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1. Introduction

1.1. Background. A right-angled Artin group is a finitely presented group G which
can be described by a finite graph � , the presentation graph, in the following way:
the vertices of � are in bijective correspondence with the generators of G and the
defining relations in G consist of a commuting relation between each pair of gen-
erators connected by an edge in G. Right-angled Artin groups interpolate between
free groups (defined by graphs with no edges) and free abelian groups (defined by
complete graphs). In between these two extremes, right-angled Artin groups include
a rich source of interesting groups. In this paper we will describe the quasi-isometric
classification of a family of such groups.

The two main families of right-angled Artin groups which have been classified are
those whose presentation graphs are trees or atomic. It was proven by Behrstock and
Neumann [BN] that all right-angled Artin groups which have a presentation graph
a tree of diameter greater than two are quasi-isometric to each other and are not
quasi-isometric to any other right-angled Artin groups; trees of diameter two give the
product of a nonabelian free group with an infinite cyclic group and these are all quasi-
isometric to each other and to no other right-angled Artin group by work of Kapovich
and Leeb [KL2]; the tree of diameter 1 corresponds to Z2, which is not quasi-isometric
to any other right-angled Artin group. Atomic graphs were introduced by Bestvina,
Kleiner and Sageev; these are connected graphs with no valence one vertices, no
cycles of length less than five, and no separating closed vertex stars; they proved
that right-angled Artin groups with presentation graphs that are atomic are quasi-
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isometric if and only if the groups have isomorphic presentation graphs [BKS]. Note
that both trees and atomic graphs yield Artin groups with cohomological dimension
at most 2 since the cohomological dimension of the group is the number of vertices
of a maximal complete subgraph (cf. [CD]).

The only other family of connected right-angled Artin groups we are aware of
which is completely classified is given by complete graphs; this follows since Zn is
quasi-isometric to Zm if and only if n D m. Since all other right-angled Artin groups
have free subgroups it follows that these groups are not quasi-isometric to any other
right-angled Artin group.

1.2. Results. Define Tn to be the smallest class of n-dimensional simplicial com-
plexes satisfying:

� the n-simplex is in Tn;
� if K1 and K2 are complexes in Tn then the union of K1 and K2 along any

.n � 1/-simplex is in Tn.

For n D 1 this is the class of finite trees. For K 2 Tn let AK denote the right-angled
Artin group whose presentation graph is the 1-skeleton of K, we call this a right-
angled n-tree group. (Note that Z3 and the right-angled 1-tree groups are exactly the
right-angled Artin groups which are the fundamental groups of compact 3-manifolds,
[HM].) If K has a vertex that is distance 1 from all other vertices, then it is the cone
on some K 0 2 Tn�1 and hence AK Š Z � AK0 ; we say that such an AK is reducible.

To each K 2 Tn we associate a tree �.K/ with a vertex-coloring in a way to be
described in Section 2. The colors consist of n C 1 “p-colors” and one “f-color”. In
that section we also describe a “bisimilarity” relation, as used in [BN], for such trees.

The following is our main result, which is proven in Sections 3 and 4. This gives
the first non-trivial classification theorem of high dimensional right-angled Artin
groups.

Theorem 1.1. Given K; K 0 2 Tn. The groups AK and AK0 are quasi-isometric if
and only if �.K/ and �.K 0/ are bisimilar after possibly reordering the p-colors by
an element of the symmetric group on n C 1 elements.

As an immediate consequence we obtain the following, which generalizes [BN],
Theorem 3.2, where the n D 1 case was established. We define an element K 2 Tn to
be maximally branched if each n-simplex has other simplices glued to it either along
exactly one .n�1/-face or along all of its .n�1/-faces; we say that AK is maximally
branched if K is maximally branched.

Corollary 1.2. For any fixed n, any two irreducible maximally branched right-angled
n-tree groups are quasi-isometric.

A consequence of Theorem 1.1 together with a theorem of Papasoglu and Whyte
concerning quasi-isometric invariance of free product decompositions [PW], Theo-
rem 0.4, is the following:
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Corollary 1.3. Let K D fK1; : : : ; Kng and K 0 D fK 0
1; : : : ; K 0

mg be finite sets of
elements with Ki 2 Tn.i/ and K 0

j 2 Tn.j /. Let AK be the right-angled Artin group
whose presentation graph is the disjoint union of the 1-skeleton of the Ki , define AK0

similarly.
Then the group AK is quasi-isometric to AK0 if and only if for each Ki there

exists j with n.i/ D n.j / and �.Ki / bisimilar to �.K 0
j / and for each K 0

p there exists
Kq with n.p/ D n.q/ and �.K 0

p/ bisimilar to �.Kq/.

In a previous paper, we showed that in the case where all the Ki and Kj are
simplices, then the quasi-isometric classification of free products agrees with the
commensurability classifications [BJN]. Already in the class of groups fAK j K 2
T1g are infinite families of quasi-isometric, but pairwise non-commensurable groups.
A question that remains open is to find the commensurability classification of the
groups discussed here. In the remainder of the paper, unless we specify otherwise,
we will only consider connected presentation graphs.

Acknowledgements. We thank the anonymous referees for useful comments; in
particular for the suggestion of adding Remark 4.5. The authors acknowledge NSF
support for this research. The authors acknowledge NSF support for this research.
The second author was partially supported by Polish grant N201 541738.

2. Preliminaries

2.1. Geometric models. We describe the geometric models that we will work with.
Fix a complex K 2 Tn. We define a piece to be the star in K of an .n � 1/-simplex of
K which is the boundary of at least two n-simplices. Let P denote a piece of K. Then,
P consists of a finite collection of n-simplices attached along the common .n � 1/-
simplex, i.e., the join of the .n � 1/-simplex with a finite set of points p1; : : : ; pk .
The Artin group AP is thus the product of a free group of rank k with Zn. Giving the
free group the redundant presentation

hp0; p1; : : : ; pk W p0p1 : : : pk D 1i
allows us to naturally think of it as the fundamental group of a .k C 1/–punctured
sphere SkC1. Hence, AP is the fundamental group of M D SkC1 � T n, with the k

n-simplices of P representing the fundamental groups of k of the k C 1 boundary
components.

When two pieces P and P 0 of K intersect in an n-simplex this corresponds to
gluing the corresponding manifolds, M and M 0, along a boundary component by a
flip – a map that switches the base coordinate of one piece with one of the S1 factors
of the torus fiber of the other piece. Since the torus has n C 1 factors S1, there are n

possible flips we can use for such a gluing. In this way we associate to any complex
K 2 Tn a space XK with fundamental group AK which is a manifold away from a
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certain “branch locus”. This branch locus consists of the collection of .n C 1/-tori
corresponding to n-simplices in K which are contained in more than two pieces. Note
that for n D 1 the branch locus is always empty, whereas for n > 1 it is empty if and
only if every n-simplex is contained in at most two pieces: such minimally branched
complexes yield a family of “high dimensional graph manifolds” (i.e., manifolds
glued from trivial bundles of tori over compact surfaces with boundary) which are
quasi-isometrically classified as a special case of Theorem 1.1.

We call the decomposition of XK into its pieces the geometric decomposition.
There is a corresponding graph-of-groups decomposition of AK with two kinds of
vertex groups, the fundamental groups of the pieces and the fundamental groups
of the separating tori; the edge groups are copies of the fundamental groups of the
separating tori, one copy for each geometric piece that the torus bounds.

Remark 2.1. For a complex K 2 Tn and for any piece P as above, AP is quasi-
isometrically embedded in AK . This holds since there exists a retraction from AK to
AP , cf. [BDM], Proposition 10.4. (This is more generally true for any full subcom-
plex.)

2.2. Labelled graphs. To each K 2 Tn we will associate a labelled bipartite tree,
�.K/, whose underlying graph is the graph of the graph-of-groups decomposition of
AK described above.

To each piece in K we assign a vertex labelled p (for piece). To each of the
n-simplices which is in more than one piece we assign a vertex labelled f (for face).
Each f-vertex is connected by an edge to each of the p-vertices which corresponds to
a piece containing the n-simplex.

Since for any K 2 Tn there is simplicial map to an n-dimensional simplex �,
which is unique up to permutation of �, it follows that labelling the vertices of � by
1 to n C 1 pulls back to a consistent labelling on all the vertices of K. Note that in
any piece all the vertices of their common .n � 1/-simplex (the “spine” of the piece)
are given the same label. We label each p-vertex by the index of the n-simplex vertex
which is not on the spine of the corresponding piece. Hence the label set for the
p-vertices are the elements of the set f1; : : : ; n C 1g. The possible labels for vertices
are thus p1, p2, : : : , p.n C 1/ and f, for a total of n C 2 possible labels.

The p/f-distinction gives a bipartite structure on our tree �.K/. The p-vertices to
which a given f-vertex is connected have distinct labels, so an f-vertex has valence at
most n C 1 (and at least 2). A p-vertex can be connected to any number of f-vertices.

2.3. Bisimilarity

Definition 2.2. A graph � consists of a vertex set V.�/ and an edge set E.�/ with
a map � W E.�/ ! V.�/2=Z2 to the set of unordered pairs of elements of V.�/.

A colored graph is a graph � , a set C , and a “vertex coloring” c W V.�/ ! C:
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A weak covering of colored graphs is a graph homomorphism f W � ! � 0 which
respects colors and has the property: for each v 2 V.�/ and for each edge e0 2 E.� 0/
at f .v/ there exists an e 2 E.�/ at v with f .e/ D e0.

Henceforth, we assume all graphs we consider to be connected. It is easy to see
that a weak covering is then surjective.

Definition 2.3. Colored graphs �1, �2 are bisimilar, written �1 � �2, if �1 and �2

weakly cover some common colored graph.

Our applications of bisimilarity rely on the following.

Proposition 2.4 ([BN]). The bisimilarity relation � is an equivalence relation, and
each equivalence class has a unique minimal element up to isomorphism.

The following also holds, with a proof as in [BN] .

Proposition 2.5. If we restrict to connected bipartite colored graphs of the type in
the previous subsection (p/f-bipartite, and the p-vertices attached to an f-vertex have
distinct colors from the set f1; : : : ; n C 1g), which are countable but may be infinite,
then each bisimilarity class contains a tree T , unique up to isomorphism, which
weakly covers every element of the class. It can be constructed as follows: If � is
in the bisimilarity class, duplicate every f-vertex and its adjacent edges a countable
infinity of times, and then take the universal cover of the result (in the topological
sense).

2.4. Examples

Example 2.6. In Figure 1 we give three minimally branched complexes K1, K2,
K3 2 T2 and their associated labelled graphs �.Ki /. Notice that �.K1/ is easily
checked to be minimal. It is also easy to check that �.K2/ weakly covers �.K1/ by
sending both the p2 vertices together and the p1 vertices together and hence �.K1/

is the minimal graph in the bisimilarity class of �.K2/. On the other hand, the graph
�.K3/ is minimal and hence not bisimilar to either of the other two graphs. See [BN]
for an algorithm to determine minimality.

Example 2.7. In Figure 2 we give two examples of maximally branched complexes
B1; B2 2 T2 and their associated labelled graphs �.Bi /. One can check by hand that
�.B2/ weakly covers �.B1/. In fact �.B1/ is the minimal graph in this bisimilarity
class. Corollary 1.2 generalizes this example.

Proof of Corollary 1.2. The minimal graph associated to an irreducible maximally
branched right-angled n-tree group is a star consisting of a single central f-vertex
connected to n C 1 p-vertices, one of each color.
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Figure 1. Three minimally branched complexes in T2 and their associated labelled graphs.
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Figure 2. Two maximally branched complexes in T2 and their associated labelled graphs.

Example 2.8. For each n � 2, any pair of complexes K; K 0 2 Tn which use only two
p-colors yield quasi-isometric groups and the minimal such graph, up to permutation
of labels, corresponds to a graph of the form p1—f—p2. Any such group is reducible;
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more generally, a group corresponding to a complex K 2 Tn is reducible if and only
if its graph uses less than n C 1 p-colors. See Figure 3 for an example of a group in
the quasi-isometry class of such a K 2 T2, but whose graph is not minimal.

1

2

3
p1p1 p2f f

Figure 3. A complex in T2 built from three pieces and its associated labelled graph.

The number of minimal graphs with k p-vertices chosen from a set of three
p-colors grows with k. For k D 3 there are two minimal graphs, for k D 4 there are
three, for k D 5 there are twelve such graphs, and for k D 6 there are forty-five.

Note there are two quasi-isometry types corresponding to graphs with one p-
vertex, one when the piece is just a simplex and the other when the piece is built
from more than one simplex, and just one minimal graph with two p-vertices, this
is the example given in Figure 3 whose minimal graph is p1—f—p2. Hence, there
are exactly 65 quasi-isometry types of right-angled 2-tree groups built from 6 or less
pieces.

3. Bisimilar implies quasi-isometric

The following will prove the “if” direction of Theorem 1.1.

Theorem 3.1. Fix K; K 0 2 Tn. If the graphs �.K/ and �.K 0/ are bisimilar, then
AK and AK0 are quasi-isometric.

Proof of Theorem 3.1. Fix a pair of complexes K; K 0 2 Tn for which �.K/ and
�.K 0/ are bisimilar and let � denote the minimal graph in this bisimilarity class.

Each group AK and AK0 is represented as the fundamental group of the generalized
“graph space” XK and XK0 (it need not be a manifold, since it has up to .n C 1/

pieces glued together along each gluing torus), and is thus quasi-isometric to the
universal cover of this space. Below we follow the same induction as in the proof of
[BN], Theorem 3.2, to show that the universal covers of XK and XK0 are bilipschitz
homeomorphic, implying the quasi-isometry of AK and AK0 .

The universal cover of a piece of XK or XK0 is identified with zSi � Rn, where Si

is one of a finite collection of compact Riemannian surfaces with boundary (each of



688 J.A. Behrstock, T. Januszkiewicz and W. D. Neumann

these is a sphere minus a finite number, at least three, of open disks). Note that these
Si all have bilipschitz homeomorphic universal covers.

Let X0 denote the universal cover of a fixed Riemannian metric on a sphere minus
three disks. Let C be a finite set of “colors”. A bounded C -coloring on the boundary
components of X0 is an assignment of a color in C to each boundary component of
X0 such that every point of X0 is within a uniformly bounded distance of boundary
components of every color. Choose a fixed boundary component of the universal
cover, denoted @0X0. The following is Theorem 1.3 of [BN].

Theorem 3.2. For any manifold X bilipschitz homeomorphic to X0 with a bounded
C -coloring on the elements of @X , there exists L and a function � W R ! R such
that for any L0 and any color-preserving L0-bilipschitz homeomorphism ˆ0 from a
boundary component @0X of X to @0X0, then ˆ0 extends to a �.L0/-bilipschitz home-
omorphism ˆ W X ! X0 which is L-bilipschitz on every other boundary component
and which is a color-preserving map from @X to @X0.

Each piece of K or K 0 is associated with some p-vertex v of the minimal graph
�; we then say the piece has type v, and similarly for the pieces of the geometric
realizations XK and XK0 and their universal covers zXK and zXK0 . We let Cv denote
the set of outgoing edges at the p-vertex v, so there is a natural Cv-labelling of the
boundary components of any type v geometric piece of zXK or zXK0 .

Choose a number L sufficiently large so that Theorem 3.2 applies for the universal
cover of each of the Si . Choose a bilipschitz homeomorphism from one type v piece
QSi � R of zXK to a type v piece X0 � Rn of zXK0 , preserving the (surface) � Rn

product structure and the Cv-colors of boundary components; this can be done since
the graphs are bisimilar. We want to extend to a neighboring piece of zXK . On the
common boundary R � Rn we have a map that is of the form �1 � �2 with �1 and �2

both bilipschitz. Since �.K/ and �.K 0/ are bisimilar, each neighboring piece in zXK0

has the same label as the corresponding piece in zXK and thus we can extend over each
neighboring piece by a product map. Further, by Theorem 3.2, we can assume this
map preserves boundary colors and on the other boundaries of this piece is given by
maps of the form �0

1 ��2 with �0
1 L-bilipschitz. We do this for all neighboring pieces

of our starting piece. Because of the flip, when we extend over the next layer we
have maps on the outer boundaries that are L-bilipschitz in both base and fiber. We
can thus continue extending outwards inductively to construct our desired bilipschitz
map.

4. Quasi-isometries preserve the decomposition into pieces

As described above, the group AK with K 2 Tn is the fundamental group of a “graph
space” XK whose universal cover zXK is a quasi-isometric model for AK . This zXK has
its geometric decomposition into pieces which overlap each other in separating flats.
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(Equivalently, the same decomposition is given directly on AK up to quasi-isometry
by writing AK as the union of the cosets of the p-vertex groups of its geometric
graph-of-groups decomposition.) The asymptotic cone A! of AK (which equals the
asymptotic cone of zXK) admits a similar decomposition into subsets coming from
asymptotic cones of the pieces of AK , which we call pieces as well; note that the
asymptotic cone of any piece is isometric to T � Rn where T is a metric tree (all the
asymptotic cones we consider are taken with respect to an arbitrary, but fixed, choice
of ultrafilter and scaling constants). Below, we apply Kapovich–Leeb’s argument
that quasi-isometries preserve the geometric decomposition of 3-manifolds [KL2], to
the present situation.

The following lemma in the case n D 1 was proven in [KL1], Lemma 2.14; the
same argument holds to prove:

Lemma 4.1. Fix a metric tree T . If f W RnC1 ! T � Rn is a bilipschitz embedding,
then the image, f .RnC1/, is a subset which is isometric to RnC1.

An immediate corollary of this lemma is that any subset of A! which is contained
in the asymptotic cone of one of the pieces and which is bilipschitz to RnC1 must
actually be an isometrically embedded flat.

In a similar direction, the following also holds as in [KL2], Lemma 3.3:

Lemma 4.2. Let T be a geodesically complete tree and C � Rn a closed subset. If
f W C ! T � Rn is a bilipschitz embedding whose image separates, then C D Rn

and the projection of the image to T is contained in a segment with no branch point
in its interior. In particular, if T branches everywhere, then the image is a fiber
ftg � Rn.

The arguments of [KL2] then apply to show that any bilipschitz embedding of a
tree cross Rn into A! must lie inside a piece, which then implies:

Proposition 4.3. LetK; K 0 2 Tn and letA! ; A0
! denote asymptotic cones ofAK ; AK0 .

Let � W A! ! A0
! be a bilipschitz homeomorphism. Then � sends pieces to pieces

and separating flats to separating flats.

Using the CAT.0/ structure on A! and identical arguments as for [KL2], Theo-
rem 4.6, one shows that any quasiflat which is not sublinearly close to a separating
flat must diverge from it linearly and in particular that any quasi-isometry from AK

to AK0 sends flats to flats. As in [KL2], Theorem 1.1, this result applied in the present
context implies the following theorem:

Theorem 4.4. Let � W AK ! AK0 be a quasi-isometry. Then � preserves the ge-
ometric decompositions of zXK and zXK0 in the following sense: for any geometric
piece X of zXK there exists a geometric piece X 0 of zXK0 within a uniformly bounded
Hausdorff distance from �.X/. Moreover, � induces an isomorphism of trees dual
to the geometric decomposition of zXK and zXK0 .
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To complete the “only if” direction of Theorem 1.1, we must show the induced
map of trees also preserves the p-vertex labelling up to a permutation of labels, since
this dual tree is then the unique labelled tree in the bisimilarity class corresponding
to the associated Artin group. To do this, it suffices to show that if we know the
geometric decomposition of zXK up to quasi-isometry then we can tell when two
p-vertices v and v0 of the decomposition tree have the same color.

The path from v to v0 consists of alternating p- and f-vertices,

v D v0; w1; v1; : : : ; wr ; vr D v0;

say. The T n in the geometric piece for vertex v0 defines an n-dimensional sub-flat
Rn of the flat RnC1 in A! corresponding to w1. As we move along the path we
intersect this subflat repeatedly with the projection to this flat of the codimension–1

subflats for the vertices v1, v2, : : : (alternatively, this can be interpreted as the coarse
intersection of the subflats associated to the centers of the respective pieces; hence
this is quasi-isometrically invariant since the center in a piece corresponds to the
coarse intersection of all the maximal flats). Whenever we pass a vi of a color we
have not yet seen, the dimension of the intersection drops by 1. Otherwise, we know
we have already seen the color along the path, and by using the same procedure to
check backwards along the path from vi , we can find which vertex had the same color.
If it was not v0 we then continue the same way along the path. In this way we either
show that vr has the same color as v0, or the dimension of our subspace has reached
0 by the time we get to vr , in which case we have seen every color along the path. By
induction we can assume that we have already determined which vi ’s that are closer
together along the path have the same color. But then, by checking forwards along
the path from v0 and backwards from vr we can tell that they both have different
colors from every other vi along the path, so must have the same color.

This completes the proof of the “only if” direction of Theorem 1.1, and since the
“if” direction is Theorem 3.1, Theorem 1.1 is proved.

Remark 4.5. The above argument shows that the construction of labels in Section 2.2
could be done purely geometrically. As an example to see this, compare the example
in Figure 4 to example B1 in Figure 2. To see how to label the shaded piece, N ,

1

2

3

p3

p1 p2f

p1 f
B 0

1

Figure 4. Compare with example B1 in Figure 2.
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consider the associated space zXB0

1
, and note that in this space N has three-dimensional

intersection with the p3 piece and two-dimensional intersection with both the pieces
labelled p1 and p2. The intersection of the torus associated to the center of N with
the center of p1 is one dimensional, while its intersection with the center of p2 is
trivial. Since a path starting from the p1 or p3 piece would not need to traverse all
the labels, whereas a path starting at the p2 piece would have traversed the p2 and
p3 labels, we thus see that the N must be labelled by a 1, as given by the labelling in
Section 2.2.
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