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Abstract. A finitely presented group is weakly geometrically simply connected (wgsc) if it is
the fundamental group of some compact polyhedron whose universal covering is wgsc, i.e.,
it has an exhaustion by compact connected and simply connected sub-polyhedra. We show
that this condition is almost-equivalent to Brick’s qsf property, which amounts to finding an
exhaustion approximable by finite simply connected complexes, and also to the tame comba-
bility introduced and studied by Mihalik and Tschantz. We further observe that a number of
standard constructions in group theory yield qsf groups and analyze specific examples. We
show that requiring the exhaustion be made of metric balls in some Cayley complex is a strong
constraint, not satisfied by general qsf groups. In the second part of this paper we give sufficient
conditions under which groups which are extensions of finitely presented groups by finitely
generated (but infinitely presented) groups are qsf. We prove, in particular, that the finitely
presented HNN extension of the Grigorchuk group is qsf.
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1. Introduction

Casson and Poenaru [40], [25] studied geometric conditions on the Cayley graph of a
finitely presented group implying that the universal covering of a compact 3-manifold
with given fundamental group is R3. The proof involves approximating the universal
covering by compact, simply connected three-manifolds. This condition was then
adapted for arbitrary spaces and finitely presented groups by S. Brick in [8] (see
also [42]) under the name quasi-simply filtered (abbreviated qsf below).

We consider here a related and apparently stronger notion, called weak geometric
simple connectivity (abbreviated wgsc), which came out from the study of the geo-
metric simple connectivity of open manifolds in [22]. Specifically, a polyhedron is
wgsc if it admits an exhaustion by compact connected and simply connected polyhe-
dra. The interest of such a strengthening is that it is easier to prove that specific high
dimensional polyhedra are not wgsc rather than not qsf. In fact, a major difficulty
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encountered when searching for examples of manifolds which are not wgsc is that
one has to show that no exhaustion has the required properties, while, in general,
non-compact manifolds are precisely described by means of one specific exhaustion.
Thus, one needs a method to decide whether a space is not wgsc out of a given (arbi-
trary) exhaustion. We are not aware about such methods in the qsf setting. However,
the criterion given in [22] permits to answer this question for the wgsc condition, at
least for non-compact manifolds of high dimensions.

A central issue in geometric group theory is to study classes of groups with various
properties of topological nature. The topological properties in question are imported
from the realm of infinite complexes by means of the following recipe, which was
first used on a large scale by Gromov. Say that a finitely presented (in general infinite)
group has a certain property if the universal covering of some finite complex with
this fundamental group has the required property. In this setting we can speak about
the qsf (or wgsc) of finitely presented groups. In this respect we have three levels
of equivalence relations among topological properties. First, the usual one concern-
ing (more or less) arbitrary CW complexes. Second, the almost-equivalence which
concerns only universal coverings of finite complexes, i.e., finitely presented groups.
At last we have the quasi-isometry equivalence relation for finitely presented groups.
In this paper we will mostly consider the almost-equivalence of various tameness
properties, which will also permit us to draw conclusions about their quasi-isometry
invariance. Notice however that qsf and wgsc have different flavors. If one universal
covering of a finite complex with given fundamental group is qsf then all such univer-
sal coverings are qsf and, in particular, this holds for every Cayley complex. Thus the
qsf property is independent on the presentation used in the construction of the Cayley
complex. This is not anymore true for the wgsc property. There are examples of
presentations of a wgsc group which lead to non wgsc Cayley complexes. However
we will see that these two properties define the same class of groups in the sense that
a group is qsf if and only if it is wgsc. The qsf is then a group property which is
presentation independent and almost-equivalent to the wgsc.

The wgsc property should be compared to a tameness condition which is central
in non-compact manifold theory, namely the simple connectivity at infinity. Roughly
speaking the simple connectivity at infinity expresses the fact that loops which are far
away should bound disks which are far away. This topological property have been
used for characterizing Euclidean spaces as being the contractible manifolds that are
simply connected at infinity by Siebenmann, Stallings and Freedman. Moreover,
the simple connectivity at infinity is much stronger than the wgsc in dimensions
at least 4, and in particular for finitely presented groups. In fact, M. Davis ([13])
constructed examples of aspherical manifolds whose universal coverings are different
from Rn (for n � 4). Further one understood that these examples are quite common
(see [15]). The groups in these examples are finitely generated Coxeter groups, which
act properly co-compactly on some CAT.0/ complexes and thus they are wgsc.

In order to give an unified proof that many classes of groups are qsf Mihalik and
Tschantz ([38]) introduced the related notion of tame 1-combings for groups. An usual
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combing for a 2-complex is the choice of paths in the 1-skeleton joining a basepoint
vertex to every other vertex. Groups whose Cayley graphs admit nice (e.g., bounded)
combings have good algorithmic properties, like automatic groups and hyperbolic
groups and were the subject of extensive study in the last twenty years. Further a
1-combing corresponds to one dimension higher, namely, to a system of paths joining
a basepoint vertex to every point of the 1-skeleton. We refer to the next section for the
precise definition (see 2.4) of the enhanced notion of tame 1-combing of 2-complexes
(and groups). One of the main results of [38] is that tame 1-combable groups (and in
particular asynchronously automatic groups and semi-hyperbolic groups) are actually
qsf.

Our aim is to pursue further the study of the qsf condition for groups. The first part
of this paper is devoted to finding characterizations of the qsf by means of methods
from high dimensional manifold theory. Our first result is the following.

Theorem1.1. Thewgsc, qsf and tame1-combability conditions are almost-equivalent
topological properties of finitely presented groups.

In particular, using the results from [6], we obtain:

Corollary 1.2. A group quasi-isometric to a qsf finitely presented group is qsf.

In other words, the qsf property of groups is geometric. We apply these results
to analyze several interesting classes of groups and derive additional examples of qsf
groups.

A natural question is whether there is some natural simply connected exhaustion
for a wgsc group. A possible candidate is to consider the word metric on the Cayley
complex associated to a group presentation and the associated exhaustion by metric
balls. We will show in Section 4:

Theorem 1.3. Finitely presented groups admitting a Cayley complex whose metric
balls have fundamental groups generated by loops of uniformly bounded length have
linear connectivity radius and solvable word problem.

In particular such groups are strongly constrained and there are examples of wgsc
groups not satisfying these conditions. Therefore the simply connected exhaustions of
wgsc Cayley complexes are far from being the ones by metric balls. As application we
will give a simple proof for the fact that finitely presented groups admitting complete
geodesic rewriting systems are qsf.

The starting point of Section 5 is the result of Brick and Mihalik from [7] which
states that extensions of infinite finitely presented groups by finitely presented groups
are qsf. This is the group theoretical analog of the fact that products of contractible
manifolds are homeomorphic to the Euclidean space. Using the same methods we
can prove the following:
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Theorem 1.4. An ascending HNN extension of a finitely presented group is qsf.

We investigate further extensions of infinite finitely presented groups by suitable
infinitely presented groups, for instance torsion groups. The second main result of
Section 5 is Theorem 5.1, which gives sufficient (too technical to state here) conditions
for such extensions to be qsf.

Then we consider in detail the case of the Grigorchuk group and of its finitely
presented HNN extension constructed in ([27], [28]; see also [16]). The main result
of the second part (see Section 6) is:

Theorem 1.5. The finitely presented HNN extension of the Grigorchuk group is qsf.

These methods could be used in slightly more general situations in order to cover
large classes of finitely presented extensions of branch groups having endomorphic
presentations, as defined by Bartholdi in [3]. However, the present approach does not
permit to prove the qsf of all such extensions, without some additional condition.

At this point we wish to emphasize the difference between the geometric invariants
of discrete groups and those of topological nature. Geometric invariants are sensitive
to cut and paste operations and thus algebraic constructions can provide a large variety
of examples. For instance the set of exponents of polynomial isoperimetric Dehn
functions of finitely presented groups is a dense subset of Œ2;1/. These correspond
to distinct quasi-isometry classes of groups. On the other hand, topological properties
are quite stable and thus can be satisfied by very large classes of groups. Two typical
cases are the semi-stability at infinity (see e.g. [37]) and the property thatH 2.G;ZG/
is free abelian. It is still unknown whether all finitely presented groups satisfy either
one of these two properties.

In the same spirit there are still no known examples of finitely presented groups
which are not qsf (see [42]). Notice that fundamental groups of compact 3-manifolds
are qsf, but the only proof of that is as a consequence of the Thurston geometrization
conjecture (settled by Perelman). If non qsf groups do exist they would lay at the
opposite extreme to hyperbolic and non-positively curved groups and thus they should
be highly non generic. A related question is whether the fundamental group of a closed
aspherical manifold could act properly (not necessarily co-compactly) on some non-
wgsc contractible manifold, like those described in [22].
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2. Preliminaries on tameness conditions for groups

2.1. The wgsc. The following definition due to C. T. C. Wall came out from the work
of S. Smale on the Poincaré conjecture and, more recently, in the work of V. Poenaru
([40]). Moreover, it has been revealed as especially interesting in the non-compact
situation, in connection with uniformization problems (see [22]).

Definition 2.1. A non-compact manifold, which might have nonempty boundary, is
geometrically simply connected (abbreviated gsc) if it admits a proper handlebody
decomposition without 1-handles, or equivalently, in which every 1-handle is in can-
celing position with a 2-handle. Alternatively, there exists a proper Morse function
f W W ! R, whose critical points are contained within int.W / such that

(1) f has no index one critical points; and
(2) the restriction f j@W W @W ! R is still a proper Morse function without non-

fake index one critical points. The non-fake critical points of f j@W are those for
which the gradient vector field grad f points towards the interior of W , while
the fake ones are those for which grad f points outwards.

The gsc condition was shown to be a powerful tameness condition for open three-
manifolds and four-manifolds in a series of papers by Poenaru starting with [40].

Remark 2.1. Handle decompositions are known to exist for all manifolds in the
topological, PL and smooth settings, except in the case of non-smoothable topological
4-manifolds. Notice that open 4-manifolds are smoothable.

Manifolds and handlebodies considered below are PL.
One has the following combinatorial analog of the gsc for polyhedra:

Definition 2.2. A non-compact polyhedron P is weakly geometrically simply con-
nected (abbreviated wgsc) if P D S1

j D1Kj , where K1 � K2 � � � � � Kj � � � � is
an exhaustion by compact connected sub-polyhedra with �1.Kj / D 0. Alternatively,
any compact sub-polyhedron is contained in a simply connected sub-polyhedron.

Notice that a wgsc polyhedron is simply connected. The wgsc notion is the
counterpart in the polyhedral category of the gsc of open manifolds and in general it
is slightly weaker. The notion which seems to capture the full power of the gsc for
non-compact manifolds (with boundary) is the pl-gsc discussed in [23].
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Remark 2.2. Similar definitions can be given in the case of topological (respectively
smooth) manifolds, where we require the exhaustions to be by topological (respec-
tively smooth) submanifolds.

Remark 2.3. For n ¤ 4 an open n-manifold is wgsc if and only if it is gsc (see [22]
for n � 5, and for n D 3 it follows from the Poincaré conjecture), while in dimension
4 one expects to find open 4-manifolds which are wgsc but not gsc.

Definition 2.3. The finitely presented group � is wgsc if there exists some compact
polyhedron X with �1.X/ D � such that its universal covering zX is wgsc.

Remark 2.4. Working with simplicial complexes instead of polyhedra in the defini-
tions above, and thus not allowing subdivisions, yields an equivalent notion of wgsc
for finitely presented groups.

Remark 2.5. The fact that a group is not wgsc cannot be read from an arbitrary
complex with the given fundamental group. In fact, as F. Lasheras pointed out
to us, for any finitely presented group � with an element of infinite order, there
exists a complex X with �1X D � whose universal covering is not wgsc. For
example take � D Z and the complex X being that associated to the presentation
Z D ha; b j baba�1b�1i. Then the universal covering zX is given in Figure 1.

a
c

b

b

b

b

b

a
a

a

b

a

a

Figure 1. The universal covering zX .

One sees that zX is not wgsc because in the process of killing one loop b one
creates another one indefinitely.

Further, if � is a finitely presented group with an element a of infinite order, we
add a new generator b and a new relation as before. The universal covering associated
to this presentation is not wgsc, by the same arguments.

Remark 2.6. The wgsc property cannot be extended to arbitrary finitely generated
groups, as stated, since any group admits a presentation with infinitely many relations
such that the associated 2-complex is wgsc. It suffices to add infinitely many 2-cells,
along the boundaries of unions of 2-cells, killing inductively the fundamental group
of any compact subset.
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Remark 2.7. Recall that there exist uncountably many open contractible manifolds
which are not wgsc ([22]). In general, these manifolds are not covering spaces and
we do not know whether one could find co-compact universal coverings among the
non wgsc manifolds. For instance, if a finitely presented torsion group exists then it
is hard to believe that its Cayley complex is wgsc. Swenson has shown that every
CAT.0/ group has an element of infinite order (see [43]). Notice that manifolds that
are simply connected at infinity are automatically wgsc ([41]), but in general not
conversely (see examples below).

2.2. The qsf property after Brick and Mihalik. The qsf property is a weaker
version of the wgsc, which has the advantage to be independent on the polyhedron
we chose. Specifically, Brick ([8]) defined it as follows:

Definition 2.4. The simply connected non-compact PL space X is qsf if for any
compact sub-polyhedronC � X there exists a simply connected compact polyhedron
K and a PL map f W K ! X so that C � f .K/ and f jf �1.C / W f �1.C / ! C is a
PL homeomorphism.

Definition 2.5. The finitely presented group � is qsf if there exists a compact poly-
hedron P of fundamental group � so that its universal covering zP is qsf.

Remark 2.8. It is known (see [8]) that the qsf is a group property and does not depend
on the compact polyhedron P we chose in the definition above. In fact, if Q is any
compact polyhedron of fundamental group � (which is qsf) then zQ is qsf.

Remark 2.9. The qsf is very close to (and a consequence of) the following notion
of Dehn exhaustibility (see [40], [22]) which was mainly used in a manifold setting.
The polyhedron W is Dehn-exhaustible if for any compact C � W there exists a
simply connected compact polyhedron K and an immersion f W K ! W such that
C � f .K/ and the set of double points of f is disjoint fromC . It is known from [40]
that a Dehn exhaustible 3-manifold is wgsc.

2.3. Small content and 1-tame groups. Now we consider some other tameness
conditions on non-compact spaces, which are closely related to the wgsc. Moreover
we will show later that they induce equivalent notions for discrete groups. In many
cases it is easier to prove that a specific complex has one of these two properties
instead that directly proving the qsf. This will be the case in the second part of this
paper for the Grigorchuk group and its extension.

Definition 2.6. The simply connected non-compact polyhedronX has small content
if for any compact C � X there exist two compact connected sub-polyhedra C �
D � E � X , fulfilling the following properties:

(1) The map �1.D/ ! �1.E/ induced by the inclusion, is zero.
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(2) If two points of D are connected within E � C then they are connected within
D � C .

(3) Any loop inE �C (based to a point inD�C ) is homotopic relative to the base
point withinX �C to a loop which lies entirely insideD�C . Alternatively, let
us denote by �Y W �1.Y �C/ ! �1.X �C/ the morphism induced by inclusion
(for any compact Y containing D), by fixing a base point (which is considered
to be in D � C ). Then one requires that �D.�1.D � C// D �E .�1.E � C//.

The finitely presented group � has small content if there exists a compact poly-
hedron P of fundamental group � so that its universal covering zP has small content.

Remark 2.10. An obvious variation would be to ask that the homotopy above might
not keep fixed the base point. We do not know whether the new definition is equivalent
to the former one.

Definition 2.7. The PL space X is 1-tame if any compact sub-polyhedron C is
contained in a compact sub-polyhedron K � X , so that any loop � in K is (freely)
homotopic withinK to a loop N� inK �C , while N� is null-homotopic within X �C .

The finitely presented group � is 1-tame if there exists a compact polyhedron P
of fundamental group � so that its universal covering zP is 1-tame.

Notice that one does not require that an arbitrary loop inK�C be null-homotopic
within X �C . This happens only after a suitable homotopy which takes place inK.

2.4. Tame combings and the Tucker property. Group combings were essential
ingredients in Thurston’s attempt to abstract finiteness properties of fundamental
groups of negatively curved manifolds which finally led to automatic groups.

Tame 1-combings of groups were considered by Mihalik and Tschantz in [38] as
higher dimensional analogs of usual combings, which are referred of as 0-combings.

Definition 2.8. A 0-combing of a 2-complexX is a set of edge-paths �p.t/, t 2 Œ0; 1�,
joining each vertex p of X to a basepoint vertex x0. This can be thought of as
a homotopy � W X0 � Œ0; 1� ! X1 for which �.x; 1/ D x for all x 2 X0, and
�.X0; 0/ D x0, where Xj denotes the j -dimensional skeleton of X .

A 1-combing of the 2-complexX is a continuous family of paths �p.t/, t 2 Œ0; 1�,
joining each point p of the 1-skeleton ofX to a basepoint vertex x0, whose restriction
to vertices is a 0-combing. This is a homotopy � W X1 � Œ0; 1� ! X for which
�.x; 1/ D x for all x 2 X1, �.X1; 0/ D x0, and � jX0�Œ0;1� is a 0-combing.

Observe that although any connected complex is 0-combable, a 2-complex is
1-combable if and only if it is simply connected.

In order to find interesting consequences in geometric group theory one imposed
the boundedness (or fellow traveler condition) on the0-combing, namely that combing
paths of neighbor vertices be at uniformly bounded distance from each other.
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In the same spirit Mihalik and Tschantz replaced the boundedness by the following
property of topological nature:

Definition 2.9. A 0-combing is called tame if for every compact set C � X there
exists a compact setK � X such that for each x 2 X0 the set ��1.C /\.fxg� Œ0; 1�/
is contained in one path component of ��1.K/ \ .fxg � Œ0; 1�/.

A 1-combing is tame if its restriction to the set of vertices is a tame 0-combing
and for each compact C � X there exists a larger compact K � X such that for
each edge e of X , ��1.C / \ .e � Œ0; 1�/ is contained in one path component of
��1.K/ \ .e � Œ0; 1�/.

A group is tame 1-combable if the universal cover of some (equivalently any,
see [38]) finite 2-complex with given fundamental group admits a tame 1-combing.

Recall now the following tameness condition of topological spaces:

Definition 2.10. The non-compact PL spaceX is Tucker if the fundamental group of
each component of X �K is finitely generated, for any finite subcomplex K � X .

This definition was motivated by Tucker’s work [44] on 3-manifolds. A non-
compact manifold is a missing boundary manifold if it is obtained from a compact
manifold with boundary by removing a closed subset of its boundary. We have the
following characterization from [44]: a P 2-irreducible connected 3-manifold is a
missing boundary 3-manifold if and only if it is Tucker.

The main results of [38] state the following.

Proposition 2.1 ([38]). A finitely presented group is tame 1-combable if and only if the
universal covering of any (equivalently, some) finite complex with given fundamental
group is Tucker. Moreover, a tame 1-combable group is qsf.

All known examples of qsf groups are actually tame 1-combable. We will show
in the next section that the two notions are almost-equivalent.

Requiring a tame 0-combing is a very soft condition because of the following
result.

Proposition 2.2. Any connected 2-complex X has a tame 0-combing.

Proof. The key point is that any connected 2-complex X is the ascending union of
connected finite subcomplexes Xn, for instance metric balls.

A 0-combing �p is geodesic with respect to .Xn/n when it satisfies the following
properties:

(1) if p 2 X0 then �p has minimal length among the paths in X0 joining p to
x0 2 X0;
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(2) for p 2 Xn � Xn�1, with n � 1, there is some q 2 Xn�1 which realizes the
distance inXn from p toXn�1. Let �p � Xn be a minimal length curve joining
p to q. Then �p is the concatenation of �p and �q .

If all Xn are connected then there exist geodesic 0-combings which are defined
inductively by means of the two conditions above. Let � be one of them. It suffices to
verify the tameness of � for large enough finite subcomplexes C and thus to assume
that x0 2 C . Set K be the smallest Xn containing C .

We claim that the set ft 2 Œ0; 1�I �p.t/ 2 Kg is connected, which settles the
proposition. This is clear when p 2 Xn. If p 2 XnC1 � Xn then �p is contained in
XnC1 �Xn except for its endpoint q 2 Xn. Otherwise, we would find a point in Xn

closest to p than q contradicting our choice for q. Further �q � Xn is connected,
hence �p \ Xn is also connected. Using induction on k one shows in the same way
that �p \ Xn is connected when p 2 XnCk � Xn. As X D S

k XnCk the claim
follows.

Remark 2.11. One says that a 1-combing is weakly tame 1-combable if for each
compact C � X there exists a larger compact D � X such that for every edge e
the set f.p; t/ 2 e � Œ0; 1�I �p.t/ 2 C g is contained in one connected component
of f.p; t/ 2 e � Œ0; 1�I �p.t/ 2 Dg. Thus one drops from the definition of the tame
1-combing the requirement that the restriction to the vertices be a tame 0-combing.
It was mentioned in the last section of [38] that the existence of a weakly tame
1-combing actually implies the existence of a tame 1-combing.

3. Proof of Theorem 1.1

3.1. Comparison of qsf and wgsc conditions. The subject of this section is the
proof of the almost-equivalence of qsf and wgsc conditions from Theorem 1.1. Our
result is slightly more general and includes the 1-tameness and small content condi-
tions, which will be used later, in Section 6.

Proposition 3.1. A wgsc polyhedron has small content and is 1-tame. A polyhedron
which is either 1-tame or else has small content is qsf.

Proof. Let C be a compact sub-polyhedron of the polyhedron X .
(1) Assume that X is wgsc. Then one can embed C in a compact 1-connected

sub-polyhedron K � X . Taking then D D E D K one finds that X has small
content and is 1-tame.

(2) Suppose thatX has small content, andD andE are the sub-polyhedra provided
by Definition 2.6. Let � be a loop in E, based at a point in C . We consider the
decomposition of � into maximal arcs �Œj �which are (alternatively) contained either
in D or in the closure E � D of E � D, namely �Œ1� � D; �Œ2� � E � D, and
so on. Thus �Œ2k� � E � D has its endpoints in D. By hypothesis there exists



On the wgsc and qsf tameness conditions for finitely presented groups 559

another arc 	Œk� � D � C that joins the endpoints of �Œ2k�. The composition
�k D �Œ2k�	Œk��1 is then a loop in E � C . Moreover, the composition �0 D
�Œ1�	Œ1��Œ3�	Œ2� : : : �Œ2k � 1�	Œk� : : : is a loop contained in D. Next �j (based at
one endpoint of �Œ2j � fromE�D) is homotopic withinX�C to a loop N�j � D�C .

Assume now that we chose a system of generators �1; : : : ; �n of �1.E/. We will
do the construction above for each loop �j , obtaining the loops �k

j in E � C which

are homotopic to N�k
j in D � C . We define first a polyhedron yE by adding to E

2-disks along the composition of the loops �k
j . N�k

j /
�1. Recall that these two loops

have the same basepoint (depending on j; k) and so it makes sense to consider their
composition.

There is defined a natural map F W yE ! X , which extends the inclusionE ,! X ,
as follows. There exists a homotopy within X � C keeping fixed the base point of
�k

j between �k
j and N�k

j . Alternatively, there exists a free null-homotopy of the loop

�k
j . N�k

j /
�1 within X � C . We then send the 2-disk of OE capping off �k

j . N�k
j /

�1 onto
the image of the associated free null-homotopy.

It is clear that F is a homeomorphism over C , since the images of the extra
2-disks are disjoint from C . Moreover, we claim that yE is simply connected. In
fact, any loop in yE is homotopic to a loop within E, and hence to a composition
of �j . Each �j is homotopic relative to the base point, by a homotopy in E, to
�j Œ1��

1
j 	j Œ1��j Œ3��

2
j 	j Œ2� : : : , which is homotopic relative to the base point, by a

homotopy in yE, to �j Œ1� N�1
j 	j Œ1��j Œ3� N�2

j 	j Œ2� : : : , a loop in D. By hypothesis, this

last loop is null-homotopic in E. Therefore �1. yE/ D 0.
(3) Suppose now that X is 1-tame. Let K be the compact associated to an arbi-

trarily given compact C . Any loop � inK is freely homotopic to a loop N� inK �C .
Consider �1; : : : ; �n a system of generators of �1.K/. From K we construct the
polyhedron yK by adding 2-disks along the loops N�j . There exists a map F W yK ! X ,
which extends the inclusion K ,! X , defined as follows. The 2-disk capping off
the loop N�j is sent into the null-homotopy of N�j within X � C . Then F is obviously
a homeomorphism over C . Meanwhile, yK is simply connected since we killed all
homotopy classes of loops from K.

Proposition 3.2. If the open n-manifoldM n is qsf and n � 5, thenM n is wgsc.

Proof. It suffices to prove that any compact codimension zero submanifold C is
contained in a simply connected compact subspace of M n. By hypothesis there
exists a compact connected and simply connected simplicial complex K and a map
f W K ! M n such that f W f �1.C / ! C is a PL homeomorphism. Assume that f
is simplicial, after subdivision. Let L be the 2-skeleton of K n f �1.C / and denote
by @L D L \ @f �1.C /. Notice that f �1.C / is a manifold.

The restriction off jL W L ! M nnC to the subcomplex @L � L is an embedding.
Since the dimension of L is 2 and n � 5, general position arguments show that we
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can perturb f by a homotopy, which is the identity on @L, to a simplicial map
g W L ! M n n C , which is an embedding.

Now �1.f
�1.C /

S
@LL/ Š �1.K/ D 0, and so �1.C

S
f .@L/ g.L// D 0. Take

a small regular neighborhood U of C
S

f .@L/ g.L/ inside M n. Then U is a simply
connected compact submanifold of M n containing C .

Remark 3.1. A similar result was proved in [22] for Dehn exhaustibility. In particular
a n-manifold which is Dehn-exhaustible is wgsc provided that n � 5.

Definition 3.1. A finitely generated group has the topological property A if some
Cayley complex has property A. The topological properties A and B are almost-
equivalent for finitely presented groups if a finitely presented group hasA if and only
if it has B .

Corollary 3.1. The wgsc, gsc, qsf, Dehn-exhaustibility, 1-tameness and small content
are almost-equivalent for finitely presented groups.

This also yields the following geometric characterization of the qsf.

Corollary 3.2. The group � is qsf if and only if the universal covering �M n of any
compact manifoldM n with �1.M

n/ D � and dimension n � 5 is wgsc (or gsc). In
particular, a qsf group admits a presentation whose Cayley complex is wgsc.

Proof. The “if” part is obvious. Assume then that � is wgsc, and so there exists a
compact polyhedron whose universal covering is wgsc and hence qsf. It is known
(see [8]) that the qsf property does not depend on the particular compact polyhedron
we chose. Thus, ifM n is a compact manifold with fundamental group � then �M n is
also qsf. By the previous proposition, when n � 5 �M n is also wgsc, as claimed.

Further, if the group � is qsf then consider a compact n-manifold M n with fun-
damental group � and n � 5. It is known that �M n is qsf and thus wgsc.

Consider a triangulation ofM n and T a maximal tree in its 1-skeleton. Since the
finite tree T is collapsible it has a small neighborhood U � M n homeomorphic to
the n-dimensional disk. The quotient U=T is homeomorphic to the n-disk and thus
to U . This implies that the quotient M n=T is homeomorphic to M n. Therefore we
obtain a finite CW-complex Xn homeomorphic to M n and having a single vertex.
Also Xn is wgsc since it is homeomorphic to a wgsc space.

The wgsc property is inherited by the 2-skeleton, namely a locally finite CW-
complexX is wgsc if and only if its 2-skeleton is wgsc. This means that the universal
covering of the 2-skeleton of Xn is wgsc. But any finite CW-complex of dimension
2 with one vertex and fundamental group � is the Cayley complex associated to a
suitable presentation of � . Thus the Cayley complex of this presentation is wgsc, as
claimed.
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3.2. Qsf and tame 1-combability. The subject of this section is to end the proof of
Theorem 1.1 by proving that qsf and tame 1-combability are almost-equivalent for
finitely presented groups.

We will consider below open connected manifolds with finitely many 1-handles,
which slightly generalize the gsc condition. In the smooth category this means that
there is a proper Morse function with only finitely many index 1 critical points. In the
PL category we can ask that the manifold have a proper handlebody decomposition
for which 1-handles and 2-handles are in canceling position for all but finitely many
pairs.

Proposition 3.3. LetW n, n � 5, be an open connected manifold admitting a proper
handlebody decomposition with only finitely many 1-handles. Then W n is Tucker.

Proof. We have to prove that for sufficiently large compact subcomplexes K the
group �1.W �K/ is finitely generated.

Consider a proper handlebody decomposition with a single 0-handle and finitely
many 1-handles. We shall assume that K is large enough to include all index 1
handles. Further, by compactness there is a union of handles C containing K. Here
C is a manifold with boundary @C . We obtain W � int.C / from @C � Œ0; 1� by
adding inductively handles of index at least 2. In particularW � int.C / has as many
connected components as @C . Let F be a connected component of @C and Z be the
corresponding connected component of W � int.C /.

Lemma 3.1. The inclusion F ,! Z induces a surjective homomorphism �1.F / !
�1.Z/.

Proof. Let Zk be the result of adding the next k handles of the decomposition to
F � Œ0; 1� and let Fk be the other boundary of Zk , namely @Zk D F [ Fk , and
Z0 D ;. We claim first that �1.ZkC1 � int.Zk/; Fk/ D 0, or equivalently, the
homomorphism induced by inclusion �1.Fk/ ! �1.ZkC1 � int.Zk// is surjective.
In fact one obtainsZkC1 � int.Zk/ from Fk � Œ0; 1� by adding one handle of index at
least 2. Then van Kampen implies the claim. Further Zk D Sk�1

j D0.Zj C1 � int.Zj //

so that �1.Zk/ is the iterated amalgamated product

�1.Z1/ ��1.F1/ �1.Z2 � int.Z1// ��1.F2/ �1.Z3 � int.Z2// � � � �
� � � ��1.Fk�1/ �1.Zk � int.Zk�1//:

The previous claim then shows that the inclusion F ! Zk induces a surjective map
�1.F / ! �1.Zk/, for each k. Letting k go to infinity we find that �1.F / surjects
onto �1.Z/.

At lastW �K is obtained by gluingW �C and C �K. It is clear that C �K has
finitely generated fundamental group. As@C has finitely many connected components
the use of van Kampen and the lemma above imply that �1.W � K/ is finitely
generated.
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Corollary 3.3. If W n is open gsc manifold of dimension n � 5, then W n is Tucker.

Proposition 3.4. A finitely presented group is qsf iff it is tame 1-combable.

Proof. The “if” implication is proved in [38]. Let G be qsf. Choose some closed
triangulated 5-manifold M with �1.M/ D G. According to our previous result zM
is an open gsc manifold. In particular, by the corollary above zM is Tucker. Now,
a complex X is Tucker if and only if its 2-skeleton X2 is Tucker. Therefore the

2-skeleton of zM and hence the universal covering AM .2/ of the 2-skeleton of the
triangulation of M is Tucker. It is clear that �1.M/ D �1.M

.2//. Recall from [38]
that G is tame combable if there is some finite 2-complex X with �1.X/ D G for
which zX has the Tucker property. This proves that G is tame 1-combable.

In particular we obtain the Corollary 1.2, which we restate here for the sake of
completeness:

Corollary 3.4. The qsf property is a quasi-isometry invariant of finitely presented
groups.

Proof. Brick proved (see [6], and also the refinement from [32], Theorem A) that a
group quasi-isometric to a finitely tame 1-combable group is also tame 1-combable.

3.3. Some examples of qsf groups

3.3.1. General constructions. It follows from [6], [8], [7], [38] that most geometric
examples of groups are actually qsf.

Example 3.5. (1) A group G is qsf if and only if a finite index subgroup H of G is
qsf.

(2) Let A and B be finitely presented qsf groups and C be a common finitely
generated subgroup. Then the amalgamated free product G D A �C B is qsf. If
A is a finitely presented qsf group and 
 W C1 ! C2 is an isomorphism of finitely
generated subgroups of A, then the HNN extension A�� is qsf. Conversely, if A;B
are finitely presented and C is finitely generated then A �C B (respectively A�� ,
where 
 W C1 ! C2 is an isomorphism of finitely generated subgroups of A) is qsf
implies that A and B are qsf.

(3) All one-relator groups are qsf.
(4) The groups from the class CC (combable) in the sense of Alonso–Bridson ([2])

are qsf. In particular automatic groups, small cancelation groups, semi-hyperbolic
groups, groups acting properly co-compactly on Tits buildings of Euclidean type,
Coxeter groups, fundamental groups of closed non-positively curved 3-manifolds are
qsf. Notice that all these groups have solvable word problem.
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(5) If a group has a tame 1-combing then it is qsf. In particular, asynchronously
automatic groups (see [38]) are qsf.

(6) Groups which are simply connected at infinity are qsf ([8]).
(7) Assume that 1 ! A ! G ! B ! 1 is a short exact sequence of infinite

finitely presented groups. Then G is qsf ([7]). More generally, graph products (i.e.,
the free product of vertex groups with additional relations added in which elements of
adjacent vertex groups commute with each other) of infinite finitely presented groups
associated to nontrivial connected graphs are qsf.

Remark 3.2. The last property above is an algebraic analog of the fact that the product
of two open simply connected manifolds is gsc. Moreover, if one of them is 1-ended
then the product is simply connected at infinity.

Remark 3.3. There exist finitely presented qsf groups with unsolvable word problem.
Indeed, in [12] the authors constructed a group with unsolvable word problem that
can be obtained from a free group by applying three successive HNN extensions with
finitely generated free associated subgroups. Such a group is qsf from (2) of the
example above.

3.3.2. Baumslag–Solitar groups: not simply connected at infinity. The Baums-
lag–Solitar groups are given by the 1-relator presentation

B.m; n/ D ha; b j abma�1 D bni; m; n 2 Z:

Since they are 1-relator groups they are qsf. It is known that B.1; n/ are amenable,
metabelian groups which are neither lattices in 1-connected solvable real Lie groups
nor CAT.0/ groups (i.e., acting freely co-compactly on a proper CAT.0/ space).

Notice that B.1; n/ are not almost convex with respect to any generating set and
not automatic either, if n ¤ ˙1.

Recall that a group G which is simply connected at infinity should satisfies
H 2.G;ZG/ D 0. Since this condition is not satisfied byB.1; n/, forn > 1 (see [36]),
these groups are not simply connected at infinity.

The higher Baumslag–Solitar groups B.m; n/ for m; n > 1 are known to be
nonlinear, not residually finite (if m ¤ n), not Hopfian (when m and n are coprime),
not virtually solvable. Moreover, they are not automatic if m ¤ ˙n, but they are
asynchronously automatic.

3.3.3. Solvable groups: not CAT.0/. Let G be a finitely presented solvable group
whose derived series is

G FG.1/ FG.2/ F � � � FG.n/ FG.nC1/ D 1:

If G.n/ is finite then G is qsf if and only if the solvable group G=G.n/ (whose
derived length is one unit smaller than G) is qsf. Solvable groups with infinite
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finitely generated center are qsf by Example 3.5 (7). More generally, if G.n/ has
an element of infinite order, then Mihalik (see [36]) proved that either G is simply
connected at infinity or else there exist ƒ C G, which is a normal subgroup of finite
index, and F C ƒ which is a normal finite subgroup, such that ƒ=F is isomorphic
to a Baumslag–Solitar group B.1;m/. This implies that ƒ is qsf and hence G is qsf.
This is useful in understanding that qsf groups are far more general than groups acting
properly co-compactly and by isometries on CAT.0/ spaces. In fact, every solvable
subgroup of such a CAT.0/ group should be virtually abelian. Thus all solvable
groups that are not virtually abelian are not CAT.0/ and many of them are qsf (e.g.,
if their center is not torsion). Notice that there exist solvable groups with infinitely
generated centers, as those constructed by Abels (see [1]). In general we do not know
whether all solvable groups (in particular those with finite centers) are qsf, but one
can prove that Abels’ group is qsf since it is an S-arithmetic group.

3.3.4. Higman’s group: acyclic examples. The first finitely presented acyclic
group was introduced by G.Higman in [33]:

H D hx; y; z; w j xw D x2; yx D y2; zy D z2; wz D w2i;
where ab D bab�1. It is known (see e.g. [18]) that H is an iterated amalgamated
product,

H D Hx;y;z �Fx;z
Hz;w;x;

with Hx;y;z D Hx;y �Fy
Hy;z and Hx;y D hx; y; yx D y2i is the Baumslag–

Solitar group B.1; 2/ with generators x, y. Here Fy , Fx;z are the free groups in
the respective generators. The morphisms Fy ! Hx;y , Fx;z ! Hx;y;z and their
alike are tautological, i.e., they send each left-hand side generator into the generator
denoted by the same letter on the right-hand side. Notice that these homomorphisms
are injective. The example above implies thatH is qsf. Observe thatH is not simply
connected at infinity according to [37]. There are more general Higman groups Hn

generated by n elements with n relations as above in cyclic order. It is easy to see
that H3 is trivial and the arguments above imply that Hn are qsf for any n � 4.

3.3.5. The Gromov–Gersten examples. A slightly related class of groups was con-
sidered by Gersten and Gromov (see [29], 4.C3):

�n D ha0; a1; : : : ; an j aa1

0 D a2
0; a

a2

1 D a2
1; : : : ; a

an

n�1 D a2
n�1i:

Note that Hn is obtained from �n by adding one more relation that completes the
cyclic order. As above �nC1 is an amalgamated product �n �ZB.1; 2/, and thus �n is
qsf for any n. These examples are very instructive since Gromov and Gersten proved
that the connectivity radius of �nC1 is an n-fold iterated exponential (see the next
section for a discussion). Moreover, �n is contained in the group

�� D ha0; b j aab
0

0 D a2
0i:
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Therefore, the connectivity radius of�� is higher than any iterated exponential. Since
�� is a 1-relator group it is qsf and has solvable word problem.

3.3.6. Thompson groups. Among the first examples of infinite finitely presented
simple groups are those provided by R. Thompson in the sixties. We refer to [11] for
a thorough introduction to the groups usually denoted F , T and V . These are by now
standard test groups.

According to ([10], [21]) F is a finitely presented group which is an ascending
HNN extension of itself. A result of Mihalik ([35], Th.3.1) implies that F is simply
connected at infinity and thus qsf.

Remark 3.4. Notice that F is a non-trivial extension of its abelianization Z2 by
its commutator ŒF; F �, which is a simple group. However ŒF; F � is not finitely
presented, although it is still a diagram group, but one associated to an infinite semi-
group presentation. Thus one cannot apply directly (7) of the example above.

Moreover, the truncated complex of bases due to Brown and Stein (see [9]) fur-
nishes a contractible complex acted upon freely co-compactly by the Thompson
group V . The start-point of the construction is a complex associated to a directed
poset which is therefore exhausted by finite simply connected (actually contractible)
subcomplexes.

The qsf is preserved through all the subsequent steps of the construction and thus
the complex of bases is qsf. In particular the Thompson group V is qsf. We skip the
details.

Remark 3.5. It is likely that all diagram groups (associated to a finite presentation of a
finite semi-group) considered by Guba and Sapir in [30] (and their generalizations, the
picture groups) are qsf. Farley constructed in [19] free proper actions by isometries
of diagram groups on infinite dimensional CAT.0/ cubical complexes. This action
is not co-compact and moreover the respective CAT.0/ space is infinite dimensional.
However there exists a natural construction of truncating the CAT.0/ spaceX in order
to get subspacesXn ofX which are invariant, co-compact and n-connected. Farley’s
construction works well ([20]) for circular and picture diagrams (in which planar
diagrams are replaced by annular diagrams or diagrams whose wires are crossing
each other). However, these subcomplexes are not anymore CAT.0/, and it is not
clear whether they are qsf. Notice that these groups have solvable word problem
(see [30]).

3.3.7. Outer automorphism groups. In the case of surface groups these corre-
spond to mapping class groups. Since a finite index subgroup acts freely properly
discontinuously on the Teichmüller space it follows that mapping class groups are
qsf. The study of Morse type functions on the outer space led to the fact that Out.Fn/

is 2n � 5 connected at infinity and thus qsf as soon as n � 3 (see [5]).
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4. Proof of Theorem 1.3 and applications

4.1. The qsf growth. LetP be a finite presentation of the qsf groupG andC.G;P /
be the associated Cayley complex. There is a natural word metric on the set of vertices
of the Cayley graph C 1.G; P / (the 1-skeleton of the Cayley complex) by setting

d.x; y/ D min jw.xy�1/j
where jw.a/j denotes the length of a word w.a/ in the letters s, s�1, for s 2 P ,
representing the element a in the groupG. By language abuse we call metric complex
a simplicial complex whose 0-skeleton is endowed with a metric.

Definition 4.1. The metric ball B.r; p/ � C.G;P / (respectively metric sphere
S.r; p/ � C.G;P /) of radius r 2 ZC centered at some vertex p is the follow-
ing subcomplex of C.G;P /:

(1) the vertices ofB.r; p/ (respectively S.r; p/) are those vertices ofC.G;P / stay-
ing at distance at most r (respectively r) from p;

(2) the edges and the 2-cells of B.r; p/ (respectively S.r; p/) are those edges and
2-cells of C.G;P / whose boundary vertices are at distance at most r (respec-
tively r) from p.

Denote by B.r/ (respectively S.r/) the metric ball (respectively sphere) of radius r
centered at the identity.

Definition 4.2. A �1-resolution of the polyhedronC insideX is a pair .A; f /, where
A is a CW complex and f W A ! X a PL map such that f W f �1.C / ! C � X is a
PL-homeomorphism and �1.A/ D 0.

We want to refine the qsf property for metric complexes. As we are interested in
Cayley complexes below, we formulate the definition in this context.

Definition 4.3. The qsf growth function fG;P of the Cayley complex C.G;P / is

fG.r/ D inffR such that there exists a �1-resolution of B.r/ into B.R/g:

Recall that the real functions f and g are rough equivalent if there exist constants
ci ; Cj (with c1; c2 > 0) such that

c1f .c2R/C c3 	 g.R/ 	 C1f .C2R/C C3:

One can show easily that the rough equivalence class of fG;P .r/ depends only on
the group G and not on the particular presentation, following [8] and [24]. We will
write it as fG.r/. We do not know whether the rough equivalence class of fG is
a quasi-isometry invariant. This would be true if we could compare fG with the
tameness function of Hermiller and Meier ([32]).
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Recall from ([29], 4.C) that the connectivity radius R1.r/ defined by Gromov
is the infimal R1.r/ such that �1.B.r// ! �1.B.R1.r/// is zero. Notice that the
rough equivalence class of R1 is also well defined and independent on the group
presentation we chose for the group.

Remark 4.1. Observe that �1.B.r// ! �1.B.fG.r/// is zero. Thus fG is bounded
from below by the connectivity radius R1.

Recall that the isodiametric function of a group G, following Gersten, is the
infimal IG.k/ so that loops of length k bound disks of diameter at most IG.k/ in the
Cayley complex. The rough equivalence class of IG is a quasi-isometry invariant of
the finitely presented group G.

Proposition 4.1. A qsf group whose qsf growth fG is recursive has a solvable word
problem.

Proof. Observe that the growth rate of the qsf is an upper bound for the Gersten
isodiametric function IG , and the word problem is solvable whenever the isodiametric
function is recursive. This is standard: if a wordw is trivial in the groupG presented
as G D hS j Ri, then it is a product of conjugates of relators uru�1, r 2 R. By the
definition of the isodiametric function one can choose these conjugates in such way
that juj 	 IG.jwj/ 	 fG.jwj/ and this leads to a finite algorithm that checks whether
w is trivial or not.

4.2. Metric balls and spheres in Cayley complexes. We consider now some metric
complexes satisfying a closely related property. On one side this condition seems to
be slightly weaker than the wgsc since we could have nontrivial (but uniformly small)
loops, but on the other side the exhaustions we consider are restricted to metric balls.

Definition4.4. A metric complex has�1-boundedballs (respectively spheres ) if there
exists a constant C so that �1.B.r// (respectively �1.S.r//) is normally generated
by loops with length smaller than C .

Remark 4.2. If the balls in a metric complex are simply connected then the complex
is obviously wgsc. However, if the complex is wgsc it is not clear whether we can
choose an exhaustion by simply connected metric balls. Thus the main constraint in
the definition above is the requirement to work with metric balls.

We actually show that this condition puts strong restrictions on the group:

Proposition 4.2. If some Cayley complex of a finitely presented group has �1-
bounded balls (or spheres) then the group is qsf with linear qsf growth.
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Proof. Any loop l in the ball B.r/ is null-homotopic in the Cayley complex. Thus
there exists a disk with holes lying in B.r/ such that the outer boundary component
is equal to l and the other boundary components l 01; : : : l 0p lie in S.r/.

If we have �1-bounded spheres then we can assume that each loop l 0j , 1 	 j 	 p,
is made of uniformly small loops on S.r/ connected by means of arcs. A loop of
lengthC in the Cayley graph bounds a disk of diameter IG.C / in the Cayley complex.
Thus these disks have uniformly bounded diameters. The loop l 0j bounds therefore a
disk D.l 0j / which is disjoint from B.r � IG.C // and lies within B.r C IG.C //.

We can use this procedure for a system of loops lj , 1 	 j 	 n, which generate
�1.B.r//. Thus, to any loop lj we associate a disk with holes having one boundary
component lj , while the other boundary components are the loops l 0

j;k
that lie on S.r/

and then null-homotopy disks D.l 0
j;k
/ as above. Let Dj denote their union, which is

a 2-dimensional subcomplex of C.G;P / providing a null-homotopy of lj .
Let A denote the simplicial complex made of B.r/ union a number of 2-disks

D.j / which are attached to B.r/ along the loops lj . As the set of loops lj generate
�1.B.r// the complex A is simply connected.

We define the map A ! B.r C IG.C // by sending each disk D.j / into the
corresponding null-homotopy disk Dj . Since �1.A/ D 0 this map provides a �1-
resolution of B.r � IG.C //.

The same proof works for �1-bounded balls.

Completion of the proof of Theorem 1.3. We have to show that a group having a Cay-
ley complex with�1-bounded balls or spheres has linear connectivity radius and solv-
able word problem. The connectivity radius is at most linear since loops generating
�1.B.r// are null-homotopic using uniformly bounded null-homotopies whose size
depends only on C . Thus �1.B.r// ! �1.B.r C C 0// is zero for C 0 � IG.C /.
This means that a loop in B.r/ is null-homotopic in the Cayley complex only if it is
null-homotopic within B.r CC 0/. Moreover, the last condition can be checked by a
finite algorithm for given r , and in particular one can check whether a given word of
length r is trivial or not.

Remark 4.3. Some Cayley complexes of hyperbolic groups have �1-bounded balls
and spheres. For instance this is so for any of the Rips complexes, whose metric balls
are known to be simply connected. It is likely that any Cayley complex associated
to a finite presentation of a hyperbolic group has �1-bounded balls. Furthermore, if
a group G acts properly co-compactly on a CAT.0/ space then the metric balls are
convex and thus they are simply connected. It seems that this implies that any other
space that is acted upon by the groupG properly co-compactly (thus quasi-isometric
to the CAT.0/ space) should have also �1-bounded balls. This would follow if the
�1-bounded balls property were a quasi-isometry invariant.

Remark 4.4. One can weaken the requirements in the definition of�1-bounded balls,
in the case of a Cayley complex of a group, as follows. We only ask that the group
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�1.B.r// be normally generated by loops of length �.r/, where

lim
r!1 r � IG.�.r// D 1:

Note that the limit should be infinite for any choice of the isodiametric function IG

within its rough equivalence class. Then finitely presented groups satisfying this
weaker condition are also qsf by means of the same proof.

Notice however that IG.r/ should be non-recursive for groups G with non-
solvable word problem, so that �.r/ grows extremely slow if non-constant. Moreover,
if we only ask that the function r�IG.�.r// be recursive then the group under consid-
eration should have again solvable word problem. In fact, we have by the arguments
above the inequalities

IG.r � IG.�.r// 	 fG.r � IG.�.r// 	 r C IG.�.r// < 2r;

and so IG.r/ is recursive since it is bounded by the inverse of a recursive function.

Remark 4.5. Recall that the Gersten–Gromov groups �n have n-fold iterated ex-
ponential connectivity radius, and thus at least that large qsf growth, while �� has
connectivity radius higher than any iterated exponential (see [29], 4.C3). We saw
above that all these groups are qsf. However the last corollary shows that the metric
balls in their Cayley complexes are not �1-bounded, and thus their exhaustions by
simply connected subcomplexes should be somewhat exotic. On the other hand we
can infer from Remark 4.3 that their Cayley complexes have not (group invariant)
CAT.0/-metrics, although they are both aspherical and qsf.

4.3. Rewriting systems. Groups admitting a rewriting system form a particular class
among groups with solvable word problem (see [31] for an extensive discussion). A
rewriting system consists of several replacement rules

wC
j ! w�

j

between words in the generators of the presentationP . We suppose that both s and s�1

belong to P . A reduction of the word w consists of a replacement of some subword
of w according to one of the replacement rules above. The word is said irreducible if
no reduction could be applied anymore. The rewriting system is complete if for any
word in the generators the reduction process terminates in finitely many steps and is
said to be confluent if the irreducible words obtained at the end of the reduction are
uniquely defined by the class of the initial word, as an element of the group. Thus
the irreducible elements are the normal forms for the group elements. If the rules are
not length increasing then one calls it a geodesic rewriting system. We will suppose
that the rewriting system consists of finitely many rules.

Proposition 4.3. A finitely presented group admitting a complete confluent geodesic
rewriting system is qsf.



570 L. Funar and D. E. Otera

Proof. In [31] is proved that such a group is almost convex and thus qsf (by Propo-
sition 4.6.3, see also [39]).

Here is a shorter direct proof. We prove that actually the balls B.r/ in the Cayley
complex are simply connected. Observe first that in any Cayley complex we have:

Lemma 4.1. The fundamental group �1.B.r// is generated by loops of length at
most 2r C 1.

Proof. Consider a loop ep1p2 : : : pke based at the identity element e and sitting in
B.r/. Here pj are the consecutive vertices of the loop. There exists a geodesic �j

that joins pj to e, of length at most r . It follows that the initial loop is the product of
loops ��1

j pjpj C1�j C1. Since pj 2 B.r/ all these loops have length at most 2r C 1.

Consider now the Cayley complex of a group presentation that includes all rules
from the rewriting system. This means that there is a relation associated to each rule
wC

j ! w�
j . We claim that the balls B.r/ are simply connected. By the previous

lemma it suffices to prove that loops of length at most 2r C 1 within B.r/ are null-
homotopic in B.r/.

Choose such a loop inB.r/which is represented by the wordw in the generators.
We can assume that the normal form of the identity element is the trivial word. Since
the loop is null-homotopic in the Cayley complex, the word w should reduce to
identity by the confluent rewriting system. Let us consider some reduction sequence

w ! w1 ! w2 ! � � � ! wN ! e:

Each word wi represents a loop based at the identity in the Cayley graph. Each step
wj ! wj C1 is geometrically realized as a homotopy in which the loop associated
to the word wj is slided across a 2-cell associated to a relation from the rewriting
system. Further the lengths of these loops satisfy jwj j � jwj C1j, since the length of
each reduction is non-increasing by assumption. Thus jwj j 	 2rC1 and this implies
that the loop is contained withinB.r/. This proves that the reduction sequence above
is a null-homotopy of the loop w within B.r/.

Remark 4.6. The Baumslag–Solitar groups B.1; n/ and the solvgroups (i.e., lattices
in the group SOL) admit rewriting system but not geodesic ones ([31]), since they
are not almost convex.

Remark 4.7. More generally one proved in [31] that groups admitting a rewriting
system are tame 1-combable and thus qsf by [38].

Remark 4.8. One might wonder whether finitely presented groups that have solvable
word problem are actually qsf. Notice that an algorithm solving the word problem
does not yield a specific null-homotopy disk for a given loop in the Cayley complex,
but rather checks whether a given path closes up.
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Remark4.9. The geometry of null-homotopy disks (size, diameter, area) is controlled
by the various filling functions associated to the group. However, in the qsf problem
one wants to understand the position of the null-homotopy disks with respect to
exhaustion subsets, which is of topological nature. The choice of the exhaustion is
implicit but very important and it should depend on the group under consideration.

5. Extensions by finitely generated groups and the Grigorchuk group

5.1. Infinitely presented groups. Although it does not make sense to speak, in gen-
eral, of the qsf property for an infinitely presented group, one can do it if, additionally,
we specify a group presentation.

Recall first that the elementary Tietze transformations of group presentations are
the following:

(T1) Introducing a new generator. One replaces hx1; x2; : : : j r1; r2; : : : i with
hy; x1; x2; : : : j ys�1; r1; r2; : : : i, where s D s.x1; x2; : : : / is an arbitrary
word in the generators xi .

(T2) Canceling a generator. This is the inverse of (T1).
(T3) Introducing a new relation. One replaces hx1; x2; : : : j r1; r2; : : : i with

hx1; x2; : : : j r; r1; r2; : : : i, where r D r.r1; r2; : : : / is an arbitrary word in
the conjugates of relators ri and their inverses.

(T4) Canceling a relation. This is the inverse of (T3).

Definition 5.1. We say that two infinite presentations are finitely equivalent or, they
belong to the same finite equivalence class, if there exists a finite sequence of ele-
mentary Tietze moves that changes one presentation into the other.

Proposition 5.1. The qsf property is well defined for groups with a presentation from
a fixed finite equivalence class: if the Cayley complexC.G;P / is qsf, then the Cayley
complexC.G;Q/ is qsf for any presentationQ ofG which is finitely equivalent toP .

Proof. The proof from [8] works in this case word by word.

Most of the properties shared by the qsf finitely presented groups hold, more
generally, for the qsf infinitely presented groups equipped with the convenient finite
equivalence class of presentations. For instance, for any infinite groups G, H and
group presentations .G; PG/ and .H;PH /, the Cayley complexC.G�H;PG �PH /

is qsf, where PG � PH is the product presentation of G �H .

Remark 5.1. By the method from Remark 2.5, one can obtain an infinite presentation
of a group whose Cayley complex is not wgsc. However, it is more difficult to prove
that a specific infinite presentation of some group is qsf, for instance in the case of
Burnside groups.
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Remark 5.2. The previous proposition might be extended farther. In fact one could
allow infinitely many Tietze moves if they do not accumulate at finite distance but
the complete definition is quite involved.

5.2. Extensions by infinitely presented groups. One method for constructing
finitely presented groups is to use suitable extensions of finitely presented groups
by infinitely presented ones. We did not succeed in proving that all such extensions
are qsf. However, for finitely presented extensions by finitely generated groups things
might simplify considerably. We start with the following definition from [3].

Definition 5.2. An endomorphic presentation is an expression of the form P D
hS jQjˆjRi, where S is an alphabet (i.e., a set of symbols),Q, R are sets of reduced
words in the free group F.S/ generated by S and ˆ is a set of injective free group
homomorphisms F.S/ ! F.S/. The endomorphic presentation is finite if all sets
S , Q, ˆ, R are finite. This data defines the group

G.P / D F.S/=hQ [ S
�2ˆ�


.R/ i];

where h ; i] denotes the normal closure and ˆ� is the monoid generated by ˆ, i.e.,
the closure of ˆ[ f1g under the composition. The endomorphic presentation is said
to be ascending if Q D ;.

Bartholdi observed that groups with finite ascending endomorphic presentations
are naturally contained in finitely presented groups constructed as generalized as-
cending HNN extensions, by adding finitely many stable letters. Each 
 2 ˆ induces
a group endomorphism ' W G ! G and we suppose that the correspondence 
 ! '

is one-to-one so ˆ is also a set of endomorphisms of G. Then the finitely presented
group

xG D hS [ˆ j Q [R [ f
�1s
 D 
.s/I s 2 S; 
 2 ˆgi
is a generalized HNN extension of G with stable letters corresponding to ' 2 ˆ. If
the endomorphic presentation is ascending (i.e., Q D ;), and the endomorphisms
' W G ! G are injective then the natural homomorphism G ! xG is an embedding
and xG will be what is standardly called an ascending HNN extension with set of stable
letters ˆ. Further, if the natural map G ! xG is an embedding, then we can assume
that the endomorphic presentation of G is ascending. In fact the relations from Q

and the conjugacy relations in xG imply that the relations
S

�2ˆ� 
.Q/ are satisfied
in G. Thus we can replace R by R [Q in the endomorphic presentation of G and
obtain the same generalized HNN extension group xG.

Set N.G/ for the normal subgroup of xG generated by G. We then have an exact
sequence

1 ! N.G/ ! xG ! L ! 1;
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where the quotient L D xG=N.G/ has the presentation, PL, as follows:

L D hS [ˆ j S [R [ f
�1s
 D 
.s/I s 2 S; 
 2 ˆgi:
Using elementary Tietze moves one sees that L is the free group generated by the set
of stable letters ˆ.

The images of elements of ˆ� n f1g in L will be called the positive elements of
L. Let ˆ D f'1; '2; : : : ; 'kg.

Very interesting examples of groups with finite ascending endomorphic presenta-
tions which are also branch groups appeared in the constructions of Bartholdi (see [3]).

Theorem 5.1. LetG be a finitely generated group admitting a finite ascending endo-
morphic presentation PG such that each 'j 2 ˆ is injective and xG be its associated
HNN extension. Assume that the group G endowed with the presentation PG is
1-tame. Then xG is qsf.

Remark 5.3. The words from 
.R/, 
 2 ˆ� are unreduced words in the free group
F.S/, namely one can have adjacent canceling letters. This will be essential for
the proof of Lemma 5.6. Allowing unreduced words makes the hypothesis that the
presentationPG ofG is 1-tame more difficult to check and potentially more restrictive
than in the case when the words from R1 are reduced.

5.3. Plan of the proof of Theorem 5.1. Assume that we have a HNN extension as
in the hypothesis which induces the exact sequence

1 ! N.G/ ! xG ! L ! 1:

Consider then an infinite endomorphic presentation PG : G D hA j R1i D hai j
R D fRj g; ˆ D f
1; : : : ; 
kgi, with an infinite set of relatorsR1 D S

j;�2ˆ� 
.Rj /

for G and the standard presentation PL: L D hB j ;i for the free group L with
generators set B D fb1; : : : ; bkg, where every bj corresponds to the stable letter 
j .
One obtains an infinite presentation for xG by putting together the two presentations
above, namely: P xG.1/: xG D hA [ B j R1 [ T i, where the elements of T
express the HNN conditions for stable letters. Thus, each element of T has the form
b�1abw.a; b/, where a 2 A, b 2 B and w.a; b/ 2 F.A/ is some word in the
generators A. We call them conjugacy relations.

Henceforth we suppose that T is given by T D fb�1
j aibj D 
j .ai / 2 A�; ai 2

A; bk 2 Bg. Notice that B contains only positive letters. Thus it might not make
sense to consider relations of type b�1

j abj unless a is a word representing an element
of the image of G by the endomorphism associated to bj .

However, the group xG could be defined by the same set of generators A[B and
a finite subset of relations from above. We may assume that this finite presentation
is P xG : xG D hA [ B j R [ T i, where R � R1, is a finite set of relations.

The plan of the proof is as follows. The exact sequence induces a kind of foliation
of the Cayley complex C. xG;P xG/ by horizontal leaves associated to N.G/. These
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leaves are connected by means of vertical tubes associated to conjugacy relations and
going upward. Given a compactC , we can use these vertical tubes to push up loops in
C and find a larger compactK whose fundamental group is generated by loops lying
in a top horizontal leafKu far fromC . IfG were finitely presented then the horizontal
leaves would be simply connected so that loops could be homotopically killed inside
the top leaf. WhenG is not finitely presented, the fundamental group of a (connected
component of a) horizontal leaf is generated by the relations in R1 �R. Thus loops
in the top horizontal leaf are now freely homotopic to relation loops expressing words
fromR1�R. The 1-tameness ofC.G;PG/ enables us to consider only relation loops
which are either contained in a larger compactE of the horizontal leaf and which are
disjoint fromKu or else contained inKu. Each such loop has a particularly nice null-
homotopy in C. xG;P xG/ by expressing the relation as an element ofˆ�.R/. Namely,
there exists a canonical vertical tube going downward from that loop to a loop which
is null-homotopic in the bottom horizontal leaf. We add then more material to K
so that all canonical homotopies of loops from the top leaf be either contained in K
or else disjoint from C . Here one makes use of the fact that the monoid of positive
elements in L defines an order on the set of horizontal leaves. Then loops in K are
freely homotopic to loops which are null-homotopic in C. xG;P xG/ � C , and so the
Cayley complex is 1-tame.

5.4. Preliminaries from Brick and Mihalik and the proof of Theorem 1.4. Our
aim is to prove that the Cayley complex C. xG;P xG/ is qsf. We follow closely the
proof given by Brick and Mihalik in [7] for the fact that the extension of an infinite
finitely presented group by an infinite finitely presented group is qsf. First, we state
below the necessary adjustments for the main lemmas from [7] work now for HNN
extensions. Then we will point out the arguments which have to be modified in the
present setting.

Let C.H;PH / denote the Cayley 2-complex associated to the presentation PH

of the group H . Consider now the subcomplex X.G/ � C. xG;P xG/ spanned by the
vertices ofN.G/ � xG. Observe that the subcomplexX0.G/ spanned byG � N.G/

can be obtained fromC.G;PG/ by removing the 2-cells corresponding to the relations
fromR1�R. Moreover,X.G/ is the disjoint sum of copies ofX0.G/. In fact for each
cosetw 2 N.G/=G we have a copywX0.G/ � X.G/ obtained by left translating by
w. These copies are disjoint because any edge ofX.G/ corresponds to a generator of
G and so a path in X.G/ corresponds to an element of G. Thus wX0.G/ intersects
w0X0.G/ only if wG D w0G, for w;w0 2 N.G/, and in this case they coincide.

To each x 2 L we associate the horizontal slice xX.G/ � C. xG;P xG/ obtained
by a left translation of X.G/ so that it projects down onto x 2 L under the map
xG ! L. The 0-skeleton of the Cayley complex C. xG;P xG/ is then decomposed as
the disjoint union of 0-skeleta of slices xX.G/, over x 2 L. The paths (edges) which
are contained in such a horizontal slice xX.G/ will be called A-paths (respectively
A-edges). The B-edges are those edges of C. xG;P xG/ which project onto the gener-
ators B of L. The 2-cells corresponding to relators in T will be called conjugation
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cells. Notice that the attaching map of a conjugation cell is of the form b1ab
�1
2 w,

where b1 and b2 are B-edges corresponding to the same b 2 B , and w is the A-path
corresponding to the word w D w.a; b/ appearing in the respective conjugacy rela-
tion. The loops in C. xG;P xG/ are called of type 1 if they are conjugate to A-loops and
of type 2 otherwise.

Those subcomplexes ofC. xG;P xG/which are finite, connected and which intersect
each wX0.G/, for w 2 xG, in a connected – possibly empty – subset are called
admissible.

Let C � C. xG;P xG/ be a finite connected subcomplex. By adding finitely many
edges we may assume that C is admissible. We want to show that there is a larger
subcomplex K, obtained by adjoining finitely many edges and conjugation cells
such that �1.K/ is normally generated by finitely many loops in K which are null-
homotopic in C. xG;P xG/ � C .

Lemma 5.1. LetZ be an admissible subcomplex of C. xG;P xG/. Let fu1; u2; : : : ; ung
be a system of generators of �1.Z/.

(1) If e is an A-edge that meets Z then Z [ e is admissible. Further, �1.Z [ e/

is generated by fu1; u2; : : : ; un, �	��1g, where 	 is an A-loop in the copy of
X.G/ containing e.

(2) If  is a conjugation cell with @ D b�1
1 ab2w

�1, and b1 � Z, then Z [ is
admissible. Further �1.Z [ / is generated by fu1; u2; : : : ; un; v1; : : : ; vmg,
where each vi is a type 1 generator. Moreover, if a � Z then each vi is of the
form �	��1, where 	 is an A-loop in the copy ofX.G/ containing the endpoint
of b1.

Proof. Lemma 2.1 from [7] extends trivially to the present situation.

Proposition 5.2. There exists a complex C1 obtained from C by adjoining finitely
many A-edges and conjugation cells as in Lemma 5.1 such that �1.C1/ is generated
by classes of loops of type 1.

Proof. We want to transform each loop of type 2 into a loop of type 1 by using homo-
topies which can be realized after adjoining finitely many A-edges and conjugation
cells to C (satisfying the requirements of Lemma 5.1). Since one does not create any
additional type 2 loop, we end up with a complex C1 whose fundamental group is
generated by classes of loops of type 1.

Consider first the case when there is only one stable letter, B D fbg. We use
the conjugacy relation b�1a D 
.a/b, for a 2 A, to move the B-edge labeled b�1

to the right of the adjacent A-edge labeled 
.a/. In meantime use the conjugacy
relation ab D b
.a/ to move the B-edge labeled b to the left of the adjacent A-edge
labeled 
.a/. Keep moving B-edges this way until two B-edges labeled b�1 and b
become adjacent, in which case the two edges will be removed as their labels cancel
and resume the process. This procedure eventually stops when the initial loop is
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transformed into the composition of an A-path with a B-path (or vice-versa). Now
the extension xG ! L splits (because L is free) and hence the B-path above should
be a loop. This B-loop is then homotopically trivial in its own image, since L is free
and so we eventually obtain an A-loop.

Suppose now that the number of stable letters is k � 2. Set zB D B n fbkg, ẑ D
ˆnf
kg, and zG for the HNN extension associated to the set of stable letters ẑ (which
is not necessarily finitely presented). Then G has a natural injective homomorphism
i W G ! zG, and thus 'k induces an isomorphism Q'k W i.G/ ! i.'k.G// between
two subgroups of zG.

Therefore the group xG is also the HNN extension zG�z'k
with base group zG, stable

letter bk and associated subgroups i.G/ and i.'k.G//.
Any loop in C. xG;P xG/ corresponds to a word W in xG representing the trivial

element in the group. Britton’s lemma tells us that either the letter bk does not occur
in W or else W contains an unreduced word with respect to the stable letter bk ,
namely either

(1) a subword of the form bkwb
�1
k

, with w a word representing an element of
Q'k.G/; or

(2) a subword of the form b�1
k
wbk , withw a word representing an element of i.G/.

Thusw is anA-word, i.e., a word using only the lettersA (constrained to belong to
the image of 
k in case (1)). In the first situation we choose anA-word z so that 
k.z/

represents the same element inG asw. If˛ is an edge loop representing a generator of
�1.C / and bkwb

�1
k

is an unreduced subword of ˛ (with respect to the HNN structure
with stable letter bk) then write ˛ as �wı. Add the type 1 generator �
k.z/w

�1��1

to the list of generators of �1.C / and replace the generator ˛, with the product of the
two generators �
k.z/w

�1��1 and ˛ (which is �bk
k.z/b
�1
k

). This change replaces
the subword bkwb

�1
k

of ˛ by bk
k.z/b
�1
k

. Now, in either case the occurrence of the
unreduced subword can be eliminated by adjoining conjugacy 2-cells along the paths
labeled z and respectively w. The new loop has fewer B-edges than the former one
and we keep eliminating unreduced subwords until all occurrences of the letter bk

are removed. The same method permits to get rid of all stable letters and hence to
transform the loop into a composition of A-loops and hence a loop of type 1.

Proposition 5.3. Suppose thatC1 satisfies the requirements of Proposition 5.2. Then
there exists a finite complexK obtained from C1 by adjoining finitely many conjuga-
tion cells and finitely many B-edges ej , each ej having one endpoint uj 62 C1, such
that �1.K/ is generated by the classes of loops fv1; : : : ; vmg so that each vs is freely
homotopic in K to an A-loop �s based at some uj and lying entirely in the layer
K \ ujX0.G/. Moreover, each �j is disjoint from C1.

Proof. Given a compactK we define the layerKx D K\xX.G/. We want to adjoin
conjugacy cells in order to homotop all (type 1) generators of �1.C1/ into a disjoint
union of layers.
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Define an order onL by setting y < x if y�1x 2 L is positive. This order extends
to the set of layers, by saying that the (non-empty) layer Ky is below the layer Kx if
y < x. We extend this terminology to (oriented)B-edges, by declaring them positive
if their label is positive.

The proof of this proposition follows along the lines of ([7], Section 4). We define
first an oriented graph � D �C1

whose vertex set �0 is the set of non-empty layers
of C1, i.e., slices intersecting non-trivially C1.

The vertices w1; w2 of � are joined by an oriented edge of � if there exists some
positiveB-edge joining the slicew1 to the slicew2. Notice that we do not ask that the
respective layers be connected by a positive edge. We will consider subcomplexes
C2 obtained from C1 by adding conjugacy 2-cells. Given such a complex C2 and a
subset A of �0 we say that A carries the loops ofC2 if �1.C2/ has a set of generators
fv1; v2; : : : ; vmg, where all vi areA-loops freely homotopic in C2 toA-loops that are
in the union of slices in A.

A vertex v of � is extremal if there is no outgoing edge of � issued from it. The
key step is the following:

Lemma 5.2. The set of extremal vertices of � carries the loops for a suitable chosen
C2 which is obtained from C1 by adjoining conjugacy cells.

Proof. Let us start with C2 D C1. Then the loops of C2 are carried by the set of all
vertices of � . Let T be a maximal subtree of � . A vertex of T is T -extremal if all its
adjacent edges in T are incoming. Let x be a non T -extremal vertex of T and xy be
an oriented (outgoing) edge of T labeled by b 2 B . Let u be an A-loop contained in
the slice x. We add conjugacy 2-cells to C2 along the A-loop u in the direction given
by b. In the new complex, still calledC2, we can freely homotop u to anA-loop in the
slice y. Notice that the slice x might intersect C2 in a non-connected subcomplex.
By adjoining conjugacy 2-cells one might create additional type 1 generators, but
according to Lemma 5.1 the new loops are A-loops in the slice y. Proceed in the
same way for each non T -extremal vertex of T . We obtain that A-loops in C2 are
carried by the subset of T -extremal vertices of any maximal subtree T .

Assume first that there is only one stable letter b. Then any maximal subtree T

(and actually the graph�) is an oriented chain since otherwise we would have a vertex
of it with two incoming (or outgoing) B-edges, which is impossible. Moreover the
terminal vertex of the chain is both T -extremal and the unique extremal vertex. The
claim follows.

In general we can have several T -extremal vertices which might not be extremal.
We will show that we can get rid of those vertices which are T -extremal but not
extremal by changing the subtree T and adjoining conjugacy 2-cells. Let x be such a
vertex of T . By hypothesis there exists some positive B-edge e joining x to a vertex
y of � . Since T was a maximal subtree the graph T [ e admits a (non-oriented)
minimal length circuit which passes through e. Let f � T be the (incoming) edge
of this circuit adjacent to the vertex x and distinct from e. Consider then the new
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maximal subtree T 0 D T [ feg n ff g. The vertex x is not anymore T 0-extremal and
the set A is replaced by A0 D A � fxg [ fyg. If y is T 0-extremal but not extremal
then we continue this process and get the sequences xn of vertices of � , and T n of
maximal subtrees. At some point we will find a vertex which is either

(1) non T n-extremal, and then we can reduce the number of T n-extremal vertices,
i.e., the size of the set carrying the loops of C2; or

(2) an extremal vertex, and we are done; or else
(3) we turn back to a vertex which has been considered before during this process.

In this case this means the sequence of vertices that we meet contains an oriented
circuit made of B-edges, which is impossible since .L;</ is ordered.

This proves that extremal vertices of � carry the loops of C2, as claimed.

A layer is said to be extremal if it lies in a slice corresponding to an extremal
vertex of � . Since C2 is connected it can be arranged so that all extremal layers are
connected. In fact, two points of an extremal layer can be joined by a path contained
in C2. By adding conjugacy cells we transform this path into an A-path followed
by a B-path (or vice-versa). The B-path should be a loop and hence homotopically
trivial in its own image since L is a free group. Thus the two points are joined by a
path contained in the layer. Although adding conjugacy cells can create new loops,
these are contained in the same connected component of the extremal layer.

Remark 5.4. If there is only one stable letter then the extremal layer provided by the
lemma above is unique and so Proposition 5.3 follows.

We can suppose, without loss of generality, that C2 contains the identity element
of the group. Recall that p W xG ! L denotes the natural group epimorphism. We
will need further the following technical lemma:

Lemma 5.3. If C2x is an extremal layer then we can write p.x/ D by, where b 2 B
is a positive generator of L and y is an element of L represented by a reduced word
in B not starting with b�1. Moreover, the layer associated to y is not empty.

Proof. We have a cellular map C. xG;P xG/ ! C.L;PL/ between the respective Cay-
ley complexes induced by p. Here PL is the presentation of L induced from xG.
Further, we have a cellular map C.L;PL/ ! C.L/, where C.L/ is the tree as-
sociated to the presentation L D hˆi with empty set of relations. We denote by
p W C. xG;P xG/ ! C.L/ the composition of the two cellular projections. Observe
then that the layer C2x is below the layer C2y if and only if there is a positive path
from p.x/ to p.y/ in C.L/.

Since C2 is connected its image p.C2/ is also connected in the tree C.L/. Thus,
for any x 2 C2 the geodesic in C.L/ joining the origin 1 to p.x/ is contained in
p.C2/. We can suppose that the distance from p.x/ to the origin is at least 1. Let y
be the vertex of this geodesic at distance 1 from p.x/. If C2x is an extremal layer of
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C2, then the oriented edge yp.x/ ofC.L/ is positive. In fact, y 2 p.C2/ and thus the
layer C2y is non-empty. If the edge yp.x/ were negative then the layer C2x would
be below the layer C2y , contradicting the extremality of C2x . This proves that we
can write p.x/ D by, where b 2 B is a positive generator and y is a reduced word
not starting with b�1.

For each extremal layer of C2 choose a vertex wj of it and a positive B-edge
ej D wjuj issued from wj . We adjoin the edges ej to C2 and call K the new
complex.

Lemma 5.4. The layers Kuj
are pairwise disjoint, disjoint from C2 and carry the

loops of �1.K/.

Proof. First, the slice ujX.G/ through uj is disjoint from C2. If this were not true,
then C2wj

and C2 \ ujX.G/ would represent vertices of � connected by a positive
(outgoing) edge, contradicting the extremality of C2wj

.
Next, the slices uj1

X.G/ and uj2
X.G/ are disjoint for distinct j1, j2. Other-

wise the two slices must coincide so that p.uj1
/ D p.uj2

/. Observe that p.uj / D
bm.j /p.wj /, where bm.j / is the positive generator fromB associated to theB-edge ej .
Lemma 5.3 shows that p.wj / D bn.j /yj , where bn.j / 2 B is a positive generator
and yj is a reduced word in the B-letters not starting with b�1

n.j /
. Then we have the

identity bm.j1/bn.j1/yj1
D bm.j2/bn.j2/yj2

in the free group L. This implies that
j1 D j2.

Eventually, uj are extremal vertices for the graph �K associated toK. It suffices
to show that there is no positive B-edge connecting the slices ujX.G/ and ukX.G/.
If such an edge, labeled bi , exists then p.uj / D b�1

i p.uk/. Recall thatp.uj / D
bm.j /p.wj / D bm.j /bn.j /yj , where yj is a reduced word in theB-letters not starting
with b�1

n.j /
and p.uk/ D bm.k/p.wj / D bm.k/bn.k/yk , where yk is a reduced word

in the B-letters not starting with b�1
n.k/

. Then we have the equality bm.j /bn.j /yj D
b�1

i bm.k/bn.k/yk holding in L. This forces i D m.k/, and hence bm.j /p.wj / D
p.wk/ holds inL, which implies that there is a positiveB-edge labeled bm.j / joining
the slices through wj and through wk . In particular, C2xj

is not an extremal layer of
K. This contradiction shows that Kuj

are extremal layers of K.
Further �1.K/ is isomorphic to �1.C2/ (since we simply added a number of

disjoint edges) and the loops lying in the extremal slices of C2 can be homotopically
pushed into the slices through the uj . Thus the set of layers Kuj

is the set of all
extremal layers of K. This proves the lemma.

Moreover, since K is connected, it can be arranged so that K \ ujX.G/ D K \
ujX0.G/ is connected for every j . Then the previous lemmas prove the proposition.

End of the proof of Theorem 1.4. We have to prove that an ascending HNN extension
xG of a finitely presented group G is qsf. This is a consequence of Proposition 5.3.
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If G is finitely presented, then each connected component X0.G/ of X.G/ is simply
connected as being the Cayley complex associated to G. Therefore the loops �j are
null-homotopic in uX.G/ and thus in C. xG;P xG/�C . This implies immediately that
the complex C. xG;P xG/ is qsf.

However, when PG is infinite this argument does not work anymore and we need
additional ingredients.

5.5. Constructing homotopies using extra 2-cells from R1 � R. Consider now
a loop l in Ku � uX.G/, for an extremal layer Ku. Now X.G/ is the disjoint
union of copies ofX0.G/ and eachX0.G/ embeds into the simply connected Cayley
complex C.G;PG/ of G. Therefore uX.G/ can be embedded in the disjoint union
of copies of the simply connected complex C.G;PG/. The later complex can be
viewed as having the same 0- and 1-skeleton as uX.G/, the 2-cells from uX.G/ and
the additional 2-cells coming from the relations in R1 � R. Moreover the loop l
should be contained into one connected component of the disjoint union. Thus there
exists a null-homotopy of l inside the respective C.G;PG/. It is then standard that
this implies the existence of a simplicial map f W D2 ! C.G;PG/ from the 2-disk
D2 suitably triangulated, whose restriction to the boundary is the loop l . The image
f .D2/ intersects only finitely many cells of C.G;PG/ by compactness, thus there
are only finitely many open 2-cells e of C.G;PG/ � uX.G/ for which the inverse
image f �1.e/ is non-empty. Consider the set fe1.l/; : : : ; em.l/g of the 2-cells with
this property. Each such 2-cell corresponds to a relation from R1 � R. Since f
was supposed to be simplicial, f �1.ei;u.l// is a finite union of 2-cells eij ;u of the
triangulated D2. Moreover, the boundary paths @ei;u.l/ are contained in uX.G/.

We say that a set of m loops flj g is null-bordant in X if there exists a continuous
map � , called a null-bordism, from them-holed 2-sphere to the space X such that its
restrictions to the boundary circles is flj g. In particular, the union of loops l

S
i @ei .l/

obtained above is null-bordant in uX.G/. Thus there exists a map �.l/ from the m-
holed sphere to uX.G/whose restriction to the boundary is l

S
i @ei .l/, and we write

l
S

i @ei .l/ D @�.l/. We will make use of this argument further on.

Recall now that C.G;PG/ was supposed to be 1-tame. Thus Ku � zEu, where
the compact zEu has the property that any loop l � zEu is homotopic within zEu to a
loop l 0 lying in zEu � Ku and which is further null-homotopic in C.G;PG/ � Ku.
Let Eu D zEu \ uX.G/, so that Eu can be written as Eu D zEu � Sk

j D1 ej;u, where
fej;ugj D1;:::;k is a suitable finite set of 2-cells of (the disjoint union of copies of)
C.G;PG/ which are not 2-cells of uX.G/. Notice that @ej;u � Eu for any j . A
homotopy between the loop l and the loop l 0 within zEu induces by the argument
above a null-bordism H.l; l 0/ between l 0 and l [ @ej;u.l/ within Eu, where the set
fej;u.l/g is a suitable subset of fej;ugj D1;:::;k . Furthermore a null-homotopy of l 0 in
C.G;PG/ �Ku induces a null-bordism N.l 0/ of l 0 [ @ıj;u.l/ within uX.G/ �Ku,
where ıj;u.l/ are (finitely many)2-cells fromC.G;PG/�K (which are not inuX.G/).
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We consider now a finite set Ju D flj;ug of loops which are normal generators of
�1.Eu/ and let fı1;u; : : : ; ıN;ug be the set of all 2-cells ıi;u.l/ obtained by considering
all l 2 Ju.

The key point is that @ej;u are either contained inEu or else disjoint fromKu (and
hence from K), while @ıj;u are disjoint from K. Notice that it is the 1-tameness of
C.G;PG/ which permitted us to discard the 2-cells of C.G;PG/ whose boundaries
are not contained in Eu but intersect Ku.

5.6. Standard null-homotopies. The boundary paths @ei;u; @ıi;u � uX.G/ �
C. xG;P xG/ are null-homotopic within C. xG;P xG/ and thus bound 2-disks D.ei;u/,
D.ıi;u/ � C. xG;P xG/. However, there exist some special null-homotopies for them,
which are canonical up to the choice of a basepoint. At this place we will make use
of the fact that the presentation PG is an endomorphic presentation.

Consider f	ig be the set of loops of the form @ei;u or @ıj;u, for unifying the
notations in the construction below. The loops 	j represent words which are relations
from PG and thus can be written in the form

	j D 'j1
'j2

: : : 'jkj
.r

j̨
/

where r
j̨

2 R and the ji ’s depend on j . We have implicitly chose the convenient
orientation of the loops 	j in order to be recovered from r

j̨
and not from r�1

j̨
. It is

important to notice that all 'j appear only with positive exponents in the expression
above. Recall that R is the set of relations that survive in P xG . We can identify a
loop with the word that represents that loop in the Cayley complex. Thus, by abuse
of notation, we can speak of 'k.l/ where l is a loop. Observe that the loop 'm.l/ is
freely homotopic to the loop l , since it is associated to a specific conjugate in terms of
words. This homotopy is the cylinder Cm.l/which is the union of all conjugacy cells
based on elements of l and using the vertical element bm. The loop corresponding to
'j1
'j2

: : : 'jkj
.r

j̨
/ is one boundary of the cylinder Cj1

.	
.1/
j /. The other boundary

of this cylinder is the loop 	.1/
j D 'j2

: : : 'jkj
.r

j̨
/. The second loop has, in some

sense, smaller complexity than the former one and we can continue to simplify it.
The cylinderCjs

.	s
j / interpolates between 	.s/

j D 'jsC1
: : : 'jkj

.r
j̨
/ and 	.s�1/

j . Set

C.	j / D S
1�s�kj

Cjs
.	

.s/
j /. Finally recall that r

j̨
2 R, and thus the corresponding

loop bounds a 2-cell "
j̨

of X.G/. Thus D.	j / D C.	j / [ "
j̨

is a specific 2-disk
giving an explicit null-homotopy of 	j within C. xG;P xG/.

5.7. Saturation of layers. Given a compact K we considered the layers Kx D
K \ xX.G/. Observe, following [8], that we can suppose that all intersections
K \ xX0.G/ are connected for all x where non-empty, and Kx D K \ xX0.G/ if
Kx is an extremal layer.

The finite complex K is said to be saturated if it has the following property. For
each vertex c of C and positive B-path at c that ends at c0 in an extremal layer of K
the endpoint c0 is in K.
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Lemma 5.5. We can assume that the complex K obtained in Proposition 5.3 has
saturated layers.

Proof. It suffices to add finitely many conjugacy cells in order to achieve the satu-
ration. Moreover, when adjoining conjugacy cells we do not create extra loops of
type 2 and hence the requirements in Proposition 5.3 are still satisfied.

Recall now that @ıj;u are disjoint from Ku, for any extremal layer Ku. We then
have:

Lemma 5.6. If K is saturated thenD.@ıj;u/ \ C D ;.

Proof. If we had a point c belonging to D.@ıj;u/ \ C , then there would exist a path
from c to a point c0 in @ıj;u, which contains only vertical segments from the cylinder
C.@ıj;u/. This is then a positive B-path and thus its endpoint c0 belongs to Ku, by
the saturation hypothesis, but this contradicts the fact that @ıj;u � Eu �Ku.

Remark 5.5. The analogous statement fails in the case when we take for R1 the set
of reduced words in the free group F.A/ coming from iterating the 
i on the set R,
in general.

Although @ej;u might intersect K they are contained in Eu. Consider then W D
f.˛; u/ID.@e˛;u/ \ C ¤ ;g. We construct therefore the set

Z D K [ S
u

Eu [ S
.˛;u/2W

D.@e˛;u/:

Lemma 5.7. If K is saturated then the inclusion K [ S
uEu ,! Z induces a

surjection �1.K [ S
uEu/ ! �1.Z/.

Proof. The only new loops appearing when we added the cylinders C.@e˛;u/ come
either from their intersections with K or else from their pairwise intersections.

In the first case consider q 2 D.@e˛;u/\K ¤ ;. The new loop 	 created this way
is the composition of an A-path from a vertex � of Ku to a vertex of @e˛;u followed
by a B-path in C.@e˛;u/ and then by a path inK to the point �. Now .˛; u/ 2 W , so
that C.@e˛;u/\C ¤ ;. Any vertex ofD.@e˛;u/\K belongs therefore to a positive
B-path starting at a point of C and ending at the extremal layer Ku. Thus we can
homotopically push such a loop 	 using the conjugacy cells – that are contained both
in the cylinders C.@e˛;u/ and in K, since K is saturated – until they reach the layer
Z \ uX.G/ D Eu. Thus the subgroup generated by images of A-loops in K and
loops in E contains the loops of the form 	 from �1.Z/.

In the second case assume that C.@e˛;u/\C.@eˇ;v/ ¤ ;. IfKu D Kv the proof
from above applies without essential modifications. This proves the lemma for the
case when we have only one stable letter.
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Assume now that Ku ¤ Kv . Let q be an intersection point of these cylinders. A
loop 	 created by this double point is then the composition of an A-path joining a
point � ofKu to some point of Eu �Ku, followed by a B-path in C.@e˛;u/ reaching
q then a B-path in C.@eˇ;v/ to a point in Ev �Kv , followed by an A-path to a point
of Kv and eventually by a path in K joining it to �. The only problem, with respect
to the previous case, is that we cannot push directly the loop 	 along conjugacy cells
since we have two extremal layers. The idea is to decompose it as the composition of
two loops, each one of them which can be homotopically pushed into one extremal
layer.

The subset p.K/ � C.L/ is connected and thus the geodesic � in C.L/ joining
p.u/ and p.v/ is contained in p.K/. The cylinder C.@e˛;u/ (respectively C.@eˇ;v/)
is made of conjugacy cells starting from some relation inR in the direction given by a
positiveB-path �1 (respectively �2), as explained in Section 5.6. Then �j are positive
paths and hence geodesics in the tree C.L/ having a common vertex, namely p.q/.
Therefore � , �1 and �2 have a common vertex, say y. Further the positiveB-subpaths
�1Œp.q/y� and �2Œp.q/y� coincide. We can push q along this positiveB-subpath and
find that C.@e˛;u/ \ C.@eˇ;v/ contains also a vertex t in the slice associated to y,
namely with p.t/ D y. It then suffices to consider the case where p.q/ D y.

Furthermore, we know that y 2 p.K/, which implies that the layer Kt is not
empty. We claim:

Lemma 5.8. There exists a vertex of z 2 Kt which is in the same connected compo-
nent of tX.G/ as t .

Proof. Let tu 2 Eu (respectively tv 2 Ev) be the endpoint of the B-path given by
the word �1Œyp.u/� (respectively �2Œyp.v/�) starting at t . Recall now that Eu and
Ev are each connected and thus we can find vertices wu 2 Ku, wv 2 Kv which are
joined to tu and tv respectively by A-paths corresponding to words au and av in the
A-letters.

Observe that theB-subpaths �Œp.u/y� and �1Œp.u/y� joiningp.u/ and y inC.L/
coincide, as well as �Œp.v/y� and �2Œp.v/y�.

Consider then a path joiningwu towv in the connected subcomplex p�1.�/\K.
This path is given by a word of the form

U D a2kC1bi2k
a2kbi2k�1

: : : akC2bikC1
akC1b

�1
ik
akb

�1
ik�1

: : : a2b
�1
i1
a1;

where aj are words in the A-letters and bi 2 B are the positive generators. Further-
more the B-path �Œyp.v/� is given by the word BC D bi2k

bi2k�1
: : : bikC1

, while
the B-path �Œp.u/y� is given by the word B� D b�1

ik
b�1

ik�1
: : : b�1

i1
. Notice that

bikC1
¤ bik since � is a geodesic. We then have a loop 	0 in the Cayley graph of xG

realizing the word B�1C a�1
v Ua�1

u B�1� . This word must therefore represent the iden-
tity in xG. We use induction on k and Britton’s lemma to obtain that the only way that
this word can be simplified to the empty word is by means of reductions of the type
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bab�1 D c, where 
j .c/ D a, for b 2 B and a; c 2 A. This means that there exist
families of conjugacy cells in C. xG;P xG/, where the first family touches the extremal
slice along the path a1a

�1
u (respectively a2kC1a

�1
v ) in the direction b�1

i1
(respectively

b�1
i2k

) and the next ones use inductively the directions given by b�1
i2
; : : : ; b�1

ik
(respec-

tively b�1
i2k�1

; : : : ; b�1
ikC1

). Each family connects one slice to the slice below it. We

can therefore push homotopically in C. xG;P xG/ the loop 	0 along these conjugacy
cells to the lowest slice tX.G/. But, at each step, the pushed loop has at least one
vertex from K. Thus there exists a vertex z 2 Kv which is connected by an A-path
to the vertex t , as claimed.

We turn back now to the loop 	. Since p.	/ � C.L/ contains both p.u/ and
p.v/, it should contain the geodesic � and then, by the previous arguments, there
exists a point z0 of 	 in the layerKv . Using Lemma 5.8 for the points z and z0 instead
of z and t it follows that z0 and z (and hence t ) are in the same connected component
tX0.G/ of tX.G/ so that z0 can be joined by an A-path � to t . Therefore we can split
	 as the composition of two loops 	1	2 by inserting � between z0 and t . But now
each one of the two loops 	i can be homotopically pushed withinK in the directions
given by theB-subpaths of �Œyp.u/� and respectively �Œyp.v/� to one of the extremal
slices Eu or Ev .

This proves that A-paths in K and loops in
S

uEu generate all of �1.Z/. This
settles Lemma 5.7.

5.8. End of the proof of Theorem 5.1. Take a loop l in �1.Z/. It can be supposed
that l is either from the set tuJu that normally generates �1.

`
uEu/ (recall that Eu

are disjoint) or else from the set of A-loops �j furnished by Proposition 5.3. We ob-
served that l � Eu and l 0

S
j @ej;u.l/ � Eu �Ku are null-bordant in Eu � uX.G/

using the null-bordism H.l; l 0/. Moreover l and l 00 D l 0
S

j I.j;u/ 62W ej;u.l/ are null-
bordant in Z by means of the modified null-bordism H.l; l 0/

S
.j;u/2W D.ej;u.l//,

since the boundaries @ej;u, with .j; u/ 2 W , are null-homotopic in Z. Moreover,
l 0

S
j I.j;u/ 62W ej;u.l/

S
k @ık;u is furthermore null-homotopic in uX.G/ � Ku �

C. xG;P xG/ � C . We then adjoin the 2-disks D.ej;u.l// and D.@ık;u/ and obtain
a null-homotopy of l 00 within C. xG;P xG/ � C . This means that C. xG;P xG/ is 1-tame
and thus qsf. This proves Theorem 5.1.

Remark 5.6. (1) We can always add new relations to the group presentation PG

in order to make it 1-tame. However the new presentation is not necessarily a fi-
nite endomorphic presentation. Thus the second assumption in Theorem 5.1 seems
nontrivial.

(2) We do not know whether the 1-tameness of a presentation P with infinitely
many relations which are unreduced words is equivalent to the 1-tameness of the
presentation Pr consisting of the reduced words arising in the relations of P . It does
so, for instance, when the length of the canceling subwords (i.e., subwords of the
form a1a2 : : : aka

�1
k
: : : a�1

2 a�1
1 ) is uniformly bounded.
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6. Proof of Theorem 1.5

6.1. The Grigorchuk group. Grigorchuk constructed in the 1980s a finitely gen-
erated infinite torsion group of intermediate growth having solvable word problem
(see [26]). This group is not finitely presented, but Lysënok obtained ([34]) a nice
recursive presentation of G as follows:

G D ha; c; d j �n.a2/; �n..ad/4/; �n..adacac/4/i; n � 0;

where � W fa; c; dg� ! fa; c; dg� is the substitution that transforms words according
to the rules

�.a/ D aca; �.c/ D cd; �.d/ D c:

We denote by A� the set of positive nontrivial words in the letters of the alphabet A,
i.e., the free monoid generated by A without the trivial element.

The finitely presented HNN extension xG of the Grigorchuk group G was con-
structed for the first time in [27], [28] as a group with 5 generators and 12 short
relations. The group xG is a finitely presented example of a group which is amenable
but not elementary amenable. Bartholdi transformed this presentation in the form of
a presentation with 2 generators and 5 relations, as described in [17]. Later Bartholdi
presented (see [3]) some general method of getting endomorphic presentations for
branch groups.

The endomorphism ofG defining the HNN extension is induced by the substitution
� and thus the new group xG has the finite presentation

xG D ha; c; d; t j a2 D c2 D d2 D .ad/4 D .adacac/4 D 1;

at D aca; ct D dc; d t D ci;
where xy D yxy�1. Theorem 5.1 is the main ingredient needed for proving Theo-
rem 1.5, which we restate here for the sake of completeness:

Theorem 6.1. The HNN extension of the Grigorchuk group is qsf.

Remark 6.1. Relations in the Lysënok endomorphic presentation of Grigorchuk’s
group are given by iterating the substitution � and thus involve only words with
positive exponents on the generators which are reduced words.

6.2. The Lysenök presentation is 1-tame. We want to use Theorem 5.1. Using
the notations from Section 5 the group L is the infinite cyclic group generated by
the endomorphism � . Since the endomorphism � is expansive there are only finitely
many positive paths between two elements of L. Further, the map M ! L is
obviously injective.

In the next section we will show:

Proposition 6.1. The group G with the Lysënok presentation PG is 1-tame.
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This proposition and Theorem 5.1 will settle the proof of Theorem 1.5.
The main idea is that the group G is commensurable with G � G (see e.g. [16],

Theorem 28, p. 229). Further, the qsf property is invariant under commensurability.
Moreover, the proof in [7] which shows that extensions of infinite finitely presented
groups are qsf works also in the infinitely presented case. Even more, [7] shows that
extensions of infinite finitely presented groups are actually 1-tame. ThusG �G with
any direct product presentation is 1-tame. In particular, this happens if we consider
the presentation PG�G D PG � PG , defined as follows:

� take two copies of the generators aj , bj , cj , dj , j 2 f1; 2g, corresponding to
G � f1g and f1g �G respectively;

� take two copies of the Lysënok relations corresponding to each group of gener-
ators;

� add the commutativity relations between generators from distinct groups, namely,

Œa1; a2� D Œa1; b2� D Œa1; c2� D Œa1; d2� D 1

and the similar ones involving b1, c1 and d1.

Since G is commensurable to G � G we will show that the presentation PG�G

induces a presentation P �
G of G. The induction procedure consists of transferring

presentations towards – or from – a finite index normal subgroup and transport it by
some isomorphism. In particular, G with the induced presentation P �

G is 1-tame.
We will show below that the P �

G (up to finitely many relations) consists of PG

and finitely many families of relations, each family being conjugated to the family
of standard relations in PG . The later relations can be simply discarded from P �

G

without affecting the qsf property of the associated Cayley complex. In particular,
the presentation obtained after that is in the same finite equivalence class as PG . This
will imply that the group .G; PG/ is qsf and thus its HNN extension xG is also qsf,
according to the Theorem 5.1.

Remark 6.2. Other examples of groups with endomorphic presentations including
branch groups are given in [3]. Our present methods do not permit handling all of
them. It is very probable that a general method working for this family will actually
yield the fact that any finitely presented group admitting a normal (infinite) finitely
generated subgroup of infinite index should be qsf.

6.3. Preliminaries concerning G following [16], VIII.B. It is customary to use
the following presentation of G with 4 generators:

PG.a; b; c; d/ W G D ha; b; c; d j a2 D b2 D c2 D d2 D bcd D 1;

�n..ad/4/; �n..adacac/4/i;
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where n � 0 and � W fa; b; c; dg� ! fa; b; c; dg� is the substitution that transforms
words according to the rules

�.a/ D aca; �.b/ D d; �.c/ D b; �.d/ D c;

from which we can drop either the generator b or else c and get the equivalent
presentations with three generators

PG.a; c; d/ W G D ha; c; d j a2 D c2 D d2 D 1; �n..ad/4/; �n..adacac/4/i;
where n � 0 and � W fa; c; dg� ! fa; c; dg� is the substitution that transforms words
according to the rules

�.a/ D aca; �.c/ D cd; �.d/ D c;

or else

PG.a; b; d/ W G D ha; b; d j a2 D b2 D d2 D 1; �n..ad/4/; �n..adabdabd/4/i;
where n � 0 and � W fa; b; dg� ! fa; b; dg� is the substitution that transforms words
according to the rules

�.a/ D abda; �.b/ D d; �.d/ D bd:

DefineG0 be the subgroup consisting of words in a, b, c, d having an even number
of occurrences of the letter a. This is the same as the subgroup denoted StG.1/ in
[16], p. 221. It is clear that G0 C G is a normal subgroup and we have an exact
sequence

1 ! G0 ! G ! G=G0 D Z=2 D hai ! 1;

whereG=G0 is generated by aG0. It follows thatG0 is the subgroup ofG generated
by the 6 elements

G0 D hb; c; d; aba; aca; adai � G:

There exists an injective homomorphism  W G0 ! G�G given by the formulas

 .b/ D .a; c/;  .c/ D .a; d/;  .d/ D .1; b/;

 .aba/ D .c; a/;  .aca/ D .d; a/;  .ada/ D .b; 1/:

Let B C G be the normal subgroup generated by b. It is known that B D
hb; aba; .bada/2; .abad/2i. We then have an exact sequence

1 ! B ! G ! G=B D D8 D ha; d i ! 1;

where G=B is the dihedral group of order 8, denotedD8. MoreoverD8 is generated
by the images of the generators a and d . Since the subgroupD D ha; d i � G is the



588 L. Funar and D. E. Otera

dihedral group D8, it follows that the extension above is split. Consider further the
groupDdiag D h.a; d/; .d; a/i � G�G, which is isomorphic to the groupD8. Then
we can describe the image of  as  .G0/ D .B � B/ ËDdiag � G. Notice that the
latter is a subgroup (although not a normal subgroup) of G �G having index 8.

It is easier to work with normal subgroups below since we want to track explicit
presentations in the commensurability process. Therefore we will be interested in
the subgroup B � B �  .G0/ � G �G which is a normal subgroup. Denote by A
the inverse image  �1.B � B/, which is a normal subgroup of G0. It follows that
G0=A ! .B � B/ ËDdiag=B � B D D is an isomorphism, and G0=A is generated
by the images of c and aca. Moreover the subgroup hc; acai � G0 is dihedral of
order 8 and thus there is a split exact sequence

1 ! A ! G0 ! G0=A D D8 D hc; acai ! 1:

Collecting these facts it follows that A is the normal subgroup of G generated by d ,
and we have a split exact sequence

1 ! A ! G ! G=A D D16 D ha; ci ! 1;

where G=A is generated by the images of a and c and it is isomorphic to the group
E D ha; ci � G, which is the dihedral group of order 16.

6.4. Inducing group presentations. The presentation PG�G of G � G induces a
presentation PB�B of its normal finite index subgroup B � B . The isomorphism
 W A ! B � B transports PB�B into the presentation PA of A. Eventually we can
recover the presentation P �

G of G from that of its normal subgroup A. In order to
proceed we need to know how to induce presentations from and to normal finite index
subgroups.

First we have the following well-known lemma of Hall:

Lemma 6.1. Assume that we have an exact sequence

1 ! K ! G ! F ! 1

and K D hki j Rj i, F D hmj j Sni are group presentations in the generators ki

(respectively mj ) and relations Rj (respectively Sn). Then G has a presentation of
the form

G D hki ; mj j Rj ; Sn.mj / D An.ki /; mjkim
�1
j D Bj i .ki /i;

where An, Bj i are suitable words in the generators ki . Specifically the relations
using An express the relations between the lifts of the generators mj to G, while the
last relations express the normality of K within G.

Inducing presentations to a normal subgroup seems slightly more complicated.
For the sake of simplicity we formulate the answer in the case where the relations
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are positive (i.e., there are no negative exponents) and the extension is split, as it is
needed for our purposes. Observe however that the result can be extended to the
general situation.

Lemma 6.2. Assume that we have a split exact sequence

1 ! K ! G ! F ! 1;

where G D hfxigiD1;:::;N j Rj i and the group F is finite. Let F D f1 D
f0; f1; f2; : : : ; fng be an enumeration of its elements. Assume further that the
projection map p W G ! F takes the form p.xi / D fp.i/, where p is a map
p W f1; 2; : : : ; N g ! f0; 1; : : : ; ng. Assume that the relations Rj read as

Rj D xi1 � xi2 : : : xikC1
:

We choose lifts yfj 2 G for the elements fj , using the splitting homomorphism. Set

then yj D xj
1fp.j /

�1 and denote by fkyj D yfkyj
yfk

�1
the conjugation. We consider

below fkyj as being distinct symbols, called y-letters, for all k ¤ 0 and j .
Then the group K admits the following presentation:

� The generating set is the set of N.n C 1/ elements yj , fkyj , k 2 f1; 2; : : : ng,
j 2 f1; 2; : : : ; N g.

� Relations are obtained using the following procedure.

– Each relation Rj D xi1 � xi2 : : : xik gives rise to a basic relation in the
y-letters alphabet,

R0
j D yi1 � .fi1yi2/ � .fi1

�fi2yi2/ : : : .
fi1

�fi2
:::fikyik /;

where each superscript product fi1 � fi2 : : : fis is replaced by its value, as
an element f�.i1;i2;:::;is/ 2 F .

– Next one considers all images of the basic relations R0
j under the action

of F (by conjugacy). Specifically, for any basic relation in y-letters

R D fj1yj1
� fj2yj2

: : : fjpyjp

and any element f 2 F one associates the relation

fR D ffj1yj1
� ffj2yj2

: : : ffjpyjp
;

in which each superscript is considered as an element of F .

Here we set the notation ay in order to emphasize that these are abstract symbols,
which will be viewed as elements of K. They will be equal to the usual conjugacies
ya only when seen as elements of G.
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Proof. Any element of G is a product of y-elements and some yfj . Thus an element
of K should involve no yfj .

Notice now that expressing Rj using the elements fkyj we obtain

Rj D .yi1 � fi1yi2 � fi1
�fi2yi2 : : :

fi1
�fi2

:::fikyik /
yfi1 � yfi2 : : :

yfik :

Moreover, the product of the first k terms in the right-hand side is an element of K.
Since the extension is split we should have yfi1 � yfi2 : : :

yfik D 1 coming as a relation
in F . ThusR0

j D 1, as claimed. It is then clear that fR0
j D 1 holds true also because

K is a normal subgroup.
In order to see that these relations defineK, consider the 2-complex YG associated

to the given presentation ofG. Thus YG has one vertex v. ThenK is the fundamental
group of the finite covering �YG (with deck group F ) of YG , that is associated to the
projection map G ! F . This is a non-ramified covering of degree jF j, the order
of F . Thus each open 2-cell of YG is covered by precisely jF j 2-cells of �YG . It
would suffices now to read the presentation of �1. �YG/ on the cell structure of �YG .
The only problem is that loops in YG lift to paths in �YG which are not closed. Now
�YG has jF j vertices that are permuted among themselves by F , let us call them vf

for f 2 F , such that the deck transformations act as g � vf D vgf . The vertex v1

will be the base point of �YG . The loop lj based at v that corresponds to the generator
xj lifts to a path cj joining v1 to vp.j /. Moreover the inverse image of the loop lj
under the covering is the union of all translated copies fcj (joining vf to vfp.j /)
of this path, which should be distinct as the covering is non-ramified. In this setting
we have a natural presentation of �1. �YG/ as a fundamental groupoid with basepoints
vf for all f 2 F . Simply take all (oriented) edges fcj as generators and all 2-cells
as relations. The 2-cells are all disjoint and permuted among themselves by F and
in each F -orbit the 2-cell based at v1 corresponds to one 2-cell of YG . One could
choose now a maximal tree (corresponding to the choice of the elements yfj ) in the
1-skeleton of �YG and collapse it in order to find a complex which comes from a group
presentation. Alternatively we can transform the groupoid presentation into a group
presentation by choosing a fixed set of paths l.f / joining v1 to vf . The choice of
this system amounts to choose lifts yfj in G. Then the paths l.f / � fcj l.fp.j //�1

are now based at v1 and represent a generator system for the loops in �YG . This loop
represents the generator f yj ofK under the identification with�1. �YG/. Furthermore,
the 2-cell based at v1 corresponds to the basic relation associated to a relation in G
and its images under the deck transformations are those described in the statement.
Thus the fundamental group �1. �YG/ based at v1 has the claimed presentation.

6.5. Carrying on the induction for the Grigorchuk group. We will consider first
the group G with its presentation PG.a; b; d/ and the normal subgroup B normally
generated by B . According to the induction lemma above we have a natural system
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of generators given by G=Bb D ha;did which is simply a notation for

fxbI x 2 G=B D ha; d ig D fb; ab; db; adb; dab; adab; dadb; adadbg
The infinite set of wordswn D �n..ad/4/, zn D �n..adabdabd/4/ are relations

in G that induce relations T .wn/ and T .zn/ in B by the procedure above. This
amounts to the following. Write first wn (and zn/ as a word in a, b, d as

wn D wn;0.a; d/ b wn;1.a; d/ b : : : wn;k.a; d/ b wn;kC1.a; d/;

where wn;j .a; d/ are words in a and d and thus can be reduced as elements of
D D G=B . Then the basic relation corresponding to wn is now

T .wn/ D .wn;0b/ .wn;0wn;1b/ : : : .wn;0wn;1:::wn;kb/;

where the right-hand side is interpreted as a word in the alphabet G=Bb and all products
in ha; d i are reduced to the canonical form as elements of the generators set above. The
D-action on relations yields the additional set of relations, for each x 2 D D ha; d i,

xT .wn/ D .xwn;0b/.xwn;0wn;1b/ : : : .xwn;0wn;1:::wn;kb/:

The same procedure computes xT .zn/.
A presentation for the group B � B is now obtained by using the generating set

G=Bb � G=Bb and the following families of relations (coming either from relations in
B or from the commutativity of the two factors):

.xTwn; 1/ D 1; .1; xTwn/ D 1; .xT zn; 1/ D 1;

.1; xT zn/ D 1; .xb; 1/.1; yb/ D .1; yb/.xb; 1/:

The next step is to obtain a presentation PA for A and then using Hall’s lemma
to recover the presentation of G. Several remarks are in order. Since we seek
for the finite equivalence class we can discard or adjoin finitely many relations at
the end. When shifting from A to G we have to add the extra generators from
G=A D ha; ci, thus the generators a and c. We have also to add finitely many
conjugation relations corresponding to the normality of A and lifts of relations in
G=A. However the previous remark enables us to ignore all these and keep track
only of the following (four) infinite families of relations in B � B expressed by
.T wn; 1/ D 1; .1; T wn/ D 1; .T zn; 1/ D 1; .1; T zn/ D 1.

In order to understand the isomorphism  we have to shift to the presentation
PG.a; c; d/ of G. A natural system of generators for A is given in the spirit of the
induction lemma by the set G=Ad D ha;cid which is simply a notation for

fxd I x 2 G=A D ha; cig D G0=Ad [ G0a=Ad:

This system of generators is convenient because  has now a simple expression:
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Lemma 6.3. The isomorphism  W A ! B � B takes the form

 0 W fG0=Adg ! f1g � fG=Bbg;  1 W fG0a=Adg ! fG=Bbg � f1g;
where

�  0 is given by
 �1

0 .b; 1/ D d;  �1
0 .xb; 1/ D '0.x/d;

where '0 W G=B D ha; d i ! G0=A D hc; acai is the isomorphism

'0.d/ D c; '0.a/ D acaI

�  1 is given by

 �1
1 .1; b/ Da d;  �1

0 .1;x b/ D '1.x/ad;

where '1 W G=B D ha; d i ! G0=A D hc; acai is the conjugated isomorphism

'0.d/ D aca; '0.a/ D c:

Proof. This is a direct calculation. For instance,  .cd/ D .a; d/.1; b/.a; d/ D
.1;d b/.

Let us transport now the relation .1; T wn/ D 1 from B � B to A.
This relation reads

.1;wn;0 b/.1;wn;0wn;1 b/ : : : .1;wn;0wn;1:::wn;k b/ D 1:

According to the previous lemma this relation now reads in A as

.'0.wn;0/d/.'0.wn;0wn;1/d/ : : : .'0.wn;0wn;1:::wn;k/d/ D 1:

Further we interpret these relations in G (as part of the presentation P �
G), where we

restored also the generators a and c. Writing down the terms by developing each
conjugation we obtain

'0.wn;0/d � '0.wn;1/d : : : '0.wn;k/d.'0.wn;0wn;1 : : : wn;k/
�1/ D 1:

The key point is the fact that the map '0 acts like � on the letters a, d ; actually, if
one extends '0 to a monoid homomorphism sending b into d we obtain � . Thus the
relation above is the same as

�.wn/ D 1:

But �.wn/ D wnC1 and thus we have no additional relation induced inP �
G other than

those already existing in PG .
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Let us look now at the transformations of the relation .1;x Twn/ D 1 for x 2 D.
This relation reads in A as

.'0.xwn;0/d/.'0.xwn;0wn;1/d/ : : : .'0.xwn;0wn;1:::wn;k/d/ D 1

and, by developing it again in G,

'0.xwn;0/d � '0.wn;1/d : : : '0.wn;k/d.'0.wn;0wn;1 : : : wn;k/
�1/'0.x/

�1 D 1:

This is precisely the relation

'0.x/�.wn/'0.x/
�1 D 1;

which is a conjugation of the already existing relation wnC1 D 0.
The same reasoning shows that starting from .1;x T zn/ we obtain in P �

G the
relation znC1 D 1 (or conjugacies of it).

Eventually we consider the relations .T wn; 1/ D 1 in B � B , namely,

.wn;0b/; 1/.wn;0wn;1b; 1/ : : : .wn;0wn;1:::wn;kb; 1/ D 1:

The image of  �1 of this relation in A is therefore

.'1.wn;0A/d/.'1.wn;0wn;1a/d/ : : : .'1.wn;0wn;1:::wn;ka/d/ D 1:

But '1.x/ D a'0.x/a and thus this relation is the same as

.a'0.wn;0/d/.a'0.wn;0wn;1/d/ : : : .a'1.wn;0wn;1:::wn;k/d/ D 1;

which, by developing all terms, yields in G

a'0.wn;0//d � '0.wn;1/d : : : '0.wn;0wn;k/d.'0.wn;0wn;1 : : : wn;k/
�1/a D 1:

However, this is the same as awnC1a D 1, which is a consequence of wnC1 D 1.
The same holds true for the relations induced by .T zn; 1/ D 1. Starting from
.xTwn; 1/ D 1 or .xT zn; 1/ D 1 we obtain again conjugated relations.

Lemma 6.4. Consider two presentations of some groupG of the form P1 D hS j Ri
and P2 D hS j R [ aRa�1i. If P2 is qsf then P1 is qsf.

Proof. We can assume that a 2 S . Every homotopy involving aRa�1 can be realized
using only relations from R. This proves the claim.

Now P �
G is finitely equivalent to the presentation consisting of PG with finitely

many additional families, each additional family being conjugated to the family of
relations fwn D zn D 1; n � 1g. If we remove the additional relations we obtain
PG . The previous lemma and Proposition 5.1 show that PG is qsf. This settles
Proposition 6.1.
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