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1. Introduction

The initial goal of the present paper was to get deeper understanding of what is
behind recent results achieved in describing the class of finite solvable groups by
identities in two variables [BGGKPP1], [BGGKPP2], [BWW]. Although the results
were purely group-theoretic, it was clear that the key role is played by geometry and
dynamics. Byproducts of this investigation seem to us not less interesting than the
initial problem.

We reformulated the original problem in the language of a verbal dynamical
system on an algebraic group G (the notion of its own interest). We study these
systems for the case G D SL.2/, the most important for the initial group-theoretic
problem. Towards this end, we

• prove several surjectivity theorems for the classical trace map over finite fields;
• introduce a new method based on the trace map and these theorems.

This allowed us not only to explain the mechanism of the proofs from the above
cited papers but to obtain a method for producing more sequences of the same nature.

These arithmetic-geometric considerations led us to a new notion of residual
periodicity of a dynamical system which reflects its local-global behaviour. This
concept will hopefully yield new results in the arithmetic of dynamical systems on
algebraic varieties. Here we present some primary examples and propose some
conjectures.

To be more precise, let FrCs be the free group with basis x1; : : : ; xs , u1; : : : ; ur ,
and let

W D

8̂<
:̂
w1.x1; : : : ; xs; u1; : : : ; ur/;

: : : ;

wr.x1; : : : ; xs; u1; : : : ; ur/

9>=
>;

be an r-tuple of words in FrCs: Thus for any group G we obtain a self-map

DW W GrCs ! GrCs;
.g1; : : : ; gs; v1; : : : ; vr/ 7! .g1; : : : ; gs; w1.g1; : : : ; vr/; : : : ; wr.g1; : : : ; vr//:

(1)

ChoosingG to be a linear algebraic group defined over some field k, we thus find
a polynomial self-map of the underlying affine variety GrCs attached to W :

A set M � GrCs is called invariant if DW .M/ � M:

For our purposes it is important to introduce initial conditions and, for every group
G, a so-called forbidden set. Let J D .f1.x1; : : : ; xs/; : : : , fr.x1; : : : ; xs// be words
in Fs . Then givenG and .g1; : : : ; gs/ 2 Gs we have an iterative sequence of r-tuples
of elements of G:

e0 D .f1.g1; : : : ; gs/; : : : ; fr.g1; : : : ; gs//; : : : ;

enC1 D .w1.g1; : : : ; gs; en/; : : : ; wr.g1; : : : ; gs; en//; : : : :
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We are interested in finding .g1; : : : ; gs/ such that the sequence e0; e1; : : : has certain
properties. To find such .g1; : : : ; gs/, we regard them as s extra variables and obtain
a self-map as in (1).

Then given W , G and J, we have an iterative sequence

e0
0 D .g1; : : : ; gs; f1.g1; : : : ; gs/; : : : ; fr.g1; : : : ; gs//; : : : ;

e0
nC1 D DW .e

0
n/; : : : :

The forbidden set is defined as the choice of an invariant set IG � GrCs for every
group G.

We call the triple D D .W ;J; IG/ a verbal dynamical system. We are interested
in invariant sets disjoint from IG .

Remark 1.1. It is sometimes convenient to modify this general setup as follows.
(i) It may happen that the r-tuple W depends on less than r C s variables (say,

of x1; : : : ; xs only x1; : : : ; xt , t < s, show up in W whereas the rest of the xi only
appear in the initial conditions J). In such a case we will restrict our dynamical
system to GrCt (in particular, the forbidden set is also chosen inside GrCt ). See
Example 1.4 below.

(ii) One can fix an s-tuple .gı ´ .gı
1; : : : ; g

ı
s / 2 Gs and consider the corre-

sponding “fibre” of our dynamical system D0
W

W Gr ! Gr defined by

D0
W ..v1; : : : ; vr// D .w1.g

ı
1; : : : ; g

ı
s ; v1; : : : ; vr/; : : : ; wr.g

ı
1; : : : ; g

ı
s ; v1; : : : ; vr//:

In particular, for r D 1 we arrive at a self-map G ! G. This simplified system will
be largely used in what follows.

Example 1.2. Take s D 2, r D 1 and consider a triple D1 consisting of

W D .Œxux�1; yuy�1�/; J D .x�2y�1x/; IG D fG �G � f1gg:
The corresponding map is

DW .x; y; u/ D .x; y; Œxux�1; yuy�1�/:

The associated iterative sequence is

e0 D x�2y�1x; e1 D Œx�1y�1; yx�2y�1xy�1�; e2 D Œxe1x
�1; ye1y�1�; : : : :

We can now reformulate a key step in our characterization of finite solvable groups
[BGGKPP1], [BGGKPP2] as follows:

Theorem 1.3. For G D SL.2; q/ the dynamical systemD1 has a fixed point outside
IG for every q > 3.
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A key step to the characterization obtained in [BWW] can be reformulated in a
similar way:

Example 1.4. Take s D 2, r D 1, W D .Œy�1uy; u�1�/, J D .x/. As the vari-
able x does not show up in W but only appears in J (and so t D 1), we pro-
ceed as in Remark 1.1 (i) and consider the restricted system G2 ! G2, .y; u/ 7!
.y; Œy�1uy; u�1�/, with the forbidden set IG ´ fG � f1gg. Denote this system by
D2.

The associated iterative sequence is

e0 D x; e1 D Œy�1xy; x�1�; e2 D Œy�1e1y; e�1
1 �; : : : :

The main result of [BWW] can now be read off as follows.

Theorem 1.5. For G D SL.2; q/ the dynamical system D2 has a periodic point
outside IG for every q > 3.

In the present paper we mostly restrict ourselves to considering the most important
case G D SL.2; k/ (though in Section 4 we also consider the Suzuki groups).

In the case G D SL.2; k/ we introduce a new method based on classical results
of Klein, Fricke, Vogt, Magnus from which it follows (see, e.g., [Pe2]) that there is a
polynomial map  W AN .k/ ! AN .k/ making the diagram

GsCr

�

��

DW �� GsCr

�

��
AN .k/

 �� AN .k/

commutative. Here � is defined using the traces of products as in Theorem 3.1 below.
In the case r D 1, t D 1 the projection � W SL.2; k/2 ! A3.k/ is defined as

�.x; y/ D .tr.x/; tr.xy/; tr.y//:

In the case r D 1, s D 2 the map � W SL.2; k/3 ! A7.k/ is defined as

�.x; y; u/ D .tr.x/; tr.y/; tr.u/; tr.xy/; tr.xu/; tr.yu/; tr.xyu//;

and the image of � is contained in a hypersurface Z � A7 (see (9) below for an
explicit equation of Z).

We prove the following surjectivity theorems (see Theorems 3.4 and 3.10 below).

Surjectivity Theorem 1. For any point Na D .s0; u0; t0/ 2 A3.Fq/ the set ��1. Na/ �
SL.2; q/2 is non-empty.

Surjectivity Theorem 2. For any point y 2 Z.Fq/ the set ��1.y/ � SL.2; q/3 is
non-empty.
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These surjectivity theorems allow us to obtain sufficient conditions for the exis-
tence of fixed points of the reduced (modulo p) dynamical system, uniformly in p,
and treat concrete examples arising from [BGGKPP1], [BGGKPP2], [BWW].

On the other hand, the above dynamical reinterpretation of our group-theoretic
problem leads to some interesting “local-global” properties of dynamical systems on
algebraic varieties. By an AG dynamical system (AG stands for arithmetic-geometric)
we mean a triple D D .X; V; '/, where

• either X is an algebraic variety defined over a global field K; ' W X ! X is a
dominant endomorphism and V � X.K/ is a subset invariant under 'I

• or X is an O-scheme (O stands for the ring of integers in K), ' W X ! X is
dominant and V � X.O/ is a '-invariant subset.

A periodic point is a fixed point of an iteration '.n/ of '. Together with the system
D D .X; V; '/, we consider its reductions Dp D .Xp; Vp; 'p/, where p ranges over
all but finitely many places of K (see Section 6 for precise definitions). For each
reduction, we consider the length p̀ of the shortest orbitOp which does not intersect
the “forbidden” set Vp � Xp . If such an orbit does not exist, we set p̀ D 1. We are
interested in the distribution of p̀’s. More specifically, let M � N be the set of all
primes p such that p̀ D 1. Let N D f p̀ W p 62 M g.

• If M is infinite, we call the system residually aperiodic.
• If M is finite, we call the system residually periodic.
• If both M and N are finite, we call the system strongly residually periodic.

Precise definitions, examples and discussion of these notions are the subject of Sec-
tion 6.

Remark 1.6. According to a theorem of Hrushovski [Hr], ' has a periodic point in
X.xFp/nV.xFp/ providedX is an affine Fp-variety and V is a proper affine subset ofX
(xFp stands for the algebraic closure of Fp). In contrast, we are interested in periodic
points in X.Fp/.

In this language our approach to the problem of characterization of finite solv-
able groups looks as follows. We consider word maps of groups G D SL.2; q/.
For every word map ' W Gm ! G, m D 2; 3 (and an additional word f W G2 !
G in the case m D 3), we define a verbal dynamical system (see, e.g., Exam-
ples 1.2, 1.4). Regarding the group as an affine variety, we obtain from a ver-
bal dynamical system an AG dynamical system on an affine Z-scheme. (In Ex-
ample 1.2 we have X D SL.2/ � SL.2/ � SL.2/, V D SL.2/ � SL.2/ � f1g,
'.x; y; u/ D .x; y; Œxux�1; yuy�1�/, in Example 1.4 we have X D SL.2/� SL.2/,
V D SL.2/ � f1g, '.y; u/ D .y; Œy�1uy; u�1�/.) The word map is a “good” candi-
date if and only if that system is residually periodic. Using the trace map we simplify
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the AG system by including it into a commutative diagram

X

�

��

Q' �� X

�

��
Y

 �� Y

(2)

where � is a surjective projection, defined over Z, and  is the trace map (see Sec-
tions 3.1, 3.2 for more details). Moreover, the dynamical systemD0 D .Y; �.V /;  /

has special geometric properties allowing us to find out when it is strongly residually
periodic. Note that � is surjective, therefore ifD0 is strongly residually periodic then
D is residually periodic.

It is an interesting question what arithmetic or geometric conditions can guarantee
residual periodicity (or aperiodicity) of a given dynamical system. Certainly, if the
forbidden set V is empty then the system is residually periodic.

The role of arithmetic may be demonstrated by the following example.

Example 1.7. Let a and b denote distinct integers, and let H.x/ D .x2 � a/

.x2 � b/.x2 � ab/C x. The polynomial H.x/ defines a morphism H W A1Z ! A1Z.
For every p the reduced morphism Hp has fixed points. Indeed, if pja or pjb,

we haveHp.0/ D 0. If none of a and b is divisible by p, we can use the fact that the
Legendre symbol is a multiplicative function and conclude that at least one of three
numbers: a, b, ab, is a square modulo p. A square root of this number is then a fixed
point of Hp , so we have p̀ D 1.

On the other hand, the morphism H W A1Z ! A1Z may have no periodic points.
Indeed, according to [Na], the period of a rational point for a monic polynomial
cannot exceed 2, and MAGMA computations show that for a D 2, b D 3 there is no
rational solution to the equation H.H.x// � x D 0.

This example shows that one of the reasons for residual periodicity may be the
existence of periodic points defined over a splitting field. Polynomials of that kind
were studied in [BB], [Br], [BBH], [So].

As to geometric conditions, the dynamical system under consideration may happen
to be residually periodic because of the existence of invariant functions (say, when
there is an “extra” coordinate on which ' acts trivially) as in the following simple
example.

Example 1.8. Let D D .X; V; '/, where X D A2, V D f.a; b/ 2 X W a D
˙1 or b D ˙1 or a D 0 or b D 0g, and '.a; b/ D .a2b; b/. Consider the integral
model D D .X;V; ˆ/ where X D A2Z, V D f.a; b/ 2 X.Z/ W a D ˙1 or b D
˙1 or a D 0 or b D 0g and ˆ.a; b/ D .a2b; b/. We have M D f2; 3g. The
variety of fixed points of ˆ is a curve C D f.a; b/ W ab D 1g, C \ V D f˙.1; 1/g.
Nevertheless, for any prime p > 3 we have Cp n Vp ¤ ;, i.e., p̀ D 1.
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These examples show that there are at least two general reasons for a dynamical
system to be strongly residually periodic. The first one is purely arithmetic as in Exam-
ple 1.7. Our first observations show that even in the simplest cases of one-dimensional
systems, arising questions are related to non-trivial arithmetical problems. In the case
of elliptic curves, one of such problems has been solved by N. Jones by establishing a
weakened version of the long-standing Koblitz’s conjecture (see the appendix to the
present paper).

The second one is of geometric nature as for the trace map above. This map has an
invariant function which leads to the dimension jump for the variety of fixed points.
Once we can prove that this variety W is absolutely irreducible (or at least contains
an absolutely irreducible component), we can apply the Lang–Weil estimates [LW]
to conclude that there exists a fixed point on the reduction Wq for q big enough. (Of
course, if dimW D 1, classical Weil’s estimates (see, e.g., [FJ]) are quite enough.)

We believe that residually periodic dynamical systems is an object worthy of
investigation. The following particular case seems to be especially interesting. Con-
sider a Z-scheme X , a dominant endomorphism ' of X , and define V as the union
of all finite '-orbits in X.Z/. Then Vp is the union of orbits of the reductions of all
preperiodic points of '. In simple words, this means that in this case we are interested
in the distribution of the smallest periods of the maps 'p not coming from preperiodic
points of '. To the best of our knowledge, such a classification of dynamical systems
according to their “hidden” periodicity did not appear in the literature.

The structure of the paper is as follows.
Section 3 contains a general framework of our method for the most important case

G D PSL.2; q/. The Suzuki groups are treated in Section 4. Applications to concrete
sequences are contained in Section 5. Section 6 is completely devoted to the new
notion of residually periodic dynamical systems. We give basic definitions, consider
simple examples and state some conjectures. The appendix contains a theorem of
N. Jones answering one of the questions posed in Section 6.

2. Notation and preliminaries

Recall that in [BGGKPP1], [BGGKPP2], [BWW] there have been exhibited explicit
families ˛n.x; y/, ˇn.x; y/ of words in F2 allowing one to characterize the class �

of finite solvable groups in the class of all finite groups as follows:

A finite group G belongs to � if and only if there exists n such that G satisfies the
identity �n.x; y/ ´ Œ˛n.x; y/; ˇn.x; y/� � 1.

Here Œa; b� D aba�1b�1 denotes the commutator.
As in the introduction, we produce these recurrence formulas using the dynamical

viewpoint. We consider the dynamical systems D1 and D2 from Examples 1.2 and
1.4, respectively, and consider their fibres as in Remark 1.1 (ii). This means that
for any group G we introduce the maps G ! G: �u;v.w/ ´ Œuwu�1; vwv�1�,
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�u.w/ ´ Œu�1wu;w�1�. Then the n-th term of the characterizing sequence can be
written as the n-th iteration of the map � (resp. � ):

�n.x; y/ D �.n/x;y.�0.x; y// (3)

(resp. �n.x; y/ D � .n/y .�0.x; y///; (4)

where �0.x; y/ D x�2y�1x (resp. �0.x; y/ D x).
Suppose thatS is a solvable group of derived lengthn. Then the recursive structure

of the above formulas shows that �n.x; y/ � 1 in S . To establish the converse
statement, it is enough to show that the identity �n.x; y/ � 1 does not hold in any
finite minimal simple non-solvable group G. (That is precisely what was done in
[BGGKPP1], [BGGKPP2], [BWW].)

To establish this fact in the case of sequences of type (4), it is enough to show that
there exists u D y0 2 G such that the map �u has a (non-identity) periodic point, i.e.,
there exist a positive integerm and an element 1 ¤ g 2 G such that g can be written
in the form g D �.x; y0/ and � .m/y0

.g/ D �y0
.g/. (For sequence (4), that is precisely

what was done in [BWW].) It is important to note here that every point has a finite
orbit (i.e., is preperiodic in the sense of [Si1]) but a priori it can happen that all these
orbits contain identity, which is a fixed point. In this case identity would be the only
periodic point. We need an orbit that never hits the identity and therefore contains
another periodic point. This explains our choice of the forbidden set in Examples 1.2
and 1.4.

Let us recall the list of minimal simple non-solvable groups [Th]:

(1) G D PSL.2; p/, p D 5 or p � ˙2 .mod 5/, p ¤ 3,
(2) G D PSL.2; 2p/,
(3) G D PSL.2; 3p/, p is an odd prime,
(4) G D Sz.2p/, p is an odd prime,
(5) G D PSL.3; 3/.

Here Sz stands for the Suzuki group (twisted form of B2, see, e.g., [HB] for details).
To obtain a characterization of finite solvable groups, we wish to find a word

' 2 F2.x; y/ with the following properties:
(i) for any finite solvable group S there exists an integer n such that for every

y 2 S the map '.n/y W S ! S is the identity map (here 'y.x/ ´ '.x; y//;
(ii) for each finite simple non-solvable group G from the above list, there exists

y 2 G such that the self-map 'y W G ! G has a non-identity periodic point. For
the PSL.2/ case, this fits into the approach described in Section 1: we consider
the dynamical system .PSL.2;Z/; f1g; 'y/ and all its reductions. (Note that in our
context, the difference between SL and PSL is negligible, see Remark 3.22 below.)

In order to satisfy condition (i), one has to impose some restrictions on '. We
shall discuss this matter in Section 6.

In the sequel, we shall consider two separate cases: G D PSL.2; q/ and G D
Sz.q/ (the case of the single group G D PSL.3; 3/ is usually easy to handle). In



Geometry and arithmetic of verbal dynamical systems on simple groups 615

each case we will show that the corresponding dynamical system D gives rise to a
dynamical system D0 in the space of traces (the trace map) as in diagram (2). The
trace map has special geometry: the set of its fixed points (or of periodic points of
bounded period) has positive dimension. This allows us to formulate a geometric
sufficient condition on ' in order to get a periodic point in every reduction. (See
Section 6 where we dare formulate some general conjectures.)

Further on we denote by Anx1;:::;xn
the affine space with coordinates x1; : : : ; xn.

For brevity, we denote zG D SL.2; q/.
We will repeatedly use expressions of the form “a rational curve with n punctures”

(even if our curve lies in an affine space) referring to an open subset of a projective
curve of genus zero whose complement consists of n points (e.g., the curve xy D 1

in the affine plane will be referred to as a rational curve with two punctures).

3. Case G D PSL.2 ; q/

In this section we show how every word map gives rise to a dynamical system. Then
we prove that this dynamical system may be included into a commutative diagram
of type (2) (namely, diagrams (6) and (10) below). The idea is that it is sufficient
to look for periodic points of the trace map  . Indeed, if a point a is  -periodic,
then all the points in the fibre over a are '-periodic. The problem is to show that this
fibre is not empty. We first show how to construct the trace map, then we show that
the projection is a surjective morphism for every reduction (Theorems 3.4 and 3.10).
Specific geometry of the trace map allows us to give sufficient conditions for the
corresponding dynamical system to be residually periodic (Theorems 3.6 and 3.21).

Our method is based on the following classical fact ([Vo], [Fr], [FK], [Ma1])
quoted here from the paper [Ho] (see also [Ma2], [Go] for a nice modern exposition
of these results).

Theorem 3.1. Let F D ha1; : : : ; ani denote the free group on n generators. Let us
embed F into SL.2;Z/ and denote by tr the trace character. If u is an arbitrary
element of F , then the character of u can be expressed as a polynomial

tr.u/ D P.t1; : : : ; tn; t12; : : : ; t12:::n/

with integer coefficients in the 2n � 1 characters ti1i2:::i� D tr.ai1ai2 : : : ai� /, 1 �
� � n, 1 � i1 < i2 < � � � < i� � n.

Note that the theorem remains true for the group zG D SL.2; q/ (and, more
generally, for SL.2; R/ where R is any commutative ring, see [CMS]).

We shall use this theorem in two different situations: for maps arising from
formulas of type (4), called two-variable maps, and for those arising from formulas
of type (3), called three-variable maps. These situations will be described in the next
two subsections respectively.



616 T. Bandman, F. Grunewald and B. Kunyavskiı̆

3.1. Two-variable maps. In this section we focus on the underlying affine algebraic
variety of the algebraic group zG. Consider a morphism ' W zG � zG ! zG satisfying
the property (needed for descending to G D PSL.2/)

'.˙x;˙y/ D ˙'.x; y/:
For example, any word map provides such a morphism.

For any x; y 2 zG denote s D tr.x/, t D tr.y/, and u D tr.xy/, and define a
morphism � W zG � zG ! A3s;u;t by

�.x; y/ ´ .s; u; t/:

Then in view of Theorem 3.1 there exists a map  W A3s;u;t ! A3s;u;t such that

 .�.x; y// D �.'.x; y/; y/: (5)

This map is called a “trace map” and is widely used (see, e.g., [Pe2]).
Define Q' D .'; id/ W zG � zG ! zG � zG by Q'.x; y/ D .'.x; y/; y/. Then the

following diagram commutes:

zG � zG
�

��

Q' �� zG � zG
�

��
A3s;u;t

 �� A3s;u;t .

(6)

Here  .s; u; t/ ´ .f1.s; u; t/; f2.s; u; t/; t/, where f1.s; u; t/ D tr.'.x; y//
and f2.s; u; t/ D tr.'.x; y/y/.

Lemma 3.2. For any word map '.x; y/ the variety

ˆ W ff1.s; u; t/ D s; f2.s; u; t/ D ug � A3s;u;t

of fixed points of  has positive dimension.

Proof. Since the variety ˆ is defined by two equations in A3s;u;t , it is sufficient to
show that it is not empty. But for any word !.x; y/ we have !.1; 1/ D 1, thus
 .2; 2; 2/ D .2; 2; 2/, hence ˆ ¤ ;.

Lemma 3.3. LetQ D .s0; u0; t0/ be a fixed point of  defined over Fq . Let .x; y/ 2
��1.Q/. Then .'.x; y/; y/ 2 ��1.Q/ as well.

Proof. Indeed, (5) gives �.'.x; y/; y/ D  .Q/ D Q.

Theorem 3.4. For every Fq-rational point Q D .s0; u0; t0/ 2 A3s;u;t the fibre H D
��1.Q/ has an Fq-rational point.



Geometry and arithmetic of verbal dynamical systems on simple groups 617

Proof. We will look for an element of H among pairs of matrices of the form
��

0 1

�1 s0

�
;

�
a b

c �aC t0

��
:

To lie in H , the entries of these matrices must satisfy the equations

a.�aC t0/ � bc D 1; c � b C s0.�aC t0/ D u0:

On eliminating b, we arrive at the following equation in a and c:

a2 C c2 � s0ac � t0aC .s0t0 � u0/c C 1 D 0; (7)

which has a solution for every q. Of course, this can be proved using the Chevalley–
Warning theorem, but for the reader’s convenience we present here an elementary
proof.

Case 1. q is odd.
The discriminantD of the quadratic part of the left-hand side of (7) equals s20 �4.

If D D 0, i.e., s0 D ˙2, we exhibit an explicit point in H :
��˙1 u0 � t0

0 ˙1
�
;

�
1 t0 � 2
1 t0 � 1

��
; (8)

so we may assumeD ¤ 0. First, by a linear change of variables over Fq , let us bring
(7) to the form

Qa2 C " Qc2 D r:

If r is a square, r D v2, we can put Qa D v, Qc D 0, so we may assume that r is not a
square. If " is not a square, then r=" is a square, r=" D v2, and we can put Qa D 0,
Qc D v, so we may assume " is a square, " D v2. In Fq there are .q C 1/=2 squares
and .q � 1/=2 non-squares, thus among .q C 1/=2 elements r � Qa2, when Qa ranges
over Fq , there is a square w2. We then put Qc D w=v.

Case 2. q is even.
If s0 D 0, then we get a point inH from (8), so we may assume s0 ¤ 0. Then on

putting Qa D aC .s0t0 C u0/=s0, Qc D c C t0=s0, we bring (7) to the form

Qa2 C Qc2 C s0 Qa Qc D r:

As every element of Fq is a square, we have r D v2 and we can put Qa D v, Qc D 0.

Corollary 3.5. Consider on SL.2;Fq/2 the “conjugation” equivalence relation

.x; y/ 	 .x0; y0/ iff there exists g 2 SL.2; xFq/ such that x0 D gxg�1; y0 D gyg�1:

Then every absolutely irreducible component of the set of conjugacy classes of Q'-pe-
riodic points is positive-dimensional.
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Proof. The corollary is valid because the periodic set of the trace map is positive-
dimensional and trace projection onto A3 is surjective over every algebraically closed
field.

We can now obtain a sufficient condition for the existence of periodic points.
Consider the maps ' W zG � zG ! zG and  W A3s;u;t ! A3s;u;t as in diagram (6), and
denote by ˆ � A3s;u;t the variety of fixed points of  . As in Section 2, for a fixed y

denote by 'y W zG ! zG the map x 7! '.x; y/.
Note that ˆ contains a line

L1 D fs D 2; u D tg:
Since ˆ is defined by two equations, all its irreducible components have dimension
at least one.

Theorem 3.6. Write ˆ D Sk
iD1Wi [L1, whereWi are irreducible Fq-components

of ˆ. Suppose that q is big enough. If at least one of Wi ’s is absolutely irreducible,
then there exists a pair .x; y/ 2 G � G such that x ¤ 1; y ¤ 1 and x is a periodic
point of 'y .

Proof. Let Wi be an absolutely irreducible component of W , W ¤ L1. By the
Lang–Weil theorem [LW], there is a pointQ D .s0; u0; t0/ ¤ .˙2; t;˙t / 2 Wi .Fq/.
According to Theorem 3.4, we haveHQ.Fq/ ¤ ;, whereHQ D ��1.Q/. It follows
that there exists a pair .x; y/ 2 zG� zG such that s0 D tr.x/, u0 D tr.xy/, t0 D tr.y/.
By Lemma 3.3, .'y.x/; y/ 2 HQ.Fq/ as well. Since the set HQ.Fq/ is finite, there

are numbers n < m 2 N such that '.m/y .x/ D '
.n/
y .x/. Thus, Qx D '

.n/
y .x/ is a

periodic point of 'y . Moreover, the image of Qx in G D PSL.2; q/ is non-identity
since Q D .s0; u0; t0/ ¤ .˙2; t;˙t /.

Remark 3.7. If there is a component Wi � ˆ defined over Z and irreducible over
xQ, then, by [Gr], Theorem IV, 9, 7.7 (i), the assumptions of the theorem are satisfied
for any prime p big enough.

Remark 3.8. Suppose that q D p > 3 is a prime number. Note that all the maps in
diagram (6) are defined over Z, and it can thus be viewed as the special fibre at p of
the diagram of morphisms of Z-schemes (denoted by the same letters)

G � G

�

��

Q' �� G � G

�

��
A3Z

 �� A3Z

where G D SL.2;Z/.
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3.2. Three-variable maps. Let here zG denote SL.2;K/ where K is an arbitrary
field. Consider a morphism ' W zG � zG � zG ! zG such that

'.˙x;˙u;˙y/ D ˙'.x; u; y/:
The modified map Q' W zG � zG � zG ! zG � zG � zG is defined by Q'.x; u; y/ D
.x; '.x; u; y/; y/.

As above, we consider a representation � of the free group F3 in SL.2;Z/ and
assume that ' is defined by a word w D w.x; u; y/. The trace of �.w/ can be
expressed as a polynomial in 7 variables a1 D tr.x/, a2 D tr.y/, a3 D tr.u/,
a12 D tr.xy/, a13 D tr.xu/, a23 D tr.yu/, a123 D tr.xyu/. These variables are
dependent (see, e.g., [Ma1] or formulas (2.3)–(2.5) in [Ho]):

a2123 � a123.a12a3 C a13a2 C a23a1 � a1a2a3/C .a21 C a22 C a23 C a212

C a213 C a223 � a1a2a12 � a1a3a13 � a2a3a23 C a12a13a23 � 4/ D 0:
(9)

Let Na D .a1; a2; a3; a12; a13; a23; a123/ 2 A7, let Z � A7 be an absolutely
irreducible set defined by (9). Let �.x; u; y/ D Na 2 Z be the trace projection. Then
the diagram

zG � zG � zG
�

��

Q' �� zG � zG � zG
�

��
Z.K/

 �� Z.K/

(10)

is commutative, where  . Na/ D .a1; a2; l1. Na/; a12; l2. Na/; l3. Na/; l4. Na// and l1 D
tr.'.x; u; y//, l2 D tr.'.x; u; y/x/, l3 D tr.'.x; u; y/y/, l4 D tr.'.x; u; y/xy/.
The variety F.'/ � Z of fixed points of  is defined by the equations

l1. Na/ D a3; l2. Na/ D a13; l3. Na/ D a23; l4. Na/ D a123;

and, since it is non-empty, its dimension is at least 3.
Let us now consider diagram (10) more carefully.

Lemma 3.9. LetF be any algebraically closed field. Then the setZ is an irreducible
hypersurface over F .

Proof. Assume the contrary. Let p denote the natural projection of A7 to A6; for-
getting the coordinate a123. Let L � A6 be an irreducible curve not contained in the
branch locus of the restriction of p to Z. Then the set p�1.L/ \Z is reducible.

Case 1. char.F / ¤ 2.
Let c ¤ ˙2. Consider the curves L D fa1 D a2 D a13 D a23 D 0; a12 D

cg � A6 and M D p�1.L/ D fa1 D a2 D a13 D a23 D 0; a12 D cg � A7. Then
from (9) it follows that M 0 D Z \M is defined by the equations

.a123�a3c=2/2�.c2�4/.a23�4/=4 D 0; a1 D a2 D a13 D a23 D 0; a12 D c:
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Therefore M 0 is a ramified double cover of L, hence it is irreducible. Contradiction.
Case 2. char.F / D 2.
We now consider the curve L D fa1 D a2 D a13 D a23 D 0; a12 D a3 C 1g �

A6. In the notation of case 1, M 0 is defined by the equations

a2123 � a3.a3 C 1/a123 C 1 D 0; a1 D a2 D a13 D a23 D 0; a12 D a3 C 1:

Thus it is irreducible. Contradiction. Hence Z is irreducible.

Theorem 3.10. Let Z � A7a1;a2;a3;a12;a13;a23;a123
be defined by equation (9). Then

for all q the map � W SL.2; q/ � SL.2; q/ � SL.2; q/ ! Z.Fq/ is surjective.

Proof. The result will follow from identities between certain polynomials in the
polynomial ring

R ´ ZŒx1; x2; x3; x12; x13; x23; x123; ˛1; �1; ˛2; �2�:

Denote

L ´ x2123 � x123.x12x3 C x13x2 C x23x1 � x1x2x3/
C x21 C x22 C x23 C x212 C x213 C x223

� x1x2x12 � x1x3x13 � x2x3x23 C x12x13x23 � 4;
L12 ´ x21 C x22 C x212 � x1x2x12 � 4;
L13 ´ x21 C x23 C x213 � x1x3x13 � 4;
L23 ´ x22 C x23 C x223 � x2x3x23 � 4

(all viewed as elements of R).
We start with the following lemma (skipping an elementary proof).

Lemma 3.11. LetK be a finite field, and let r , s, t , a 2 K be such that the equation
in x, y

x2 C y2 C rxy C sx C ty D a

is not solvable in K. Then the characteristic of K is 2 and r D 0, s D t hold.

We now define two more polynomials in the ringR (the reason will become clear
later on):

D1 ´ �˛21 C ˛1�1x3 C ˛1x1 � �21 � �1x1x3 C �1x13 � 1;
D2 ´ �˛22 C ˛2�2x3 C ˛2x2 � �22 � �2x2x3 C �2x23 � 1:

Our argument will also need the following two-by-two matrix over R:

A D
�

2˛2 � �2x3 � x2 �˛2x3 C 2�2 C x2x3 � x23
˛2x3 � 2�2 � x2x3 C x23 �˛2x23 C 2˛2 C �2x3 C x2x

2
3 � x2 � x3x23

�
:

(11)
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Define further QA to be the adjoint matrix ofA, that is, QA isAwith the diagonal entries
permuted and the off-diagonal entries multiplied by �1. The product QAA is the scalar
matrix corresponding to the determinant of A. We further consider the vector

b ´
�
˛2x1 � �2x1x3 C �2x13 � x1x2 C x12

˛2x13 � �2x1 � x2x13 C x123

�
2 R2

and define r; s 2 R by �
r

s

�
´ QAb:

Multiply now D1 by L223 and replace y1 ´ L223˛1, y2 ´ L223�1, obtaining the
polynomial

F.y1; y2/ ´ �y21 C y1y2x3 C y1L23x1 � y22 � y2L23x1x3 C y2L23x13 � L223
in the variables y1; y2.

We need one more lemma.

Lemma 3.12. Let D2 be the ideal of R generated byD2 and D the ideal generated
byD2 and L. Then the following holds:

(i) det.A/ � L23 is in D2,
(ii) F.r; s/ is in D.

The proof of this lemma amounts to certain simple computations which are best
done using a computer algebra system. The first item follows for example from the
identity

det.A/ � L23 D .x23 � 4/D2:
For the second item, the formula is more complicated. We skip the details.

We can now go over to the proof of the theorem.
Let K be any field. Let x D .x1; x2; x3; x12; x13; x23; x123/ 2 Z.K/. As we are

working with traces and thus are allowed to make simultaneous conjugation, we start
our search of solutions to �.B1; B2; B3/ D x by considering the following triples of
two-by-two matrices over the polynomial ring KŒ˛1; �1; ˛2; �2�:

B1 D
�
˛1 �˛1x3 C �1 C x1x3 � x13
˛1 x1 � ˛1

�
;

B2 D
�
˛2 �˛2x3 C �2 C x2x3 � x23
�2 x2 � ˛2

�
;

B3 D
�
0 1

�1 x3

�
:
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The condition thatB1, B2, B3 satisfy �.B1; B2; B3/ D x and have determinant 1
is equivalent to the four equations

D1 D �˛21 C ˛1�1x3 C ˛1x1 � �21 � �1x1x3 C �1x13 � 1 D 0; (12)

D2 D �˛22 C ˛2�2x3 C ˛2x2 � �22 � �2x2x3 C �2x23 � 1 D 0; (13)

˛1.2˛2 � �2x3 � x2/C �1.�˛2x3 C 2�2 C x2x3 � x23/
� ˛2x1 C �2x1x3 � �2x13 C x1x2 � x12 D 0;

(14)

˛1.˛2x3 � 2�2 � x2x3 C x23/

C �1.�˛2x23 C 2˛2 C �2x3 C x2x
2
3 � x2 � x3x23/

� ˛2x13 C �2x1 C x2x13 � x123 D 0:

(15)

Notice that the first equation is quadratic in ˛1, �1 only and the second is quadratic
in ˛2, �2 only. The third and fourth equations are written as a linear system in ˛1,
�1. Defining the vectors

y ´
�
˛1
�1

�
; b ´

�
˛2x1 � �2x1x3 C �2x13 � x1x2 C x12

˛2x13 � �2x1 � x2x13 C x123

�
;

the third and fourth of the above equations can be schematically written as

Ay D b

with the matrix A defined in (11) evaluated at our point x.
We now assume that K is a finite field. We shall now write L23.x/ for the

polynomial L23 defined above evaluated at our point x 2 Z.K/, that is, L23.x/ D
x22Cx23Cx223�x2x3x23�4. We use a similar notation for all the other polynomials.

Case 1. At least one of the values L12.x/, L13.x/, L23.x/ is non-zero.
Assume that, say, L23.x/ ¤ 0 (the other cases are similar).
First we show that (13), viewed as an equation in the indeterminates ˛2, �2,

has a solution. Assume the contrary. Then by Lemma 3.11 we conclude that the
characteristic of K is two, x3 D 0 and x2 D x23. This contradicts the assumption
L23 ¤ 0.

We shall now fix a solution .˛2; �2/ 2 K2 of equation (13) and put these into the
above matrix A getting a two-by-two matrix over K. Similarly we get a vector b in
K2. By Lemma 3.12 we find

det.A/ D L23.x/ ¤ 0

which is guaranteed by our assumption. We now define .˛1; �1/ 2 K2 by�
˛1
�1

�
´ A�1b:

By Lemma 3.12 (ii), we have found three matricesB1, B2, B3 2 SL.2;K/ satisfying
�.B1; B2; B3/ D x.
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If now L23.x/ D 0, we have either L12.x/ ¤ 0 or L13.x/ ¤ 0. These cases are
treated in a similar way.

Remark 3.13. The above proof remains true if K is any quadratically closed field
(cf. also [Pe1]).

Case 2. L12.x/ D L13.x/ D L23.x/ D 0.
Loosely speaking, our strategy in this case is to use automorphisms of the free

group F3 to get from x another point of Z.K/ such that not all three values of Lij
vanish at that point, and then use the result of case 1. Let us make this more precise.

We start with an obvious lemma.

Lemma 3.14. Let n 
 2, let Fn denote the free group on n generators X1,…, Xn,
and let Gn be the product of n copies of a group G. The map

Aut.Fn/ ! Sym.Gn/; ' 7! y';
defined by

y'.T / D .'.X1/T ; : : : ; '.Xn/T /;

is a group homomorphism.
Here T is an n-tuple of elements of G and '.Xi /T is the element of G obtained

by substitution of the elements of T instead of the Xi ’s appearing in the expression
of '.Xi / in the basis fX1; : : : ; Xng.

The following constructions are described in [Ho] (see also [Ma1], [Pe2]), some-
times with details omitted. For the reader’s convenience and sake of completeness
we now focus on the case n D 3 giving some more details. Fix a basis fX; Y;Zg
of F3.

Definition 3.15. For every ' 2 Aut.F3/ define a map F' W A7 ! A7 by the formula

F'.u/ ´ .P'.X/.u/; P'.Y /.u/; : : : ; P'.XYZ/.u//;

where Pw is the integer polynomial in 7 variables corresponding to the word w
(cf. Theorem 3.1).

Lemma 3.16. For every ' 2 Aut.F3/ and every T 2 SL.2;K/3 we have

�.y'.T // D F'.�.T //:

Proof. Obvious.

Lemma 3.17. For every ' 2 Aut.F3/ and every field K we have the inclusion
F'.Z.K// � Z.K/.
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Proof. We first prove that F'.Z. xK// � Z. xK/, where xK is an algebraic closure of
K. From this the needed inclusion will follow as soon as F' is defined over K. In
case 1 we have proven that the map � is surjective onto an open subset

U. xK/ D fL12 ¤ 0; L13 ¤ 0; L23 ¤ 0g � Z. xK/
since the proof was valid for any algebraically closed field (see Remark 3.13).

Let u 2 U. xK/, u D �.T /, T 2 SL.2; xK/3. Then F'.u/ D F'.�.T // D
�.y'.T // 2 Z. xK/. Hence, F'.U. xK// � Z. xK/. Since U is open in Z and Z
is irreducible, the same inclusion is valid for Z. Since F' is defined over Z, the
inclusion for K-points follows as well.

Lemma 3.18. (i) Fid D id.
(ii) For every '; 2 Aut.F3/ and every u 2 Z.K/ we have

F'B .u/ D F' B F .u/:

Proof. The first item is obvious, so let us prove the second one. Once again, similarly
to Lemma 3.17, it is sufficient to prove it over an open subset U considered in
Lemma 3.17, and over the algebraically closed field xK/.

Let us take u 2 U. xK/, u D �.T /, T 2 SL.2; xK/3. Using Lemmas 3.14 and
3.16, we get

F'B .u/ D �.1' B  .T // D �.y' B y .T //;
F' B F .u/ D F'.�. y .T // D �.y'. y .T ///;

so the needed equality is proved.

Corollary 3.19. The correspondence ' 7! F' defines a group homomorphism
Aut.F3/ ! Aut.Z/ where Aut.Z/ is the group of Z-defined polynomial automor-
phisms of the variety Z.

We can now go over to the proof of the theorem in case 2.
Let, as above, x 2 Z.K/ be such that L12.x/ D L13.x/ D L23.x/ D 0.
Case 2a. Let first assume that there exists ' 2 Aut.F3/ such that u ´ F'.x/

is such that not all three values L12.u/, L13.u/, L23.u/ are zero. By case 1, there
exists T 2 SL.2;K/3 such that �.T / D u. Define T 0 ´ y'�1.T /. By Lemma 3.16
and Corollary 3.19, we have �.T 0/ D F'�1.�.T // D F'�1.u/ D F �1

' .u/ D x, and
we are done.

Case 2b. Assume that there is no such ' as in case 2a.
Denote by L'ij (where i , j stand for distinct numbers from the set f1; 2; 3g) the

polynomials in 7 variables obtained after applying F' to Lij . The needed contradic-
tion immediately follows from the following proposition.
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Proposition 3.20. Denote by '1; : : : ; '8 the automorphisms of F3 sending the ba-
sis fX , Y , Zg to the bases fXY; Y;Zg, fX; YZ;Zg, fX; Y;XZg, fXY �1; Y;Zg,
fX; Y; YZg, fXY 2; Y;Zg, fX;ZYZ�1; Zg, fX; Y;XZX�1g, respectively. Denote
by a the ideal in ZŒx1; : : : ; x123� generated by the functions L'm

ij where, as above,
i; j stand for distinct numbers from the set f1; 2; 3g, and m D 1; : : : ; 8, and let

Za.K/ D fx 2 A7.K/ W f .x/ D 0 for all f 2 ag:
Then for any field K of characteristic different from 2 we have

Za.K/ D f.2; 2; 2; 2; 2; 2; 2/; .0;�2;�2; 0; 0; 2; 0/; .0;�2; 2; 0; 0;�2; 0/;
.0; 2;�2; 0; 0;�2; 0/; .0; 2; 2; 0; 0; 2; 0/; .0; 0; 0;�2;�2;�2; 0/;
.0; 0; 0;�2; 2; 2; 0/; .0; 0; 0; 2;�2; 2; 0/; .0; 0; 0; 2; 2;�2; 0/g;

and for any field of characteristic 2 we have

Za.K/ D f.0; 0; 0; 0; 0; 0; 0/; .1; 0; 0; 1; 1; 0; 1/g:
Proof. MAGMA computation.

For each of the points x appearing in Proposition 3.20 one can easily exhibit an ex-
plicit triple of matricesT such that�.T / D x. Say,�.Id; Id; Id/ D .2; 2; 2; 2; 2; 2; 2/,

�

��
0 �1
1 0

�
;

��1 0

0 �1
�
;

��1 0

0 �1
��

D .0;�2;�2; 0; 0; 2; 0/;

and so on.
Theorem 3.10 is proved.

Coming back to the map Q', let us consider the additional condition

u D w.x; y/; (16)

where x 2 zG; y 2 zG and w 2 F2. Let

g3.a1; a2; a12/ D tr.w.x; y//; g13.a1; a2; a12/ D tr.w.x; y/x/;

g23.a1; a2; a12/ D tr.w.x; y/y/; g123.a1; a2; a12/ D tr.w.x; y/xy/:

Then (16) defines a three-dimensional variety W.w/ � Z:

W.w/ D Z \

8̂ˆ̂<
ˆ̂̂:

a3 D g3.a1; a2; a12/;

a13 D g13.a1; a2; a12/;

a23 D g23.a1; a2; a12/;

a123 D g123.a1; a2; a12/

9>>>=
>>>;
: (17)

We can now formulate a result which treats the SL.2; q/-case for three-variable
maps and thus makes a crucial step towards getting a sufficient condition for a given
sequence of type (3) to characterize finite solvable groups.
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Theorem 3.21. Let v.x; u; y/ andw.x; y/ be words in the free groups with three and
two generators, respectively. Define a sequence un.x; y/ by the recurrence relations

u0.x; y/ D w.x; y/; unC1.x; y/ D v.x; un.x; y/; y/:

Let ' W zG � zG � zG ! zG be the map defined by .x; u; y/ 7! v.x; u; y/, let
F.'/ be the variety of fixed points of the trace map  induced by ' (see diagram
(10)), and let W.w/ be defined by (17). With the notation of Theorem 3.10, let
V D fa2 D 2; a1 D a12; a3 D a23; a13 D a123g.

Assume thatF.'/\W.w/ contains a positive-dimensional, absolutely irreducible
Q-subvariety ˆ such that ˆ0 ´ ˆ n .ˆ \ V / is an open subset of ˆ.

Then there is q0 such that for every q > q0 there exists a pair .x; y/ 2 zG � zG
with un.x; y/ ¤ 1 for all n 2 N.

Proof. Let q0 be such that ˆ0.Fq/ ¤ ;. Let Na 2 ˆ0.Fq/. By Theorem 3.10, there
is a triple .x; u; y/ 2 zG � zG � zG such that �.x; u; y/ D Na. Moreover, since
Na 2 W.w/, we may take u D w.x; y/. Since Na 2 ˆ, we have  . Na/ D Na, hence
�.x; u1.x; y/; y/ D Na. Similarly, �.x; un.x; y/; y/ D Na for all n 2 N.

Since a2 D tr un.x; y/ ¤ 2, we have un.x; y/ ¤ 1.

Remark3.22. Although this section was completely devoted to considering the group
SL.2/ (until now PSL.2/ only appeared in its title), the obtained results (in particular,
Theorems 3.6 and 3.21) are also applicable to the PSL.2/-case. (In the two-variable
case, this is explicitly explained at the end of the proof of Theorem 3.6, the case of
Theorem 3.21 is similar).

4. Case G D Sz.q/

In this section we consider a map ' W G �G ! G whereG is a Suzuki group, Sz.q/,
q D 22mC1, m 
 1. As above, for a fixed y 2 G we denote by 'y W G ! G the
map .x; y/ 7! '.x; y/. There is no trace map in this case. Nevertheless there is a
factorization (see diagram (20)) which simplifies the picture. This leads to a sufficient
condition (Theorem 4.3) for the existence of periodic points. Although the condition
is not that simple, we have an example in Section 5.1 when it works.

Recall that according to the Bruhat decomposition, G D U1 [ U2; where the
first Bruhat cell U1 D B consists of all lower-triangular matrices of the form x D
T .a; b/D.k/ with

T .a; b/ D

0
BB@

1 0 0 0

a 1 0 0

a1Cs C b as 1 0

a2Cs C ab C bs b a 1

1
CCA ;
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D.k/ D

0
BB@
ks=2C1 0 0 0

0 ks=2 0 0

0 0 k�s=2 0

0 0 0 k�s=2�1

1
CCA ;

and the second Bruhat cell U2 consists of the matrices

x D T .a; b/D.k/wT .c; d/; (18)

where

w D

0
BB@
0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

1
CCA :

Here a; b 2 Fq , k 2 F�
q , s D 2mC1.

Recall the following properties of these matrices:

(i) T .0; 1/T .a; b/ D T .a; b/T .0; 1/;
(ii) D.k/w D wD.k�1/;

(iii) T .a; b/T .c; d/ D T .aC c; acs C b C d/;
(iv) wT .0; t/w D T .t1�s; t�1/D.t2s=.sC2//wT .t1�s; 0/;
(v) T .0; 1/�1 D T .0; 1/;

(vi) D.k/�1T .a; b/D.k/ D T .ak; bk1Cs/.
For x D T .a; b/D.k/wT .c; d/ 2 U2 define

x0 D ~.x/ D T .c; d/xT .c; d/�1

D T .c; d/T .a; b/D.k/w D T .aC c; cas C b C d/D.k/w:

Note that for any z D T .˛; ˇ/ we have

~.zxz�1/ D ~.T .˛; ˇ/T .a; b/D.k/wT .c; d/T .˛; ˇ/�1/
D T .c; d/T .˛; ˇ/�1T .˛; ˇ/T .a; b/D.k/w
D T .c; d/T .a; b/D.k/w

D ~.x/:

Lemma 4.1. If for any y; x; h 2 G we have

'y.hxh
�1/ D h'hyh�1.x/h�1; (19)

then for y D T .0; t/ we have

'y.~.x// D ~.'y.x//:
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Proof. For z D T .c; d/ we have

'y.zxz
�1/ D z'z�1yz.x/z

�1:

Since the matrices T .0; t/ commute with any z, it follows that

'y.zxz
�1/ D z'y.x/z

�1;
i.e.,

'y.~.x// D ~.z'y.x/z
�1/ D ~.'y.x//: �

From now on until the end of this section we only consider elements x from the
second Bruhat cell.

Corollary 4.2. For x 2 U2 denote �1.x/ D aCc, �2.x/ D casCbCd , k.x/ D k.
Then for y D T .0; t/ there exist functions f , g and h such that if 'y.x/ ¤ 1 then

�1.'y.x// D f .�1.x/; �2.x/; k.x//;

�2.'y.x// D g.�1.x/; �2.x/; k.x//;

k.'y.x// D h.�1.x/; �2.x/; k.x//:

Proof. Indeed, by construction ~.x/ D T .�1.x/; �2.x//D.k.x//w. By Lemma 4.1,
we thus have

T .�1.'y.x//; �2.'y.x//D.k.'y.x//w D ~.'y.x// D 'y.~.x//

D 'y.T .�1.x/; �2.x//D.k.x//w/:

It follows that �1.'y.x//; �2.'y.x// and k.'y.x// are determined uniquely by the
values of �1.x/, �2.x/ and k.x/.

Corollary 4.2 may be expressed by the commutative diagram of Fq-morphisms

A2
a;b

� A�
k

� A2
c;d

� U

�

��

'y �� A2
a;b

� A�
k

� A2
c;d

�

��
A2
a;b

� A�
k

 �� A2
a;b

� A�
k

,

(20)

where U denotes the set of x 2 U2 such that 'y.x/ ¤ 1.
This corollary provides the following sufficient condition for the existence of

periodic points which can be viewed as an analogue of Theorem 3.6.

Theorem 4.3. Let G D Sz.q/, let y D T .0; 1/ 2 G, and suppose that the map 'y
satisfies the following conditions:

• equality (19) holds for any x; y; h 2 G;
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• the morphism  W A2
a;b

� A�
k

! A2
a;b

� A�
k

induced by 'y (see diagram (20))
has an invariant set V (i.e.,  .V / � V ).

Then the map 'y W G ! G has a non-identity periodic point.

Proof. Indeed, the cell U2 does not contain the identity matrix.

Remark 4.4. In view of (19), the statement of Theorem 4.3 holds for anyy D T .0; t/.

5. Examples

In this section we want to demonstrate how the trace map works. In Section 5.1 we
consider the two-variable case and give another proof of the main theorem of [BWW]
characterizing finite solvable groups. In Section 5.2 we compute the trace map for
the three-variable sequence from [BGGKPP1], [BGGKPP2] (that also characterizes
finite solvable groups). In Section 5.3 we apply our method for finding a modified
sequence having the same property. Section 5.4 contains an illustration of the method
for a simple case where the word under consideration is commutator.

5.1. The sequence of Bray–Wilson–Wilson. The sequence sn.x; y/ of [BWW] is
defined as follows:

s1 D x; s2 D Œy�1xy; x�1�; : : : ; sn D Œy�1sn�1y; s�1
n�1�; : : : :

Recall the main result of [BWW].

Theorem 5.1 ([BWW]). A finite groupG is solvable if and only if there exists n 2 N
such that sn.x; y/ D 1 for all .x; y/ 2 G �G.

The proof reduces to the following:

Theorem 5.2 ([BWW]). Let G D PSL.2;Fq/, q > 3, or G D Sz.22mC1/. Then
there exists a pair .x; y/ 2 G �G such that sn.x; y/ ¤ 1 for all n 2 N.

We want to give another proof of Theorem 5.2 using the trace map and other
geometric considerations.

For technical reasons we will change notation and consider a sequence en.x; y/
which differs from sn.x; y/ only by replacing y with y�1. Since in [BWW] the
element y was supposed to be an involution, this does not matter. We define

e1 D x; e2 D Œyxy�1; x�1�; : : : ; en D Œyen�1y�1; e�1
n�1�; : : : ;

i.e., in this example
'.x; y/ D 'y.x/ D Œyxy�1; x�1�

(see Section 3).
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Case of PSL.
As explained in Remark 3.22, we can freely apply the results of Section 3.1

obtained for zG D SL.2; q/ to the case G D PSL.2; q/.
We are going to compute the variety ˆ of fixed points of the corresponding trace

map  W A3 ! A3 (see diagram (6)). We maintain the notation of Section 3.1. In
particular, we denote s D tr.x/, u D tr.xy/, t D tr.y/, and r D u2 C s2 C t2 �ust .
Then (see [CMS], Lemma 5.2.4)

f1.s; u; t/ D 2s2 C .tr.yxy�1x�1//2 � s2.tr.yxy�1x�1// � 2;
trŒy; x� D r � 2:

Direct computations give

f1.s; u; t/ D 2s2 C .r � 2/2 � s2.r � 2/ � 2
D s2.4 � r/C r2 � 4r C 2

D .r � 4/.r � s2/C 2;

(21)

f2.s; u; t/ D f1.s; u; t/ � t C s.st � u/.r � 4/ � t .r � 3/: (22)

The variety ˆ � A4 is now defined by the system

ˆ D

8̂<
:̂
s D .r � 4/.r � s2/C 2;

u D st C s.st � u/.r � 4/ � t .r � 3/;
r D u2 C t2 C s2 � ust:

9>=
>;

This curve contains a trivial component L1:

s D 2; r D 4; u D t:

To eliminate this component, we consider a curve ẑ in the space A5 with coordinates
.s; u; t; r; z/ which is isomorphic to ˆ n L1:

ẑ D

8̂ˆ̂<
ˆ̂̂:

r D u2 C t2 C s2 � ust;
s D .r � 4/.r � s2/C 2;

u D st C s.st � u/.r � 4/ � t .r � 3/;
z.r � 4/ D 1:

9>>>=
>>>;

Lemma 5.3. The plane curveA � A2 given by the equation .s�2/ D .r�4/.r�s2/
is a smooth irreducible genus 1 curve with two punctures.

Proof. Assume that the ground field is algebraically closed. Let QA be the closure of
A in the projective space. One can check that QA has no singular points.

As a plane smooth curve, QA is irreducible. Moreover, it is a double cover of P1

and by Hurwitz’s formula has genus 1.
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MAGMA computations show that the curve ẑ has two components

W1 D

8̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
:̂

z C t C s D 0;

u � t � s C r � 1 D 0;

ts � 2t � 2s C r D 0;

t r � 4t C sr � 4s C 1 D 0;

s2r � 4s2 C s � r2 C 4r � 2 D 0;

9>>>>>>=
>>>>>>;
; (23)

W2 D

8̂ˆ̂̂̂
<̂
ˆ̂̂̂ˆ̂:

z � t C s D 0;

u � t C s � r C 1 D 0;

ts � 2t C 2s � r D 0;

t r � 4t � sr C 4s � 1 D 0;

s2r � 4s2 C s � r2 C 4r � 2 D 0;

9>>>>>>=
>>>>>>;
; (24)

both defined over the ground field and isomorphic to A n fr D 4; s D 2g, i.e., to a
genus 1 irreducible curve with 3 punctures. Therefore bothW1 andW2 are absolutely
irreducible.

From Theorem 3.6 it follows that if q is big enough, then there exists a pair
.x; y/ 2 PSL.2; q/ � PSL.2; q/ such that x is a periodic point of the map 'y .

Remark 5.4. Since W1; W2 are curves of genus 1 with 3 punctures, they contain
Fq-points for all q 
 7. Since each fibre contains a rational curve with at most two
punctures, q “big enough” means q 
 7 in this example. Small fields have been
handled in a straightforward manner.

Case of Sz.2n/.
We keep the notation of Section 4. We have to show that the map 'y meets all

the conditions of Theorem 4.3. Condition (19) is obviously satisfied. Let us find an
invariant set V of the map  (see diagram (20)). A direct computation of f .0; b; k/,
g.0; b; k/ and h.0; b; k/ for x D T .0; b/D.k/w and y D T .0; 1/ gives

f .0; b; k/ D 0;

g.0; b; k/ D b C 1

h.0; b; k/ D k2.b C 1/
2s

sC2 � k .1Cs/2s
sC2 D k4.b C 1/

2s
sC2 :

Thus for b ¤ 0; 1 the function g has period 2.
After the second iteration, we get

f .f .0; b; k/; g.0; b; k/; h.0; b; k// D 0;

g.f .0; b; k/; g.0; b; k/; h.0; b; k// D b;

h.f .0; b; k/; g.0; b; k/; h.0; b; k// D k16.b C 1/
8s

sC2 b
2s

sC2 :
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Therefore, the set V D fx 2 U2 W �1.x/ D 0, �2.x/ D b ¤ 0; 1g is invariant under
the second iteration of 'y and does not contain 1.

Theorem 5.2 is proved.

5.2. Three-variable sequence. In this section we consider another sequence char-
acterizing solvable groups which was introduced in [BGGKPP1], [BGGKPP2]:

u0 D x�2y�1x; : : : ; unC1 D Œxunx
�1; yuny�1�; : : : :

In the notation of Section 3.2 we have

v.x; u; y/ D Œxux�1; yuy�1�; w.x; y/ D x�2y�1x;

and Na stands for the point Na D .a1; a2; a3; a12; a13; a23; a123/ 2 A7.
We need some additional notation:

a213 D tr.yxu/ D a12a3 C a13a2 C a23a1 � a1a2a3;
b12 D tr.x�1y/ D a1a2 � a12;
b13 D tr.x�1u/ D a1a3 � a13;
b23 D tr.y�1u/ D a2a3 � a23;
b123 D tr.x�1yu/ D a1a23 � a123;
b213 D tr.y�1xu/ D a2a13 � a213;
c12 D tr.xy2/ D a12a2 � a1;
cm12 D tr.x�1y2/ D b12a2 � a1;
d12 D tr.x2y/ D a12a1 � a2;
dm12 D tr.x�2y/ D b12a1 � a2;
g12 D tr.xu2/ D a13a3 � a1;
fm23 D tr.u2y�1/ D b23a3 � a2;
p1 D tr.ux�1yuy�1x/ D a3b12b123 � b212 � b2123 C 2;

p2 D b23p1 � b13fa3b213 � b12g C a1b213 � b23;
p3 D b12.a2p1 � b13b213 C dm12/ � b213a23 C cm12;

p4 D b212 C a23 C b2123 � b12a3b123 � 2;
p5 D b212 C a23 C b2213 � b12a3b213 � 2;

l1. Na/ D 2a23 C p21 � p1a23 � 2;
l2. Na/ D a1l1 � b213p2 C p3;

l3. Na/ D b213.b13p1 � .b123fm23 � b12b23 C b13//

� b12.p1a1 � b123b23 C cm12/C a13b123 � dm12:
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A direct computation shows that

tr.Œxux�1; yuy�1�/ D l1. Na/;
tr.Œxux�1; yuy�1�x/ D l2. Na/;
tr.Œxux�1; yuy�1�y/ D l3. Na/:

In the following we compute tr.Œxux�1; yuy�1�xy/ D l4. Na/:
Y D b13b213 � dm12; p6 D b212 C a23 C b2123 � b12a3b123 � 2;

G D b213b12a3 � b212 � b2213 C 2; U D a2G � Y; V D b213a23 � cm12;
E D b12U � V; Q D b213a1 � b23; R D a3b213 � b12;
H D b13R �Q; D D b23G �H; B D b123D �E;
C D b12.p6 � 1/; A D a2B � C; l4 D a12l1 � A:

Furthermore,

tr.u0/ D tr.x�2y�1x/ D tr.x�1y�1/ D a12;

tr.u0x/ D tr.x�2y�1x2/ D tr.y/ D a2;

tr.u0y/ D tr.x�2y�1xy/ D tr.x/ tr.Œx; y�/ � tr.y�1xy/
D a1.a

2
1 C a22 C a212 � a1a2a12 � 3/;

tr.u0xy/ D tr.x�2y�1x2y/ D tr.Œx2; y�/

D .a1 � 2/2 C a22 C d212 � .a1 � 2/a2d12 � 2:
Therefore the variety C D ˆ \W.w/ is defined by equation (9) and the following
system of equations:

l1. Na/ D a3; l2. Na/ D a13; l3. Na/ D a23; l4. Na/ D a123;

a3 D a12; a13 D a2; a23 D a1.a
2
1 C a22 C a212 � a1a2a12 � 3/;

a123 D .a1 � 2/2 C a22 C d212 � .a1 � 2/a2d12 � 2:
MAGMA computations show that C contains two components, C1 and ˆ: C1 cor-
responds to the trivial solution u0 D 1, x D y�1, and ˆ is an irreducible curve
intersecting the set V (see Theorem 3.21) at a finite number of points (at most 31 as
MAGMA computations give). Moreover, this curve is a projection of the solution of
the equation u0 D u1 computed in [BGGKPP2].

5.3. A new sequence. In this subsection we produce a new sequence characterizing
finite solvable groups. It is a modification of the sequence en considered in Section 5.1.
We keep the notation of that section.

Let �n.x; y/ D sn.x; y
2/. Denote �.x; y/ D '.x; y2/, i.e.,

�y.x/ D Œy2xy�2; x�1�:
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Theorem 5.5. The map �.x; y/ W SL.2; q/ ! SL.2; q/ has non-trivial periodic
points for all q.

Proof. For a pair .x; y/ 2 SL.2; q/, let s D tr.x/, t1 D tr.y/, u1 D tr.xy/,
t D tr.y2/ D t21 � 2, u D tr.xy2/ D u1t1 � s.

Consider the maps

~ W A3s;u1;t1
! A3s;u;t ; ~.s; u1; t1/ D .s; u1t1 � s; t21 � 2/;

 W A3s;u;t ! A3s;u;t ;  .s; u; t/ D .f1.s; u; t/; f2.s; u; t/; t/;

where the functions f1 and f2 are defined in (21) and (22), respectively, and

 � W A3s;u1;t1
! A3s;u1;t1

;  � .s; u1; t1/ D .tr �y.x/; tr.�y.x/ � y/; tr y/:
We obtain the commutative diagram

SL.2/ � SL.2/

�

��

.�;id/ �� SL.2/ � SL.2/

�

��
A3s;u1;t1

~

��

 � �� A3s;u1;t1

~

��
A3s;u;t

 �� A3s;u;t .

(25)

As shown above, the variety ˆ of fixed points of  has three irreducible Fq-
components L1, W1, W2, all absolutely irreducible for any q.

Lemma 5.6. The curve Z2 ´ ~�1.W2/ is absolutely irreducible.

Proof. Consider the curve xB defined in P3 with homogeneous coordinates .Qs W Qr W
Qt W Qw/ by the equations

Qs Qt � 2Qt Qw C 2Qs Qw � Qr Qw D 0; (26)

Qt Qr � 4Qt Qw � Qs Qr C 4Qs Qw � Qw2 D 0; (27)

.Qs � 2 Qw/ Qw2 D . Qr Qw � Qs2/. Qr � 4 Qw/: (28)

Since equations (24) are linear in u and z, the curve xB is isomorphic (or at least
birational and one-to-one) to the projective closure of W2.

The curve xC � P4, isomorphic (or at least birational and one-to-one) to the
closure of Z2, can be defined in P4 with coordinates .Qt1 W Qs W Qr W Qt W Qw/ by the same
system (26), (27), (28), together with the additional equation

Qt21 D Qw.Qt C 2 Qw/: (29)



Geometry and arithmetic of verbal dynamical systems on simple groups 635

The projection 	 W xC ! xB ,

	.Qt1 W Qs W Qr W Qt W Qw/ D .Qs W Qr W Qt W Qw/;
is a morphism which represents xC as a ramified double cover of xB (this can be checked
by a direct computation). Since xB is absolutely irreducible, so is xC .

From diagram (25) it follows that at least the second iteration of  � has a non-
trivial absolutely irreducible component in the variety of its fixed points. Formula
(29) shows that xC is a double cover of xB with at most three ramification points (all
at infinity). It follows that the genus is at most 2. Since B has 3 punctures and over
at least one of them xC is ramified, C has at most 5 punctures. Therefore for q 
 13

there are points in Z2 rational over Fq .
The case q < 13 was checked by straightforward computations.

Corollary 5.7. A finite groupG is solvable if and only if there exists n 2 N such that
�n.x; y/ D 1 for all .x; y/ 2 G �G.

Proof. We argue as in the proof of Theorem 5.1. Theorem 5.5 settles the PSL.2; q/
case. In the case Sz.2n/ no new proof is needed becauseT .0; 1/ D T .1; 1/2. Periodic
points of 'y with y D T .0; 1/ are periodic points of �y1

with y1 D T .1; 1/. The case
G D PSL.3; 3/ is straightforward: for the matrices

x D
�
2 0 0

0 0 1

0 1 2

�
; y D

�
0 2 2

1 2 1

0 2 0

�
we have s1.x; y/ D s4.x; y/.

Remark 5.8. The proof of [BWW] does not work for the sequence from Theorem 5.7.
It is proved in [BWW] that for

y0 D
�
0 �1
1 0

�

there exists a periodic point of 'y0
in SL.2; q/ for every q. But y0 ¤ z2 in SL.2; q/

if 2 is not a square in Fq .

Remark 5.9. We believe that the statement of Theorem 5.7 remains true if one takes
yn, with any n 
 2, instead of y2 (at least for even n), but this requires more subtle
analysis.

5.4. Commutator. In the following example we want to show how useful the trace
method can be. We present a very simple proof of the following statement (which is
a very special case of a theorem of Borel [Bo], see also [La]):
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Example 5.10. Let G D SL.2; q/. Then the map F W G � G ! G defined by
F.x; y/ D Œx; y� is a dominant morphism of the underlying algebraic Fq-varieties.

Proof. In the notation of Section 3.1, consider the corresponding map  W A3s;u;t !
A3: if tr.x/ D s; tr.y/ D t; tr.xy/ D u, then

 .s; u; t/ D .f1.s; u; t/; f2.s; u; t/; t/:

Here f1.s; u; t/ D tr.F.x; y// D s2 C t2 C u2 � ust � 2; f2.s; u; t/ D t .
Let z 2 G and suppose that a D tr.z/ ¤ ˙2. We want to show that there exist

x; y 2 G with Œx; y� D z.
For any t 2 Fq consider the inverse image 
a;t;t ´  �1.a; t; t/ � A3s;u;t . We

have

a;t;t D f.s; u; t/ 2 A3 W s2 C t2 C u2 � ust � 2 � a D 0g:

For a fixed value t0 ¤ ˙2, this is a quadratic equation in .s; u/ which has a
solution .s0; u0/ over every finite field (cf. the proof of Theorem 3.4). Thus we have
a point Q ´ .s0; u0; t0/ 2 
a;t0;t0 .

By Theorem 3.4, ��1.Q/ ¤ ;, so take .x; y/ 2 ��1.Q/. We have tr.F.x; y// D
a D tr.z/. If a ¤ ˙2 (i.e., z is semisimple), F.x; y/ is conjugate to z, i.e., Œx; y� D
wzw�1. We get Œw�1xw;w�1yw� D z, as required.

The map F W G � G ! G provides a dynamical system on SL.2; q/ � SL.2; q/
with z�.x; y/ D .Œx; y�; y/. It corresponds to the Engel sequence e1 D Œx; y�,…,
enC1 D Œen; y�; : : : .

Let us show that this dynamical system has non-trivial periodic points for every
q. The cases q D 2; 3 are treated by a direct computation, so assume q > 3. In view
of Theorem 3.4, it is sufficient to find a fixed point of the trace map

 .s; u; t/ D .s2 C t2 C u2 � ust � 2; t; t/
with s2 ¤ 4, t2 ¤ 4. The point .s; t; t / is fixed if s D s2 C 2t2 � st2 � 2. If q D 2n,
then any pair .s D 1C t2; t / is a needed solution of this equation. If q ¤ 2n; then
for a fixed t we get s1 D 2 (forbidden), s2 D t2 � 1. Thus, any pair .t2 � 1; t/,
t2 ¤ �1; 3; 4 provides a needed fixed point.

6. Possible generalizations

Here we present some more general problems arising from concrete calculations of
the preceding sections. In Section 6.1 we considerAG systems introduced in Section 1
making this notion more precise. In particular, we want to distinguish between the
cases when the underlying geometric object is defined over a global field or its ring
of integers. We define residually periodic dynamical systems, propose some relevant
conjectures and give several examples. In Section 6.2 we discuss in more detail



Geometry and arithmetic of verbal dynamical systems on simple groups 637

verbal dynamical systems defined in the introduction. By combining the notions of
AG dynamical system and verbal dynamical system, we define systems carrying both
structures.

6.1. Residually periodic dynamical systems. We start withAG dynamical systems.
Let K be a global field, and let O stand for the ring of integers in K.

Definition 6.1. A triple D D .X; V; '/ is called a K-dynamical system if

• X is an algebraic K-variety;
• ' W X ! X is a dominant K-morphism;
• V � X.K/ is a '-invariant subset.

Definition 6.2. A triple D D .X;V; ˆ/ is called an O-dynamical system if

• X is an O-scheme of finite type;
• ˆ W X ! X is a dominant O-morphism;
• V � X.O/ is a ˆ-invariant subset.

We say that an O-dynamical system D D .X;V; ˆ/ is an integral model of
D D .X; V; '/ if

• X �O K D X I
• the restriction of ˆ to the generic fibre coincides with ';
• R.V/ D V , where R W X ! X is the restriction to the generic fibre.

Consider a K-dynamical system D D .X; V; '/ and its integral model D D
.X;V; ˆ/. For a place p of K let

• ~p be the residue field of pI
• Xp the special fibre of X at pI
• Rp W X ! Xp the reduction map (restriction to the special fibre);
• 'p W Xp ! Xp the reduction of ˆ viewed as a morphism of ~p-schemes;
• Xp D Xp.~p/ the set of rational points;
• Vp D Rp.V/ � Xp the reduction of V.

Assume that for all but finitely many places p the scheme Xp is integral. One can
deduce from [Gr, 9.6.1(ii)] that for all but finitely many p’s the reduced morphism
'p is dominant. Let z 2 Xp n Vp be a periodic point of 'p . Let `.z/ be the number
of distinct points in the orbit of z. Set p̀ ´ minf`.z/g where the minimum is taken
over all z’s as above. If there are no periodic points in Xp n Vp; we set p̀ D 1. Let
M denote the collection of primes p such that p̀ D 1. Let N D f p̀gp 62M .

Definition 6.3. With the above notation, we say that a K-dynamical system D D
.X; V; '/ or an O-dynamical system D D .X;V; ˆ/ is residually aperiodic if the set
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M is infinite, residually periodic ifM is finite, and strongly residually periodic if the
sets M and N are both finite.

For example, in Section 5.1 for a map  W A3Z ! A3Z we had X D A3, ~p D Fp ,
V D f.˙2;˙t; t /g, N D f1g and M D ;.

We believe that the following special case is particularly interesting. Let V �
X.O/ be the set of all preperiodic integer points (i.e., points having a finite orbit). Let
Vp D Rp.V/ � Xp be its reduction mod p. Residual periodicity of D D .X;V; ˆ/
means that 'p has periodic points outside Vp for all but finitely many p’s. In simple
words, we are looking for periodic points of 'p not coming from preperiodic integer
points of ˆ. Note that according to [Si2], cycles coming from a fixed non-periodic
integer point cannot be too short (their length, as a function of the cardinality of the
residue field, tends to infinity). Thus our approach to studying cycles of reduced
systems is, in a sense, complementary to [Si2].

As mentioned in the introduction, there may be different reasons for a dynamical
system to be residually periodic. For higher-dimensional systems one can look for
geometric conditions. The next notion captures the phenomenon of extra coordinates,
or more generally invariant functions, as in Example 1.8.

Definition 6.4. We say that a dynamical system D D .X; V; '/ is of fibred type if
there exists a regular function f onX such that f B'.n/ D f for some iteration '.n/

of '.

Question 6.5. Assume that a dynamical system D D .X; V; '/ is of fibred type.
Assume that the endomorphism ' is not birational. Under what conditions on ' isD
strongly residually periodic?

Question 6.5 is essentially higher-dimensional. In one-dimensional situations the
main role, of course, belongs to arithmetic. To get a better feeling of the problem,
it is useful to consider one-dimensional examples which are, in a sense, opposite to
Example 1.7 from the introduction.

Example 6.6. Let T D Gm;Z D Spec.ZŒx; y�=.xy � 1// be the trivial one-dimen-
sional torus. Fix a positive integer d , and let ˆ W T ! T denote the power map:
t ! td . The set of integer points R D T .Z/ consists of two points, 1 and �1, both
fixed under ˆ (i.e., periodic with period one). We choose the forbidden set V D R.
If d D 2, then p̀ D 1 for every Fermat prime p D 2m C 1. Thus the system is
residually periodic or aperiodic depending on whether there are finitely or infinitely
many Fermat primes. Assume now that d is odd.

Proposition 6.7. The dynamical system .T ;R; ˆ/ of Example 6.6 is residually peri-
odic but is not strongly residually periodic.
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Proof. We have Xp D F�
p , and for any t 2 F�

p we have '.n/.t/ D td
n
. Assume that

.p; d/ D 1. We are looking for t ¤ ˙1 such that

td
n�1 � 1 .mod p/: (30)

To find such a t with minimal possible n, let us first introduce some notation. For
any prime ` such that .d; `/ D 1 denote by s` the order of d in F�

`
. Denote by

Q.p/ D fqig the set of all odd primes appearing in the prime decomposition of p�1
and coprime to d . Set a.p/ ´ minq2Q sq . If p � 1 .mod 4/, we have p̀ � 2.
We claim that for p � �1 .mod 4/ we have p̀ D a.p/. Indeed, suppose that the
minimum is achieved at some q 2 Q, so d sq � 1 D qm for some integer m. If g is
a primitive element of Fp , one can take t D g.p�1/=q and n D sq to satisfy (30). On
the other hand, if n < sq , then by the definition of sq we have n < s` for all ` 2 Q,
and hence for all such ` we have

dn 6� 1 .mod `/:

The above also holds for all ` dividing d , so we conclude that .dn � 1; p � 1/ D 2.
If (30) holds for some t , then the order of t must divide both dn� 1 and p� 1, hence
it is equal to 2. Thus t D �1 and belongs to the reduction of the forbidden set R. We
conclude that (30) does not hold for any n < sq . This means that sq D a.p/ is the
minimal possible length of the orbit of 'p , i.e., p̀ D a.p/.

To finish the proof of the proposition, it is enough to establish the following simple
lemma (we thank Z. Rudnick for an elementary proof):

Lemma 6.8. The set A D fa.p/g, where p runs over all prime numbers congruent
to �1 modulo 4, is infinite.

Proof of the lemma. Assume the contrary:

A D fsq1
; : : : ; sqt

g: (31)

To get a contradiction, we wish to find p � �1 .mod 4/ with a.p/ … A.
First note that there are at most finitely many primes q with a given value of sq ,

and denote by B the set of all q such that sq 2 A. It follows that B is finite. Thus
we have to find a prime p such that p � 1 is not divisible by any q 2 B . We want to
find a prime number p satisfying the system of congruences

x � �1 .mod 4/; x � �1 .mod q/

for all q 2 B . By the Chinese Remainder Theorem, the solutions of this system form
an arithmetic progression. By Dirichlet’s Prime Number Theorem, this progression
contains infinitely many primes. If now p is such a prime, we have p 6� 1 .mod q/
for any q 2 B . Thus the order of d in F�

p is not equal to any of sqi
’s, and so p … A,

contradiction.
This finishes the proof of the lemma and hence of Proposition 6.7.
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Example 6.9. Let now E be a CM elliptic curve defined over Q by the equation
y2 D x3�x, and let E denote its minimal Weierstrass model. Letˆ W E ! E be the
multiplication-by-d map (d stands for a positive odd integer). There are four 2-torsion
points: .0; 0/, .1; 0/, .�1; 0/ and 1, all belonging to E.Z/. Denote this collection by
V. If p � �1 .mod 4/, the reduction of E is supersingular, i.e., jE.Fp/j D p C 1.
We can now denote by b.p/ the smallest prime factor of the number jE.Fp/j=4 and
by the argument similar to that of the previous example show that the setB D fb.p/g,
where p runs over all p � �1 .mod 4/, is infinite. This leads to

Proposition 6.10. The dynamical system D D .E;V; ˆ/ is residually periodic but
is not strongly residually periodic.

The interested reader is invited to complete the details of the proof as well as to
develop more examples of arithmetical interest.

To go beyond CM elliptic curves, one needs more efforts. A natural question to
ask is the following one:

Question 6.11. Let E be an elliptic curve over Q, and let D denote the order of its
rational torsion. For each place p of good reduction, denote by c.p/ the smallest
prime divisor of the number jE.Fp/j=D. Can the set C D fc.p/g, where p runs
over all places of good reduction of E, be finite? Can the system .E;E.Q/tors; ˆ/ be
strongly residually periodic?

At the first glance, the conjectures by Lang–Trotter [LT] and Koblitz [Ko], pre-
dicting (for most elliptic curves) infinitely many p’s with jE.Fp/j of prime order,
give little hope to find an example of an elliptic curve such that the dynamical system
defined by the multiplication-by-d map is strongly residually periodic. However,
the following example (due to N. Jones) prevents from making hasty conclusions.
Consider the curve E0 given over Q by the Weierstrass equation

y2 D x3 C 75x C 125:

N. Jones proved that although E0 has no rational torsion, the order of E0.Fp/ is
divisible either by 2 or by 3 for all p > 5. The curve E0 is of Mordell–Weil
rank 1, so the multiplication-by-d map ˆ induces a non-trivial dynamical system
D D .E0;1; ˆ/. Taking, say, d D 7, we conclude that D is strongly residually
periodic in the strongest possible sense: it has no periodic points, but the residual
system Dp has a fixed point for all p > 5 (compare with Example 1.7).

On the other hand, N. Jones proved (unconditionally on Koblitz’s conjectures)
that for a “typical” elliptic curve E over Q an analogue of Lemma 6.8 indeed holds,
which implies that the dynamical system D is not strongly residually periodic for
such an E, i.e., typically the answer to Question 6.11 is negative. See the appendix
for more details.
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6.2. Verbal dynamical systems on group schemes. We view the calculations of
Section 3 as a first step in attacking one of the most important conceptual questions left
open after discovery of two-variable sequences characterizing finite solvable groups:
for a sequence of words in the free group on two generators, to what extent the property
to characterize the class of finite solvable groups is a property of general position,
and what type of the dynamic behaviour is typical? Questions of such “non-binary”
type, which do not admit an answer of type “yes-no”, have been considered by many
mathematicians, from Poincaré to Arnold, as the most interesting ones. Dynamics of
word maps in free group, in spirit of [LP], [La], [Sh], [LS], [GS], led to a breakthrough
in some classical problems of the theory of finite groups, and it may happen to play
a crucial role in the above mentioned problem as well. Namely, a possible goal is
to prove (or disprove) that for a sufficiently wide class of sequences the property
to characterize the class of finite solvable groups holds in “general position” and is
determined by its dynamics in the free group. In what follows Fr stands for the free
group on r generators.

Question 6.12. Suppose that a sequence Eu D u1; u2; : : : ; un; : : : of elements of F2
satisfies the following conditions:

(i) un.a; 1/ D un.1; g/ D 1 for all sufficiently big n, every group G, and all
elements a; g 2 G;

(ii) if G is any group and a, g are elements of G such that un.a; g/ D 1, then for
every m > n we have um.a; g/ D 1;

(iii) no element of Eu equals 1 in F2;
(iv) there exists N such that for all n > N the word un.x; y/ belongs to the n-th

derived subgroup F .n/2 of F2.

Is it true that if a finite group G satisfies an identity un.x; y/ � 1 for some n,
then it is solvable?

In connection with Question 6.12, it is natural to pose

Problem 6.13. To describe the words in F2 satisfying conditions (i)–(iv) of Ques-
tion 6.12.

Extensive MAGMA computations show strong numerical evidence of a posi-
tive answer to Question 6.12, at least for the class of sequences Eu studied in [Ri]:
u0 ´ f; : : : ; un ´ Œgung

�1; hunh�1�; : : : , where f , g, h stand for some words
from F2.

One can put Question 6.12 into somewhat more general context. Towards this end,
we suggest to combine the notions of verbal and AG dynamical systems defined in
Section 1. For simplicity we restrict ourselves to considering Z-dynamical systems.

Definition 6.14. A verbal dynamical Z-system consists of the following setup:
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• positive integers r; s;
• an r-tuple W D .w1; : : : ; wr/ of words in the free group FrCs;
• an r-tuple J D .f1; : : : ; fs/ of words in the free group Fs (optional);
• a group scheme G of finite type over Z;
• a set I � G rCs.Z/.

The following assumptions are to be satisfied.
(i) Let DW W G rCs ! G rCs be a morphism of Z-schemes defined on the group

G D G rCs.A/ of A-points of G rCs for every Z-algebra A by the formula

.g1; : : : ; gs; v1; : : : ; vr/ 7! .g1; : : : ; gs; w1.g1; : : : ; vr/; : : : ; wr.g1; : : : ; vr//:

Then we assume that DW is dominant.
(ii) The set I is invariant, i.e., DW .I / � I .

Our earlier considerations (cf. Examples 1.2 and 1.4) naturally fit into this setting
if G is a semisimple Chevalley group scheme over Z (e.g., G D SL.2;Z/ as in the
present paper). Indeed, in that case by a theorem of Borel ([Bo], see also [La]), the
morphism DW is dominant, and we arrive at a verbal dynamical Z-system in the
sense of Definition 6.14. Remark 3.8 shows that the dynamical systems on SL.2; p/
relevant for our original problem can be viewed as special fibres of the original verbal
Z-system.

Remark 6.15. It would be interesting to formulate a word-theoretic condition on W

guaranteeing that for any Chevalley group scheme G the morphismDW is dominant.

In connection with Question 6.5 one can pose

Problem 6.16. Given a verbal dynamical Z-system, that is not of fibred type, find
conditions under which it is (strongly) residually periodic.

In particular, it would be interesting to consider the system from Section 3.1 given
by the map 'y W SL.2;Z/ ! SL.2;Z/ (y fixed) with I D f1g. This system has an
invariant rational function, but it is not regular. It was proven in [BWW] that for

y D
�
0 �1
1 0

�

it is residually periodic. On the other hand, our numerical experiments give some
evidence that it is not strongly residually periodic.

We believe that verbal dynamical systems deserve more thorough study. To the
best of our knowledge, most arithmetically interesting questions, in spirit of the
monograph [Si1] (boundedness of periods, distributions of periods in reductions,
various local-global problems), are widely open (or even not yet posed at all).
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Appendix. Primes p for which #E.Fp/ has only
large prime factors

by Nathan Jones

A1. Introduction

LetE be an elliptic curve over Q of conductorNE . For each primep of good reduction
for E, consider the group E.Fp/ of Fp-points of E. In 1988, Koblitz [3] conjectured
a precise asymptotic formula for the number of good primes p up to x for which
#E.Fp/ is prime.

Conjecture A1. There exists a precise constant SE 
 0 so that

#fp � x W p−NE and #E.Fp/ is primeg D SE � x

log2 x
C o

�
x

log2 x

�
;

as x ! 1.
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In particular, provided the constant SE > 0, Conjecture A1 implies that there are
infinitely many primes p for which #E.Fp/ is prime. In case SE D 0, one can prove
that #E.Fp/ is prime for only finitely many primes p.

Based on the precise form of the predicted constant SE , Koblitz further noted that
SE is positive if and only if every other elliptic curveE 0 over Q which is Q-isogenous
to E has no non-trivial rational torsion:

SE > 0 () .E 0 	Q E H) E 0.Q/tors D fOE 0g/: (A-1)

However, because of a technical error in the underlying heuristic, the constant
SE appearing in the original conjecture is incorrect. A refined conjecture, which in
particular corrects SE , has recently been given by D. Zywina [8]. In the interest of
consistency, let us henceforth understand the symbol SE appearing in Conjecture A1
to refer to the corrected constant CE;1 appearing in [8], Conjecture 1.2 (we will
describe this constant in more detail in Section A2). Having thus replaced SE , the
interpretation (A-1) of exactly when SE is positive is no longer valid. We will show
this in Section A4 by exhibiting an elliptic curve E over Q for which the right-hand
side of (A-1) is true, but for which SE D 0 nevertheless.

In spite of various partial results (see for instance [1] and the references therein),
Conjecture A1 is still open. Our goal is to prove the following theorem, wherein we
relax “is prime” to “has only large prime factors.” Let us denote by

cE .p/ ´ minf` prime W ` j#E.Fp/g
the smallest prime divisor of #E.Fp/.

Theorem A2. Suppose that
SE > 0;

where SE is the constant appearing in Conjecture A1. Then the set

fcE .p/ W p−NE g
is unbounded.

In other words, Theorem A2 asserts that, for each x > 0, there exists a prime
number p D p.E; x/ such that for any prime number ` we have

` j#E.Fp/ H) ` > x:

We remark that one can prove something stronger by employing the appropriate tools.
In the interest of brevity and simplicity, we content ourselves with Theorem A2.

We will begin by describing precisely the constant SE , from which it will be
evident that the converse of Theorem A2 holds, i.e., for any elliptic curve E over Q,
one has

SE D 0 H) fcE .p/ W p−NE g is bounded. (A-2)
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We will then prove Theorem A2. Finally, we will discuss the issue of exactly when
one has SE > 0 and give an example of an elliptic curveE over Q for which SE D 0

(and for which fcE .p/ W p−NE g is bounded, thus illustrating (A-2)). Throughout, `
and p will always denote prime numbers.

A2. The heuristic of Conjecture A1 and the constant SE

The heuristic leading to Conjecture A1 is analogous to the one which leads to the
classical twin prime conjecture (see [3] and [8] for more details), and changes slightly
depending on whether or notE has complex multiplication (CM).As usual, forp−NE ,
define the integer aE .p/ by the formula

#E.Fp/ μ p C 1 � aE .p/: (A-3)

By a theorem due originally to Hasse, we have that jaE .p/j � 2
p
p, and so the size

of #E.Fp/ is near the size of p. Thus, regarding p and #E.Fp/ as two independently
chosen random positive integers of size x, the “probability” that they are both prime
should satisfy

P .p is prime and #E.Fp/ is prime/  1

.log x/2
; (A-4)

by the prime number theorem. However, this prediction fails to take into account
arithmetic information about the reductions of p and #E.Fp/ modulo positive inte-
gers. In order to describe how one corrects the situation, we begin by recalling the
division fields attached to E and Chebotarev density theorem.

A2.1. The division fields Q.EŒn�/ of E . For each positive integer n 
 1 denote
by

EŒn� ´ fP 2 E.xQ/ W Œn�.P / D OE g
the n-torsion ofE and by Q.EŒn�/ the n-th division field ofE, i.e., the field generated
by the x and y coordinates of eachP 2 EŒn�. The field Q.EŒn�/ is a Galois extension
of Q, and by fixing a Z=nZ-basis of EŒn�, we may (and henceforth will) view
Gal.Q.EŒn�/=Q/ as a subgroup of GL2.Z=nZ/:

Gal.Q.EŒn�/=Q/ � GL2.Z=nZ/:

The following proposition which relatesp andaE .p/with Q.EŒn�/ is well known.
In its statement �Q.EŒn�/=Q.p/ � Gal.Q.EŒn�/=Q/ � GL2.Z=nZ/ denotes the
conjugacy class of a Frobenius automorphism at p, which we view as a subset of
GL2.Z=nZ/.
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Proposition A3. For any positive integer n and any prime p of good reduction for
E which does not divide n, p is unramified in Q.EŒn�/. Furthermore,

tr.�Q.EŒn�/=Q.p// � aE .p/ mod n

and

det.�Q.EŒn�/=Q.p// � p mod n:

A2.2. The Chebotarev density theorem. Recall the Chebotarev density theorem
[7]. Let L=F be a (finite) Galois extension of number fields and C � Gal.L=F /
any subset which is stable by Gal.L=F /-conjugation. Denote by†F the set of prime
ideals of F and

†F .x/ ´ fp 2 †F W NF=Q.p/ � xg:
For each prime ideal p 2 †F which is unramified in L, let �L=F .p/ � Gal.L=F /
denote the conjugacy class of the Frobenius element attached to any prime P of L
lying over p.

Theorem A4 (The Chebotarev density theorem). We have

lim
x!1

#fp 2 †F .x/ W p unramified in L and �L=F .p/ � Cg
#†F .x/

D #C

# Gal.L=F /
:

In probabilistic terms, Theorem A4 says that the probability that a randomly
selected prime ideal p satisfies �L=K.p/ � C is #C

# Gal.L=F / .

A2.3. Correcting thenaiveheuristic (A-4). For any positive integern and subgroup
G � GL2.Z=nZ/, define the subset �n.G/ � G by

�n.G/ ´ fg 2 G W det.g/C 1 � tr.g/ … .Z=nZ/�g: (A-5)

The probability that a large randomly chosen integer is coprime to n is #.Z=nZ/�

#.Z=nZ/ .
On the other hand, by (A-3), Proposition A3 and Theorem A4, the probability that
#E.Fp/ is coprime with n is

#.Gal.Q.EŒn�/=Q/ ��n.Gal.Q.EŒn�/=Q///

#.Gal.Q.EŒn�/=Q//
:

Thus, it is natural to multiply (A-4) by the correction factor

#.Gal.Q.EŒn�/=Q/ ��n.Gal.Q.EŒn�/=Q///

#.Gal.Q.EŒn�/=Q//
#.Z=nZ/�

#.Z=nZ/

: (A-6)

Noting that

�n.Gal.Q.EŒn�/=Q// D ��1 �
�ı.n/ .Gal.Q.EŒı.n/�/=Q//

�
;
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where ı.n/ ´ Q
`jn ` denotes the square-free kernel of n and � W GL2.Z=nZ/ �

GL2.Z=ı.n/Z/ denotes the canonical projection, we see that (A-6) only depends on
ı.n/ and so it suffices to consider square-free n. Defining

n D n.z/ ´
Y
`�z

` (A-7)

to be the square-free number supported on primes ` � z, we multiply (A-4) by (A-6)
and take the limit as z ! 1, arriving at Conjecture A1 with

SE ´ lim
z!1

�
1 � #�n.z/.Gal.Q.EŒn.z/�/=Q//

# Gal.Q.EŒn.z/�/=Q/

�
Q
`jn.z/.1 � 1=`/ : (A-8)

Our next proposition describes SE in more detail. In particular, it implies that the
limit in (A-8) converges to a finite positive limit, provided that it is non-zero for each
fixed z 
 2.

Proposition A5. Let E be an elliptic curve over Q and let SE be defined by (A-8).
There exist a positive square-free integer nE 
 1 and a real number E > 0 so that

SE D

�
1 � #�nE

.Gal.Q.EŒnE �/=Q//

# Gal.Q.EŒnE �/=Q/

�
Q
`jnE

.1 � 1=`/ � E :

Proof. In the CM case, this follows from [4], Corollaire, p. 302, and in the non-CM
case from [4], (2), p. 260. For more details, see [8].

Although it will not be necessary in what follows, we remark that

E D

8̂ˆ̂̂<
ˆ̂̂̂:

1

2
�

Y
`−nE

�
1 � �.`/ `2 � ` � 1

.` � �.`//.` � 1/2
�

if E has CM by K;

Y
`−nE

�
1 � `2 � ` � 1

.` � 1/3.`C 1/

�
if E has no CM;

where in the CM case �.`/ 2 f˙1g denotes the Kronecker symbol giving the splitting
of ` in the imaginary quadratic field K.

Corollary A6. We have SE D 0 if and only if there exists a square-free n0 such that
�n0

.Gal.Q.EŒn0�/=Q// D Gal.Q.EŒn0�/=Q/.

In particular, if SE D 0, then by (A-3), Proposition A3 and Theorem A4, we have

p−n0 �NE H) gcd.#E.Fp/; n0/ > 1: (A-9)

Since this in turn causes fcE .p/ W p−NE g to be bounded, we have verified (A-2).
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A3. Proof of Theorem A2

To prove Theorem A2, we will apply Theorem A4 with F D Q, L D Q.EŒn�/, and

C D .Gal.Q.EŒn�/=Q/ ��n.Gal.Q.EŒn�/=Q/// ;

with �n.G/ as in (A-5) and n D n.z/ as in (A-7). Fix any prime p > z which does
not divide NE . By Proposition A3, p is unramified in Q.EŒn.z/�/ and furthermore
we have the following equivalence:

.8` � z; `−#E.Fp// () �Q.EŒn.z/�/=Q.p/ ª �n.z/.Gal.Q.EŒn.z/�/=Q//:
(A-10)

Now consider the Chebotarev factor

Dz ´ #.Gal.Q.EŒn.z/�/=Q/ ��n.z/.Gal.Q.EŒn.z/�/=Q///

#.Gal.Q.EŒn.z/�/=Q//
:

By Corollary A6, we see that

SE > 0 H) Dz > 0:

Thus, provided that SE > 0, Theorem A4 implies the existence of a prime number
p1 D p1.E; z/ for which

�Q.EŒn.z/�/=Q.p1/ ª �n.z/.Gal.Q.EŒn.z/�/=Q//:

By (A-10), we see that for each ` � z, ` does not divide #E.Fp1
/ and so cE .p1/ 
 z.

Since z was arbitrary, Theorem A2 follows.

A4. The positivity of SE

It is now natural to ask: under what conditions is the constant SE positive? Because
of the Weil pairing (see [6], for example), for any level n, we have that the determinant
map restricts to a surjection

det W Gal.Q.EŒn�/=Q/ � .Z=nZ/�:

By Corollary A6, we are thus led to ask the following question.

Question A7. Let n 
 1 be a positive square-free integer, and let G � GL2.Z=nZ/
be a subgroup for which the determinant map restricts to a surjection:

det W G � .Z=nZ/�:

Under which circumstances do we have �n.G/ D G?
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It is clear from the definitions that, for any ` dividing n we have

�`.G mod `/ D G mod ` H) �n.G/ D G:

We join Serre [4], I-2, in leaving the following exercise up to the reader.

Exercise A8. Prove that, for any subgroup G` � GL2.Z=`Z/, �`.G`/ D G` if and
only if, up to GL2.Z=`Z/-conjugation, we have

G` �
²�
1 �
0 �

�³
or G` �

²�� �
0 1

�³
:

Furthermore, Gal.Q.EŒ`�/=Q/ D G` as above if and only if E is isogenous over
Q to some elliptic curve E 0 over Q satisfying E 0Œ`�.Q/ ¤ fOE 0g (in the first case,
E 0 is simply E). We record this as

Remark A9. If E is Q-isogenous to some elliptic curve E 0 over Q for which
E 0.Q/tors ¤ fOE 0g, then SE D 0.

It is tempting to expect (as Koblitz did) that the converse of Remark A9 also holds,
but the following example shows that this is not the case. Let ` ¤ 2 be any prime and
consider the subgroup G � GL2.Z=2Z/ � GL2.Z=`Z/ defined by

G D f.g2; g`/ 2 GL2.Z=2Z/ �G1.Z=`Z/ W �2.g2/ D �`.g`/g; (A-11)

where

G1.Z=`Z/ ´
²�˙1 �

0 �
�³

� GL2.Z=`Z/ (A-12)

and the characters �2 and �` are defined by

�2 W GL2.Z=2Z/ ! GL2.Z=2Z/=ŒGL2.Z=2Z/;GL2.Z=2Z/� ' f˙1g

and

�`

��˙1 �
0 �

��
D ˙1: (A-13)

Notice that, even though

�2.G mod 2/ ¨ G mod 2 and �`.G mod `/ ¨ G mod `;

we have �2`.G/ D G. Provided that we can find an elliptic curve E over Q with
Gal.Q.EŒ2`�/=Q/ � G, then #E.Fp/ will only be prime finitely often because
whenever it is not divisible by 2, it must be divisible by `, and vice versa.
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A4.1. A counterexample to (A-1)

Proposition A10. Let E be the elliptic curve defined by the Weierstrass equation

y2 D x3 C 75x C 125:

For any elliptic curve E 0 over Q which is Q-isogenous to E, one has E 0.Q/tors D
fOE 0g. Nevertheless, SE D 0. Furthermore, the Mordell–Weil group attached to E
is infinite:

#E.Q/ D 1:

Proof. Since NE D 22 � 33 � 52, we see that E has good reduction away from
p 2 f2; 3; 5g. One calculates that #E.F7/ D 4 and #E.F17/ D 21, from which
it follows that, for any E 0 over Q which is Q-isogenous to E, we have E 0.Q/tors D
fOE 0g. On the other hand, recall that Q.EŒ2�/ D Q.the roots of x3 C 75x C 125/,
so that

p
�E D 22 � 3 � 53p�15 2 Q.EŒ2�/. Also, the point .�5; 5p�15/ 2

EŒ3�.Q.
p�15// shows that

Q.
p
�E / D Q.

p�15/ � Q.EŒ2�/ \ Q.EŒ3�/:

It follows that, taking ` D 3 in (A-11), we have Gal.Q.EŒ6�/=Q/ � G, where �2
and �` correspond to the restriction map

Gal.Q.EŒ6�/=Q/ ! Gal.Q.
p
�E /=Q/ ' f˙1g:

Taking n0 D 6 in Corollary A6, we see that SE D 0.
Finally, the point .5; 25/ 2 E.Q/ is of infinite order and so #E.Q/ D 1, as

claimed.

Furthermore, one can readily verify (A-9) withn0 D 6 andE as in PropositionA10
as follows. For any rational prime p 
 7 and choice of Frobenius automorphism
�6.p/ 2 �Q.EŒ6�/=Q.p/, we have that

�6.p/.
p
�E / D

p
�E H) �Q.EŒ3�/=Q.p/ � �3.Gal.Q.EŒ3�/=Q//

H) 3 j#E.Fp/

and

�6.p/.
p
�E / D �

p
�E H) �Q.EŒ2�/=Q.p/ � �2.Gal.Q.EŒ2�/=Q//

H) 2 j#E.Fp/:

Since
p
�E D 22 � 3 � 53p�15, it follows that for p−30, we have

��15
p

�
D 1 H) 3 j#E.Fp/
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and ��15
p

�
D �1 H) 2 j#E.Fp/:

This verifies (A-9) and shows that

fcE .p/ W p−NE g D f2; 3g:

More generally, we have

Remark A11. If E is Q-isogenous to some elliptic curve E 0 over Q for which
E 0.Q.

p
�E 0//tors ¤ fOE 0g, then SE D 0.

Have we covered all possible cases where SE D 0? We will now give an example
of a subgroup G � GL2.Z=3`Z/ satisfying �3`.G/ D G, where ` 
 5 is some
prime. Let

N3 ´
²

˙
�
1 0

0 1

�
;˙

�
0 �1
1 0

�³
t

²
˙

�
1 0

0 �1
�
;˙

�
0 1

1 0

�³
� GL2.Z=3Z/;

and define

G ´ f.g3; g`/ 2 N3 �G1.Z=`Z/ W det g3 D �`.g`/g;

where G1.Z=`Z/ and �` are as in (A-12) and (A-13), respectively, and we are re-
garding det.g3/ 2 F�

3 D f˙1g. As before, we have

�3.G mod 3/ ¨ G mod 3 and �`.G mod `/ ¨ G mod `;

but �3`.G/ D G. Perhaps there may also be an elliptic curve E over Q with
Gal.Q.EŒ3`�/=Q/ � G, though we have not explicitly exhibited one.

A4.2. Serre curves. A Serre curve is an elliptic curve E over Q for which

ŒGL2.Z=nZ/ W Gal.Q.EŒn�/=Q/� � 2 for all n 
 1:

(Intuitively, a Serre curve is an elliptic curve for which Gal.Q.EŒn�/=Q/ is “as large
as possible” for each n 
 1.) We remark that, as shown in [8], Proposition 4.2, we
have

E is a Serre curve H) SE > 0:

When ordered according to naive height, almost all elliptic curves are Serre curves
(see [2]). Thus, for a “typical” elliptic curve E over Q one has SE > 0.
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A5. Concluding remarks

As mentioned in the introduction, one can prove stronger forms of Theorem A2. For
instance, one could use an effective version of the Chebotarev density theorem to
obtain a quantitative upper bound for the smallest prime p for which cE .p/ > x.

Since we have not completely resolved it, we record here

Question A12. Under what conditions do we have SE > 0?

The examples discussed in Section A4 seem to indicate that this question is more
delicate than it first may seem. Conjecture A1 has also been generalized to the context
whereE is defined over a general number fieldK (see [8]), in which case the answer
to Question A12 may become even more delicate.

Acknowledgements. I would like to thank J-P. Serre for comments on a previous
version.
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