛2; e; e; ˛2/.1; 3/.2; 4/;

˛4 D .˛2/.1/ D ˛2x; .˛2�x/2 D e:

Thus A is cyclic, torsion-free, transitive and state-closed; it is, however, not
diagonally closed because ˛x 62 A. Even though A is torsion-free, its diagonal
closure QA D h˛xi j i � 0i is not; for  D ˛2�x has order 2. Let K D hxi j i � 0i.
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Then K � tor. QA/ and it is direct to check that QA D h˛; Ki. Therefore, K D tor. QA/

and
QA D tor. QA/ ˚ A:

Let Y1 D f1; 3g, Y2 D f2; 4g. Then fY1; Y2g is a complete block system for the action
of ˛ on Y . Also, ˛2 induces the binary adding machine on both T .Y1/ and T .Y2/.
The topological closure NA of A is torsion-free and

tor.A�/ D tor. QA/; A� D tor.A�/ ˚ NA:

Moreover, tor.A�/ induces a faithful state-closed, diagonally and topologically closed
actions on the binary tree T .Y1/. Therefore, tor.A�/ is isomorphic to Z

2Z ŒŒx��. Fur-
thermore, ˛ is represented as the binary adding machine on T .fY1; Y2g/ and NA is
represented on this tree as the topological closure of the image of A.

6. Cyclic ZmŒŒx��-modules

Cyclic automorphism groups h˛i of the tree, for which their state-diagonal-topological
closure is isomorphic to a cyclic Zm-module have the form

˛ D .˛q1 ; : : : ; ˛qm/�;

where qi 2 ZmŒŒx�� for 1 � i � m; here

qi D P
j �0

qij xj ; qij D P
u�0

qij;umu 2 Zm:

We prove

Theorem 8. (i) The expression

˛ D .˛q1 ; : : : ; ˛qm/�

is a well-defined automorphism of the m-ary tree.
(ii) Let A be the state closure of h˛i. Then A�is abelian, isomorphic to the

quotient ring ZmŒŒx��
.r/

, where

r D m � qx and q D q1 C � � � C qm:

Proof. (1) Let �.l/ denote the permutation induced by ˛ on the l-th level. Then the
expression ˛ D .˛q1 ; : : : ; ˛qm/� represents

�.1/ D �; �.l/ D .�.l � 1/ Sq1 ; : : : ; �.l � 1/ Sqm/�;

where Sqi D qi0Cqi1xC� � �Cqi.l�1/x
l�1 and qij D qij;0Cqij;1mC� � �Cqij;l�1ml�1.
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(2.1) The states of ˛ are words in ˛p for p 2 ZmŒŒx��. Let v D ˛l1 : : : ˛la ,
w D ˛n1 : : : ˛nb 2 A�. Then clearly Œv; w� 2 StabA.1/. We will prove that the
entries of Œv; w� are products of conjugates of words in elements of the form Œ˛s; ˛t �

where s; t 2 ZmŒŒx��.
Clearly Œv; w� can be developed into a word in conjugates of Œ˛li ; ˛nj �.
Write p D p0 C p0x; n D n0 C n0x. We compute

Œ˛p; ˛n� D .Œ˛p0 ; ˛n0x�Œ˛p0 ; ˛n0 �˛
n0x

/˛p0x

Œ˛p0

; ˛n0

�xŒ˛p0x; ˛n0 �˛
n0x

D Œ˛p0 ; ˛n0x�˛
p0x

Œ˛p0

; ˛n0

�xŒ˛p0x; ˛n0 �˛
n0x

:

Therefore, we have to check Œ˛� ; ˛nx� where � 2 Zm; n 2 ZmŒŒx��. Write � D
�0 C m� 0. Then

Œ˛� ; ˛nx� D Œ˛�0Cm�0

; ˛nx� D Œ˛�0 ; ˛nx�˛
m�0

Œ˛m�0

; ˛nx�:

Now
˛�0 D .v1; v2; : : : ; vm/��0 ;

where vi are words in ˛q1 ; : : : ; ˛qm and

˛m D .˛q1 : : : ˛qm ; ˛q2 : : : ˛qm˛q1 ; : : : ; ˛qm˛q1 : : : ˛qm�1/:

Therefore,
Œ˛�0 ; ˛nx� D .Œv1; ˛n�; : : : ; Œvm; ˛n�/

and similarly

Œ˛m�0

; ˛nx� D .Œ.˛q1 : : : ˛qm/�0

; ˛n�; : : : ; Œ.˛qm˛q1 : : : ˛qm�1/�0

; ˛n�/:

Now we write ˇ D ˛q1 : : : ˛qm . Then Œˇ�0

; ˛n� can be developed further, as asserted.
The same applies to the other entries.

(2.2) First, clearly r˛ D 0. Now let u D u.x/ annul ˛; write u D u0 C u0x
where u0 D u.0/. Then mju0 and so

u D mu0

m
C u0x D .xq/u0

m
C u0x C vr D xw1 C vr

for some v D v.x/ and w1 D q u0

m
C u0. Then xw1 annuls ˛ and so does w1. On

repeating, we find wi such that u � xiwi mod r and wi annuls ˛ for all i � 1.
In other words, u 2 T

n�1.xZ/n C .r/ D .r/.

The group Dm.j /. Recall ˛ D .e; : : : ; e; ˛xj �1
/� 2 Am. Then ˛m D ˛xj

; that
is, ˛r D e where r D m � xj . The states of ˛ are ˛; ˛x; : : : ; ˛xj �1

and

Dm.j / D h˛; ˛x; : : : ; ˛xj �1iI
therefore Dm.j / is diagonally closed. The topological closure Dm.j / is isomorphic
to the quotient ring S D ZmŒŒx��

.r/
, which is clearly a free Zm-module of rank j .
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6.1. The case P.A/ cyclic of prime order

Theorem 9. Let m be a prime number. Let A be a torsion-free abelian transitive state-
closed subgroup of Am. Let ˇ 2 An StabA.j /. Then A� D hˇi� and is topologically
finitely generated. Furthermore, A� is conjugate to Dm.j / for some j � 1.

The proof is developed in four steps.

Step 1. For z 2 A, define �.z/ D j such that zm 2 Stab.j /n Stab.j C 1/. As A

is torsion-free, �.z/ is finite for all nontrivial z and zm D .v/.j /, v 2 An StabA.1/.
Choose ˇ D .ˇ1; ˇ2; : : : ; ˇm/� 2 An StabA.1/ having minimum �.ˇ/ D j .

If z 2 StabA.1/, z 6D e, then there exists l > 0 such that zm D .c/.l/ and c 2
An StabA.1/. Therefore, by minimality of ˇ we have �.c/ � �.ˇ/ and �.z/ > �.ˇ/.

Lemma 5 (Uniform gap). Let z 2 StabA.1/. Then �.zˇ/ D �.ˇ/.

Proof. First note that

ˇm D .ˇ1ˇ2 : : : ˇm/.1/;

ˇ1ˇ2 : : : ˇm D .�/.j �1/; � 2 An StabA.1/:

We have z D c.1/ and zˇ D .cˇ1; cˇ2; : : : ; cˇm/� , .zˇ/m D .u/.1/, where u D
cmˇ1 : : : ˇm D cm.�/.j �1/. If c 2 An StabA.1/ then �.c/ D n � j , cm 2
Stab.n/n Stab.n C 1/, and so, u 2 StabA.j � 1/n StabA.j /. If c 2 StabA.1/ then
�.c/ > j and so cm 2 Stab.k/, where k > j and again u 2 Stab.j � 1/n Stab.j /.

Step 2. Note that

ˇm D .�/.j /; �m D .�/.j /;

ˇm2 D .�/.2j /;

where, by the uniform gap lemma above, �; � 2 An StabA.1/. Therefore, repeating
this process, we find that ˇms

induces � .sj / on the .sj /-th level of the tree for all
s � 0. Now given a level t � 0, dividing t by j , we get t D sj Ci with 0 � i � j �1,
and then .ˇ.i//ms D .ˇms

/.i/ induces .� .sj //.i/ D � .sj Ci/ D � .t/ on the t -th level
of the tree. It follows that the group A is a subgroup of the topological closure of
hˇ; ˇ.1/; : : : ; ˇ.j �1/i.

Step 3. We have for ˇ D .ˇ1; ˇ2; : : : ; ˇm/� ,

ˇi D ˇpi ; pi D ri0 C ri1x C � � � C ri.j �1/x
j �1 2 ZmŒx�;

and

ˇm D .ˇ1ˇ2 : : : ˇm/.1/;

ˇ1ˇ2 : : : ˇm D ˇp1C���Cpm ;

p1 C � � � C pm D q � xj �1;
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where q is an invertible element of ZmŒŒx��.

Proposition 5. The element ˇ D .ˇ1; ˇ2; : : : ; ˇm/� is conjugate in Am to ˛ D
.e; : : : ; e; ˛xj �1

/� .

Proof. Let h D .h1; h2; : : : ; hm/ be an automorphism of the tree. Then

ˇh D .h�1
1 ˇ1h2; h�1

2 ˇ2h3; : : : ; h�1
m ˇmh1/�:

Therefore ˇh D ˛ holds if and only if

h2 D ˇ�1
1 h1; h3 D ˇ�1

2 h2; : : : ; hm D ˇ�1
m�1hm�1; h1 D ˇ�1

m hm˛xj �1

:

These conditions can be rewritten as

h2 D ˇ�1
1 h1; h3 D ˇ�1

2 ˇ�1
1 h1; : : : ; hm D ˇ�1

m�1 : : : ˇ�1
1 h1;

h1 D ˇ�1
m ˇ�1

m�1 : : : ˇ�1
1 h1˛xj �1

,

or as

h D .h1; ˇ�1
1 h1; ˇ�1

2 ˇ�1
1 h1; : : : ; ˇ�1

m�1 : : : ˇ�1
1 h1/

D .e; ˇ�1
1 ; ˇ�1

2 ˇ�1
1 ; : : : ; ˇ�1

m�1 : : : ˇ�1
1 /.h1/.1/;

and
.ˇ1ˇ2 : : : ˇm/h1 D ˛xj �1

:

Since
ˇ1ˇ2 : : : ˇm D ˇq�xj �1

;

we repeat the above procedure replacing ˇ by ˇq and replacing h1 by .h0
1/xj �1

. This
leads to the conjugation equation

.ˇq/h0

1 D ˛:

In this manner, we determine an automorphism h of the tree which effects the required
conjugation

ˇh D ˛:

Example 4. Let ˇ D .e; ˇq/� , where q D 1 C x. Then ˇ is conjugate to the
adding machine ˛ D .e; ˛/� . Note that from Example 1, ˇ is not obtainable from
˛ by simply choosing a different transversal. To exhibit the conjugator h W ˇ ! ˛

constructed in the proof, define the polynomial sequences

c0 D 1; c1 D q; cn D 2cn�2 C cn�1I
c0�1 D 0; c0

0 D 0; c0
n D cn�1 C c0

n�1:

Then
h D .e; e/.0/.e; ˇ�1/.1/.e; ˇ�.1Cq//.2/ : : : .e; ˇ�c0

n/.n/ : : : :
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Step 4. By Proposition 2, we have A � NA D CA.˛/ and

Ah � CA.˛h/ D CA.ˇ/ D Dm.j /:

This finishes the proof of the theorem.
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