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Quasi-isometries between tubular groups

Christopher H. Cashen

Abstract. We give a method of constructing maps between tubular groups inductively ac-
cording to a finite set of strategies. This map will be a quasi-isometry exactly when the set
of strategies satisfies certain consistency criteria. Conversely, if there exists a quasi-isometry
between tubular groups, then there is a consistent set of strategies for building a quasi-isometry
between them.

For two given tubular groups there are only finitely many candidate sets of strategies to
consider, so it is possible in finite time to either produce a consistent set of strategies or decide
that such a set does not exist. Consequently, there is an algorithm that in finite time decides
whether or not two tubular groups are quasi-isometric.
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1. Introduction

One line of attack in Gromov’s program to classify finitely generated groups up to
quasi-isometry has been to study splittings of groups. Given a splitting of a group G
into a graph of groups, one would like to know whether there is a similar splitting for a
finitely generated groupH quasi-isometric toG, and what constraints such splittings
impose upon quasi-isometries between the groups.

A result of this type applies when G and H are accessible groups. Paposoglu
and Whyte showed that G and H are quasi-isometric if and only if they have the
same number of ends and if, in terminal splittings over finite subgroups, they have
the same sets of quasi-isometry classes of one ended vertex groups [10]. In terms of
the Bass–Serre trees for such groups, this is a local restriction.

When edge groups are infinite there may be large scale restrictions as well. Con-
sider, for example, graphs of groups where all the local groups are infinite cyclic,
such as the Baumslag–Solitar groups. Here there are no obvious local restrictions;
all the vertex spaces are quasi-isometric to each other. However, crossing an edge
space contributes a height change. Quasi-isometries between graphs of Z’s must
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induce coarsely height preserving quasi-isometries of the corresponding Bass–Serre
trees [14].

Perhaps the next most complicated situation to consider would be graphs of groups
with infinite cyclic edge groups and vertex groups free abelian of rank two. Such a
group can be thought of as the fundamental group of a finite 2-complex consisting of
a disjoint union of tori glued together by annuli. Martin Bridson has described such
groups as “tubular”.

Mosher, Sageev, and Whyte prove splitting rigidity results for graphs of coarse
Poincaré duality groups under some additional hypotheses [8], [9]. We define a class
of tubular groups that satisfy these hypotheses. Such splittings are quasi-isometrically
rigid. Furthermore, the patterns of attachment of edge groups to vertex groups are
quasi-isometry invariants of the groups. These edge patterns give local quasi-isometry
restrictions, and height change gives a large scale restriction, similar to the graph of
Z’s example.

We will show that we can cover the Bass–Serre tree of a tubular group by a collec-
tion of infinite subtrees, called P-sets, that intersect pairwise in at most a single vertex.
We organize the P-sets into a tree of P-sets, which is essentially the nerve of the afore-
mentioned cover. The P-sets are similar to the Bass–Serre trees of Baumslag–Solitar
groups, and we can use similar methods to construct quasi-isometries between P-set
spaces. To construct quasi-isometries of tubular groups we will need to coordinate
the quasi-isometries on each P-set space so that they piece together in such a way as to
satisfy the local edge-to-vertex pattern rigidity and global height change restrictions.

To accomplish this, we define sets of strategies for inductively building quasi-
isometries in a way that will satisfy the local restrictions given by edge pattern rigidity.
We give consistency criteria for such a set of strategies that determine whether the
large scale restrictions on height change are satisfied. Theorem 4.5 shows that there
is an algorithm that in finite time will either produce a consistent set of strategies or
decide that no such set exists.

We prove a number of results that can be summarized as:

Theorem. The following are equivalent:

(1) The tubular groups G1 and G2 are quasi-isometric.

(2) There exists an allowable isomorphism between the trees of P-sets ofG1 andG2.

(3) There exists a consistent set of strategies for G1 and G2.

Combining these results with Theorem 4.5, we get the main result of this paper:

MainTheorem. There is an algorithm that will take graph of groups decompositions
of two tubular groups and in finite time decide whether or not the groups are quasi-
isometric.

1.1. Previous examples of tubular groups. Examples of tubular groups have ap-
peared in the literature in various guises.
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The fundamental group of the torus complexes of Croke and Kleiner [7] is an
example of a tubular group. These torus complexes provided examples of finite, non-
positively curved, homeomorphic 2-complexes whose universal covers have non-
homeomorphic ideal boundaries.

Right-angled Artin groups whose defining graphs are trees of diameter at least
three are tubular groups. Such groups are also graph-manifold groups and have been
shown to be quasi-isometric to each other by Behrstock and Neumann as a special
case of their quasi-isometry classification of graph-manifold groups [1]. This result
is recovered as Corollary 5.2.

Examples of tubular groups were used in work of Brady and Bridson [2], as well
as Brady, Bridson, Forester, and Shankar [3], to show that the isoperimetric spectrum
is dense in Œ2;1/ and that Q \ Œ2;1/ � IP, respectively. In the latter work these
examples were termed “snowflake groups”.

Wise’s group

W D ha; b; x; y j Œa; b� D 1; x�1ax D .ab/2; y�1by D .ab/2i
a tubular group that is non-Hopfian and CAT(0) [15]. It is not known if this group is
automatic. Resolving this question would either provide an example of a non-Hopfian
automatic group or a non-automatic CAT.0/ group.

Acknowledgements. This paper is based on a thesis [6] submitted in partial ful-
fillment of the requirements for the doctoral degree at the Graduate College of the
University of Illinois at Chicago, under the supervision of Kevin Whyte. Additional
work was conducted during MSRI’s Geometric Group Theory Program.

2. Preliminaries

This section contains standard definitions and constructions. Notation will most
closely resemble that of Mosher, Sageev, and Whyte [9].

2.1. Coarse geometry. Let .X; dX / and .Y; dY / be metric spaces, and letA,B � X .
The closed r-neighborhood of A in X is denoted Nr.A/. The set A is coarsely

contained in B , A
c� B , if there exists r such that A � Nr.B/. Subsets A and B are

coarsely equivalent, A
cD B , if A

c� B and B
c� A. A subset A is coarsely dense in

X if A
cD X .

A subspace C of X is a coarse intersection of A and B , C D A
c\ B , if C

cD
Nr.A/ \Nr.B/ for sufficiently large r .

If A and B are subspaces of X then A crosses B in X if, for all sufficiently large
r , there are at least two components C1 and C2 of X n Nr.B/ such that for each i
and every s > 0 there is a point c 2 A \ Ci with Ns.c/ � Ci .
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A map f W X ! Y is K-bilipschitz, for K � 1, if

1
K
dX .x; y/ � dY .f .x/; f .y// � KdX .x; y/

for all x; y 2 X . The map f is a .K;C /-quasi-isometric embedding, for K �
1; C � 0, if

1
K
dX .x; y/ � C � dY .f .x/; f .y// � Kdx.x; y/C C

for all x; y 2 X . Furthermore, f is a .K;C /-quasi-isometry if it is a .K;C /-quasi-
isometric embedding and the image is C -coarsely dense in Y .

Two maps f; g W X ! Y are bounded distance from each other, f
cD g, if there

is a C � 0 such that dY .f .x/; g.x// � C for all x 2 X . Two maps, f W X ! Y

and Nf W Y ! X , are coarse inverses if f B Nf cD IdY and Nf B f cD IdX . If f is a
quasi-isometry, there is a coarse inverse Nf W Y ! X of f that is also a quasi-isometry,
with constants depending on those of f .

2.2. Bass–Serre theory. If � is a graph, let V� denote the vertex set, and E� the
edge set. Let VE� D V� [ E� . The set of endpoints of � is E� � f0; 1g.

Each edge has two endpoints, of the form � D .e; i/, where the i should be taken
mod 2. Each endpoint is identified with some vertex v.�/ such that e D e.�/ is
incident to v.�/.

A graph of groups, .�; fG�g; f��g/, is a graph, � , equipped with a local groupG�
for each � 2 VE� , and edge injections �� 2 Hom.Ge.�/; Gv.�// for each endpoint
�. We will generally use � to denote the graph of groups, and refer to the underlying
graph of � if we wish to consider only the graph itself.

Note. A graph of groups is of finite type if the underlying graph is finite, the vertex
groups are finitely presented, and the edge groups are finitely generated. All the graphs
of groups of interest in this paper are of finite type, so, from this point forward, finite
type can be taken as an implicit hypothesis for any statement about graphs of groups.

Associated to a graph of groups there is a finitely presented group,

G D �1.�; fG�g; f��g/;
the fundamental group of the graph of groups [12].

A graph of groups is reducible if there is an edge e such that the vertices v.e; 0/
and v.e; 1/ are distinct, and such that one of the edge homomorphisms �.e;i/ is
surjective. In this case it is possible to simplify the graph of groups without changing
the fundamental group. Remove e and v.e; i/ from � , and for any other endpoint
with v.e0; j / D v.e; i/, replace �.e0;j / with

�.e;iC1/ B ��1
.e;i/ B �.e0;j /:
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Scott and Wall gave a topological realization of G [11]. Build a graph of spaces,
K , for .�; fG�g; f��g/ by choosing local spaces, K� , for each � 2 VE� . For
each � , choose K� to be a pointed, connected, compact CW-complex, with a map
�1.K� / ! G� . This map should be an isomorphism if � 2 V� , and an epimorphism
if � 2 E� . For each endpoint � of � , choose an edge map, a pointed CW-map
f� W Ke.�/ ! Kv.�/, such that the induced map on fundamental groups agrees with
the edge injection.

Now, let K be the finite CW-complex obtained from the disjoint union`
v2V�

Kv q `
e2E�

Ke � Œ0; 1�

by using f.e;i/ to glue Ke�fig to Kv.e;i/ for each endpoint .e; i/. The fundamental
group �1.K/ is well defined, up to isomorphism, and, by van Kampen’s Theorem, is
isomorphic to G.

Consider the universal cover X D zK , with covering map p and metric lifted
from K . The group G acts properly discontinuously, cocompactly and isometrically
by deck transformations on X , so G and X are quasi-isometric by the S̆varc–Milnor
Lemma [5]. Thus, X serves as a geometric model for G. For questions of the coarse
geometry of G, it is sufficient to study X .

The space X can be decomposed into path connected lifts of the local spaces
K� , and the action of G on X respects this decomposition. Let D� D q.X/ be the
quotient space of the decomposition. The quotient is a tree on which G acts without
edge inversion, and D� is G-equivariantly isomorphic to the Bass–Serre tree of � .
We use the notation D� because the tree is the “development” of � . Call X the

Bass–Serre complex, and X
q! D� the Bass–Serre tree of spaces for � .

For v 2 VD� , Xv D q�1.v/ is called a vertex space, and VX D S
v2VD� Xv

is the set of vertex spaces. The set of vertex spaces is 1
2

-coarsely dense in X . For
e 2 ED� , Xe D q�1.midpoint of e/ is called an edge space.

For t 2 D� , StabG.t/ D StabG.Xt /. The group StabG.t/ is conjugate in G to
Gp.t/, and StabG.t/ acts onXt as the deck transformation group of the covering map
Xt ! Kp.t/.

3. Tubular groups

3.1. Definition and rigidity results

3.1.1. Definition of tubular group. The motivating examples of tubular groups are
graphs of groups with edge groups Z and vertex groups Z2. However, this description
is not sufficient to give a quasi-isometrically closed class of groups.

Definition 3.1. A tubular group is the fundamental group of a finite, connected graph
of groups satisfying the following conditions:
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(1) Every edge group is finitely generated and quasi-isometric to Z.
(2) Every vertex group is finitely generated and quasi-isometric to either Z or Z2.
(3) There is at least one vertex group quasi-isometric to Z2 and at least one edge.
(4) Every vertex whose local group is quasi-isometric to Z2 satisfies the crossing

graph condition (see below).

Remarks. Any finitely generated group quasi-isometric to Zn contains a finite index
subgroup isomorphic to Zn [4]. Such a group is said to be virtually Zn.

Graphs of groups with all local groups quasi-isometric to Z have been classified
by Whyte [14]. Conditions (3) and (4) exclude such groups from consideration.

Suppose that v 2 V� with Gv quasi-isometric to Z. Suppose e 2 E� such that
v.e; i/ D v and v.e; i C 1/ ¤ v. We can assume that �.e;i/.Ge/ is a subgroup of
Gv of index at least two. Otherwise, the graph of groups is reducible and could be
simplified without changing the fundamental group.

3.1.2. The crossing graph condition. In a graph of groups, a depth zero vertex
group is one that is not strictly coarsely contained in any other vertex group.

In a tubular group, those are precisely the vertex groups quasi-isometric to Z2.
Let V0D� be the set of depth zero vertices of D� . Let V0X D S

v2V0D�
Xv .

We define a crossing graph condition for tubular groups. Mosher, Sageev, and
Whyte define a crossing graph condition in [9] that applies to more general graphs of
groups. For tubular groups the two definitions are equivalent.

Definition 3.2. For each v 2 V0D� the crossing graph for v is a graph with one
vertex for each edge incident to v inD� . Vertices of the crossing graph corresponding
to edges e and e0 are joined by an edge in the crossing graph if either Xe and Xe0

cross in Xv or if there is a third edge e00 incident to v such that Xe00 crosses both Xe
and Xe0 in Xv .

Definition 3.3. A depth zero vertex satisfies the crossing graph condition if its cross-
ing graph is connected.

If the vertex group is isomorphic to Z2 the crossing graph condition is even
simpler: the vertex satisfies the crossing graph condition if and only if the incident
edge groups rationally span the vertex group.

The crossing graph condition fails in a tubular group only if for some depth zero
vertex v, all of the incident edges have edge spaces coarsely equivalent to each other
in Xv .

For example, the groupF2�Z D ha; bi�hci can be regarded as a graph of groups
with one Z2 vertex and one Z edge in two different ways. The Z2 vertex group could
be either ha; ci or hb; ci. Neither of these descriptions satisfy the crossing graph
condition, because in each case the images of the two edge injections are the same
cyclic subgroup of the vertex group. The quasi-isometry coming from the obvious
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isomorphism does not respect vertex spaces, it takes the vertex space corresponding
to ha; ci to a union of edge spaces.

The crossing graph condition will prevent this sort of problem; it will ensure that
a quasi-isometry of tubular groups takes depth zero vertex spaces to within bounded
distance of depth zero vertex spaces. We will not give a direct proof of this statement
for tubular groups, it will be a consequence of more general theorems of Mosher,
Sageev, and Whyte. However, it is easy to get an idea of why this works. If a vertex
satisfies the crossing graph condition then no line, l , in the vertex space can coarsely
separate the vertex space in the whole tree of spaces. There will be some transverse
line with an edge space attached, so we could avoid any neighborhood of l by going
far out in either direction along the transverse edge line, then crossing to the other
side of the edge strip. On the other side of the edge strip is a vertex space quasi-
isometric to a plane, and the intersection of any neighborhood of l with this plane is
bounded, so we can avoid it in the plane. If the image of a depth zero vertex space
is not contained in a bounded neighborhood of some depth zero vertex space then it
must cross deeply into components on opposite sides of some edge space. That edge
space coarsely separates the entire tree of spaces, which means its preimage would
be a line coarsely separating the vertex space in the tree of spaces, and this would be
a contradiction.

3.1.3. Rigidity results of Mosher–Sageev–Whyte. In this subsection we recall
results of Mosher, Sageev, and Whyte [9] and apply them to tubular groups.

Given a graph of groups, � , with Bass–Serre tree of spacesX ! T , the following
hypotheses will be needed:

(1) � is finite type, irreducible, and finite depth.
(2) No depth zero raft of the Bass–Serre tree T is a line.
(3) Each depth zero vertex group is coarse PD.
(4) The crossing graph condition holds for each depth zero vertex of T that is a raft.
(5) Each vertex and edge group of � is coarse finite type.

Proposition 3.4. Tubular groups satisfy these hypotheses.

Proof. The depth zero vertices are all rafts, and these are the only depth zero rafts.
We have included the crossing graph condition in the definition of tubular groups.
We can assume irreducibility, as discussed in the remarks following the definition of
tubular groups. Virtually abelian groups are coarse PD and coarse finite type. Finite
depth means there is a bound to the length of a chain of proper coarse inclusions of
vertex and edge spaces. For tubular groups there are only chains of length two.

Theorem 3.5 (Quasi-isometric Rigidity Theorem, [9], Theorem 1.5). Let � be a
graph of groups satisfying (1)–(5) above. If H is a finitely generated group quasi-
isometric to �1� then H is the fundamental group of a graph of groups satisfying
(1)–(5).
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Theorem 3.6 (Quasi-isometric Classification Theorem, [9], Theorem 1.6). Let� , � 0
be graphs of groups satisfying (1)–(5) above. Let X ! T , X 0 ! T 0 be Bass–Serre
trees of spaces for � , � 0, respectively. If f W X ! X 0 is a quasi-isometry then f
coarsely respects vertex and edge spaces. To be precise, for anyK � 1, C � 0 there
exists aK 0; C 0 quasi-isometry f# W VE.T / ! VE.T 0/ such that the following holds:

� If a 2 VE.T / then dH .f .Xa/; X
0
f#.a/

/ � C 0.
� If a0 2 VE.T 0/ then there exists a 2 VE.T / such that dH .f .Xa/; X

0
a0/ � C 0.

Corollary 3.7. The class of tubular groups is closed under quasi-isometry. That is,
any finitely generated group quasi-isometric to a tubular group is itself a tubular
group. Furthermore, any quasi-isometry between tubular groups coarsely respects
vertex and edge spaces.

Note that in a tubular group, a vertex space quasi-isometric to Z2 is not bounded
Hausdorff distance from any other vertex space. Thus, we can change a quasi-
isometry by a bounded amount so that it actually respects such vertex spaces.

If V � Rn is a linear subspace, letPV be the set of affine subspaces of Rn parallel
to V . For a finite collection, F , of linear subspaces, the affine pattern induced by F ,
PF , is the union of the PV for V 2 F . An affine pattern is rigid if for every K, C ,
R there is an R0 such that if f W Rn ! Rn is a K;C quasi-isometry that R-coarsely
respects each PV , then f is within R0 of an affine homothety.

Lemma 3.8 ([9], Lemma 7.2). If F is a finite collection of linear subspaces of Rn

that contains nC 1 hyperplanes in general position, then F is rigid.

In particular, a collection of at least three distinct lines in the plane is rigid.

Corollary 3.9 ([9], Corollary 7.11). Let � be a graph of groups with all vertex and
edge groups finitely generated abelian groups. Assume that for each depth zero, one
vertex raft v in the Bass–Serre tree, the collection of edge spaces at the vertex space
of v is a rigid affine pattern. Assume also that there are no line-like rafts of depth
zero. If H is any finitely generated group quasi-isometric to G D �1.� /, then H
splits as a graph of virtually abelian groups and the quasi-isometryG ! H is affine
along each depth zero, one vertex raft. Moreover, the set of affine equivalence classes
of edge patterns is the same forH as it is for G.

3.2. Geometric models for tubular groups. Recall that an edge pattern is rigid
if any quasi-isometry that respects each of the families of parallel lines is bounded
distance from an affine homothety. We will choose the metrics on the vertex spaces so
that rigid patterns are “symmetric”. The payoff for choosing the metrics in this way
will be that any quasi-isometry which respects the edge pattern (possibly permuting
families of parallel lines) is bounded distance from the composition of an isometry
and a homothety. As a consequence, a quasi-isometry of tubular groups restricted to
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a depth zero vertex space with an edge pattern consisting of at least three families of
parallel lines must stretch distances by the same amount in every direction.

3.2.1. Affine patterns of lines in the plane. Let F D fl1; l2; : : : ; lng, n � 3, be a
finite collection of distinct lines through the origin in R2, with the usual Euclidean
metric. Two such collections, F and F 0, are linearly equivalent if there exists A 2
GL2 R such that AF D fAlig D F 0. Scalar matrices in GL2 R will preserve any
such F , so we projectivise.

Let PF D fm1; m2; : : : ; mng be a collection of slopes in RP . There is a finite
subgroup, LPF � PGL2 R, that fixes PF set-wise.

Lift LPF to GL2.R/ by taking LF D LPF Z.GL2 R/ \ fA 2 GL2 R j det.A/ D
˙1g. We call LPF the group of symmetries of F , and call F symmetric if LF acts by
isometries.

Proposition 3.10. For any collection F of n � 3 distinct lines through the origin,
there is a symmetric representative of the linear equivalence class of F . Choosing
an isometry class of symmetric representative is equivalent to choosing a Euclidean
metric on R2 for which F is symmetric.

Proof. LF is finite. Define a new metric on the plane by

hx; yiLF
D 1

jLF j
X
A2LF

hAx;Ayi:

The group LF acts isometrically on the plane with this metric. There is an AF 2
GL2 R such that hx; yiLF

D hAF x;AF yi, so AFF is a symmetric representative
of the linear equivalence class of F .

Conversely, suppose that F 0 is a symmetric representative for the linear equiv-
alence class of F . Suppose A1 and A2 are matrices such that jdet.Ai /j D 1 and
AiF D F 0. Then A1A�1

2 2 LF 0 . Since F 0 is symmetric, this means the Ai differ by
an isometry, so

hA1x;A1yi D hA2x;A2yi:
For n D 2 we will consider two orthogonal lines to be a symmetric pattern, but

the group of symmetries in this case is not a finite group.
For n D 3 there is a single linear equivalence class. There is, up to isometry, a

unique symmetric representative, consisting of three lines meeting at angles �
3

. The
group of symmetries is isomorphic to S3.

For n D 4 there are infinitely many linear equivalence classes, indexed by the
cross ratios Œ�1; 0/. Each has, up to isometry, a unique symmetric representative, and
a transitive group of symmetries. When the cross ratio is �1 the group of symmetries
is isomorphic to the dihedral group of order 8. Otherwise, the group of symmetries
is isomorphic to Z=2Z � Z=2Z.
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For n D 5 there is no longer a unique symmetric representative for every linear
equivalence class. Indeed, there are five-line patterns with trivial group of symmetries.
In such a class, every member is symmetric, so the pattern does not determine a
canonical choice of metric on the plane.

3.2.2. Coarse Bass–Serre complex. It is possible to relax some of the group the-
oretic restrictions from Section 2.2 and still get a geometric model quasi-isometric
to G D �1� . Following the proof of Lemma 2.9 of [9], we construct a coarse
Bass–Serre complex X 0 ! D� to serve as a geometric model for G.

Let � be a graph of groups for a tubular group G D �1� .
Let v be a depth zero vertex of � , and e an edge of � incident to v at endpoint �.
Suppose that A is a group quasi-isometric to Zn. The group A has a finite index

normal subgroup B Š Zn [4]. There is a quasi-isometry, fB W A ! B , at bounded
distance from IdA, with fB jB D IdB . Furthermore, fB takes cyclic subgroups of A
to within bounded distance of cyclic subgroups of B .

Applying this reasoning to Gv and Ge ,

Ge

��

��

fZ

qi
�� Z

��
Gv

fZ2

qi
�� Z2,

the image of the map fZ2 B �� B NfZ is bounded distance from a cyclic subgroup

hxaybi < hx; yi Š Z2:

The usual inclusion of Z2 into R2 is a quasi-isometry, and the subgroup hxaybi
includes into the line through the origin with rational slope b

a
. In this way, each edge

incident to v is associated to a line in R2. Let Fv be the set of distinct lines. The
affine pattern induced by this set is called the edge pattern, and is well defined up to
linear equivalence. If Fv contains n distinct lines, we will say that v has n lines or is
an n-line vertex. Furthermore, we can choose a new Euclidean metric on R2 to make
this pattern symmetric.

Let X
q! D� be a Bass–Serre tree of spaces for � . For each � 2 VED� , let

h� W X� ! X 0
� , where X 0

� is either R or R2 and h� is the quasi-isometry given by
restricting to a finite index normal abelian subgroup and then including into X 0

� .
For each vertex v 2 VD� , and each incident edge e 2 ED� , let Fev W Xe ! Xv

be the attaching map. Define a new attaching map byF 0
ev D hv BFev B Nhe W X 0

e ! X 0
v .

Define X 0 by taking the disjoint union`
v2VD�

X 0
v q `

e2ED�

X 0
e � Œ0; 1�

and gluing according to the new attaching maps.
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The h� have uniform quasi-isometry constants, since the underlying graph was
finite, so they piece together to give a quasi-isometry h W X ! X 0. Since G was
quasi-isometric to X , we now have that G is quasi-isometric to X 0. The action of
G on X is quasi-conjugated by h to give a proper, cobounded quasi-action of G on
X 0. The space X 0 is still a tree of spaces over D� , and X 0 ! D� is called a coarse
Bass–Serre complex.

When v is a depth zero vertex, the edge spaces of the incident edges attach to X 0
v

along lines of the edge pattern in X 0
v .

3.2.3. Contraction factors and height change. Let e be an edge of D� , and
let vi be the vertex at endpoint .e; i/ of e, for i D 0; 1. For each i , F 0

evi
maps

X 0
e D R within bounded distance of a line in X 0

vi
, and there is a factor li such that

dX 0
vi
.F 0
evi
.x/; F 0

evi
.y// D lidX 0

e
.x; y/ to within bounded additive error. Define the

contraction factor across e to be l1
l0

and the height change across e to be

h.e/ D � log2
�
l1
l0

�
:

Metrize the strip X 0
e � Œ0; 1� as the strip 0 � y � 1 in the plane with metric

. l1
l0
/2ydx2 C dy2, so the edge strips are horostrips in a plane of constant curvature

�.ln 11

l0
/2. Without changing the quasi-isometry type, we can changeX 0 by a bounded

amount so that F 0
evi

glues X 0
e � fig isometrically along a line in X 0

vi
.

Let p be vertical projection from the bottom (i D 0) of the strip to the top (i D 1)
of the strip. The map p is closest point projection. If a and b are points in the bottom
edge of the strip, and di is the distance in X 0

e � fig, then

d1.p.a/; p.b//

d0.a; b/
D l2

l1
D 2�h.e/:

For vertices v;w 2 D� , the height change from v to w, h.v;w/, is the sum of
the height changes across the edges of the geodesic between v and w. This quantity
will sometimes be called the height of w relative to v.

Remark. If an edge has height changeh that means that closest point projection across
the edge scales distances by the same amount as closest point projection between two
horizontal horocycles whose y-coordinates (heights) differ by h in the plane with
metric .1

2
/2ydx2Cdy2. The obvious choice would have been to define height change

using the natural logarithm, in which case the analogy would be to the hyperbolic
plane. The choice of log2 turns out to be the convenient choice when relating height
change to isoperimetric function, but the theory is the same regardless of which base
is chosen.

Example 3.11. Suppose that we have an edge e going from vertex v to vertex w.
Suppose that we have chosen metrics onXv andXw so that the stabilizer subgroups are
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the usual integer lattice in the plane, and the edge injections for e take the generator
of Ge to a generator in Gw and a product of the generators of Gv , see Figure 1.
The edge strip is metrized so that closest point projection across the strip is vertical
projection in the figure. Closest point projection from the bottom of the strip to the
top of the strip changes distance by a factor of 1p

2
, so the height change across e is

h.v;w/ D � log2.
1p
2
/ D 1

2
.

Notice that we get a non-zero height change even though we have identified
primitive elements.

Xv

Xw

Xe

Figure 1. Height change.

3.2.4. Geometricmodels for two tubular groups. The coarse Bass–Serre complex,
X 0, will serve as the geometric model for its tubular group. We will have no further
use for the original Bass–Serre complex.

From this point forward, given two tubular groups, Gi D �1.�i /, for i D 1; 2,
X will always refer to the geometric model for G1, and Y will always refer to the
geometric model for G2.

3.2.5. Examples of tubular groups. We will spend some time discussing a partic-
ular family of tubular groups that can be realized as the fundamental group of a graph
of groups with one Z2 vertex group and edge injections contained in three distinct
cyclic subgroups. This family is of particular interest for a few reasons:

� The groups have small enough presentation that they are practical to work with.
In Example 5.5 we will give a complete quasi-isometry invariant for members
of this family.

� There is only one affine equivalence class of 3-line pattern, so the fact that
equivalence classes of edge patterns are quasi-isometry invariants, Corollary 3.9,
provides no information.

� 3-line patterns are rigid, so we will have to worry about preserving height change.
This results in a surprisingly delicate quasi-isometry classification.

� Wise’s group and the Brady–Bridson groups all belong to this family. Recall
that the Brady–Bridson groups have isoperimetric exponents that form a dense
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subset of Œ2;1/, so we know already that there must be countably many different
quasi-isometry classes within the family.

ve fha; bi

ap aq

arbs atbu

Figure 2. A one torus group.

Let � be the graph of groups in Figure 2. The small arc joining edges e and
f near their initial endpoints is a visual cue to indicate that the corresponding edge
injections map into coarsely equivalent subgroups.

G D �1� D ha; b; x; y j Œa; b� D 1; x�1apx D arbs; y�1aqy D atbui
Let F be the set of lines through the origin of distinct slopes 0, s

r
, and u

t
. Let

A0 D
 
1 �1

2
ruCst
su

0
p
3
2
ru�st
su

!
:

Let A D 1pj det.A0/jA
0. Pull back the metric on R2 according to the matrix A, as in

Proposition 3.10. This makes the three-line pattern generated by F symmetric.
The height change across e is:

� D � log2
jA.rs /j
jA.p0 /j

D � log2

ˇ̌̌
ˇru � st
pu

ˇ̌̌
ˇ:

The height change across f is

	 D � log2
jA. tu/j
jA.q0/j

D � log2

ˇ̌̌
ˇru � st

sq

ˇ̌̌
ˇ:

A special case is a Brady–Bridson group BB.p; r/ where 0 < p D q < r D t ,
s D 1, and u D �1. For such a group the height changes across the two edges are

� D 	 D � log2
2r
p
:

The possible values of � are dense in .�1;�1/.
Brady and Bridson have shown [2] that the group BB.p; r/ has Dehn function

n�2�:

This proved that there are no gaps in the isoperimetric spectrum beyond 2.
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Proposition 3.12. Suppose we are given height changes � and 	 and four indices of
edge inclusions, p, q, m D gcd.r; s/, and n D gcd.t; u/. These can be realized in a
tubular group as in Figure 2 if and only if 2� and 2� are rational and, as reduced
rationals, q

2�n
D i

j
and p

2�m
D i

k
, where i , j , and k are pairwise coprime.

Proof. If these constants did arise from a tubular group, the matrix A0 that was used
to define the metric on the torus allows us to realize the group Gv as a lattice in
R2. In this lattice .1; 0/, p

2�m
.1=2;

p
3=2/, and q

2�n
.�1=2;p3=2/must be primitive

elements, since these are the images of generators of maximal cyclic subgroups inG.
These three elements generate a lattice in which each of them is primitive only if
p

2�m
and q

2�n
are rational and, as reduced rationals, have the same numerators and

relatively prime denominators.
For the converse, choose any g 2 Z such that

g � � 1
j

mod k:

Choose any h coprime to g, 1Cgj
k

, and i .

Let r D mi
�
1Cgj
k

�
, s D mhj , t D ngi , and u D nhk.

With these choices, the graph of groups in Figure 2 gives the desired group.

Corollary 3.13. For any numbers � and 	 such that 2� and 2� are rational, it is
possible to construct a tubular group as in Figure 2 where the height changes across
the two edges are � and 	.

3.3. P-sets. No two depth zero vertex spaces are bounded Hausdorff distance from
one another. However, there is a weaker characterization of closeness of two local
spaces according to whether they are close on unbounded subsets. We define the
corresponding relation on the vertices and edges of the Bass–Serre tree:

Definition 3.14. Two elements x; y 2 VED� satisfy Relation P if Xx
c\ Xy is

unbounded.

Quasi-isometries respect vertex and edge spaces, and preserve boundedness and
unboundedness, so Relation P is invariant under quasi-isometry.

Definition 3.15. A P-set of D� is a maximal subset of VED� such that any two
elements satisfy Relation P.

Proposition 3.16 (Properties of P-sets). (1) A P-set is a subtree ofD� .
(2) Every depth zero vertex of a P-set is adjacent to infinitely many other vertices

in that P-set.
(3) An n-line, depth zero vertex belongs to n distinct P-sets.
(4) Edges and positive depth vertices belong to exactly one P-set.
(5) Any two P-sets are either disjoint or intersect in exactly one vertex, which is

necessarily a depth zero vertex.
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Proof. Let e1 and e2 be edges in D� incident to a common depth zero vertex, v.
The vertex v satisfies Relation P with either of the ei .
The edges e1 and e2 satisfy Relation P if and only if their edge strips glue to Xv

along parallel lines.
The list of properties follows easily from this observation

The fundamental group G D �1.� / quasi-acts on X . Quasi-isometries preserve
Relation P, so the action of G on D� induces an action of G on the set of P-sets
of D� .

Definition 3.17. Within a P-set S , two depth zero vertices v and w are of the same
type if there exists an element g 2 StabG.S/ such that gv D w.

Type is an equivalence relation among depth zero vertices of a fixed P-set. For an
n-line depth zero vertex, the equivalence class of the vertex under the action of the
whole group splits into at most n vertex types in S .

If there is a height change between vertices of the same type in a P-set, the geodesic
segment joining them projects to a non-trivial loop in the underlying graph of � . The
group element corresponding to this loop is an infinite order element of the P-set
stabilizer. Iterating the action of this group element gives vertices of the P-set all of
the same type occurring at an unbounded set of heights.

If there is zero height change between every pair of vertices of the same type in
a P-set then, since there are only finitely many vertex types, the vertices of the P-set
occur at only finitely many heights. Thus, there is bounded height change between
any two vertices of the P-set.

For each orbit of P-sets, pick a representative Si and fix an ordered list of repre-
sentative xi;j for the vertex types in Si . Suppose that S andR are P-sets, x and y are
vertices in R, g 2 G such that gR D S , and k 2 StabG.R/ such that kx D y. Then
gkg�1 2 StabG S and gkg�1gx D gkx D gy, so the action of the group takes
vertices of the same type in one P-set to vertices of the same type in another. Thus,
we can fix an ordering of vertex types for each equivalence class of P-set.

We will say that x 2 V0S is of type fŒSi �; j g with respect to S if there is some
g 2 G such that gS D Si and gx D xi;j .

Proposition 3.18. Suppose that v 2 V0D� , and R and S are P-sets containing v.
There is an element g 2 StabG.v/ such that gR D S if and only if v is of the same
type with respect to both R and S .

Proof. Suppose that there exists g 2 StabG.v/ such that gR D S . The P-sets R and
S then belong to the same equivalence class; call it ŒSi �. Suppose that v 2 fŒSi �; j g
with respect to R and v 2 fŒSi �; kg with respect to S . Then there are elements
f; h 2 G with fR D Si , f v D xi;j , hS D Si , and hv D xi;k . However, this would
mean that fgh�1 2 StabG.Si / and fgh�1xi;k D xi;j , but this is only possible if
j D k.
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Conversely, suppose that v 2 fŒSi �; j g with respect to both R and S . Then there
are elements f; h 2 G with fR D Si , f v D xi;j , hS D Si , and hv D xi;j , so
g D h�1f fixes v and takes R to S .

Definition 3.19. The tree of P-sets, T� , of a tubular group,G D �1.� /, is given by:

� VT� D V0D� q fP-sets of D� g.
� Edges are determined by inclusion of vertices in P-sets. Each edge is assigned

length 1
2

.

The collection of P-sets is a cover of D� by subtrees that intersect pairwise in
at most a single vertex. The nerve of such a cover is simply connected, and T� is a
deformation retraction of this nerve. So, T� is, in fact, a tree.

It will be convenient to extend the notion of height change across an edge to some
of the edges of T� . If R is a P-set with bounded height change, pick some adjacent
depth zero vertex, v, of maximal height. For any vertex w adjacent to R, define
h.w;R/ D h.w; v/.

The action of G on D� induces an action of G on T� .

4. Quasi-isometries between tubular groups

In Section 4.1 we look at properties of the map of trees of P-sets induced by a
quasi-isometry of tubular groups. A map that satisfies the same properties we call
“allowable.” In Section 4.2 we show that an allowable isomorphism of trees of P-
sets exists if and only if there is a “consistent set of strategies,” and we show that
we can decide in finite time whether such a set of strategies exists. In Section 4.3
we take a consistent set of strategies and use it to build a quasi-isometry of tubular
groups. Thus, we conclude that the existence of an allowable isomorphism of trees
of P-sets is not only a necessary, but also sufficient condition for the existence of a
quasi-isometry between tubular groups, and the success or failure of the algorithm
for finding a consistent set of strategies determines the existence or non-existence of
a quasi-isometry between the tubular groups.

4.1. Allowable isomorphisms of trees of P-sets. Suppose that G1 D �1.�1/ and
G2 D �1.�2/ are tubular groups, with trees of P-sets T1 and T2, respectively.

A quasi-isometry,  W G1 ! G2 induces a tree isomorphism  # W T1 ! T2.
Recall that the P-sets R1; : : : ; Rn adjacent to a depth zero vertex v are in one-to-

one correspondence with the families of parallel lines forming the edge pattern in the
vertex space of v. To satisfy edge pattern rigidity, the bijection

fR1; : : : ; Rng ! f #.R1/; : : : ;  #.Rn/g
must correspond to an affine equivalence between the edge patterns ofXv and Y #.v/.
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If this restriction is satisfied for every depth zero vertex, then  # will be called
locally allowable.

Define a rigid component of Ti to be a connected component of

Ti n f2-line, depth zero vertices in Tig:
An induced isomorphism  # must take 2-line, depth zero vertices to 2-line, depth
zero vertices, so  # takes rigid components to rigid components.

Lemma 4.1. A quasi-isometry between tubular groups induces an isomorphism be-
tween their trees of P-sets that is coarsely height preserving on rigid components.

Proof. Within a P-set Space A P-set space is metrically a warped product of a tree
with R, with height as the warping function. This also the case for Baumslag–Solitar
groups, and the proof that a quasi-isometry is coarsely height preserving within a
P-set space is similar to the proof that a quasi-isometry of Baumslag–Solitar groups
is coarsely height preserving [14], Lemma 4.1.

Let R be a P-set in a tubular group G D �1.� /. In .XR; dXR
/, for any vertex,

v 2 R, there is a well defined closest point projection p.R;v/ W XR ! Xv .
Suppose that v0 and v1 are two vertices in R. In the geodesic of D� joining v0

and v1, let ei be the edge incident to vi . Let Lv;e be the line in Xv to which the edge
strip for an incident edge e attaches. Let x and x0 be an arbitrary pair of reference
points in Lv0;e0

. Then

dXv1
.p.x/; p.x0//
dXv0

.x; x0/
D 2�h.v0;v1/:

Suppose that we have a quasi-isometry, �, of tubular groups that restricts to a
.K;C /-quasi-isometry of the Xvi

. Let �# be the induced bijection of depth zero
vertices. Let S D �#.R/ and let wi D �#.vi /. Let fi be the edge incident to wi on
the tree geodesic joining the wi . A quasi-isometry coarsely preserves closest point
projection. That is, the following diagram commutes up to error E, which depends
on global constants and on dD� .v0; v1/ but not on the vi or the particular points in
Lv0;e0

:

Lv0;e0

p.R;v1/

��

� ��
Yw0

c\ Yf0

cD �� Lw0;f0

p.S;w1/

��
Lv1;e1

� ��
Yw1

c\ Yf1

cD �� Lw1;f1
.

We know that �.x/ and �.x0/ map to within some uniform distance, D, of a line
L � Yw0

parallel to Lw0;f0
. Thus there is a point y 2 L with dYw0

.�.x/; y/ � D

and p.S;w1/.�.x// D p.S;w1/.y/. There is a similar point y0 for �.x0/.
The situation is summarized in Figure 3.
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�

Xv0

Xv1

Xe1 Xe0

Yw0

Yw1

Yf1

Yf0

x

x0

p.x/

p.x0/

Lv0;e0

Lv1;e1

�.x/

y0

y

�.x0/

p�.x/

p�.x0/
�p.x/

�p.x0/

Lw0;f0

Lw1;f1

L

Figure 3

We have

2�h.w0;w1/ D dYw1
.p.S;w1/.y/; p.S;w1/.y

0//
dYw0

.y; y0/

� dYw1
.p.S;w1/.�.x//; p.S;w1/.�.x

0///
dYw0

.�.x/; �.x0// � 2D

� dYw1
.�.p.R;v1/.x//; �.p.R;v1/.x

0///C 2E

dYw0
.�.x/; �.x0// � 2D

� KdXv1
.p.R;v1/.x/; p.R;v1/.x

0//C C C 2E

1
K
dXv0

.x; x0/ � C � 2D :

For any ı > 0 we can take x and x0 far enough apart so that

2�h.w0;w1/ � .1C ı/K2
dXv1

.p.R;v1/.x/; p.R;v1/.x
0//

dXv0
.x; x0/

D .1C ı/K2 � 2�h.v0;v1/:

Thus,
h.w0; w1/ � h.v0; v1/ � 2 log2.K/:

The reverse inequality follow from a similar computation, so that height between
vertices in a P-set is preserved by quasi-isometries of tubular groups, up to an additive
error depending on the quasi-isometry constant.

From one P-set space to another. Let v0, v1, and v2 be depth zero vertices such
that vi and viC1 belong to a common P-set, but v0 and v2 do not. Assume v1 is a
vertex with at least three lines. For i D 0; 1, let ei be the edge adjacent to vi in the
tree geodesic joining the vi . For j D 1; 2, let e0

j be the edge adjacent to vi in the tree
geodesic joining the vi .

Pick reference points x and x0 2 Lv0;e0
as in the previous case. Projecting these

points to Xv2
would not give us much information because Xv0

c\ Xv2
is a point in

Xv1
. We can not do two separate height change calculations within P-sets because

we need the height error bound to be independent of the number of P-sets traversed.



Quasi-isometries between tubular groups 491

Instead we link these calculations together by exploiting the fact that the restriction
of a quasi-isometry to a vertex space with at least three lines expands by the same
factor in all directions.

Pick reference points z and z0 2 Lv1;e
0
1

such that

dXv1
.z; z0/ D dXv1

.p.R;v1/.x/; p.R;v1/.x
0//:

Since �jXv1
stretches by the same amount in every direction, we have

dYw1
.�.z/; �.z0// � dYw1

.�.p.R;v1/.x//; �.p.R;v1/.x
0///CD1:

Thus, for any ı1 > 0 we can take x and x0 far enough apart so that

dYw1
.�.z/; �.z0// � .1C ı1/ � dYw1

.�.p.R;v1/.x//; �.p.R;v1/.x
0///:

Now we can chain together the height change calculations from the different P-
sets and get cancellation at the intermediate vertices. We find that for any ı2 > 0, if
x and x0 are sufficiently far apart then

2�h.w0;w2/ � .1C ı2/K
2 � 2�h.v0;v2/:

So as before we find that

h.w0; w2/ � h.v0; v2/ � 2 log2.K/:

A similar computation produces the reverse inequality.

Definition 4.2. A tree isomorphism � W T1 ! T2 is allowable if it is locally allowable
and coarsely height preserving on rigid components.

Lemma 4.1 and the preceding material then give the following corollary.

Corollary 4.3. Quasi-isometries of tubular groups induce allowable isomorphisms
on their trees of P-sets.

4.2. Finding allowable isomorphisms. Let ŒR1�, : : : , ŒRm� be the equivalence
classes of P-sets in D�1 under the action by G1.

Let ŒS1�, : : : , ŒSn� be the equivalence classes of P-sets in D�2 under the action
by G2.

Let 
.a/ be the number of vertex types in ŒRa� and let �.b/ be the number of
vertex types in ŒSb�.

A match is a pair .ŒR�; ŒS�/ consisting of an equivalence class of P-set from D�1
and one from D�2.

An extension for .ŒRa�; ŒSb�/ is a 
.a/��.b/matrix, .eij /, with entries described
below. An extension must have at least one non-zero entry in each row and in each
column.
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Recall that we have chosen representatives xa;i 2 fŒRa�; ig with respect to Ra
and yb;j 2 fŒSb�; j g with respect to Sb . Each xa;i belongs to some P-setsRa;i;l (one
of which is Ra) where l D 1 : : : number of lines in xa;i . Consider the set, possibly
with repeated entries, ffŒRa;i;l �; klggl , where xa;i is of type fŒRa;i;l �; klg with respect
to Ra;i;l . This is the set of types that xa;i takes with respect to the P-sets containing
it.

Similarly, consider the set ffŒSb;j;l �; k0
l
ggl , where yb;j is of type fŒSb;j;l �; k0

l
g

with respect to Sb;j;l .
A linear equivalence between the edge patterns inXxa;i

and Yyb;j
gives a bijection

between P-sets adjacent to xa;i and yb;j , which in turn gives a bijection of these sets
of types. We will let eij be any bijection of these sets that can be induced by a linear
equivalence of edge patterns and that includes fŒRa�; ig ! fŒSb�; j g.

Remark. If we knew that for any parallel family of edge lines in a vertex space,
the subgroup of the vertex stabilizer that fixes that family also fixes each of the other
families, then the set of types that that depth zero vertex takes has no duplicate entries.
This would be true, for instance, if the tubular group were torsion free. Specifying
a type picks out a parallel family of lines in the vertex space, and we could put an
equivariant numbering on these families. Then, instead of a bijection of sets of types
as we defined above, we could just associate to a linear equivalence of edge patterns a
permutation describing which families go to which families. This may fail for groups
with torsion, but Proposition 3.18 shows that it is just the ordering of the sets that is
ambiguous. In either case, there are at most two distinct bijections to consider.

If there are no such bijections then eij D 0.
Notice that the number of possible extensions for .ŒRa�; ŒSb�/ is bounded above

by

3	.a/
.b/:

An extension provides instructions for extending a tree isomorphism in a locally
allowable way. Suppose that R 2 T1 and S 2 T2 are P-sets and we have constructed
a map sending R to S . To extend the map, choose any bijection V0R ! V0S such
that vertices of type fŒR�; ig map to vertices of type fŒS�; j g if and only if eij ¤ 0.
The value of eij then tells how to extend to the next level of P-sets. For the purposes
of tree isomorphisms, the particular bijection V0R ! V0S does not matter, but more
care will be required when building quasi-isometries in Section 4.3.

Conversely, given an allowable isomorphism � W N1.R/ ! N1.S/, it is possible
to “read off” an extension for .ŒR�; ŒS�/. Set eij D 0 if � does not take any vertices
of type fŒR�; ig to vertices of type fŒS�; j g. Otherwise, choose some representative
vertex vi;j with vi;j 2 fŒR�; ig and �.vi;j / 2 fŒS�; j g. Set eij equal to the bijection
of vertex types of vi;j to vertex types of �.vi;j / induced by �. Then the matrix .eij /
is an extension for .ŒR�; ŒS�/.
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4.2.1. Strategies. A strategy, � , for .ŒR�; ŒS�/ consists of

(1) a root vertex, ROOT.�/, which is labeled by .ŒR�; ŒS�/,
(2) an extension E D .eij / for .ŒR�; ŒS�/,
(3) a collection of terminal vertices corresponding to the set f.M; E/g of induced

matches with height errors coming from E .

The label of a terminal vertex is the match associated to it. A strategy can be
simplified by considering at most three terminal vertices for each label: one with
maximum height error, one with minimum height error, and one with undefined height
error. Thus, we can assume that the number of terminal vertices of any strategy is at
most 3mn.

A strategy records how the boundary of a neighborhood of a P-setR in T1 maps to
the boundary of a neighborhood of S in T2 when mapped according to an extension
E for .ŒR�; ŒS�/.

If � is a strategy, define

TERM.�/ D fterminal vertices of �g:

A set of strategies will consist of a graph, each of whose vertices is labeled by
a match and two (not necessarily distinct) strategies for the match, one called the
positive strategy and the other called the negative strategy. There will be at most one
vertex labeled by a given match, so at most mn vertices.

For each strategy in the set, add an edge to the graph from the root vertex of the
strategy to each terminal vertex of the strategy. Label the edge by the sign of the
strategy and the height error, if defined, for the appropriate terminal vertex.

4.2.2. Consistency. We need to check that building according to the set of strategies
will not create unbounded height error. It is necessary that each match consists of
two P-sets of bounded height change or two P-sets of unbounded height change, but
we also must control accumulation of height error created by the strategies.

For P-sets of bounded height error, the type of a vertex determines its relative
height. Choosing an extension therefore determines height errors in a neighborhood
of the P-set.

We do not need to worry about height change when it comes to P-sets of unbounded
height change. We will see in Lemma 4.9 that the presence of depth zero vertices at
an unbounded set of heights allows us to correct any height error.

Let M1;M2; : : : be a list of the matches of P-sets of bounded height change that
label vertices of G . For each i , add to the set of inequalities

Li � Ei � Ui :

Let �C
i and ��

i be the positive and negative strategies chosen for Mi .
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Suppose that v 2 TERM.�C
i / has a defined height error, and the label of v is Mj .

Let E be the height error of v in �C
i . Add the following inequalities to the set:

Mi CE � Lj ; Ui CE � Uj :

Suppose that v 2 TERM.��
i / has a defined height error, and the label of v is Mj .

Let E be the height error of v in ��
I . Add the following inequalities to the set:

Mi CE � Uj ; Li CE � Lj :

If the system of inequalities has a solution then height error is well controlled.
The Li and Ui provide bounds.

If such a system of inequalities has a solution, then it has a solution such that all
the Ui are positive, all the Li are negative, and all the Mi are zero. Furthermore,
given any fixed B , there is a solution such that Ui > B and Li < �B for all i .

Note that if a positive strategy for a match Mi adds an edge with negative height
error that leads back to Mi , then the set of strategies can not be consistent. Similarly,
a negative strategy should not create a length one loop with a positive height error.

The next lemma shows that from an allowable isomorphism we can derive a
consistent set of strategies. The idea of the proof is to consider the places where
the isomorphism has the worst height errors and choose strategies according to what
happens in neighborhoods of those bad places.

Lemma 4.4 (Deriving a set of strategies). If there is an allowable isomorphism
between T1 and T2, then a consistent set of strategies exists.

Proof. Suppose that � is an allowable isomorphism T1 ! T2 of trees of P-sets.
For each match .ŒR�; Œ�.R/�/ with ŒR� and Œ�.R/� of unbounded height change,

pick some representativeR and read off a strategy. This strategy suffices for both the
positive and negative strategy of .ŒR�; Œ�.R/�/.

If there is a P-set R of bounded height change such that every depth zero vertex
of R has two lines then read off a strategy for R. This strategy suffices for both the
positive and negative strategy of .ŒR�; Œ�.R/�/.

The only matches left are pairs of P-sets of bounded height change that contain at
least one depth zero vertex with at least 3 lines. Pick such a P-set, R, and depth zero
vertex, v0.

Every rigid component, C , of T1 contains a vertex, vC , closest to v0. If vC ¤ v0
then vC is necessarily a 2-line, depth zero vertex.

For any depth zero vertex,w, in the rigid component C , define h.w/ D h.vC ; w/.
Make the corresponding definitions for heights of depth zero vertices of T2.
Let M1, …, Ma be a list of matches that occur as .ŒR�; Œ�.R/�/, withR and �.R/

of bounded height change and having a depth zero vertex with at least 3 lines. Let

Ui D supfh.R/ � h.�.R// j .ŒR�; Œ�.R/�/ D Mig;
Li D inffh.R/ � h.�.R// j .ŒR�; Œ�.R/�/ D Mig:
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These quantities exist since � is uniformly coarsely height preserving on rigid com-
ponents.

For any match there are only finitely many possible strategies. For each 1 � i � a,
if Ui is achieved, pick anR with Ui D h.R/�h.�.R// and .ŒR�; Œ�.R/�/ D Mi and
read off a strategy ��

i for .ŒR�; Œ�.R/�/. If Ui is not achieved, let ��
i be any strategy

that occurs for R with height error arbitrarily close to Ui . These will be the negative
strategies.

Pick positive strategies �C
i analogously, using the Li .

The set of strategies chosen in this way is consistent, although the height error
bounds may be larger than for �.

Theorem 4.5. There is an algorithm that in finite time either produces a consistent set
of strategies for two trees of P-sets or decides that no such set exists. Furthermore, the
algorithm is guaranteed to succeed if the trees of P-sets came from quasi-isometric
tubular groups.

Proof. A set of strategies is completely determined by the matches in it and the
choices of extensions for those matches. If T1 and T2 are as above, then there are at
most mn matches and each extension has at most maxf
.a/g � maxf�.b/g entries.
Each entry takes one of at most 3 values, so we have at most

32mn�maxf	.a/g�maxf
.b/g

possible candidate sets of strategies.
Enumerate this list of candidates and check if there is a candidate that is actually

a consistent set of strategies.
In light of Corollary 4.3 and Lemma 4.4, success is guaranteed if the trees came

from quasi-isometric groups.

4.3. Building quasi-isometries. In this subsection we show how to build a quasi-
isometry of tubular groups from a consistent set of strategies. In Section 4.3.1 we
prove some auxiliary lemmas about quasi-isometries of trees. In Section 4.3.2 we
build quasi-isometries of P-set spaces. In Section 4.3.3 we assemble quasi-isometries
of P-set spaces to get a quasi-isometry of tubular groups.

4.3.1. Some lemmas on trees. We leave the world of tubular groups for a moment
to prove some lemmas about quasi-isometries of trees that we will need to build
quasi-isometries of P-set spaces.

Let FIN.V / denote the set of all finite subsets of V .

Theorem (Hall’s Selection Theorem). Let ! W V ! FIN.W /. Then there exists
� W V ! W an injection with �.v/ 2 !.v/ if and only if jS j � jSs2S !.s/j for all
S 2 FIN.V /.
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A tree will always mean a simplicial tree with edges of length 1. A line r in a tree
V means an isometric embedding r W R ,! V that takes integers to vertices.

A tree is ı-bushy if every vertex is within distance ı of a vertex whose complement
has at least three unbounded components.

A line r has C -coarse slope m if

j h.r.a/; r.b// �mjb � aj j � C

for all a, b 2 R.
Let Er.a; b/ denote the number of edges incident to the segment of r from r.a/

to r.b/. A line has C -coarse edge density 
 if

jEr.a; b/ � 
jb � aj j � C

for all a, b 2 R.
A lamination of V is a family of lines such that every vertex belongs to exactly

one of the lines.
Whyte proved [14] the quasi-isometry classification of graphs of Z’s by matching

laminations of their Bass–Serre trees. In Lemma 4.6 we will give a generalization of
Whyte’s argument, but first we will give an outline of his proof. The goal is to build
a coarsely height preserving quasi-isometry between two trees, V1 and V2.

Sketch of proof. Step 1. Reduce to the case of homogeneous trees.
Step 2. For any sufficiently small ˇ there is a lamination of Vi by lines of coarse

slope ˇ. Since the Vi are homogeneous, any line in the tree has coarse edge density

i equal to the valence minus two. Choose sufficiently small ˇi so that

ˇ1

ˇ2
D 
1


2
:

Choose laminations of the Vi by lines of slope ˇi .
Step 3. The quasi-isometry will be built line-by-line. Given a line ri from each

lamination, there is an obvious coarsely height preserving quasi-isometry: rescale
the line from V1 by a factor of ˇ1

ˇ2
.

Step 4. Since the ratio of the slopes was equal to the ratio of the edge densities, a
segment of r1 has approximately the same number of incident edges as its image in
r2. This allows us to produce a height respecting matching of lines of the lamination
of V1 adjacent to r1 to lines of the lamination of V2 adjacent to r2.

Step 5. Induct.

We wish to generalize this argument to trees that are not Bass–Serre trees of a
group. Let � be a finite, connected graph with directed edges. The graph � may
have edges with the same initial and terminal vertex, and may have multiple edges
between a pair of vertices. Associate a height change to each edge. Suppose that
there is a loop in � such that the sum of the height changes across edges of the loop
is strictly positive.
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Consider a bounded valence tree with directed edges covering � , V
p�! � , such

that for every vertex v 2 V , the edges coming in to v cover the edges coming in to
p.v/ at least two to one, and similarly for the outgoing edges. If � is not just a single
vertex with a single edge, then this condition can be relaxed slightly. If there is an
edge e and a vertex v in � such that v is the initial and terminal vertex for e, then at a
vertex in p�1.v/ there need be only one incoming and one outgoing edge covering e.

The height change of an edge in V is the height change of its image in � .
To prove there is a coarsely height preserving quasi-isometry between two such

trees we follow Whyte’s outline. We can not reduce to homogeneous trees, so there is
no reason to believe that we can choose a lamination whose lines have a well defined
edge density. However, choosing lines with well defined slopes and edge densities
really amounts to saying that there are uniform proportionality constants such that
for any segment of a line of the lamination, the length of the segment is proportional
to the height change along the segment and to the number of edges incident to the
segment. We do not need this much to make Whyte’s argument work. Really we
need two conditions. We need bounds on the ratio of height change to length of a
segment so that we can build height preserving quasi-isometries along the lines, and
we need the ratio of height change to number of incident edges to be uniform on all
segments of lines of the lamination so that we can match adjacent lines.

Lemma 4.6. Let V
p�! � and W

q�! � 0 be two trees as described above. There is
a coarsely height preserving quasi-isometry between V and W . Furthermore, the
quasi-isometry and coarseness constants can be bounded in terms of information
from � and � 0 and the valence bounds for V and W .

Proof. Assume that W is the .2; 2/-homogeneous tree, that is, the tree that has at
every vertex two edges that increase height by one, and two edges that decrease
height by one. For the general statement of the lemma it suffices to compose two
instances of this special case.

Let M be the maximum height change across an edge of � .
Let ı be the diameter of � .
Let N be the number of vertices of � .
Let L be the maximum valence of a vertex in V .

Step 1. Take a maximal subtree of � with a basepoint and a family of lifts of this
subtree to V such that every vertex of V belongs to exactly one lift in the family. The
covering is locally 2 to 1 on edges of the maximal subtree, so such a family exists.
Collapsing these subtrees is a .ıC 1; ı/-quasi-isometry to a tree, V 0. We can make it
2ıM -coarsely height preserving by declaring the height change between two vertices
of V 0 to be the height change between lifts of the basepoint in the two preimages in
V . The maximum height change across an edge of V 0 is at most M 0 D .2ı C 1/M .
By assumption, there was a loop in � that strictly increased height, so every vertex
of the tree has at least one edge that increases height and one that decreases height.
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Furthermore, there is no vertex that has exactly one edge that decreases height and
all the rest increase height, or vice, versa. A vertex with only one edge that decreases
height or only one edge that increases height must also have edges with zero height
change. If any such vertices exist, then further collapse a collection of disjoint, zero-
height-change edges so that every vertex in the tree has at least two incident edges
that increase height and at least two that decrease height.

Vertices of V 0 have valence between 4 and 2NL.
Step 2. Let 
 D 2NL � 2 � 2. Let 0 < ˛ � 1 be some number such that every

vertex of V 0 has at least two edges that increase height by at least ˛ and two edges
that decrease height by at least ˛. Such an ˛ exists since there were only finitely
many possible height changes across an edge of V 0.

Let ˇ D 2˛
	

� 1. There is a lamination of W by lines of 2-coarse slope ˇ. Such
a lamination can be built inductively. Start at some vertex and choose an incident
edge to start a line. To continue a line choose either an edge that increases height or
decreases height as appropriate to keep the slope of the line as close as possible to
ˇ. An appropriate edge is always available since at every vertex there are two edges
that increase height and two edges that decrease height.

Repeat this process for every vertex adjacent to the lines that have already been
built, etc.

Claim. There exists a constant J > 0 and a lamination of V 0 by lines r such that

jh.r.m/; r.n// � ˛
	
Er.m; n/j � J

for all m; n 2 R.

Step 3. Assuming the claim, we build a quasi-isometry line-by-line using the
laminations of V 0 and W .

For a line r in the lamination of V 0,

2.jb � aj C 1/ � Er.a; b/ � 
.jb � aj C 1/;

so

ˇjb � aj C ˇ � J � h.r.a/; r.b// � ˛jb � aj C ˛ C J:

It is sufficient to define a quasi-isometry on the integer points.
Assume that�.r.0// D r 0.0/. Let these points be the basepoints of their respective

trees, and define height in each tree relative to the basepoint, that is, h.r.a// D
h.r.0/; r.a//.

For z 2 Z pick a z0 2 Z so that

jh.r 0.z0// � h.r.z//j � 1
2

and define �.r.z// D r 0.z0/. Such a z0 exists because r 0 has nonzero slope and height
changes by ˙1 across each edge of W .
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For any z1, z2 2 Z,

h.r.z1// � h.r.z2// � 1 � h.r 0.z0
1// � h.r 0.z0

2// � h.r.z1// � h.r.z2//C 1:

Combining these inequalities with the bounds on height change in terms of seg-
ment length for r and the fact that r 0 has 2-coarse slope ˇ, we find:

ˇjz1 � z2j C ˇ � J � 1 � ˇjz0
1 � z0

2j C 2

and

ˇjz0
1 � z0

2j � 2 � ˛jz1 � z2j C ˛ C J C 1:

Thus, � is a coarsely height preserving quasi-isometry.
Step 4. For x < y 2 R, let V1.r/Œx; y� be the set of vertices adjacent to r with

height between x and y.
We need a K > 0 so that

jV1.r/Œx; y�j � jV1.r 0/Œx �K; y CK�j
for all x and y, and vice versa.

Then Hall’s Selection Theorem gives injections between vertices adjacent to r
and vertices adjacent to r 0 that areK-coarsely height preserving, and the Schroeder–
Bernstein Theorem applied to these injections gives a bijection.

Suppose a < b are such that h.r.a// D x and h.r.b// D y. Then

ˇjb � aj C ˇ � J � jy � xj � ˛jb � aj C ˛ C J:

Let c D M 0CJ
ˇ

. Points on r distance at least c apart differ in height by more than
M 0, so if z < a � c then x � h.r.z// D h.r.a// � h.r.z// > M 0. Since edges of
V 0 change height by at mostM 0, every vertex adjacent to r.z/ has height strictly less
than x, so no vertices adjacent to r.z/ belong to V1.r/Œx; y�.

By similar arguments, no vertices adjacent to r.z/ for z > bCc are in V1.r/Œx; y�,
and all vertices adjacent to r.z/ for z 2 ŒaC c; b � c� are in V1.r/Œx; y�.

Therefore

Er.aC c; b � c/ � jV1.r/Œx; y�j
� Er.a � c; b C c/

< Er.a � c; aC c/CEr.aC c; b � c/CEr.b � c; b C c/:

We can estimate these quantities:

jˇ
2
Er.aC c; b � c/ � .y � x/j � 2˛.c C 1/C 3J;

ˇ
2
Er.a � c; aC c/ � ˛.2c C 1/C 2J;

ˇ
2
Er.b � c; b C c/ � ˛.2c C 1/C 2J:
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This gives us

j 2
ˇ
.y � x/ � jV1.r/Œx; y�j j � 4

ˇ
.˛.3c C 2/C 7

2
J /:

A similar computation for r 0 shows that

j 2
ˇ
.y � x/ � jV1.r 0/Œx; y�j j � 20

ˇ
:

Let A D maxf 4
ˇ
.˛.3c C 2/C 7

2
J /; 20

ˇ
g, and let K D Aˇ

2
. Then

jV1.r 0/Œx; y�j � 2
ˇ
.y � x/C A D 2

ˇ
.y � x C 2K/ � A � jV1.r/Œx �K; y CK�j:

Similarly,
jV1.r/Œx; y�j � jV1.r 0/Œx �K; y CK�j:

Step 5. Induct.

Proof of the Claim. It is sufficient to take J D 2J 0 where J 0 D M 0 C ˛.
Let r.0/ be some vertex. There is an edge incident to r.0/ that increases height

by at least ˛. Follow this edge to r.1/. Then

4 � Er.0; 1/ � 2
; ˛ � h.r.0/; r.1// � M 0:

So
�J 0 < ˛ � 2
 ˇ

2
� h.r.0/; r.1// � ˇ

2
Er.0; 1/ � M 0 � 4ˇ

2
< J 0:

Continue by induction. Suppose that r has been extended to r.n/. If

0 < h.r.0/; r.n// � ˇ
2
Er.0; n/ � J 0;

then follow an edge that decreases height by at least ˛ to get to r.nC 1/. There are
at least two edges incident to r.n/ that decrease height by at least ˛, so it is possible
to extend without backtracking. We have

�J 0 < h.r.0/; r.n// � ˇ
2
Er.0; n/ �M 0 � ˛

� h.r.0/; r.nC 1// � ˇ
2
Er.0; nC 1/

� h.r.0/; r.n// � ˇ
2
Er.0; n/ � ˛ � ˇ < J 0:

Conversely, suppose that

�J 0 � h.r.0/; r.n// � ˇ
2
Er.0; n/ � 0:

Without backtracking, follow an edge that increases height by at least ˛ to get to
r.nC 1/. We have

�J 0 � h.r.0/; r.n// � ˇ
2
Er.0; n/C ˛ � ˛

� h.r.0/; r.nC 1// � ˇ
2
Er.0; nC 1/

� h.r.0/; r.n// � ˇ
2
Er.0; n/CM 0 � ˇ < J 0:
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Repeat this process to build a ray from r.0/ such that

jh.r.0/; r.�n//C ˇ
2
Er.0;�n/j � J 0:

The union of the two rays gives the desired line. Take some vertex adjacent to this
line. This vertex has at least two edges that increase slope, and two edges that increase
slope. Only one of these edges is the one that connects the vertex to the line, so we
can repeat the construction to get another line through this vertex disjoint from the
first line. We can continue to extend in this way to get a lamination of V 0.

It will be important that the quasi-isometries we build are bijections on the vertex
sets of the trees. Since the trees we are working with are non-amenable this can
always be arranged. The n D 1 case of the following lemma is a special case of
Theorem 4.1 of [13].

Lemma 4.7. Let V and W be ı-bushy trees, both with variable valence at most b.
Suppose that  W V ! W is a quasi-isometry. Given finitely many disjoint, ı-
coarsely dense subsets V1; : : : ; Vn � VV and W1; : : : ; Wn � VW , there exists
� W SVi ! S

Wi a bilipschitz bijection that respects the partitions, �.Vi / � Wi for
all i . The map � extends to a quasi-isometry V ! W . Furthermore, � is bounded
distance from  , and the quasi-isometry constants depend only on b, ı, and the
quasi-isometry constants of  .

Proof. The trees V and W are both quasi-isometric to the Cayley graph of the free
group of rank 2, so they are both non-amenable. Suppose that  is a .�; "/-quasi-
isometry.

Since each of the Vi andWi are ı-coarsely dense, can be changed by distance at
most ı so that for each i we have a .�; 2ı.�C "//-quasi-isometry  i D  jVi

W Vi !
Wi . The Vi and Wi are also non-amenable, since they are coarsely dense subsets of
non-amenable sets.

For each  i apply Theorem 4.1 of [13] to get a bilipschitz bijection �i W Vi !
Wi . The Vi are disjoint, so we can assemble the �i to get a bilipschitz bijection
� W SVi ! S

Wi that respects the partitions. Finally, since
S
Vi is coarsely dense

in V , � can be extended to a give a quasi-isometry V ! W .

4.3.2. The pieces. A P-set space is the preimage in the model space of a P-set in
the Bass–Serre tree. In Lemma 4.8 and Lemma 4.9 we construct quasi-isometries of
P-set spaces. In Theorem 4.10 these are pieced together to give a quasi-isometry of
tubular groups.

There are two complications to consider when building quasi-isometries between
P-set spaces. First, depth zero vertex spaces belong to several different P-set spaces.
We must take care to build quasi-isometries of P-set spaces that can later be pieced
together into a quasi-isometry of tubular groups. Second, to make use of Theorem 4.5
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we need to build according to a given extension, which puts type restrictions on which
vertex spaces map to each other.

Let R be a P-set inD� . Let v0 be some depth zero vertex of R. Height for other
points of R can then be defined relative to v0.

Put standard Euclidean coordinates onXv0
in such a way that the edges ofR glue

onto Xv0
along lines of the form t � R.

The second coordinate can be projected over all of XR, giving coordinates on
XR of the form tree � R, with the R factor scaled according 2�height. With these
coordinates, an edge space or a positive depth vertex space is just .t;R/, for some t ,
and the length of .t; Œa; b�/ is 2�h.t/jb � aj.

If v is a depth zero vertex of R, parameterize the direction orthogonal to the lines
of edge attachments so that the edge leading back to v0 is at coordinate 0 and so that
dXv

D 2�h.v/dR�R.
Define a map B W R ! tree by lifting to XR and projecting to zero in the second

coordinate. InB.R/ the depth zero vertices are “blown up” into lines. Edges ofB.R/
contained in a depth zero vertex space will be called horizontal. Conversely, edges
of B.R/ that cross an edge space will be called vertical.

A horizontal component of B.R/ is the blow up of some depth zero vertex. A
vertical component is a connected component of the complement of the interiors of
the horizontal edges.

We will build a quasi-isometry of B.R/ that can be extended to a quasi-isometry
of the P-set spaces. At first glance the situation here is very similar to the situation
described in the previous section, we want a height preserving quasi-isometry of
trees and we (almost) have a lamination of the trees by the collection of horizontal
components. However, there are some important differences, and the techniques of
Lemma 4.6 are not enough in this situation. One difference is that the laminations in
Lemma 4.6 were not canonical. We chose the laminations for convenience, there was
no reason a quasi-isometry had to preserve lines of the lamination, but by making
convenient choices we could build a quasi-isometry that did. In B.R/ we do not get
to choose. The lamination is forced on us because we know the vertex spaces must
be preserved.

A second difference is that in Lemma 4.6 the construction of quasi-isometries on
the lines of the laminations was engineered so that we could get both height change
and relative numbers of incident edges right. We can not hope to be so lucky inB.R/.
For one thing there are adjacent vertices of different types that may have different
edge densities. For another, each horizontal component represents a vertex space
that belongs to a number of different P-sets. If we define the quasi-isometry to meet
the needs of a particular P-set, we will not be able to glue up all of the different
quasi-isometries at the end. Because of these problems we will not be able to match
adjacent lines in the laminations as we did in Lemma 4.6. However, it was not really
necessary for a quasi-isometry to match adjacent lines of a lamination to adjacent
lines of the other; it is good enough to take nearby lines to nearby lines. This is the
major difference between Lemma 4.8 and Lemma 4.6, we get around the additional
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complications present in B.R/ essentially by showing that we can find a matching
between suitable nearby horizontal components.

A third difference, which is a technical detail, is that in Lemma 4.6, long enough
segments in the lines of the lamination always had strictly positive height change. This
was convenient because, when matching lines adjacent to a line r to lines adjacent to
a line r 0, we did not have to worry about relative distances between lines adjacent to
r compared to the distances between their images adjacent to r 0. Getting the heights
right ensured that the distances would be right too. InB.R/ the lines of the lamination
are called “horizontal components” exactly because there is no height change along
them. This means we have to work a little harder to make sure the relevant distances
work out correctly.

The next lemma gives a quasi-isometry of a P-set space for a P-set of bounded
height change. The various parameters just say that this is a quasi-isometry, built
according to an extension E , starting from a previously defined map on one of the
depth zero vertex spaces.

Lemma 4.8. Let G1 D �1.�1/ and G2 D �1.�2/ be two tubular groups. Let
R � D�1 and S � D�2 be P-sets of bounded height change. Let x0 2 R and
y0 2 S be depth zero vertices. Let E D .eij / be an extension for .ŒR�; ŒS�/. Let
˛ and ˇ be arbitrary positive real numbers. Then there is a quasi-isometry ˆ D
ˆ0

E;.R;x0;˛/;.S;y0;ˇ/
W XR ! YS with the following properties:

(1) ˆ.Xx0
/ D Yy0

, and this map is, up to isometry, just a homothety with expansion
by ˇ

˛
.

(2) ˆ induces a bijection, ˆ# W V0R ! V0S .

(3) For every depth zero vertex v ¤ x0, up to isometry, ˆjXv
is a homothety with

expansion by ˇ
˛
2h.v/�h.ˆ#.v//.

(4) Excluding x0 and y0, there exist vertices of type fŒR�; ig mapping to vertices of
type fŒS�; j g if and only if eij is non-zero.

(5) ˆ is a bilipschitz bijection .V0XR; dXR
jV0XR

/ ! .V0YS ; dYS
jV0YS

/.

Proof. Pick some J such that J
2

is a bound for the absolute value of the height change
between any two vertices of R or any two vertices of S .

For any x 2 R, let h.x/ D h.x0; x/, and similarly for y 2 S with respect to y0.
Let x be a depth zero vertex of R. Let e be an edge of R incident to x. Since

StabG1
.e/ has infinite index in StabG1

.x/, the orbit of e by StabG1
.x/ \ StabG1

.R/

contains infinitely many other edges incident to x. The edge spaces for these edges
glue on toXx along parallel lines, and the distance between such lines can be bounded
in terms of Œx�, ŒR�, and Œe�.

Pick someL such that for eachP 2 fR; Sg, and every v 2 V0P , any open interval
of length L in B.v/ has at least two incident vertical edges from each StabG.v/ \
StabG.P / equivalence class of edge incident to v, and at least three total incident
vertical edges.
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Choose coordinates for XR as discussed above. Choose coordinates for YS in a
similar fashion, with the following provision. If we already have a map Xx0

! Yy0
,

choose the coordinates of Yy0
so that the origin of Yy0

is the image of the origin of
Xx0

and so that map preserves the orientation of the second coordinate.
For every v 2 V0P , do the following: Define the basepoint v of B.v/ to be the

point of B.v/ with coordinate zero. Slide any edge incident to the open interval� � 1
2
L � 2h.v/; 1

2
L � 2h.v/�

in B.v/ to 0. Note that for each v this interval is of length L.
change distances between points in different horizontal components, but preserve

distance within a fixed horizontal component.
For the vertices of the vertical components that are points of intersection with

horizontal components, the type of the vertex is just the type of the vertex inD� cor-
responding to that horizontal component. After sliding, the new vertical components
are composed of unions of the original vertical components. In particular, the new
vertical components containing x0

and y0
are infinite, bounded valence trees; call

them V and W , respectively.
The image of V in �1 is the same as the image of R in �1. Therefore, the set of

vertices of V of any particular vertex type are coarsely dense in V . The diameter of
the image of R in �1 provides a coarseness constant.

Similar statements are true for W as well. Let ı be the greater of the diameters
of R in �1 and S in �2.

Every vertex of V and W is distance at most ı from a vertex of valence at least
three, and there are no valence one vertices, so V and W are ı-bushy. Also, the
valences of V and W are bounded above.

For convenience we will assume that the extension E gives a bijection from vertex
types of R to vertex types of S . To arrange this, note that the set of vertices of V of
a particular type can be subdivided into a finite number of subsets, each of which is
also dense in V , and similarly for W .

Apply Lemma 4.7 to get a quasi-isometry � W V ! W which is a bilipschitz
bijection on vertices and respects the partitions into vertex type. The bilipschitz
constant, Mx , depends only on the valence bounds, bushiness constants, density
constants, and number of vertex types.

This process will be called extension along a vertical component. Note that every
depth zero vertex in V or W is the basepoint of its horizontal component.

Suppose that extension along a vertical component identifies x to y .
Let

Nx D maxfL � 2h.x/; ˛
ˇ
L � 2h.y/g:

For n D 1; 2; : : : , consider the half-open intervals�
1
2
L � 2h.x/ C .n � 1/Nx; 12L � 2h.x/ C nNx

� � B.x/;� � 1
2
L � 2h.x/ � nNx;�1

2
L � 2h.x/ � .n � 1/Nx

� � B.x/;
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�
1
2
L � 2h.y/ C ˇ

˛
.n � 1/Nx; 12L � 2h.y/ C ˇ

˛
nNx

� � B.y/;� � 1
2
L � 2h.y/ � ˇ

˛
nNx;�1

2
L � 2h.y/ � ˇ

˛
.n � 1/Nx

� � B.y/:

Each of these intervals has length at least L, so there are at least three vertical
edges incident to each interval. On the other hand, the lengths of the intervals are
bounded above by N D L � 2J maxf ˛

ˇ
; ˇ
˛

g.
In B.x/, slide all incident vertical edges to the closed endpoint of the interval

to which they attach. In B.y/, slide incident vertical edges in the n-th right open
interval to the point ˇ

˛
.1
2
L � 2h.x/ C .n � 1/Nx/. Perform similar operations for the

left open intervals of B.y/.
Extend � by �jB.x/ W B.x/ ! B.y/ W r 7! ˙ˇ

˛
r . The choice of orientation here

is determined by the element eij associated to x; y. The edge sliding matches up the
points to which vertical edges attach, and each of these will be the basepoint of a new
vertical component to extend along.

Alternate extending along collections of vertical and horizontal components to
build �.

We make the following observations about this construction:

(1) Every vertical edge has at most one endpoint that slides.
(2) No edge slides more than once.
(3) Sliding an edge only changes distances between points separated by the edge.
(4) No edge slides more than distance N .

Therefore, distances in B.V0R/ and B.V0S/ change by at most a multiplicative
factor of 1CN . Extension along horizontal components changes distance by at most
a multiplicative factor of ˇ

˛
2J . Vertical components have valence bounded byN and

information fromX and Y , so there is a uniform boundM on the bilipschitz constants
Mx . Thus, ˇ

˛
.1CN/2M2J gives a bilipschitz constant for � W B.V0R/ ! B.V0S/.

Define ˆ W B.R/ � R ! B.S/ � R by .t; u/ 7! .�.t/; ˇ
˛
u/.

Geodesics inXR and YS can be approximated within bounded multiplicative error
by paths in which only one coordinate changes at a time, soˆ is bilipschitz on V0XR.

The union of vertex spaces is dense in a P-set space, so ˆ gives a quasi-isometry
of P-set spaces.

We have a similar result for P-sets of unbounded height change.

Lemma 4.9. Let G1 D �1.�1/ and G2 D �1.�2/ be two tubular groups. Let
R � D�1 and S � D�2 be P-sets of unbounded height change. Let x0 2 R

and y0 2 S be depth zero vertices. Let E D .eij / be an extension for .ŒR�; ŒS�/.
Let ˛ and ˇ be arbitrary positive real numbers. Then there is a quasi-isometry
ˆ D ˆ1

E;.R;x0;˛/;.S;y0;ˇ;/
W XR ! YS with the following properties:

(1) ˆ.Xx0
/ D Yy0

, and this map is, up to isometry, just a homothety with expansion
by ˇ

˛
.
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(2) ˆ induces a bijection, ˆ# W V0R ! V0S .

(3) Up to isometry, and for v ¤ x0, ˆjXv
is a homothety with uniformly bounded

expansion factor.

(4) Excluding x0 and y0, there exist vertices of type fŒR�; ig mapping to vertices of
type fŒS�; j g if and only if eij is non-zero.

(5) ˆ is a bilipschitz bijection .V0XR; dXR
jV0XR

/ ! .V0YS ; dYS
jV0YS

/.

Proof. The proof differs from the proof of Lemma 4.8 only in the how we extend
along vertical components.

For i D 1; 2, consider the projection of the appropriate P-set to the graph �i . Let
	i be the largest height change that occurs across a single edge in the projection.
The edge sliding is set up so that we can apply Lemma 4.6 to find a coarsely height
preserving quasi-isometry between the resulting vertical components. Furthermore,
the height error can be bounded in terms of the projections to the �i . LetK be such a
bound;K plays the role in this case that the constant J played in the bounded height
change case.

Perform the edge sliding as in the previous lemma. Suppose that V and W are
vertical components based at v0 2 B.x/ and w0 2 B.y/, respectively. Notice that
the valence of V at v0 may depend on ˇ

˛
, since v0 may not be equal to x . However,

every other vertex in V \ B.V0R/ and W \ B.V0S/ is the basepoint of its vertical
component, so the valence of the trees at these points is bounded independently of
ˇ
˛

. It is possible to “disperse” the extra edges at v0 by a height and type preserving
bilipschitz bijection V \B.V0R/ to a new tree V 0. In the same way replace W by a
new tree W 0.

There is some vertex w in W at bounded distance from w0
such that

ˇ̌
h.v0

; w0
/C log2

ˇ
˛

ˇ̌ � 	2:

Let � be a .K C 	2/-coarsely height preserving quasi-isometry between V 0 and W 0
that maps v0 to w . As in the previous lemma, �, can then be changed a bounded
amount to give a bijection �0 of depth zero vertices that respects the partitions by
type. Moreover, the amount � needs to be changed is independent of ˇ

˛
, so the height

error is still independent of ˇ
˛

.
The map V ! V 0 ! W 0 ! W is then a bilipschitz bijection:

V \ B.V0R/ ! W \ B.V0S/:
Finally, we adjust this map to ensure v0 maps to w0. The result is the map we will
use to extend along vertical components. Note that while the bilipschitz constants
depend on ˇ

˛
, the height error at points other than v0 is bounded independently

of ˇ
˛

.
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Remark. Note the important difference in these two lemmas. In both cases we start
by identifying x0 to y0. The parameters ˛ and ˇ provide an initial height error; think
of E D log2.

ˇ
˛
/ as the height error at x0.

In the bounded case, the height error of the other vertices is in ŒE � J;E C J �.
In the unbounded case, E influences the quasi-isometry constants, but the height

error of the other vertices is independent of E.

4.3.3. Putting the pieces together. The following theorem shows that a consistent
set of strategies can be used to build a quasi-isometry between tubular groups. Lem-
mas 4.8 and 4.9 provide the basic building blocks, and the quasi-isometry constants
are controlled by controlling height error. Two-line, depth zero vertices and P-sets
of unbounded height change are flexible enough that height error will not be an is-
sue. In these cases we can choose the quasi-isometry to immediately “correct” any
accumulated height error back to some uniformly bounded amount. The danger of
compounding height error comes from P-sets of bounded height change connected
by depth zero vertices with at least three lines. These height errors are controlled by
the set of strategies.

Theorem 4.10. For i D 1; 2, let Gi D �1.�i / be a tubular group and Ti its tree of
P-sets. If there is a consistent set of strategies for T1 and T2, then G1 and G2 are
quasi-isometric.

Proof. Let G be a consistent set of strategies for T1 and T2. We build a quasi-isometry
ˆ W X ! Y and an allowable tree isomorphism � W T1 ! T2.

Let Mi be the matches of P-sets of bounded height change occurring in G , and
let fUig and fLig be height error bounds from the consistency check.

Choose a uniform K 0 such that, for any P-sets R 2 T1 and S 2 T2 of unbounded
height change, there is a quasi-isometryˆ1 W XR ! YS as in Lemma 4.9 with height
error bounded by K 0.

InD�1 andD�2 there are finitely many equivalence classes of P-sets of bounded
height change, so there is some maximum height change,K 00, that can occur between
depth zero vertices in such a P-set. This implies that for any P-set R 2 T1 of
bounded height change, any depth zero vertices v, v0 2 R and any isomorphism
� W T1 ! T2 we have jErr�.v/ � Err�.v0/j � 2K 00 and jErr�.v0/ � Err�.R/j � K 00,
where Err�.v/ D h.v/ � h.�.v//.

Let K D maxfK 0; K 00g. Assume the Ui are greater than 2K and the Li are less
than �2K.

We build a quasi-isometry inductively P-set space by P-set space.
There are a number of cases to consider, but for all cases the outline of the

construction is the same. In the cases that follow, we will refer to this process as
“extending the maps”.

At each step we are given P-sets R;R0 2 T1, and a depth zero vertex v 2 R\R0.
We assume that we have a partial tree isomorphism � W T1 ! T2 that is defined at
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least on R, R0 and v, and a quasi-isometry ˆR W XR ! Y�.R/. We want to extend �
to a neighborhood of R0 and define a quasi-isometry ˆR0 W XR0 ! Y�.R0/.

Define a quasi-isometryˆR0 W XR0 ! Y�.R0/ by consulting G for an “appropriate”
strategy, � , for the match .ŒR0�; Œ�.R0/�/. If R0 is of unbounded height change there
is only one strategy to choose. If R0 is of bounded height change then we choose
the positive strategy if Err�.R0/ < 0 and the negative strategy if Err�.R0/ � 0.
Associated to � is an extension E . Define ˆR0 D ˆ0

E;.R0;v;˛/;.�.R0/;�.v/;ˇ/
from

Lemma 4.8 if R0 is of bounded height change or ˆR0 D ˆ1
E;.R0;v;˛/;.�.R0/;�.v/;ˇ/

from Lemma 4.9 if R0 is of unbounded height change. The constants ˛ and ˇ are to
be determined in the induction steps.

Extend � from R0 according to E , using the bijection of depth zero vertices
furnished by .ˆR0/#.

In each case below we check that if we started with a P-set R0 such that
.ŒR0�; Œ�.R0/�/ D Mi , then all depth zero vertices of R0 have height error in the
interval ŒLi �K;Ui CK� if R0 is of bounded height change or Œ�K;K� if R0 is of
unbounded height change.

Base case. Pick any P-set vertices R 2 T1 and S 2 T2 such that .ŒR�; ŒS�/ is the
match of a vertex of G . Set �.R/ D S .

Pick any depth zero vertex v 2 R. Declare v to be the basepoint, so v has height
zero and all other heights are determined relative to v.

Consult G for an appropriate strategy � for .ŒR�; ŒS�/ with extension E . If v is of
type fŒR�; ig with respect to R, find some j such that the i; j entry of E is nonzero
and choose a depth zero vertex w 2 S of type fŒS�; j g. Define �.v/ D w.

Declare w to be height zero, and define heights in S relative to w.
Now we have a P-set R, a preferred vertex v 2 R and a partial tree isomorphism

defined at least for v and R, with Err�.v/ D 0. Extend the maps with ˛ D ˇ D 1.
If R is of unbounded height change then by construction the height errors for all

the depth zero vertices ofR will be in the interval Œ�K;K�. IfR is of bounded height
change then for any depth zero vertex v0 2 R,

jErr�.v/ � Err�.v
0/j � 2K H) Err�.v

0/ 2 Œ�2K; 2K�;
and

jErr�.v/ � Err�.R/j � K H) Err�.R/ 2 Œ�K;K�:
Now there are a number of situations to consider, depending on whether R and

R0 are of bounded or unbounded height change, and whether v has two lines or more
than two lines.

v has 2 lines. Define height in R0 relative to v and define height in �.R0/ relative
to �.v/. Extend the maps with ˛ D ˇ D 1. The height errors of depth zero
vertices ofR0 are in Œ�2K; 2K�. Furthermore, ifR0 is of bounded height change then
Err�.R0/ 2 Œ�K;K�.

In the remaining cases, v has more than two lines, so R and R0 are in the same
rigid component. Height inR0 is already defined. The same goes for �.R/ and �.R0/.
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R0 of unbounded height change. Extend the maps with ˛ D 2�h.v/ and ˇ D
2�h.�.v//. By construction, the height errors of depth zero vertices of R0 (other than
v) are in Œ�K;K�.

R of unbounded height change, R0 of bounded height change. Since R was of
unbounded height change, we can assume that the height error of v is in Œ�K;K�.
Extend the maps with ˛ D 2�h.v/ and ˇ D 2�h.�.v//. The height error of R0 is in
Œ�2K; 2K�. The height errors of depth zero vertices of R0 are in Œ�3K; 3K�.

In every case thus far we have produced a universal bound for the height errors of
depth zero vertices. The final case is the one to worry about; this is the case where
height error can compound.

R and R0 of bounded height change. Suppose that .ŒR�; Œ�.R/�/ D Mi , and
suppose that .ŒR0�; Œ�.R0/�/ D Mj . Assume the height error of R was in ŒLi ; Ui �.
Extend the maps with ˛ D 2�h.v/ and ˇ D 2�h.�.v//.

A priori, if v0 is a depth zero vertex of R0 we know j Err�.v0/ � Err�.R0/j � K

and j Err�.R/ � Err�.R0/j � 2K, so the height errors could be worse than in the
previous step. If the errors continue to get worse in each step then we lose control.

However, because we have built according to the set of strategies, we are guaran-
teed that the height error of R0 is in ŒLj ; Uj �, so Err�.v0/ 2 ŒLj �K;Uj CK�.

This completes the induction steps.
The various maps ˆR were constructed so that they agree when they overlap on

any depth zero vertex spaces of at least three lines. They may not agree on two-line
vertex spaces, but this can be fixed, since two-line patterns are not rigid.

Suppose that v is a two-line vertex joining P-sets R and R0. Suppose that ˆRjXv

is expansion by a factor C , and ˆR0 jXv
is expansion by a factor C 0. Change these

maps so that they both expand by a factor of C along the lines where the R0 edges
glue on, and expand by a factor ofC 0 along the lines where theR edges glue on. This
does not change the maps that we had on B.v/ � B.R/ and B.v/ � B.R0/.

The mapˆ is built from various piecesˆR. TheˆR are bilipschitz bijections on
V0XR, and agree on vertex spaces where their domains intersect. We have arranged
that the bilipschitz constants of ˆR depend on ŒR� and Œ�.R/� and on height error.
Tubular groups come from finite graphs of groups, so there are only finitely many
equivalence classes of P-set. Thus, invariants of equivalence classes of P-sets can be
uniformly bounded. Height error is bounded by K C maxifUi ; jLi jg.

The map ˆ is thus a bilipschitz bijection V0X ! V0Y . The set V0X is dense in
X , and V0Y is dense in Y , so ˆ W X ! Y is a quasi-isometry.

Main Theorem. For i D 1; 2, let Gi D �1.�i / be tubular groups. There is an
algorithm that in finite time determineswhether or notG1 andG2 are quasi-isometric.

Proof. Run the algorithm from Theorem 4.5. This algorithm halts in finite time. If
the groups are quasi-isometric then Corollary 4.3 and Lemma 4.4 guarantee that the
algorithm succeeds and produces a consistent set of strategies. Conversely, Theo-
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rem 4.10 builds a quasi-isometry from a consistent set of strategies, so the algorithm
succeeds only if the groups are quasi-isometric.

5. Consequences and examples

Example 5.1. Consider two tubular groups all of whose depth zero vertices have two
lines. The only obstruction to building a quasi-isometry in this case is that P-sets
of bounded height change must be matched to P-sets of bounded height change, and
similarly for P-sets of unbounded height change.

In particular, we recover the following result of Behrstock and Neumann [1]:

Corollary 5.2. Any two right angled Artin groups whose defining graphs are trees
of diameter at least three are quasi-isometric.

This follows since such groups have graph of groups decompositions as tubular
groups where all depth zero vertices have two lines and all P-sets are of bounded
height change.

Suppose that G is a tubular group with at least three lines in every vertex and
having bounded height change in every P-set. Then there is a notion of height change
for every edge in the tree of P-sets.

If � is a geodesic ray in TG , � has coarse slope m, slope.�/ D m, if there exists
a C > 0 such that

tm � C � h.�.0/; �.t// � tmC C

for all t .

Proposition 5.3. There is some mG D max��TG
slope.�/, and the set of slopes of

geodesic rays of TG is dense in the interval Œ�mG ; mG �.
Proof. Let � be a geodesic ray in TG . Consider the image of � in the graph that is
the quotient of TG by the group action. This graph is finite, so the image of � can
be written as some initial segment of bounded length followed by loops in the graph.
The initial segment contributes a bounded amount to height, so it can be discarded.

There are only finitely many simple closed curves in a finite graph, so pick one,
˛, of maximal slope. It is not hard to see that any loop can be reduced to a simple
closed curve without reducing slope. Therefore, slope.�/ � slope.˛/. Then mG D
slope.˛/.

Loops that are homotopically trivial have zero height change, so we can get a
geodesic ray in TG of slope arbitrarily close to anym 2 Œ�mG ; mG � by concatenating
lifts of ˙˛ with lifts of trivial loops.

Corollary 5.4. There is a maximum coarse slope in each rigid component of TG that
contains no P-set of unbounded height change.
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Suppose thatG1 andG2 are tubular groups with at least three lines in every vertex
and having bounded height change in every P-set. Also, suppose thatG1 andG2 have
the same sets of equivalence classes of edge patterns, and that each of these patterns
has a unique (up to isometry) symmetric representative. This occurs, for instance, if
every vertex has three or four lines.

Suppose that mG1
> mG2

and � is a geodesic ray of slope mG1
in TG1

. Under a
coarsely height preserving tree isomorphism, the image of � will still be a geodesic
ray of slope mG1

, contradicting maximality of mG2
. This means that mG is a quasi-

isometry invariant of G.
When vertices ofG have edge patterns without a unique symmetric representative,

the value of mG depends on the choice of representatives.
The max slope is not a complete invariant, even among groups from the family

described in Section 3.2.5. In Example 5.5 we classify this family completely, and
see that groups with the same max slope need not be quasi-isometric.

Note. In diagrams of trees of P-sets, P-sets are represented by large open circles
labeled by a representative of the equivalence class of P-set. One adjacent vertex is
added for each P-set-stabilizer equivalence class of depth zero vertex contained in the
P-set, and these are labeled by vertex types with respect to the more heavily shaded
P-set in the center of the diagram.

Example 5.5. Suppose that G1 and G2 are groups as in Figure 2. Each Gi has only
one equivalence class of P-set, ŒCi �, and each P-set has three vertex types.

fŒCi �; 2g
fŒCi �; 3g

fŒCi �; 1gCi

Ci

Ci

Ci

Ci

Ci

Ci�i

�i � 	i

	i

0

�	i

��i C 	i

��i

Figure 4. Vertex types and relative heights for ŒCi �.

First assume that �i � 	i � 0.
Figure 4 summarizes the setup. Notice that the height change from a vertex of

type fŒCi �; 3g to a vertex of type fŒCi �; 2g is 	i , and the height change from a vertex
of type fŒCi �; 3g to a vertex of type fŒCi �; 1g is �i .

The maximum slope in Ti is �i , so assume that � D �1 D �2.
If � D 0 then there are no height changes to worry about, so the groups are

quasi-isometric, so assume � > 0.
First we attempt to build an extension E D .ejk/ that gives a positive strategy.
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To build a consistent set of strategies we will need a positive strategy that gives
all non-negative height errors. The largest negative height change that occurs is ��
in both trees, so we must identify these. To accomplish this, e33 must be non-zero.
Furthermore, if we choose this entry to identify the P-sets at height ��, we are forced
to identify P-sets at height �	1 with P-sets of height �	2. Thus, we need 	1 � 	2.

We get the reverse inequality by considering a negative strategy. We need a
negative strategy that gives all non-positive height errors. The largest positive height
change that occurs is � in both trees, so we must identify these. This forces an
identification of P-sets at height � � 	1 with P-sets of height � � 	2, so we need
	1 � 	2.

Thus, if 	1 ¤ 	2, the two groups can not be quasi-isometric.
When �1 D �2 and 	1 D 	2 the obvious strategy produces zero height error, so

the groups are quasi-isometric.
We started by assuming that � and 	 were non-negative. It is not hard to see

that groups from this family having pairs of height changes .�; 	/, .��	;�	/ and
.��;	 � �/ are all quasi-isometric. There is only one distinct such pair with both
entries non-negative. Therefore, the (unordered) pair of non-negative height changes
gives a complete quasi-isometry invariant for this family. Notice that the max slope
is the larger of the two height changes, so we have many examples of groups with the
same max slope that are not quasi-isometric.

Finally, we give an example of quasi-isometric groups where there are actually
bounded height errors (not always 0 as in Example 5.5) and we really need two distinct
strategies for some match.

Example 5.6. Let G1 D �1.�1/ be a one torus group as in Example 5.5 with height
changes � > 	 > 0 across the two edges.

LetG2 D �1.�2/ be a tubular group whose underlying graph is shown in Figure 5.
In this diagram the labels are height changes and an arc joining edges incident to a
common vertex indicates that the corresponding edge strips glue to the vertex space
along parallel lines.

	 � � 	

�

�

Figure 5. A graph for a two torus group.

The Bass–Serre tree, D�2, has two equivalence classes of P-sets. One class, ŒA�,
consists of P-sets that project in �2 to the union of the three edges connected by arcs.
The other, ŒB�, consists of P-sets that project to the remaining edge in �2.
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Figure 6 and Figure 7 define the vertex types for vertices inA andB , respectively.

fŒA�; 1g

fŒA�; 2g fŒA�; 3g
fŒA�; 4g

A

A

A

A

A

B

B

B

B�

� � 	
	

0

�	
��C 	

��

Figure 6. Vertex types and relative heights for ŒA�.

fŒB�; 1g

fŒB�; 2g

B

A

A

A

A�

� � 	
	

0

�	
��C 	

��

Figure 7. Vertex types and relative heights for ŒB�.

For .ŒC �; ŒA�/, consider the extension EA D .eij / defined as follows:

e11 D
8<
:

fŒC �; 1g 7! fŒA�; 1g
fŒC �; 2g 7! fŒA�; 2g
fŒC �; 3g 7! fŒB�; 2g

9=
; ; e22 D

8<
:

fŒC �; 1g 7! fŒA�; 1g
fŒC �; 2g 7! fŒA�; 2g
fŒC �; 3g 7! fŒB�; 2g

9=
; ;

e23 D
8<
:

fŒC �; 1g 7! fŒB�; 2g
fŒC �; 2g 7! fŒA�; 3g
fŒC �; 3g 7! fŒA�; 4g

9=
; ; e34 D

8<
:

fŒC �; 1g 7! fŒB�; 1g
fŒC �; 2g 7! fŒA�; 3g
fŒC �; 3g 7! fŒA�; 4g

9=
; ;

eij D 0 for all other ij:

This extension says that given P-sets C andA, we should split the vertices of type
fŒC �; 2g with respect to C and map half of them to the vertices of type fŒA�; 2g with
respect to A and the other half to vertices of type fŒA�; 3g with respect to A.

Figure 8 shows the result of extending by EA.
All the matches induced by this extension have height error 0, so the strategy �A

for EA can be used as a positive and a negative strategy.
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Figure 8. Extension by EA.

For .ŒC �; ŒB�/ we define extensions EC
B and E�

B , extension by which are depicted
in Figure 9 and Figure 10, respectively.

C

C

C

C

C

C

C

B

A

A

A A

A

A�
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0

�	
��C 	

��

Figure 9. Extension by EC

B
.

The extension EC
B induces matches .ŒC �; ŒA�/ with height errors 0, 	, and 2	, so

it gives rise to a positive strategy.
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Figure 10. Extension by E�
B

.

The extension E�
B induces matches .ŒC �; ŒA�/ with height errors 0, �2.� � 	/,

� � 	, so it gives rise to a negative strategy.
These strategies give the set of strategies in Figure 11.
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.ŒC �; ŒA�/ .ŒC �; ŒB�/˙ 0

C
2	

˙
0

�
�2.� � 	/

Figure 11. The set of strategies.

This set of strategies gives rise to a system of inequalities:

L1 � M1 � U1;

L2 � M2 � U2;

U1 C 0 � U2;

M1 C 0 � L2;

M1 C 0 � U2;

L1 C 0 � L2;

M2 C 2	 � U1;

L2 C 2	 � L1;

U2 � 0 � U1;

M2 � 0 � L1;

U2 � 2.� � 	/ � U1;

M2 � 2.� � 	/ � L1:

This system has solutions, for instance:

U1 D U2 D 2�;

M1 D M2 D 0;

L1 D L2 D �2�:
Therefore, groups of this form are quasi-isometric.
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