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Abstract. We construct hyperbolic groups with the following properties: The boundary of
the group has big dimension, it is separated by a Cantor set, and the group does not split.
This shows that Bowditch’s theorem that characterizes splittings of hyperbolic groups over
2-ended groups in terms of the boundary cannot be extended to splittings over more complicated
subgroups.
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1. Introduction

Let G be a finitely generated group and let H be a subgroup of G. We say that
H is a codimension 1 subgroup if for some finite index subgroup H 0 of H CG=H 0
has more than 1 end, where CG is the Cayley graph of G. If G splits over H then
one easily sees that H is codimension 1. The converse is not true; for example, any
closed geodesic on a surface group gives a cyclic codimension 1 subgroup of the
fundamental group of the surface. On the other hand only simple closed geodesics
correspond to splittings.

The surface example can be generalized to CAT.0/ complexes to produce exam-
ples of codimension 1 subgroups: If X is a finite CAT.0/ complex of (say) dimen-
sion 2 and if R is a locally geodesic track on X , then the subgroup of G D �1.X/

corresponding to R is a codimension 1 free subgroup of G. Wise ([11]) exploited
this idea producing codimension 1 subgroups for small cancellation groups. In the
setting of small cancellation groups of course one needs some combinatorial analog
for the convexity property of geodesics (or tracks), and Wise develops such a notion.
Pride ([9]) has shown that there are small cancellation groups that have property (FA)
(see [10], p. 58) , so such groups have codimension 1 subgroups but do not split.

Stallings showed that if a compact set separates the Cayley graph of a finitely
generated group G into at least two unbounded components, then G splits over a

�We acknowledge support from the French-Greek grant Plato.



534 T. Delzant and P. Papasoglu

finite group. Bowditch ([1]) showed something similar for hyperbolic groups: If
the boundary @G of a 1-ended hyperbolic group G has a local cut point, then the
group splits over a 2-ended group, unless it is a triangle group. There have been
other generalizations of Stallings theorem similar in spirit. The general idea is that if
a ‘small’ set (coarsely) separates the Cayley graph of a group, then the group splits
over a subgroup quasi-isometric to the ‘small set’. For a precise conjecture see [7].

The main purpose of this paper is to show some limitations of this ‘philoso-
phy’. Given any n > 0, we produce an example of a hyperbolic group G such that
dim.@G/ > n, @G is separated by a set of dimension 0 (a Cantor set) and G has
property (FA) (so it does not split over any subgroup). Our example is based on
Wise’s construction which we generalize to the setting of small cancellation theory
over free products.

We would like to thank the referee for many suggestions and corrections that
improved the exposition.

2. Preliminaries

Definition 1. A diagram is a finite connected planar graph. The faces of a diagram
D are the closures of the bounded components of R2 � D.

In what follows we assume always that each interior vertex (i.e., not on @D) of
a diagram has degree at least 3. We can always achieve this by ignoring all interior
vertices of degree 2.

We will need some small cancellation results about diagrams shown by McCam-
mond and Wise in [5]. For the reader’s convenience and also because our setting
is slightly different we include these results here. These results strengthen classical
small cancellation results (see e.g. [4]).

We need some notation: If D is a diagram we denote by @D the boundary of the
unbounded component of R2 � D (so if U is the unbounded component of R2 � D,
@D D NU � U ). We say that the diagram is non-singular if @D is homeomorphic to
S1. We say that an edge of D is interior if it does not lie in @D.

If D is a diagram we denote by E, F , V respectively the total number of edges,
faces and vertices of the diagram.

We denote by E�, Eı respectively the number of edges of the diagram that lie
(do not lie) in @D. We denote by V C the number of vertices in @D that lie in exactly
one face and by V � the number of vertices in @D that lie in more than one face. We
denote by V ı the number of vertices of D that do not lie on @D.

If f is a face of D then we can represent its boundary by a cycle .e1; : : : ; en/,
where the ei ’s are oriented edges. We say that a diagram satisfies the C.6/ condition
if the boundary cycle of each face of the diagram has at least 6 edges. We have the
following version of Greedlinger’s lemma (see [4]):
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Lemma 2.1. Let D be a non-singular diagram that satisfies the condition C.6/. Then
V C � V � C 6.

Proof. We have the following inequalities. First,

6F � 2Eı C E�: (1)

This is because each face has at least 6 edges and each interior edge appears twice as
an edge of a face while each boundary edge appears once. Second,

2E � 3V ı C 3V � C 2V C: (2)

This is because each edge yields 2 vertices and each interior vertex has degree at
least 3.

Finally, using Euler’s formula, inequality (1) and the equality E D Eı C E� we
obtain

V D E � F C 1 � E � Eı

3
� E�

6
C 1 D 2E

3
C E�

6
C 1: (3)

We note that
E� D V � C V C:

Substituting E� in (3) and using inequality (2) for E we obtain

V � 2

3

�
3

2
V ı C 3

2
V � C V C

�
C V � C V C

6
C 1:

Since
V D V � C V C C V ı

we obtain
V C � V � C 6:

We recall some definitions from [5]:

Definition 2. Let D be a non-singular diagram. A face F of the diagram is called
an i -shell if the intersection of F with the boundary of D is connected and exactly i

edges of F are interior edges of D.

Definition 3. We say that a diagram D is a ladder if there are at most two faces
F1; F2 of D such that D � F1; D � F2 are connected while for every other face F

of D, D � F has exactly 2 components, and for every vertex v D � v has at most 2

components.

We have the following corollary from Lemma 2.1.

Corollary 2.2. Let D be a non-singular disc diagram which is C.6/ and which
contains no 3-shells and at most two i -shells with i � 2. Then either D has a single
face or it contains exactly two i -shells with i � 2 and it is a ladder.
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Figure 1. A ladder.

Proof. We modify D as follows: if a face F of D has more than 6 edges and it
intersects the boundary we ignore successively vertices of F that do not lie on any
other face till F has 6 edges (or there are no more vertices to erase). Let us call D1

the new diagram. D1 is still a C.6/ diagram. D1 contains also no 3-shells and at
most two i -shells for i � 2. We consider now a face F of D1 that intersects the
boundary and we see how it contributes to V C, V �. If F is not an i -shell then 2

vertices of F contribute to V C, while at least 4 vertices of F contribute to V �. So the
total contribution of all such faces to the difference V C � V � is at most 0 (note that
the contribution is not necessarily negative since we count twice the V � vertices as
they lie in at least 2 faces). The contribution of an i -shell to the difference V C � V �
is 4 � i .

Since D contains no 3-shells and at most 2 i -shells for i � 2, the inequality

V C � V � � 6

implies that if D1 has more than one face, then D1 has exactly two 1-shells, say
F1, F2. If we erase F1 we obtain a diagram D2 which is again C.6/. We note that
F1 intersects exactly one face of D1, so after erasing it the diagram D2 has still the
other 1-shell of D1 and at most one new i -shell for some i � 3. By the inequality
V C � V � C 6 again we conclude as before that either D2 has only one face or it has
exactly two 1-shells F2, F3. Inductively we see that D1 is a ladder hence D is also
a ladder.

We will need a more technical result. If v is a vertex in a diagram we denote
by dv the degree of v. The result below will be used to show that small cancellation
products of word hyperbolic groups are word hyperbolic.

Lemma 2.3. Let D be a non-singular diagram that satisfies the condition C.7/. Then

1

3

X
v2D0

dv

2
� 2Eı

7
� V � C E�

7
:

In particular
F � 3E� C 3V �;

i.e., D satisfies a linear isoperimetric inequality.
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Proof. We denote by D0 the set of vertices of D (the 0-skeleton). Clearly
X

v2D0

dv

2
D E: (4)

We also have the inequality

7F � 2Eı C E�:

This is because each face has at least 7 edges and each interior edge lies in at most 2

faces while boundary edges lie in one face.
Using Euler’s formula and the inequality above we obtain

E C 1 D V C F � V � C E�

7
C V ı C 2Eı

7
: (5)

Since dv � 3 for every v in the interior of D, it follows that
X

v2D0

dv

2
� V ı � 1

3

X
v2D0

dv

2
:

By (4) and (5) we have

1

3

X
v2D0

dv

2
� 2Eı

7
� V � C E�

7
: (6)

Since
1

3

X
v2D0

dv

2
� Eı

3

we have
1

3

X
v2D0

dv

2
� 2Eı

7
� Eı

42
� 3F

7
� E�

84

and, using (6),

V � C 2E�

7
� 3F

7
� E�

84
;

which implies that F � 3E� C 3V �.

3. Small cancellation theory over free products

Small cancellation theory can be developed over free products (see [4]). We show
in this section that small cancellation products have codimension 1 subgroups. This
generalizes a result of Wise ([11]). We recall that the free product factors embed
in small cancellation products ([4], Corollary 9.4, p. 278). Osin ([6], Lemma 4.4)
showed that free product factors embed quasi-isometrically in small cancellation
products (this also follows from [2]). For the reader’s convenience we include a
proof of this below.
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Definition 4. Let hS jRi be a presentation of a group G. Here we consider R to be
a sequence of elements rather than a set. We say that hS jRi is symmetrized if every
r 2 R is cyclically reduced word and for any r D y1 : : : yn 2 R, R contains 2n

distinct terms corresponding to the 2n cyclic permutations of r and r�1. If r1 D cb,
r2 D ca and the words cb, ca are reduced we call c a piece of the presentation.

For example the symmetrized presentation that corresponds to the presentation
haja2i is the presentation haja2; a2; a�2; a�2i.

Let now hS jRi be a symmetrized presentation. We have then the following small
cancellation conditions:

� Condition C 0.�/: If r 2 R and r D cb with cb reduced word and c a piece then
jcj < �jr j.

� Condition C.p/: No element of R is a product of fewer than p pieces.

� Condition B.2p/: If r D ab and a is a product of p pieces then jaj � jr j=2.

Wise showed in [11] that groups that admit a presentation in which all relators
have even length and condition B.6/ is satisfied, have codimension 1 subgroups.
Clearly condition C 0.1=6/ is stronger than condition B.6/, so Wise’s result holds for
these groups too.

We now describe the small cancellation conditions on free products ([4], ChapterV,
Section 9). Let F be the free product of the groups Ai .

A word in the free product
©

Ai is a sequence of elements a1; : : : ; an where each
ai is an element of a free factor.

We say that a word a1 : : : an is reduced if each aj is an element of one of the Ai and
aj ; aj C1 belong to different factors for any j . Any element g 2 F can be represented
in a unique way as a reduced word (normal form of g). If g D a1 : : : an is the normal
form of g we define kgk D n. If u D a1 : : : an; v D b1 : : : bk are reduced words we
say that the word uv D a1 : : : anb1 : : : bk is semi-reduced if anb1 ¤ e. Note however
that an; b1 might lie in the same factor. We say that a word w D a1 : : : an is weakly
cyclically reduced if it is reduced and ana1 ¤ e. We say that a sequence of words R

is symmetrized if whenever r 2 R all weakly cyclically reduced conjugates of r and
r�1 are in R. We remark here that if the Ai ’s are infinite groups a symmetrized set
of relations is infinite if it has length greater than 1.

We say that c is a piece if there are distinct r1; r2 2 R such that r1 D ca, r2 D cb

and the words ca, cb are semi-reduced. As before we have the condition C 0.�/:
Condition C 0.�/: If r 2 R and r D cb with cb a semi-reduced word and c a

piece then kck < �krk.
Let now F be a free product F D ©

Ai of non-trivial groups and let R be a
symmetrized subset of F . The group G defined by the free product presentation
hF jRi is the quotient

G D F=hhRii
where hhRii is the normal closure of R in F .
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We show that groups G with free product presentations hF jRi that satisfy the
C 0.1=6/ condition have codimension 1 subgroups. We start first by considering
van Kampen diagrams over G. We consider a usual presentation of G with a set of
generators S given by the generators of Ai ’s and a set of relators consisting of relators
of the Ai ’s together with a set R0 such that R is obtained by taking all weak cyclic
conjugates of elements in R0 and their inverses. If R0 is finite we say that G has a
finite free product presentation. Let now w be a word in S representing the identity
in G. Let D be a reduced van Kampen diagram for w over the presentation given
above. We remark that if p is a simple closed path in the 1-skeleton of D such that
all edges of p lie in a single factor Ai then the word corresponding to p represents
the identity in Ai (see [4], Corollary 9.4). Call such a simple closed path maximal if
there is no other such simple closed path q in the interior of p. We modify now the
diagram D as follows: For each maximal simple closed path p we erase all edges of
p and all edges of D inside p and we introduce a new vertex vp which we join with
all vertices of p. Now each edge e of p has been replaced by two edges e1, e2. We
label e1, e2 by elements of Ai so that the product of their labels is equal to the label
of e. Note that we may label an edge by the identity. After this operation some of
the edges of D are ‘subdivided’. We subdivide the remaining edges of D so that the
labels of the new edges lie in the same factor as the old ones and the product of their
labels is equal to the label of the old edge. We call this a van Kampen diagram over
the free product.

We remark now that the C 0.�/ condition holds for this new diagram, i.e., if p is a
path in the diagram,which is contained in the intersection of two faces R1 \ R2 and
intersects no other face, except possibly at its endpoints, then

length.p/ < � min.length.@R1/; length.@R2//:

We will show that groups that satisfy the small cancellation condition C 0.1=6/

over free products have codimension 1 free subgroups. The proof is similar to the
proof in [11]. To simplify notation we show this below only in the case of free
products with only two factors but the same proof applies in general.

Theorem 3.1. Let G be a finitely generated group with a finite free product C 0.1=6/

presentation hF jR0i, where F D A � B . Assume further that each r 2 R0 is a
cyclically reduced word and krk is even. Then G has a codimension 1 subgroup.

Proof. We construct a complex for G as usual. If K1, K2 are complexes with a single
vertex respectively x1; x2 such that �1.K1; x1/ D A; �1.K2; x2/ D B we take the
wedge product K1 _ K2 of identifying x1; x2 to a single vertex x. For each r 2 R0
we glue a 2-cell, c.r/, to K1 _ K2 in the obvious way to obtain a complex K such
that �1.K; x/ D G. We argue now in a way similar to Wise ([11]). We slightly
change the approach and we consider bouquets of circles that go through x rather
than tracks. We explain now how to construct a bouquet of circles � which will
generate a codimension 1 subgroup H . Algebraically H is the subgroup generated
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by all ‘halves’ of relators in R0. So if r 2 R0 and r D c1c2 : : : c2n is the normal form
of r in A�B then c1c2 : : : cn is a generator of H . We take also all cyclic permutations
of the normal form of r : c2 : : : c2nc1, c3 : : : c2nc1c2, : : : , and we include the halves
of these relations to the generating set of H .

Let r 2 R0 and let r D a1b1 : : : anbn be the normal form of r in F . We represent
the 2-cell c.r/ corresponding to r as a polygon, where the ai , bi ’s are the labels of
the sides of this polygon. We can represent the generators of H geometrically as
‘diagonals’ of the cells c.r/ (r 2 R0). We remark now that since c.r/ has an even
number of sides each vertex has a vertex opposite to it, so for each vertex there is a
diagonal joining it with the opposite vertex. Note that this is slightly different from the
way one usually represents r as a polygon, where the sides of the polygon correspond
to the letters of r . In our context, however, we ignore most of these vertices and we
keep only the ones that correspond to the normal form representation of r in the free
product A � B . So if we see r in the usual way as a polygon, where the sides are
letters, then, in our terminology, some vertices have opposite vertices, while others
do not.

a1

b1 a2

b2

a3

b3a4

b4

Figure 2. A generator (represented by a dotted line).

We will define now � as an abstract graph. � has a single vertex and the edges of
� correspond to diagonals of the cells c.r/ (r 2 R0).

We remark that � is a bouquet of circles if looked at as an abstract graph, but if we
see it as immersed in K, some of its edges intersect each other in the middle points
of the polygons.

If we see � as a subset of K, its edges (loops) generate H .
We will show that H is a codimension 1 subgroup of G.

Lemma 3.2. There is a tree z� � zK whose edges are diagonals of 2-cells such that
z� is invariant under H . zK � z� has at least 2 components.

Proof. We will show that the universal covering of � embeds in zK as a graph z� . The
graph z� projects under the covering projection � W zK ! K to the image of � in K.

Let v 2 zK be a vertex. We define a connected graph in zK as follows: We say
that two vertices are related if they are opposite. We take the equivalence relation
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generated by this relation and we consider the equivalence class of v. Let z� be the
graph obtained by joining opposite vertices in this equivalence class by diagonals.
We claim that z� is a tree. If it is not a tree then there is a path p in z� such that both
endpoints of p lie on the same 2-cell of R0 and p is not a single edge (a diagonal).
Let us say that a, b are the endpoints of p and they lie on a 2-cell � . Let q be a path
on @� joining a, b. We may assume q to have minimal normal form length in the free
product among the 2 possible paths. Now p [ q is a closed loop. We change now
p by replacing each diagonal with the corresponding path on the boundary on which
the diagonal lies. We note that we have two choices and we replace the diagonals
so that the path we obtain by replacing all of them corresponds to a reduced word
of F . Let p0 be the path we obtain in this way. We may arrange also that p0 [ q is
reduced at the vertex a (unless a D b). We now consider the van Kampen diagram
over the free product for p0 [ q and observe that if it has an i -shell for i � 2, then the
boundary of this i -shell contains a neighborhood of the vertex b. But this contradicts
Corollary 2.2. It follows that z� is a tree. By construction z� is invariant under H and
separates locally (hence also globally) zK.

The first part of the next lemma also follows from work of Osin ([6], see also [2]).
We include a proof here for the sake of completeness.

Lemma 3.3. The vertex groups A, B and H embed quasi-isometrically in G. Then
H is a codimension 1 subgroup of G.

Proof. Let a be a geodesic word in the Cayley graph of A (or B). We will show that
a is a quasi-geodesic in zK. Let S be the generating set of G and let jwj be the length
of a word in S . Put

M D maxfjr j W r 2 R0g:
If we think of w as an element of F D A � B rather than as a word in S then we
denote by kwk its normal form length.

We define a new length function L for words in S :

L.w/ D Mkwk C jwj:
We refer to a path (word) of minimal L-length as an L-geodesic.
Obviously an L-geodesic is a quasi-geodesic.
We show now that a is a quasi-geodesic. Let p be an L-geodesic in the 1-skeleton

of zK with the same endpoints as a. We consider the van Kampen diagram over the
free product for a [ p. We may assume that a \ p is equal to the endpoints of a; p

since along the intersection of a; p, the path a is quasi-geodesic (this is because p is
a quasi-geodesic).

This diagram has at most 2 i -shells (with i � 2), because by the definition of
L-geodesics it follows that an i -shell with i D 1 or 2 contains at least one endpoint
of p. Thus by Corollary 2.2 this diagram is a ladder. By considering now the usual
van Kampen diagram for a [ p we have that jaj � M jpj so a is quasi-geodesic.
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We prove now that H is quasi-isometrically embedded. Since H acts freely on
z� it is enough to show that z� is quasi-isometrically embedded. Let p be a geodesic
path in z� joining two vertices v, u of z� .

We change p by replacing each diagonal by a corresponding path on the boundary
of the cell on which lies the diagonal. We pick this path so that the word of F

corresponding to the path is reduced (in the sense of normal forms). We note that this
is possible since each diagonal can be replaced by two different paths, one starting
with an a and the other with a b.

Let p0 be the path we obtain in this way. Let q be an L-geodesic path joining
v; u. As before we may assume that p0, q intersect only at their endpoints. Again by
the definition of p0, q if we consider the van Kampen diagram over the free product
for p0 [ q we remark that it has at most 2 i -shells with i � 2.

Hence this diagram is a ladder. By considering the usual van Kampen diagram
we have that jp0j � M jqj. Since q is a quasi-geodesic we have that p0 is a quasi-
geodesic, so H is quasi-isometrically embedded.

Finally we show that H is a codimension 1 subgroup. It suffices to show that
zK� z� has at least 2 components which are not contained in a finite neighborhood of z� .

By its definition z� separates locally zK. Since zK is simply connected, z� separates zK.
We introduce now some useful terminology. Let r 2 R0 and let c1c2 : : : cn be

the normal form of r in F . Recall that r is cyclically reduced. Let k be the smallest
number such that

k � n

6
:

We say then that c1 : : : ck is a fragment of r . Similarly we define fragments of all
cyclic permutations of c1c2 : : : cn.

Let R be a 2-cell in zK which intersects z� on an edge e. Let v, u be the vertices
of e.

Let c1c2 : : : cn be the label of R starting from v and written in free product normal
form. Let s be the vertex corresponding to the endpoint of a fragment p1 D c1 : : : ck

of R starting at v. We construct a path starting from v and lying in the same component
of QX � z� as s. The path starts at p1. At s we continue by following p1 with a fragment
p2 of another 2-cell R2 corresponding to r2 2 R0. We pick R2 ¤ R and so that p1p2

is reduced in F (in the sense of normal forms). We continue inductively in the same
way picking each time a new 2-cell and a fragment so that the word we obtain is
reduced in F . This is clearly possible, since at each step, we consider a new 2-cell
and we have two possibilities for going around the boundary of the cell (corresponding
to the two orientations of the boundary). At least one of the two possibilities produces
a path reduced in the sense of normal forms.

Let ˇ D p1 : : : pn be the path we obtain after n steps. If sn is the endpoint of
p1 : : : pn we claim that d.sn; z�/ ! 1 as n ! 1. Indeed, let q be a geodesic
joining sn to a closest vertex t 2 z� . We consider a geodesic � in z� joining v to t .

We distinguish two cases. Assume first that u does not lie on � . We change � by
replacing each diagonal by the corresponding path on the boundary of the 2-cell in
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p2

p1

z�

Figure 3. The tree z� and the path ˇ D p1p2 : : : pn.

which the diagonal lies to obtain a path � 0. We make these replacements so that the
word of F corresponding to the new path is reduced and p�1

1 � 0 corresponds also to a
reduced word in F . Clearly this is possible since we have two choices for replacing
each diagonal and the normal form of each starts from a different free factor. We now
consider the loop

ˇ [ � 0 [ q:

Since q is geodesic, the van Kampen diagram for free products for this loop has at
most 2 i -shells with i � 2 and these would have to appear around the endpoints of q.
It follows that this diagram is a ladder (see Corollary 2.2); hence the lengths of q and
ˇ [ � 0 are comparable, so the length of q goes to infinity as n ! 1.

Now we deal with the second case, i.e., we assume that u lies on � . We modify
p1 : : : pn as follows. We replace p1 by the path q1 on the boundary of R joining
s to u. We note that the new path ˇ0 D q1p2 : : : pn might not be reduced at the
endpoint of q1. We replace � by a path � 0 in the 1-skeleton of zK as before so that
q�1

1 � 0 is reduced in the free product F . We remark that the van Kampen diagram
over free products for the loop

ˇ0 [ � 0 [ q

is a ladder in this case too, hence the length of q goes to infinity as n ! 1.
Similarly we see that the component of R � z� that does not contain v is not

contained in a finite neighborhood of z� . It follows that H is codimension 1.

This finishes the proof of Theorem 3.1.
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4. The example

Theorem 4.1. Given any n > 0, there is a one-ended hyperbolic group G such that

� dim @G � n,
� @G is separated by a Cantor set,
� G does not split.

Proof. Let A be a torsion free 1-ended hyperbolic group with property T and such
that dim.@A/ � n (e.g., a lattice in Sp.n; 1/). Let us denote A D ha1; : : : ; aki. We
may assume that each ai is non-trivial and that am

i ¤ ar
j for any i ¤ j and m; r > 0.

Let B denote a copy of A with corresponding generators hb1; : : : ; bki. We consider
the free product A � B and define G to be the small cancellation quotient of A � B

given by the relations

ri;j D .aibj /.aib
2
j / : : : .aib

19
j /; 1 � i; j � k:

By Theorem 3.1, G has a free codimension 1 subgroup H . As shown in the proof of
Theorem 3.1, H is quasi-isometrically embedded, so a Cantor set separates @G.

We show now that G has property (FA) (i.e., it does not split). Clearly G is
not an HNN extension since the abelianization of A is finite, so the abelianization
of G is finite. We show that G does not split as an amalgamated product. Suppose
G D X�C Y . Without loss of generality we may assume that A � X and B � gXg�1

or B � gYg�1. Let g D x1 : : : xn be the normal form of g in the free product
decomposition. By replacing A, B by conjugates we may assume that either g D 1

and B � Y , or x1 … X . However, we see then that the word

ri;j D .aibj /.aib
2
j / : : : .aib

19
j /

is reduced in X �C Y , unless ai or bj is in C . Since all ri;j are equal to the identity,
this implies that A D C and B is contained in Y , or B D C and A is contained in
X ; but in both cases, the splitting would be trivial.

We claim finally that G is hyperbolic. Indeed this follows by Lemma 4.4 of [6],
and [2]. For the reader’s convenience we sketch a proof here using Lemma 2.3. It is
enough to show that G satisfies a linear isoperimetric inequality. Let w be a word on
the generators of G and let D be a reduced van Kampen diagram for G. As described
in Section 3, one obtains from D a new diagram, say D1, which is called the diagram
for w over the free product. Since A, B are hyperbolic they satisfy some isoperimetric
inequality of the form

A.p/ � Kl.p/

for any simple closed path p in the Cayley graph of A or of B .
It follows that if p is a simple closed path of D such that all edges of p lie in A

(or in B) and if v is the vertex of D1 that we obtain by collapsing p to a point, then

dv D l.p/ � 1

K
A.p/;
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where dv is the degree of v. It follows that

A.D/ � A.D1/ C K
X

v2D0
1

dv:

From Lemma 2.3 we have the following inequality for the diagram D1:

1

3

X
v2D0

1

dv

2
� 2Eı

7
� V � C E�

7
:

Moreover, X
v2D0

1

dv

2
� Eı ) 2Eı

7
� 2

7

X
v2D0

1

dv

2
;

so
1

3

X
v2D0

1

dv

2
� 2Eı

7
� 1

42

X
v2D0

1

dv

2
:

We also have l.@D1/ � l.@D/ and V �; E� � l.@D/. Thus, by Lemma 2.3, it
follows that

A.D1/ � 6l.@D/

and X
v2D0

1

dv � 42V � C 7E�;

hence

A.D/ � .6 C 49K/l.@D/:

In other words, G satisfies a linear isoperimetric inequality, so it is hyperbolic.

Remark 1. The above example also shows that for any n there is a finitely presented
group G with asdim G > n, which is separated coarsely by a uniformly embedded
set H of asdim H D 1 and which does not split. This answers a question in [7].

5. Boundaries and Cantor manifolds

We recall some notions from dimension theory.

Definition 5. We say that a closed subset F of a topological space X separates X if
X � F D U1 [ U2 with U1, U2 open disjoint sets.

Definition 6. A topological space X of dimension n is a Cantor manifold if it cannot
be separated by a closed sets F such that dim F � n � 2.
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Hurewicz and Tumarkin showed the following:

Theorem 5.1. A compact metrizable topological space X of dimension n contains
an n-dimensional Cantor manifold.

Definition 7. A maximal Cantor manifold of dimension n of a compact metrizable
topological space X of dimension n is called a dimensional component of X .

It is easy to see, using Zorn’s lemma, that each Cantor manifold of X is contained
in a dimensional component and that dimensional components are closed.

It was conjectured in [7] that if the boundary of a hyperbolic group G is not a Cantor
manifold, then the group splits. This was motivated by a desire to generalize Stallings
ends theorem to splittings over infinite groups. As we saw in the previous sections,
this is false, but perhaps the group might split when the dimensional components
themselves separate. So we have the following:

Question. Let G be a hyperbolic group such that @G is not a Cantor manifold and
there is a dimensional component C of @G such that @G � C is not connected. Is it
true then that G splits?

We remark that in the example presented in the previous section the dimensional
components correspond to the boundaries (of conjugates of the subgroups A; B). So
we have infinitely (countably) many distinct dimensional components, but @G � C

is connected for any dimensional component in this example.

Proposition 5.2. Let G be a hyperbolic group such that @G is not a Cantor manifold
and there is a dimensional component C of @G such that @G � C is not connected.
Then G acts non-trivially, by isometries, on an R-tree T .

Proof. We give only a sketch since this type of argument is standard by now. Without
loss of generality we assume that @G is connected. Let C be a dimensional component
of @G for which @G�C is not connected. Let R be a connected component of @G�C .
Observe that

@R D NR � R

is not a single point since @G has no cut points.
Let

P D fgR W g 2 Gg:
Note that if A1; A2 2 P , then A1 � A2 or A2 � A1 or A1 \ A2 D ;.

We define now a betweeness relation in P that turns P into a pre-tree.
If x, y, z are three distinct elements of P , we say that y is between x and z if one

of the following four possibilities holds:

1. z � y and y \ x D ;.
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2. z � y and y � x.
3. x � y and y \ z D ;.
4. x � y and y � z.

If y is between x, z we write xyz.
We show now the axioms of pre-trees hold (see [8]):
1. By definition xyx does not hold.
2. If xyz holds then by the symmetry between x, z in the definition above we see

that zyx holds as well.
3. If xyz holds then by inspecting the four cases of the definition above we see

that xzy does not hold.
4. If xyz holds and w ¤ y we will show that either xyw or zyw.
Since xyz holds, we may assume that z � y (the case x � y is treated similarly).

We have now three cases: y � w, w � y or y \ w D ;. If y � w then zyw holds.
If w � y then xyw holds. Finally, if y \ w D ; then zyw holds.

By the standard ‘join the dots’ construction (see eg [8]) one can promote P to an
R-tree T . The action of G on @G induces an action of G on T . It is easy to see that
this action is non-nesting and that there is no fixed point. It follows [3] that G acts
by isometries on an R tree T 0. On the other hand it is not clear whether the action of
G on T (hence also on T 0) is stable, so it is not clear whether G splits.

One can easily construct continua with uncountably many dimensional compo-
nents. However, when constructing hyperbolic groups using amalgamation or other
standard constructions, the dimensional components correspond to quasi-isometri-
cally embedded subgroups (so there are at most countably many such components).
It is reasonable to ask:

Question. Let G be a hyperbolic group. Is it true that @G has at most countably
many distinct dimensional components?
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