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Isolated points in the space of left orderings of a group

Adam Clay

Abstract. Let G be a left orderable group and LO.G/ the space of all left orderings. We
investigate the circumstances under which a left ordering < of G can correspond to an isolated
point in LO.G/, in particular we extend the main result of [9] to the case of uncountable groups.
With minor technical restrictions on the group G, we find that no dense left ordering is isolated
in LO.G/, and that the closure of the set of all dense left orderings of G yields a dense Gı

set within a Cantor set of left orderings in LO.G/. Lastly, we show that certain conditions on
a discrete left ordering of G can guarantee that it is not isolated in LO.G/, and we illustrate
these ideas using the Dehornoy ordering of the braid groups.
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1. The space of left orderings of a group

A group G is said to be left-orderable if there exists a strict total ordering < of its
elements such that g < h H) fg < f h for all f; g; h 2 G. Given a left-orderable
group G with ordering <, we can identify the left ordering < of G with its positive
cone P D fg 2 Gjg > 1g, the set of all positive elements. The positive cone P of a
left ordering of a group G satisfies the following two properties:

(1) If g; h 2 P then gh 2 P .
(2) For all g 2 G, exactly one of g 2 P; g�1 2 P , or g D 1 holds.

Conversely, given a semigroup P � G satisfying the above two properties, we can
order the elements of G by specifying that g < h if and only if g�1h 2 P .

A left ordering < of G is said to be a Conradian ordering if whenever g; h > 1,
then there exists n 2 N such that g < hgn. Lastly, a left ordering of a group G is
said to be a bi-ordering if the ordering is also invariant under multiplication from the
right, namely g < h H) gf < hf for all f; g; h 2 G. It should be noted that the
positive cone P � G of a bi-ordering also satisfies the additional property:

(3) For all g 2 G, we have gPg�1 D P .
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Analogous to the case of left orderings, a semigroup P � G satisfying properties
(1)–(3) defines a bi-ordering of G.

We can then consider the set LO.G/ � 2G of all positive cones in G, a space
first defined in [12]. As there is a one-to-one correspondence between left orderings
of G and positive cones in G, it is natural to describe LO.G/ as the space of all left
orderings of G. The space LO.G/ is endowed with the subspace topology arising
from the product topology on 2G , with a subbasis for the topology on LO.G/ being
formed by the open sets Ug D fP 2 LO.G/ j g 2 P g. Note that LO.G/ comes
equipped with a natural G-action: given an element g 2 G, the positive cone P is sent
by g to its conjugate gPg�1. Therefore, given a left ordering < of G with positive
cone P , we can create new left orderings of G by conjugating the corresponding
positive cone P by different elements of G.

One can check that LO.G/ is a closed subset in 2G , and from Tychonoff’s Theorem
we know that 2G is compact, so that LO.G/ itself must be a compact space. With
this setup, it is also easy to see that LO.G/ is a totally disconnected Hausdorff space,
and in [12] it is shown that whenever G is countable, the topology on LO.G/ in fact
arises from a very natural metric. Thus we arrive at:

Theorem 1.1 (Sikora, [12]). Let G be a countable group. Then the space LO.G/ is
a compact, totally disconnected Hausdorff metric space. If LO.G/ also contains no
isolated points, then LO.G/ is homeomorphic to the Cantor set.

Given a group G, we would therefore like to address the existence of isolated
points in the space LO.G/, as a first step towards understanding the structure of
LO.G/.

Recall that a subgroup C of a left-ordered group G is called convex (with respect
to the ordering <) if whenever f; h 2 C and g 2 G, the implication f < g < h H)
g 2 C holds. For example, it is easy to check that the subgroup C in Proposition 3.1
is convex in the ordering constructed on G.

Following [9], we define the Conradian soul C<.G/ in a left ordered group G

with ordering < to be the largest convex subgroup C � G such that the restriction of
< to C is a Conradian ordering. Similarly, we use the notation B<.G/ to denote the
largest convex subgroup C � G such that the restriction of < to C is a bi-ordering.
Note that we always have B<.G/ � C<.G/, since all bi-orderings are also Conradian
orderings.

Using this notation, the main result of [9], which we will extend here to the case
of uncountable groups, can be stated as follows.

Theorem 1.2. Let G be a group, and let P 2 LO.G/ be an isolated point with
associated ordering < of G. Then B<.G/ is abelian of rank one, and C<.G/ is
non-trivial and admits only finitely many left orderings.

Note that Theorem 1.2 is proven for the case of countable groups in [9], although
the dynamical approach used therein is entirely different from our approach, and does
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not generalize to the case of uncountable groups.
Finally, recall that a left ordering of a group G is dense if whenever g < h, then

there exists f 2 G such that g < f < h. If a left ordering < of G is not dense, then
it is discrete, meaning that in the ordering < of G there is a least positive element
� > 1. We explore the structure of LO.G/ by considering the cases of dense and
discrete left orderings separately, and we will find:

Theorem 1.3. Let Z � LO.G/ denote the set of all dense left orderings of a countable
group G, and suppose that all rank one abelian subgroups of G are isomorphic to Z.
Then if Z is non-empty, its closure xZ is homeomorphic to the Cantor set, and the set
Z is a Gı set that is dense in xZ.

In the case of abelian groups, our result will be slightly stronger than Theorem 1.3.
Specifically, in the case that G is countable and abelian, we will show that xZ D
LO.G/.

Acknowledgments. The author would like to thank Dale Rolfsen, Andrés Navas and
Cristóbal Rivas for many useful discussions and comments regarding earlier drafts
of this paper.

2. The case of Conradian orderings

We first review known results concerning Conradian orderings, and consider also the
case of bi-orderings. Note that the results of this section concerning C<.G/ appear
in [9], and rely on the following difficult lemma ([9] Lemma 4.4), the bulk of which
appeared first in [8], and partially in [7].

Lemma 2.1. Suppose that P is the positive cone of a Conradian ordering of the
group G, and that there is exactly one proper, nontrivial convex subgroup C � G.
Further suppose that both C and G=C are rank one abelian groups. If P is isolated
in LO.G/, then G is not bi-orderable.

The next two theorems require the following work of Tararin ([7], Theorem 5.2.1).
Recall that a group G admits a finite rational series if

1 D G0 C G1 C � � � C Gn D G

is a finite normal series with all quotients GiC1=Gi rank one abelian.

Theorem 2.2. Let G be a left-ordered group.

(1) If LO.G/ is finite, then G has a finite rational series.

(2) Suppose that G has a finite rational series. Then LO.G/ is finite if and only
if Gi C G for all i , and none of the quotients GiC2=Gi are bi-orderable.
Furthermore, in this case the rational series is unique, and for every left ordering
of G, the convex subgroups are precisely G0; G1; : : : ; Gn.
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Theorem2.3 ([9] Proposition 4.1). Suppose thatP is the positive cone of aConradian
ordering of G. Then P is not an isolated point in the space LO.G/, unless LO.G/ is
finite.

Theorem 2.4. Suppose that P is the positive cone of a bi-ordering of G. Then P is
not isolated in LO.G/ unless G is rank one abelian.

Proof. In the case that G is bi-ordered by the ordering < associated to P , we have
C<.G/ D G. From Theorem 2.3, it follows that G itself must have only finitely
many left orderings if the bi-ordering < is to have a positive cone that is isolated in
LO.G/. However, by the work of Tararin, we see that no group G admitting only
finitely many left orders is bi-orderable, except in the case that G is rank one abelian.

3. Isolated points

When trying to determine which points in LO.G/ are isolated, the conjugation action
on LO.G/ is a useful tool in approximating a given positive cone. Aside from conju-
gation of a given ordering, there is a second natural way to make new left orderings
of G, as follows.

Proposition 3.1. Suppose that C is a left-orderable subgroup of G with ordering �.
Suppose also that the left cosets of C can be ordered in a way compatible with
group multiplication from the left, namely aC �0 bC H) caC �0 cbC for all
a; b; c 2 G. Then a left ordering < can be defined on G by specifying a positive cone
as follows: An element g 2 G satisfies 1 < g if g 2 C and 1 � g, or if g … C and
C �0 gC .

The proof is a simple check. This proposition allows us to change any left ordering
of a group G on a specified convex subgroup C : If C � G is convex in the left ordering
<, then convexity allows us to unambiguously define a left-invariant ordering � of
the cosets fgC jg 2 Gg. We may then choose a left ordering of C different from
<, and extend it to a left ordering of G by using the ordering � of the cosets, and
applying Proposition 3.1.

Next we observe some simple lemmas.

Lemma 3.2. Suppose P � G and that C is a convex subgroup of G. Then if
PC D P \C is not an isolated point in LO.C /, P is not an isolated point in LO.G/.

Proof. Suppose that

P 2
mT

iD1

Ugi
;
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and suppose also that we have numbered the elements gi so that gi 2 C for i � k

(possibly k D 0 in the case that no gi lies in C ). Now in LO.C /, we have that

PC 2
kT

iD1

Ugi
;

and since PC is not an isolated point, we can choose P 0
C 2 Tk

iD1 Ugi
, with P 0

C ¤ PC .
We can now construct a positive cone P 0 ¤ P on G as follows: Given g 2 G,

g 2 P 0 if g 2 C and g 2 P 0
C , or if g … C and g 2 P .

The positive cone P 0 is different from P , since P and P 0 disagree on C , and by
construction, P 0 2 Tm

iD1 Ugi
. It follows that P is not isolated.

Lemma 3.3. Suppose P � G and that C is a normal, convex subgroup of G. Let
P 0 denote the positive cone of the ordering inherited by the quotient G=C . If P 0 is
not an isolated point in LO.G=C /, then P is not an isolated point in LO.G/.

The proof is routine.

Lemma 3.4. Let G be a left ordered group with ordering <, whose positive cone we
denote as P . Then the subgroup

stab.P / D fg 2 G j gPg�1 D P g
is bi-ordered by the restriction of < to H D stab.P /.

Proof. To see that the restriction of < is a bi-ordering, consider its positive cone
PH D P \ H . If g 2 PH and h 2 H , then

� hgh�1 2 H since H is a subgroup, and
� hgh�1 2 P since, by definition, every element of H fixes the positive cone P

under conjugation.

Therefore H is bi-ordered.

The main difficulty in characterizing the Conradian soul of an isolated point in
LO.G/ is in showing that the Conradian soul is necessarily non-trivial. If P is an
isolated point in LO.G/ with associated ordering < of G, then P is certainly not an
accumulation point of its conjugates in LO.G/. It turns out that knowing P is not
an accumulation point of its conjugates gPg�1 2 LO.G/ is enough to deduce that
B<.G/ (and hence C<.G/) is non-trivial.

Observe that for any group G, if 1 < h < g in the ordering corresponding to P ,
then left multiplication yields 1 < h�1g, and then using the fact that h is positive, we
conclude that 1 < h�1gh. Translating this observation into a topological language,
we have observed that if P 2 Ug , then hP h�1 2 Ug for any h with 1 < h < g.
Supposing that

fP g D
mT

iD1

Ugi
;
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is an isolated point, applying the above trick to the set of elements fg1; : : : ; gng allows
us to conclude that for any h with 1 < h < gi for all i 2 f1; : : : ; ng, we must have

hP h�1 2
mT

iD1

Ugi
:

However, since P is isolated, this means that hP h�1 D P , so that (in a sense soon to
be made more precise) “small elements in G are bi-ordered”, as they fix the positive
cone P under conjugation.

Lemma 3.5. Suppose that

P 2
mT

iD1

Ugi
;

where fg1; : : : ; gmg is somefinite set of elements ofG, yet no conjugates ofP (different
from P itself ) are in this open set. Then there exists gi 2 fg1; : : : ; gmg such that the
set

Ci D fg 2 G j g�k
i � g � gk

i for some kg
contains only elements of G that fix the positive cone P under conjugation, that is,
g 2 Ci H) gPg�1 D P .

Proof. First, we show that there exists gi such that all elements in the set

C C
i D fg 2 G j 1 < g � gk

i for some kg
fix P under conjugation.

To this end, suppose not. Then for each gi there exists hi with 1 < hi � g
ki

i for
some ki , and hiP h�1

i ¤ P . Choose h D minfh1; : : : ; hmg. Then for each i , we
have

h � g
ki

i H) 1 � h�1g
ki

i H) 1 < h�1g
ki

i h;

and therefore g
ki

i 2 hP h�1. Now since the element g
ki

i is positive in the order
determined by the positive cone hP h�1, its ki -th root gi is also positive. This shows
that

hP h�1 2
mT

iD1

Ugi
;

and so hP h�1 ¤ P by our choice of h, a contradiction. Therefore our claim holds
for the set C C

i .
To prove that all elements g 2 Ci fix the positive cone P , suppose that g 2 G

satisfies g�k
i � g < 1 for some k. Then 1 � gk

i g < gk
i , so that either g D g�k

i or
gk

i g 2 C C
i .

(1) In the case g D g�k
i we have g�1 2 C C

i and so fixes P , and so g fixes P

under conjugation.
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(2) If gk
i g 2 C C

i we have

gk
i gPg�1g�k

i D P;

so that we multiply by powers of gi from both sides and find that

gPg�1 D g�k
i Pgk

i D P:

Note that case (1) has been used to yield the final equality.
Therefore we have found gi such that all elements in Ci fix P as claimed.

Lemma 3.6. For any group G, if

P 2
mT

iD1

Ugi

and no conjugates of P distinct from P lie in this open set, then there exists gi such
that the set

Ci D fg 2 G j g�k
i � g � gk

i for some kg
is a convex, bi-ordered subgroup of G.

Proof. Convexity of Ci is clear from the definition. By Lemma 3.5, Ci is a subset
of the bi-ordered group stab.P /, so it follows that Ci is bi-ordered by the restriction
ordering as well. Being bi-ordered, we can then conclude that Ci is a subgroup of
G: If 1 < g � gk

i for some k, then g�k
i � g�1 < 1, and similarly the implication

a < b and c < d H) ac < bd (this implication does not hold for left orders) shows
closure under multiplication.

Corollary 3.7. Suppose that the left ordering < of G has positive cone P which is
not an accumulation point of its conjugates in LO.G/. Then both B<.G/ and C<.G/

are non-trivial.

In particular, we have proven that if < corresponds to an isolated point in LO.G/,
then both B<.G/ and C<.G/ are non-trivial.

We are now ready to complete the proof of Theorem 1.2.

Proof of Theorem 1.2. Let P be the positive cone of a left ordering < of a group G,
and suppose that P is an isolated point in LO.G/. We know that B<.G/ and C<.G/

are non-trivial by Corollary 3.7, it remains to show that B<.G/ is rank one abelian,
and that C<.G/ admits only finitely many left orderings.

Since we have assumed that P is isolated in LO.G/, it follows from Lemma 3.2 that
the restriction of P to B<.G/ must define a bi-ordering that is isolated in LO.B<.G//.
However, by Theorem 2.4, this is only possible in the case when B<.G/ is rank
one abelian. Similarly, It follows that the restriction of P to C<.G/ must define a
Conradian ordering that is isolated in LO.C<.G//, which by Theorem 2.3 is only
possible in the case that LO.C<.G// is finite.
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4. Dense and discrete orderings

In recent work ([2], [10]), it has proven fruitful to consider discrete and dense group
orderings separately, as they reflect different structures of the underlying group. In
considering the structure of LO.G/, dense orderings of a given group G (with minor
restrictions on the group G) are in some sense “generic” in LO.G/, in that dense
orderings of G constitute a dense Gı set inside of a Cantor set within LO.G/. Recall
that a set U in a topological space X is a Gı set if U can be written as a countable
intersection of open sets fUig1

iD1.

Lemma 4.1. Let Z � LO.G/ denote the set of dense left orderings of G. If G is
countable, then Z is a Gı set.

Proof. Observe that if � > 1 is the least positive element in a left ordering < of G

with positive cone P , then for all g 2 G (with g ¤ 1 different from �) either g < ��1

or � < g. In other words, either P 2 Ug�1��1 or P 2 U��1g for all 1 ¤ g 2 G

different from �. That is to say, let V� denote the set of all discrete left orderings of
G with least element �. Then we have observed that

V� D T
g2Gnf1;�g

.Ug�1��1 [ U��1g/ \ U�:

Note that V� is closed, as it is an intersection of closed sets, and consists of those
positive cones that define an ordering of G with � as least positive element. Therefore,
the set of dense orderings is given by

Z D T
1¤�2G

.LO.G/ n V�/;

a countable intersection of open sets.

The remaining difficulty is to show that any dense ordering is an accumulation
point of other dense orderings. We first consider the case of abelian groups.

4.1. Abelian groups. From [1], we have the following fact:

Proposition 4.2. If A is a torsion-free abelian group with rank.A/ > 1, then the
space LO.A/ has no isolated points.

For a given torsion-free abelian group A, we can deduce much more about the
structure of LO.A/ by examining the set of all dense orderings of A.

Proposition 4.3. Let P be any positive cone in LO.A/, where A is a torsion-free
abelian group with rank.A/ > 1. Then P is an accumulation point of positive cones
whose associated orderings are dense orderings.
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We begin by proving a special case.

Lemma 4.4. Let P be any ordering in LO.Zk/, where k > 1. Then P is an
accumulation point of dense orderings.

Proof. We follow the ideas of Sikora in [12], making modifications where necessary.
For contradiction, let k > 1 be the smallest k for which the claim fails. Suppose

that

P 2
nT

iD1

Ugi
;

with no dense orderings in this open set. Note that we may assume that none of the
gi ’s are integer multiples of one another. Extend the ordering < defined by P to
an ordering of Qk by declaring v1 < v2 for v1; v2 2 Qk if nv1 < nv2 whenever
nv1; nv2 2 Zk . Let H � Qk ˝ R D Rk be the subset of elements x 2 Rk such that
every Euclidean neighbourhood of x contains both positive and negative elements.
Then H is a hyperplane, and H divides Rk into two components H� and HC having
the property that HC contains only positive elements, and H� contains only negative
elements. Therefore the elements gi lie either in HC or H itself.

Suppose that two or more of the elements fg1; : : : ; gng lie inside H . In this case,
H \ Zk D Zm for some m > 1 with m < k, and in this case the positive cone
P \ Zm � Zm cannot be an accumulation point of dense orderings in LO.Zm/, for
then we could change the positive cone P using Lemma 3.2. This contradicts the
minimality of k.

The remaining possibilities are that exactly one (or none) of the elements
fg1; : : : ; gng lie inside H . In this case, by slight perturbations of the hyperplane H ,
we can produce a new hyperplane H 0 containing none of the lattice points Zk � Rk ,
and with all points gi lying on one side of the hyperplane H 0.

Specifically, suppose that

n D .x1; x2; : : : ; xk/

is the normal vector defining H . Choose real numbers y1; y2; : : : ; yk that are linearly
independent over Q, this is possible for every k > 0 because R is an abelian group
of infinite rank. For each i D 1; : : : ; k, we may choose a rational number qi such
that qiyi is as near to xi as we please, the real numbers fqiyigk

iD1 are again linearly
independent over Q and the vector

n0 D .q1y1; q2y2; : : : ; qkyk/

can be chosen to be arbitrarily close to n. The hyperplane H 0 with normal vector n0
satisfies H 0 \ Zk D f0g.

If none of the elements fg1; : : : ; gng lie inside H , then we may choose n0 to
be sufficiently close to n so that fg1; : : : ; gng lie on one side of H 0. If one of the
elements fg1; : : : ; gng lies inside H , say gj , then we must take more care in choosing
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our normal vector n0. In this case, we choose n0 to be close to n, and inside of the
open set

fx 2 Rk j the angle between x and gj is less than �
2

g:
In either case, this new hyperplane H 0 defines a new ordering P 0 on Zk by declaring
P 0 D H 0C \ Zk , where H 0C is the component of Rk n H 0 containing all gi .

To see that this ordering is dense, suppose that � 2 P 0 is the smallest element in
P 0. Recall that the normal vector to H 0 is n0, and therefore the distance between a
vector v and the hyperplane H 0 is given by jprojn0.v/j, the length of the projection
of v onto n0.

Since � is the smallest positive element in our ordering, the vector � must satisfy
� < v for all v 2 P 0, which happens if and only if v � � 2 H 0C for all v in P 0. Hence,
for all v 2 P 0 we have jprojn0.v/j > jprojn0.�/j, and so

0 < jprojn0.�/j D inf
v2P

fjprojn0.v/jg:

For a hyperplane which contains no integer lattice points, this is not possible ([11],
Theorem 1.1).

Proof of Proposition 4.3. To prove the statement for an arbitrary torsion-free abelian
group A with rank.A/ > 1, we let g1; : : : ; gm 2 A be any finite family of elements
in a given positive P . We will show that there exist infinitely many positive cones
with associated dense orderings on A in which all gi are positive.

Let N be the subgroup of A generated by the elements g1; : : : ; gm. Then N Š Zk

for k � 1. Assume that k > 1, for if it is the case that N Š Z, add an additional
generator gmC1 none of whose powers lie in N –we may do this since rank.A/ > 1.

By Lemma 4.4, N admits infinitely many dense orderings in which all of g1; : : : ;

gm are positive, each constructed by perturbations of the hyperplane associated to
the restriction order PN D N \ P . Fix a positive cone P 0

N with a dense associated
ordering of N , with P 0

N ¤ PN . We may extend P 0
N to a distinct ordering Q on the

isolator of N

I.N / D fg 2 A j gl 2 N for some lg
by declaring g 2 Q iff gl 2 P 0

N for some l .
Observe that the ordering of I.N / with positive cone Q is dense, for suppose not,

say Q had least element �. Then � 2 P 0 is not possible since P 0 is a dense ordering,
so let l > 1 be the least positive integer such that �l 2 P 0. By density of P 0, we
may then choose g 2 P 0 � Q with 1 < g < �l . Since the only positive elements
less than �l are �; �2; : : : ; �l�1, we have that g D �i for i < l . This contradicts our
choice of l .

Now I.N / is normal, and the quotient A=I.N / is torsion-free abelian, so we
may order the quotient. Using any ordering on the quotient, we can extend the dense
ordering of I.N / with positive cone Q to give a dense ordering of A with the required
properties.
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Therefore, when A is an abelian group with rank.A/ > 1, we know that the
closure of the set of dense orderings in LO.A/ is the entire space LO.A/. Thus,
Proposition 4.3 and Lemma 4.1 together give us the following theorem.

Theorem 4.5. Suppose that A is a countable abelian group. Then LO.A/ is a Cantor
set, and the set Z of all dense left orderings of A is a dense Gı set within LO.A/.

Note that the case of discrete orderings must necessarily be different from this,
for there exist abelian groups admitting no discrete orderings: divisible torsion free
abelian groups are such an example.

Question 4.6. Let A be a torsion-free abelian group with rank.A/ > 1. What is the
closure of the set of the discrete orderings in LO.A/?

4.2. Non-abelian groups. Our results concerning dense orderings generalize to the
case of non-abelian groups.

Proposition 4.7. Let G be any group in which all rank one abelian subgroups are
isomorphic to Z. If P 2 LO.G/ corresponds to a dense left ordering < of G, then P

is an accumulation point of positive cones whose associated left orderings are dense
orderings.

Proof. Let U D Tm
iD1 Ugi

be an open set in LO.G/ containing P , the positive cone
of a dense left ordering < of G.

If U contains any conjugates of P (different from P itself), then we are done, so
suppose that no conjugate orderings lie in U . Then by proposition 3.6, G contains a
convex, bi-ordered subgroup C of the form

C D Ci D fg 2 G W g�k
i � g � gk

i for some kg;
where gi 2 fg1; : : : ; gmg. Denote by C 0 the intersection of all non-trivial convex
subgroups of C . There are now two cases to consider.

(1) C 0 ¤ f1g. In this case, since C 0 is bi-ordered and contains no convex
subgroups, we can use a theorem of Conrad which tells us that the order must be
Archimedean, and so C 0 must be abelian. From our assumption on G, if rank.C 0/ D
1, we have C 0 Š Z, meaning that our ordering is discrete. Therefore rank.C 0/ > 1.

Now the restriction ordering on C 0 with positive cone P \ C 0 is a dense ordering,
and we know from Theorem 4.3 that every dense ordering in LO.C 0/ is an accumu-
lation point of other dense orderings. Therefore we may change the positive cone P

as in the proof of Lemma 3.2, creating a new positive cone P 0 containing all gi , and
corresponding to a dense ordering of G.

(2) C 0 D f1g. In this case, C must have infinitely many convex subgroups whose
intersection is trivial. Therefore, we may choose a convex subgroup K that is non-
trivial and contains no gi . Define the positive cone of the “flipped ordering” of K to
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be .P �1 \ K/ D P �1
K . Then we define a new positive cone P 0 � G, with P 0 2 U ,

by setting P 0 D P �1
K [ .P \ G n K/. Again, the new ordering <0 of K with positive

cone P 0 is dense, and so the ordering we have defined on G is dense.

In the case of an abelian group A, the closure of the set of dense orderings was
the entire space LO.A/, which is known to be homeomorphic to the Cantor set when
A is countable. In the non-abelian case, Theorem 1.3 gives us a similar result.

Proof of Theorem 1.3. Let G be any countable group with all rank one abelian sub-
groups isomorphic to Z. Then since G is countable, LO.G/ is metrizable, as is
the space xZ � LO.G/. Proposition 4.7 shows that the set xZ contains no isolated
points, and since it is closed, it is compact. Therefore xZ is a compact, metrizable,
totally disconnected perfect space, and so is homeomorphic to the Cantor set [6]. By
Lemma 4.1, the set Z is also a dense Gı set within xZ.

With the restriction that all rank one abelian subgroups of G be isomorphic to Z,
it also follows readily that any isolated point in LO.G/ must correspond to a discrete
left ordering of G. This can be seen by appealing to either Theorem 1.3 (which is
stronger than what we need), or by appealing to Theorem 1.2, and observing that the
smallest convex subgroup in the Conradian soul of an isolated left ordering must be
a rank one abelian group.

We turn our attention next to discrete orderings, and observe conditions under
which a discrete ordering of G is not an isolated point in LO.G/. We no longer need
the restriction that all rank one abelian subgroups be isomorphic to Z.

Lemma 4.8. Suppose that P � G is the positive cone of a discrete left ordering <

with least element �. Then if g�g�1 > 1 for all g 2 G and

P 2
mT

iD1

Ugi

contains no conjugates of P , there exists gi which is not a power of � such that

Ci D fg 2 G j g�k
i � g � gk

i for some kg
is a convex, bi-ordered subgroup which properly contains the convex subgroup h�i.

Proof. Suppose that U D Tm
iD1 Ugi

contains P , but no conjugates of P . If no gi is
equal to a power of �, then we are done, as we may apply Proposition 3.6.

On the other hand, suppose that some gi is a power of �, say g1 D �l . Then the
condition g�g�1 > 1 for all g 2 G guarantees that the open set U� contains every
conjugate of P . Therefore, if

� mT
iD2

Ugi

�
\ U�l
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contains no conjugates of P , neither does the open set
Tm

iD2 Ugi
. Continuing to

eliminate powers of � in this way, we can eventually find an open set
Tm

iDr Ugi

containing no conjugates of P , and with no gi equal to a power of �. From here we
may apply Proposition 3.6.

Theorem 4.9. Let G be a group, and P the positive cone of a discrete left ordering
< with least positive element �. If g�g�1 2 P for all g 2 G, then P is not isolated
in LO.G/.

Proof. We proceed very similarly to the proof of Theorem 1.3. Let U D Tm
iD1 Ugi

be an open set in LO.G/ containing P . If U contains any conjugates of P , then we
are done, so by Lemma 4.8, we may suppose that there exists convex subgroup C

properly containing h�i, which is bi-ordered by the restriction of P .
Note that the convex subgroup C is not rank one abelian: Suppose that rank.C / D

1. As the containment h�i � C is proper, we can choose c 2 C with C ¤ 1, that is
not a power of �. If we then assume that C is rank one abelian, we arrive at �k D cl

for some integers k; l , contradicting the fact that � is the least positive element.
Thus, by Theorem 2.4, we know that the restriction of P to the subgroup C is not

isolated in LO.C /, and it follows from Lemma 3.2 that P is not isolated in LO.G/.

5. The braid groups

As a sample application of these results, we turn our focus to the braid groups. It is
known that the space of left orders LO.Bn/ is not homeomorphic to the Cantor set
for n � 2. We begin by defining the Dehornoy left ordering of the braid groups (also
known as the ‘standard’ ordering), whose positive cone we shall denote PD [4], [3].
Recall that for each integer n � 2, the Artin braid group Bn is the group generated
by �1; �2; : : : ; �n�1, subject to the relations

�i�j D �j �i if ji � j j > 1; �i�j �i D �j �i�j if ji � j j D 1:

Definition 5.1. Let w be a word in the generators �i ; : : : ; �n�1. Then w is said to be
i -positive if the generator �i occurs in W with only positive exponents, i -negative if
�i occurs with only negative exponents, and i -neutral if �i does not occur in w.

It is shown in [3] that for every integer i with 1 � i < n, every braid ˇ 2 Bn

is either i -positive, i -negative, or i -neutral. We may then define the positive cone of
the Dehornoy ordering:

Definition 5.2. The positive cone PD � Bn of the Dehornoy ordering is the set

PD D fˇ 2 Bn j ˇ is i -positive for some i � n � 1g:
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There is also a second positive cone of interest, discovered by the authors of [5],
which we shall denote by PDD. Denote by Pi � Bn the set of all i -positive braids.
Note that the set of all i -negative braids is simply P �1

i .

Definition 5.3. The positive cone PDD � Bn is the set

PDD D P1 [ P �1
2 [ � � � [ P

.�1/n

n�1 :

That either of these notions defines a positive cone in Bn is difficult to show, as
it is not clear that the notion of a braid being i -positive is well defined. This was the
main idea introduced to braid theorists in Dehornoy’s seminal paper [3].

The positive cone PDD was originally defined in light of the following property:

Proposition 5.4 (Dubrovina, Dubrovin [5]). The positive cone PDD is generated as
a semigroup by the braids

y1 D �1 : : : �n�1; y2 D .�2 : : : �n�1/�1;

y3 D �3 : : : �n�1; : : : ; yn�1 D �
.�1/n

n�1 :

Note that for two positive cones P and Q, if P � Q then necessarily P D Q.
Therefore

Corollary 5.5. The order PDD is an isolated point in LO.Bn/, in particular,

fPDDg D
n�1T
iD1

Uyi
:

Knowing that LO.Bn/ has isolated points for n � 2, it makes sense to ask the
question: Is the standard ordering PD an isolated point in LO.Bn/? This question is
answered in [4], using a very explicit calculation. That PD is not isolated, however,
was originally proven in [9], though the techniques are different from those used here,
which illustrate our machinery.

First, we begin with a proposition which establishes a very important property of
the ordering PD. Recall the Garside monoid BC

n � Bn is the monoid generated by
the elements �1; : : : ; �n�1.

Proposition 5.6. Let ˇ 2 Bn and 1 ¤ ˛ 2 BC
n be given. Then ˇ˛ˇ�1 2 PD.

This property of the Dehornoy ordering is referred to as the subword property, or
property S.

Next we must know that the Dehornoy ordering is discrete [2].

Proposition 5.7. The Dehornoy ordering of Bn is discrete, with smallest positive
element �n�1.
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These two propositions together show us that PD satisfies the hypotheses of The-
orem 4.9. If we can additionally show that PD has no bi-orderable convex subgroups
properly containing h�n�1i, then we can conclude that PD is an accumulation point
of its orbit under the Bn-action on LO.Bn/.

Recall the natural inclusions Bm � Bn whenever m � n which takes �i 2 Bm

to �i 2 Bn. A useful operation is the shift homomorphism sh W Bm ! Bn, m < n

defined by sh.�i / D �iC1. This is clearly injective and order-preserving. The shift
may be iterated, and we note that shr.Bn�r/ is just the subgroup h�rC1; : : : ; �n�1i of
Bn, or in other words, the subgroup of all elements which are i -neutral for all i � r .

Lemma 5.8. The subgroups shr.Bn�r/, r > 0, are the only convex subgroups under
the ordering PD.

Proof. Set Hr D shr.Bn�r/, and let C be a convex subgroup in the Dehornoy
ordering. Choose i to be the smallest integer such that C contains an i -positive braid.
Then clearly C � Hi�1. Our aim is to show the opposite inclusion, which establishes
the claim.

Let ˇ 2 C be an i -positive braid. The braid ��1
j ˇ is i -positive for j > i , so that

1 < �j < ˇ H) �j 2 C , and so Hi � C . Considering the generator �i , we write
ˇ D w1�iw2, where w1 is an empty or i -neutral word, and w2 is an empty, i -neutral,
or i -positive word. We will show �i 2 C .

First, we note that the braid represented by the word �iw2 lies in C , as w1 contains
only �iC1; : : : ; �n�1, all of which are in C . If w2 is empty, the claim is proven, if
w2 is i -neutral, then we may right multiply by appropriate �j for j > i to arrive at
�i 2 C , and again the claim is proven. Lastly, if w2 is i -positive, then we get

1 < w2 H) 1 < �i < �iw2 2 C;

and the claim follows from convexity of C .

Since all convex subgroups are isomorphic to a shifted copy of the braid groups,
we conclude that

Corollary 5.9. No subgroup that is convex under the ordering PD is bi-orderable,
except for the subgroup h�n�1i.

Theorem 5.10. For every n > 2, the positive cone PD in Bn is an accumulation point
of its conjugates in LO.Bn/.

Proof. Apply Corollary 5.9 and Lemma 4.8.
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