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Abstract. We construct and describe several arithmetic subgroups of the automorphism group
of a partially commutative group. More precisely, given an arbitrary finite graph� we construct
arithmetic subgroups St.LY / and St.Lmax/, represented as subgroups of GL.n;Z/, where n
is the number of vertices of the graph � . Here LY and Lmax are certain lattices of subsets
of X D V.�/ and St.K/ is the stabiliser of the subgroup generated by K. In addition we
give a description of the decomposition of the group Stconj.LX /, which stabilises LX up to
conjugacy, as a semidirect product of the group of conjugating automorphisms and St.LX /.
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Introduction

Recently a wave of interest in groups of automorphisms of partially commutative
groups has risen; see [3], [2], [4], [10]. This emergence of interest may be attributable
to the fact that numerous geometric and arithmetic groups are subgroups of these
groups.

The goal of this paper is to construct and describe certain arithmetic subgroups of
the automorphism group of a partially commutative group. More precisely, given an
arbitrary finite graph� we construct an arithmetic subgroup St.L.�// (see Section 2.1
for definitions), represented as a subgroup of GL.n;Z/, where n is the number of
vertices of the graph�; see Theorems 2.4 and 2.12. Note that our proof is independent
of the results of Laurence and Serviatius, [11], [12], which give a description of the
generating set of the automorphism group Aut.G.�//. One of the advantages of
this proof is that it is largely combinatorial, rather than group-theoretic, so could be
adjusted to obtain analogous results for partially commutative algebras determined
by the graph � (in various varieties of algebras).

�Research carried out while the second and third named authors were visiting Newcastle University
with the support of EPSRC grant EP/D065275/1, June 2005.
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In the last section of the paper we give a description of the decomposition of the
group Stconj.L.�// (see Section 2.1 for definitions) as a semidirect product of the
group of conjugating automorphisms Conj.G/ and St.L.�//. This result is closely
related to Theorem 1.4 of [10], but the situations considered in [10] and in this paper
are somewhat different.

The authors are grateful to the Centre de Recerca Matemàtica (CRM): these re-
sults were announced at a workshop, supported by the CRM, in Manresa, and the
proof outlined in seminars, while the authors were on research visits to the CRM in
September 2006.

1. Preliminaries

1.1. Graphs and lattices of closed subsets. In this section we give definitions and
a summary of the facts we need concerning graphs, orthogonal systems and closed
subsets of a graph. For further details the reader is referred to [7]. Graph will mean
undirected, finite, simple graph throughout this paper. If x and y are vertices of a
graph then we define the distance d.x; y/ from x to y to be the minimum of the
lengths of all paths from x to y in � . A subgraph S of a graph � is called a full
subgraph if vertices a and b of S are joined by an edge of S whenever they are joined
by an edge of � .

Let � be a graph with V.�/ D X . A subset Y of X is called a simplex if the full
subgraph of � with vertices Y is isomorphic to a complete graph. Given a subset Y
of X the orthogonal complement of Y is defined to be

Y ? D fu 2 X j d.u; y/ � 1 for all y 2 Y g:
By convention we set ;? D X . It is not hard to see that Y � Y ?? and Y ? D
Y ??? [7], Lemma 2.1. We define the closure of Y to be cl.Y / D Y ??. The closure
operator in � satisfies, among others, the properties that Y � cl.Y /, cl.Y ?/ D Y ?
and cl.cl.Y // D cl.Y / [7], Lemma 2.4. Moreover if Y1 � Y2 � X then cl.Y1/ �
cl.Y2/.

Definition 1.1. A subset Y of X is called closed (with respect to �) if Y D cl.Y /.
Denote by L D L.�/ the set of all closed subsets of X .

Then cl.Y / 2 L, for all Y � X and U 2 L if and only if U D V ? for some
V � X [7], Lemma 2.7. The relation Y1 � Y2 defines a partial order on the set
L. As the closure operator cl is inclusion preserving and maps arbitrary subsets
of X into closed sets, L is a lattice where the infimum Y1 ^ Y2 of Y1 and Y2 is
Y1 ^ Y2 D cl.Y1 \ Y2/ D Y1 \ Y2 and the supremum is Y1 _ Y2 D cl.Y1 [ Y2/.

1.2. Partially commutative groups. Let � be a finite, undirected, simple graph.
Let X D V.�/ be the set of vertices of � and let F.X/ be the free group on X . For
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elements g, h of a group we denote the commutator g�1h�1gh of g and h by Œg; h�.
Let

R D fŒxi ; xj � 2 F.X/ j xi ; xj 2 X and there is an edge from xi to xj in �g:
We define the partially commutative group with (commutation) graph � to be the
group G.�/ with presentation hX j Ri. (Note that these are the groups which are
called finitely generated free partially commutative groups in [5].)

The subgroup generated by a subset Y � X is called a canonical parabolic
subgroup ofG and denotedG.Y /. This subgroup is equal to the partially commutative
group with commutation graph the full subgraph of � generated by Y [1]. The
connection between closed sets and the groupG.�/ is established by Proposition 3.9
of [8]: a subgroup G.Y /g of G is a centraliser if and only if Y 2 L.�/. If Y is a
closed subset of � and g 2 G then the subgroup G.Y /g D CG.Y

?/g is called a
parabolic centraliser.

Let � be a simple graph, G D G.�/ and let w 2 G. Denote by lg.w/ the
minimum of the lengths of words that represents the element w. We say that w 2 G
is cyclically minimal if and only if

lg.g�1wg/ � lg.w/ for all g 2 G:
We write u B v to express the fact that lg.uv/ D l.u/C l.v/. We say that u is a left
divisor (right divisor) of w if there exists v such that w D u B v (w D v B u). If
g 2 G and w is a word of minimal length representing g then we write ˛.g/ for the
set of elements x 2 X such that x˙1 occurs inw. It is shown in [1] that ˛.g/ depends
only on g and not on the choice of w.

The non-commutation graph of the partially commutative groupG.�/ is the graph
�, dual to � , with vertex set V.�/ D X and an edge connecting xi and xj if and only
if Œxi ; xj � ¤ 1. The graph� is a union of its connected components�1, : : : ,�k and
words that depend on letters from distinct components commute. For any graph � , if
S is a subset of V.�/ we shall write �.S/ for the full subgraph of � with vertices S .
Now, if the vertex set of �k is Ik and �k D �.Ik/ then G D G.�1/ � � � � �G.�k/.
For g 2 G let ˛.g/ be the set of elements x of X such that x˙1 occurs in a minimal
word w representing g. Now suppose that the full subgraph �.˛.w// of � with
vertices ˛.w/ has connected components �1, : : : , �l and let the vertex set of �j be
Ij . Then, since ŒIj ; Ik� D 1, we can split w into the product of commuting words,
w D w1 B � � � B wl , where wj 2 G.�.Ij //, so Œwj ; wk� D 1 for all j , k. If w is
cyclically minimal then we call this expression for w a block decomposition of w
and say wj is a block of w for j D 1; : : : ; l . Thus w itself is a block if and only if
�.˛.w// is connected.

As in [8] we make the following definition. An element g 2 G is called a root
element if it has the property that g D hn, for some h 2 G, implies that n D ˙1.

Definition 1.2. Let w be a cyclically minimal root element of G with block decom-
position w D w1 : : : wk and let Z be a subset of X such that Z � ˛.w/?. Then
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the subgroup Q D Q.w;Z/ D hw1i � � � � � hwki � G.Z/ is called a canonical
quasiparabolic subgroup of G.

A subgroup is called quasiparabolic if it is conjugate to a canonical quasiparabolic
subgroup. In [8] centralisers of arbitrary subsets of a partially commutative group
are characterised in terms of quasiparabolic subgroups and we shall use this result in
Section 2.3.

1.3. Conjugating automorphisms. Automorphisms which act locally by conjuga-
tion play an important role in the structure of Aut.G/.

For S � X define �S to be �nS , the graph obtained from � by removing all
vertices of S and all their incident edges.

Definition 1.3. Let x 2 X and let C be a connected component of �x? . The
automorphism ˛C .x/ given by

y 7!
´
yx if y 2 C;
y otherwise

is called an elementary conjugating automorphism of � . The subgroup of Aut.G/
generated by all elementary conjugating automorphisms (over all connected compo-
nents of �x? and all x 2 X ) is called the group of conjugating automorphisms and
is denoted Conj.G/.

Theorem 1.4 (M. Laurence [11]). An element  2 Aut.G/ is called a conjugating
automorphism if, for all x 2 X , there exists gx 2 G such that x D xgx .

From Theorem 1.4 it follows that the group of inner automorphisms Inn.G/ is a
subgroup of Conj.G/; and is therefore a normal subgroup.

2. Stabilisers of parabolic centralisers

2.1. Stabiliser subgroups. Throughout the remainder of this paper let � be a finite
graph with vertices X , let G D G.�/ and let L D L.�/ be the lattice of closed sets
of � . We denote the automorphism group of G by Aut.G/.

Definition 2.1. The stabiliser of L is defined to be

St.L/ D f� 2 Aut.G/ j G.Y /� D G.Y / for all Y 2 Lg
and the conjugate-stabiliser of L is defined to be

Stconj.L/ D f� 2 Aut.G/ j for all Y 2 L there exists gY such that

G.Y /� D G.Y /gY g:
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If � 2 Stconj.L/, Y 2 L and gY is such that G.Y /� D G.Y /gY then we say that �
acts as gY on Y .

Proposition 2.2. Both the stabiliser St.L/ and the conjugate-stabiliser Stconj.L/ of
L are subgroups of Aut.G/ and St.L/ < Stconj.L/.

Proof. It is clear that the stabiliser of L is a group and that it is contained in the
conjugate-stabiliser. If � 2 Stconj.L/ acts as gY on Y 2 L then G.Y / D .G.Y /h/� ,
where h D .g�1

Y /�
�1

. Thus G.Y /�
�1 D G.Y /h. If �0 2 Stconj.L/ acts as g0

Y on Y
then G.Y /�

0� D G.Y /k , where k D gY .g
0
Y /
� .

2.2. Generators for the stabiliser of L. We introduce three sets of maps J , V? and
Tr?: which will turn out to be automorphisms and to generate St.L/ (cf. [12], [11]).
First we recall some notation from [7] and establish some background information.

As in [7] we define an equivalence relation �? on X by x �? y if and only if
x? D y?. Denote the equivalence class of x under �? by Œx�?. Then Œx�? is a
simplex for all x 2 X . The set N2 consists of those x 2 X such that jŒx�?j � 2.
Define N1 D XnN2, X 0 D X= �? and N 0

2 D fŒx�? 2 X 0 j x 2 N2g. If x 2 N1
then Œx�? D fxg, so X is the disjoint union

X D F
Œx�?2N 0

2

Œx�? tN1:

For x 2 X we write GŒx�? for G.Œx�?/ D hŒx�?i, so GŒx�? � G. For all
x; y; z 2 X such that y 2 Œx�? we have Œy; z� D 1 if and only if Œu; z� D 1 for
all u 2 Œx�?. It follows that we may extend an automorphism � of GŒx�? to an
automorphism �"x of G by setting g�

"x D g� for all g 2 GŒx�?, and y�
"x D y

for all y 2 XnŒx�?. The map "x such that � 7! �"x is then an monomorphism
from Aut.GŒx�?/ into Aut.G/. Moreover, if Œx�? ¤ Œy�? thenGŒx�? \GŒy�? D 1.
Therefore Aut.GŒx�?/"x \ Aut.GŒy�?/"y D 1 and, for all � 2 Aut.GŒx�?/ and
 2 Aut.GŒy�?/, we have �"x "y D  "y�"x . Hence Aut.G/ contains a subgroup

V D Q
Œx�?2N 0

2

Aut.GŒx�?/"x � Q
x2N1

Aut.GŒx�?/"x :

(1) The set J consists of the extension to G of all maps X ! G such that x� D x

or x�1 for all x 2 X . Then J � Aut.G/ and jJ j D 2jX j.
(2) We define

V? D Q
Œx�?2N 0

2

Aut.GŒx�?/"x � V:

(3) For distinct x; y 2 X define a map trx;y W X ! G by trx;y.x/ D xy, and
trx;y.z/ D z for z ¤ x. If x?nfxg � y? then trx;y extends to an automorphism
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ofG which we also call trx;y . Define Tr to be the set consisting of the extension
toG of all the maps trx;y , where x?nfxg � y?. Then Tr � Aut.G/. We define

Tr? D ftrx;y 2 Tr j cl.y/ < cl.x/g � Tr:

Note that we have excluded those trx;y where cl.y/ D cl.x/ and that cl.y/ <
cl.x/ implies that y 2 cl.x/ so that x? � y? and Œx; y� D 1. Therefore the
map trx;y 2 Tr? if and only if x? � y? (the inclusion being strict).

We remark that the subgroup generated by J and V? is V . Moreover Lau-
rence [11], building on results of Servatius [12], showed that Aut.G/ is generated by
J , Tr and Conj.G/, together with automorphisms which permute the vertices of �
(see for example [7]).

Proposition 2.3. The sets of maps J , V and V? are subgroups of St.L/ and the set
Tr? is contained in St.L/.

Proof. As J fixes every parabolic subgroup it is clear that J � St.L/. To see that V?
is a subgroup of St.L/ consider Y 2 L. If x 2 Y and z 2 Œx�? then Y ? � x? D z?
so z 2 Y . Hence x 2 Y implies that Œx�? � Y . Now suppose that � 2 V?.
If y 2 Y \ N2 then y� 2 GŒy�? � G.Y /, by the above. If y 2 Y nN2 then
y� D y 2 G.Y /. Hence G.Y /� � G.Y / and since V? is a subgroup of Aut.G/ it
follows that G.Y /� D G.Y /. Therefore V? � St.L/. Finally, let � D trx;y 2 Tr?
and let Y 2 L. If x … Y then � fixes Y pointwise, so we assume that x 2 Y . In
this case cl.x/ � Y and y 2 cl.x/, from the remark following the definition of Tr?.
Hence x� D xy 2 G.Y / and G.Y /� � G.Y /. As x D .xy�1/� it follows that
G.Y /� D G.Y /. As V is generated by J and V? it is also a subgroup of St.L/.

Before stating the next theorem we shall briefly explain what is meant by an
arithmetic group. Two subgroupsA andB of a groupG are said to be commensurable
ifA\B is of finite index in bothA andB . A linear algebraic group is a group which is
also an affine algebraic variety, such that multiplication and inversion are morphisms
of affine algebraic varieties. A linear algebraic group is said to be Q-defined if it is a
subgroup of GL.n;C/ which can be defined by polynomials over Q and is such that
the group operations are morphisms defined over Q. LetG be a Q-defined algebraic
group. A subgroup A � G \ GL.n;Q/ is called an arithmetic subgroup of G if it is
commensurable with G \ GL.n;Z/. A group is called arithmetic if it is isomorphic
to an arithmetic subgroup of a Q-defined linear algebraic group.

Theorem 2.4. The stabiliser St.L/ is an arithmetic group generated by the elements
of J , V? and Tr?.

We defer the proof of this theorem, which is part of the more technical Theo-
rem 2.12 below.
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2.3. Ordering L and the stabiliser of L-maximal elements. We shall now define
a partial order on elements of X which reflects the lattice structure of L. We shall
then describe a subgroup of the automorphism group ofG which stabilises subgroups
generated by closures of the maximal elements in this order. First note that if Y 2 L
then Y D S

y2Y cl.y/. Therefore if � 2 Aut.G/ and G.cl.y//� D G.cl.y// for
all y 2 Y then G.Y /� D G.Y /. This implies that if G.cl.x//� D G.cl.x// for all
x 2 X then � 2 St.L/. Setting LX D fY 2 L j Y D cl.x/ for some x 2 Xg and
St.LX / D f� 2 Aut.G/ j G.Y /� D G.Y / for all Y 2 LXg we have

St.L/ D St.LX /: (2.1)

Definition 2.5. Let <L be the partial order on X given by x <L y if and only if
cl.x/ � cl.y/ and cl.x/ ¤ cl.y/. By x DL y we mean cl.x/ D cl.y/. We say x is
L-minimal (L-maximal) if y �L x (x �L y) implies cl.y/ D cl.x/.

Note that y <L x if and only if cl.y/ � cl.x/ and x … cl.y/.
Write Lmax D fcl.x/ 2 LX j x is <L-maximalg and denote St.Lmax/ D f� 2

Aut.G/ j G.Y /� D G.Y / for all Y 2 Lmaxg.

Proposition 2.6. St.L/ and St.Lmax/ are commensurable.

Proof. Since St.L/ � St.Lmax/, it suffices to prove that St.L/ has finite index in
St.Lmax/. Let � 2 St.Lmax/, let x 2 X , let Z 2 Lmax, say Z D cl.z/ for some
L-maximal element z 2 X , and let Y 2 L such that Y � Z. By definition of
St.Lmax/ we have G.Z/� D G.Z/ and so G.Y /� � G.Z/� D G.Z/. As Y 2 L

we have Y D U? for some U 2 L, so G.Y / D CG.U /, a canonical parabolic
centraliser. Hence G.Y /� is a centraliser and from [8], Theorem 3.12, is conjugate
to a quasiparabolic subgroup. As G.Z/ is Abelian it follows (loc. cit.) that G.Y /�

is a canonical parabolic centraliser: that is G.Y /� D G.V / for some V 2 L with
V � G.Z/. As � is an automorphism it therefore permutes the subgroups G.Y /
where Y is an element of the set L.Z/ D fV 2 L j V � Zg and this induces
a permutation on the set L.Z/. This holds for all elements Z 2 Lmax and setting
M D S

Z2Lmax L.Z/ we obtain a permutation �.�/ of M . It is clear that if  
is another element of St.Lmax/ then �.� / D �.�/�. /. Thus, writing SM for
the permutation group of the finite set M , we may view � as a homomorphism
� W St.Lmax/ ! SM . If � 2 ker.�/ then �.�/ fixes every element of M and in
particular every element of LX . Hence ker.�/ � St.LX / and since from (2.1) we
have St.LX / D St.L/, this completes the proof.

2.4. Ordering X and closures of elements. Using the order induced from L we
shall define a total order on X . This order will be used to index a basis of Zn with
respect to which elements of St.L/ will be described as matrices. The ordering
depends on the following stratification of the closures of single elements of X .
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Proposition 2.7. Œx�? D cl.x/nfu 2 cl.y/ j y <L xg for all x 2 X . In particular,
if x is L-minimal then Œx�? D cl.x/.

Proof. First recall cl.z/ D cl.x/ if and only if z? D x? (as Y ? D Y ???), so
z 2 Œx�? if and only if cl.z/ D cl.x/. If u 2 cl.y/, where y <L x then cl.u/ �
cl.y/ < cl.x/ so u? ¤ x?. Hence Œx�? � cl.x/ n fu 2 cl.y/ j y <L xg. On the
other hand if z 2 cl.x/ then cl.z/ � cl.x/. If also z … cl.y/ for all y <L x then
z 6<L x, so cl.z/ D cl.x/, as required.

We now define a total order 	 on X , which will have the properties that

(1) if x <L y then y 	 x, and
(2) if z 	 y 	 x and z 2 Œx�? then y 2 Œx�?.

To begin with let

B0 D fY 2 LX j Y D cl.x/ where x is L-minimalg:
Suppose that B0 has k elements and choose an ordering Y1 < � � � < Yk of these
elements. If i ¤ j then Yi \ Yj 2 L and from the remark at the beginning of this
section and the fact that the Yi ’s areL-minimal it follows that Yi \Yj D ;. Therefore
we may define the ordering 	 on

Sk
iD1 Yi in such a way that if xi 2 Yi and xj 2 Yj

and Yi < Yj then xj 	 xi : merely by choosing an ordering for elements of each Yi .
We recursively define sets Bi of elements of LX for i � 0 as follows. Assume

that we have defined sets B0, : : : , Bi , set Ui D Si
jD0Bj and define Xi D fu 2 X j

u 2 Y for some Y 2 Uig. If Ui ¤ LX define BiC1 by

BiC1 D fY D cl.x/ 2 LX j Y … Ui and y <L x implies that cl.y/ 2 Uig:
If Ui ¤ LX then Xi ¤ X and BiC1 ¤ ;. We assume inductively that we have
ordered the set Xi in such a way that if 0 � a < b � i then xa 2 Ya where
Ya 2 Ba and xb 2 Yb where Yb 2 Bb implies that xb 	 xa. From Proposition 2.7,
if Y D cl.x/ 2 BiC1 then

Œx�? D Y n fu 2 cl.y/ W y <L xg D Y n fu 2 Xig:
Therefore we have defined 	 on the set Y nŒx�?. Moreover, if Y1 ¤ Y2 and Y1; Y2 2
BiC1 then Y1 \ Y2 2 L, so z 2 Y1 \ Y2 implies cl.z/ � Y1 \ Y2. As Y1 ¤ Y2 this
implies that cl.z/ is strictly contained in Yi , i D 1; 2. If Yi D cl.xi / then z <L xi
and so z … Œxi �?, i D 1; 2. That is, Œx1�? \ Œx2�? D ;. Now choose an ordering
on the set of elements of BiC1: Z1 < � � � < Zk say, where Zj D cl.xj /. Then
ZjnŒxj �? � Xi ; j D 1; : : : ; k. We can extend the total order 	 on Xi to

XiC1 D Xi [
kS

jD1
Zj D Xi [

kS
jD1

Œxj �?
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as follows. Assume the order has already been extended to Xi
Ss�1
jD1Œxj �?. Extend

the order further by choosing the ordering 	 on the elements of Œxs�? and then setting
its greatest element less than the least element of Xi

Ss�1
jD1Œxj �?. At the final stage

s D k and the order onXi is extended toXiC1. We continue untilUi D LX , at which
pointX D Xi and we have the required total order onX . Note that, by construction,
if x; y 2 X and x <L y then y 	 x. Also, if x 	 y 	 z and Œz�? D Œx�? then
Œy�? D Œx�?. Thus (1) and (2) above hold. If cl.x/ belongs to Bi we shall say that
x, cl.x/ and Œx�? have height i and write h.x/ D h.cl.x// D h.Œx�?/ D i .

2.5. A matrix representation of St.L/. Suppose that X D fx1; : : : ; xkg with
x1 	 � � � 	 xk . If x 2 X and � 2 St.L/ then we have x� 2 G.cl.x//. If
cl.x/ D fy1; : : : ; yrg, where x D y1 say, then as G.cl.x// is a free Abelian group
we may write

x� D y
b1

1 : : : ybr
r : (2.2)

Setting aj D 0 if xj … cl.x/, and aj D bi if xj D yi for some i , we can write

x� D x
a1

1 : : : x
ak

k
:

As this holds for all x 2 X we have

x
�
1 D x

a1;1

1 : : : x
a1;k

k
; : : : ; x

�

k
D x

ak;1

1 : : : x
ak;k

k
:

Assume now that Y 2 L. Then Y D S
y2Y cl.y/ and for 1 � i � k, either

Œxi �? � Y or Œxi �? \ Y D ;. Let I D fi j 1 � i � k and Œxi �? � Y g. Then, from
Proposition 2.7, it follows that Y D S

i2I Œxi �?. Moreover for all i such that xi 2 Y
we have

x
�
i D Q

j2I
x
ai;j

j :

We denote the restriction �jG.Y / of � to G.Y / by �Y for any subset Y of X and
� 2 St.L/. We shall also write �x instead of �cl.x/ for x 2 X .

Definition 2.8. In the above notation, given Y 2 Lwe define the matrix correspond-
ing to the restriction �Y of � 2 St.L/ to G.Y / to be Œ�Y � D .ai;j /i;j2I . If Y D X

we write Œ�� for Œ�X �.

Definition 2.9. Let Y D fy1; : : : ; yrg 2 L with y1 	 � � � 	 yr and let Z be a subset
of Y . Let I D fi j 1 � i � r; yi 2 Zg. Given A D .ai;j / 2 GL.r;Z/ we define
the Z-minor of A to be the matrix M.A; Y;Z/ D .ai;j /i;j2I . If Y D X we write
M.A;Z/ for M.A;X;Z/.

The Z-minor of a matrix A is therefore the matrix obtained from A by deleting
the i th row and column for all i such that yi 2 Y nZ. From these definitions we have
the following lemma.
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Lemma 2.10. Let � 2 St.L/ and Y 2 L then Œ�Y � D M.Œ��; Y /. If Z � Y � W

are elements of L thenM.A;W;Z/ D M.M.A;W; Y /; Y;Z/.

For x 2 X we say that y 2 Œx�? is the minimal element of Œx�? if y 	 z

for all z 2 Œx�?. Let Xmin D fx 2 X j x is the minimal element of Œx�?g. Then
X D S

x2X Œx�? D F
x2Xmin Œx�?. We extend this notation to arbitrary Y 2 L by

defining Y min D Xmin \ Y ; so Y D F
y2Y min Œy�?.

2.6. Sets ofmatrices corresponding to closed sets. We define a set of integer valued
upper block-triangular matrices corresponding to a closed set. Let Y 2 L and write
Y min D fv1; : : : ; vmg, where v1 	 � � � 	 vm. Assume further that Y D fu1; : : : ; urg,
where u1 	 � � � 	 ur . The set SY is defined to the set of r � r integer valued matrices
A D .ai;j / such that the following conditions hold.

(1) A has m diagonal blocks A1; : : : ; Am, such that Ai 2 GL.jŒvi �?j;Z/.
(2) If i > j and ai;j is not part of a diagonal block then ai;j D 0.
(3) If i < j and ai;j is not part of a diagonal block then ai;j D 0 unless uj <L ui ,

in which case ai;j may be any element of Z.

The first two of these conditions imply that A is an upper block-triangular matrix.
Suppose that A 2 SY and has diagonal blocks A1, : : : , Am. Define the matrix B
to be the block-diagonal matrix with diagonal blocks A�1

1 , : : : , A�1
m . Then AB is

a unipotent matrix and it follows that A 2 GL.r;Z/. Therefore SY is a subset of
GL.r;Z/.

Lemma 2.11. (1) Elements of SY are upper block-triangular elements of GL.r;Z/.

(2) If � is an element of J , V? or Tr? then Œ�� 2 SX .

(3) The set SY (with matrix multiplication) is a monoid for all Y 2 L.

Proof. If � 2 J then Œ�� is a diagonal matrix with diagonal entries ˙1, so belongs to
SX . If � 2 V? then � D Q

Œx�?2N 0

2
�
"x
x for some automorphisms �x 2 Aut.GŒx�?/.

Hence Œ�� is block diagonal, with a blocks of dimension jŒx�?j for each Œx�? 2 N 0
2 and

of dimension 1 for all x 2 N1. It follows that Œ�� 2 SX . Finally let � D trx;y 2 Tr?.
Then cl.y/ < cl.x/ so x 	 y and if x D xi and y D xj then Œ�� is the matrix with
1’s on the leading diagonal, ai;j D 1 and 0’s elsewhere. As xi 	 xj we have i < j
and, as xj <L xi , ai;j is not in a diagonal block so this matrix belongs to SX . Thus
statement (2) holds.

To prove statement (3) assume that Y D fu1; : : : ; urg where u1 	 � � � 	 ur . Let
A;B 2 SY , A D .ai;j /, B D .bi;j / and let AB D C D .ci;j / 2 GL.r;Z/. Then
ci;j D Pr

kD1 ai;kbk;j . Suppose that A has diagonal blocks A1, : : : , Am. Let AD
be the block-diagonal matrix with diagonal blocks A1, : : : , Am and 0’s elsewhere.
Let AN D A 
 AD . Define BD and BN similarly, so BD is block diagonal and
B D BDCBN . ThenC D ADBDCADBN CAN .BDCBN /. ThereforeC is upper
block-triangular with diagonal blocks A1B1, : : : , AmBm and AiBi 2 GL.jAi j;Z/.
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Suppose that i < j and ci;j does not belong to a diagonal block. If i and k are
such that uk 6�L ui then ai;k D 0 and if k, j are such that uj 6�L uk then bk;j D 0.
Hence ai;kbk;j ¤ 0 implies that uk �L ui and uj �L uk . If ui DL uj then ci;j
belongs to a diagonal block, a contradiction. Hence uj <L ui . Thus ci;j ¤ 0 implies
uj <L ui and so C 2 SY . As the identity matrix is in SY it follows that SY is a
monoid.

We are now ready to prove Theorem 2.4, which is the second statement of the
following result.

Theorem 2.12. The map � W St.L/ ! GL.jX j;Z/ given by � 7! Œ�� is an injective
homomorphism with image SX . In particular SX is a group. Moreover the group
St.L/ is generated by the elements of J , V? and Tr?, and is an arithmetic group.

Proof. We shall first show that � is an injective group homomorphism, from St.L/
to GL.jX j;Z/. Assume that jX j D k, let �; 2 St.L/ and let Œ�� D .ai;j /

and Œ � D .bi;j /. In the notation of Section 2.4 for xi 2 X we have x� i D
.x
ai;1

1 / : : : .x
ai;k

k
/ D Qk

rD1.x
br;1

1 : : : x
br;k

k
/ai;r D Qk

jD1 x
ci;j

j , where ci;j DPk
rD1 ai;rbr;j . Hence Œ� � D .ci;j / D Œ��Œ �. Therefore � is a homomorphism

and it is immediate from the definition that � is injective.
Let T denote the subgroup of St.L/ generated by J , V? and Tr? and recall that

V is the subgroup of St.L/ generated by J and V?. From Lemma 2.11 it follows that
Œ�� 2 SX for all � 2 T . Therefore once we have proved the final statement of the
Lemma it will also follow that the image of � is contained in SX . The proof of the
final statement will be broken into three cases and in each case we shall also verify
that � maps surjectively onto SX .

Let � 2 St.L/ and x 2 X and suppose that cl.x/ D fy1; : : : ; yrg. Then we can
express x� as in (2.2). Assume further that Œx�? D fy1; : : : ; ysg, where s � r . In
the notation of (2.2), if bj D 0 for all j > s, then x� 2 GŒx�?. Suppose this holds
for all x 2 Œx�?; so �Œx�? 2 Aut.GŒx�?/. In this case we call � a block-diagonal
automorphism.

Case 1. Let � 2 St.L/ be a block-diagonal automorphism and let x 2 X . If
x 2 N2 then Œx�? 2 N 0

2 and �"x

Œx�?
2 Aut.GŒx�?/"x � V?. If x … N2 then

Œx�? D fxg and �"x

Œx�?
2 J . In either case �"x

Œx�?
2 V and, as the same is true of all

x 2 X ,
� D Q

Œx�?2N 0

2

�
"x

Œx�?
� Q
x2N1

�
"x

Œx�?
� V � T:

Now let X D fx1; : : : ; xkg, where x1 	 � � � 	 xk and write Œ�� D .ai;j /. Let
Xmin D fxi1 ; : : : ; ximg for some m � 1, with xi1 	 � � � 	 xim . In this terminology
what we have shown is the following.

If ai;j D 0 for all i , j such that xi 2 Œxin �?, xj … Œxin �?, then �
"in

Œxin �?
2 V ; and

if this holds for n D 1, : : : , m, then � D Qm
nD1 �

"in

Œxin �?
2 V � T .
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That is, if the above holds then � 2 T , and so Œ�� 2 SX .
On the other hand, let A 2 SX be a block-diagonal matrix. Then A has diagonal

blocks An 2 GL.jŒxin �?j;Z/ for n D 1; : : : ; m. Here An determines an automor-

phism, �n say, of GŒxin �?, and � D Qm
nD1 �

"xin
n 2 V . Moreover Œ�� D A; so all

block-diagonal matrices in SX are in the image of � .

Case 2. Let � 2 St.L/ and A D Œ��. Write A D AD C AN as in the proof
of Lemma 2.11. In this case we assume that AD is the identity matrix. This means
that x�i D xiwi , where wi 2 G.Y / for some Y � cl.x/nŒxi �? for i D 1; : : : ; k.
Define r D r.�/ to be the maximal integer such that xr 2 Œxin �? for some n, and
there exists xj such that xj … Œxin �? but ar;j ¤ 0. Let j D c D c.�/ be maximal
with this property. (The argument of case 1 covers the case r D 0.) As ar;c ¤ 0 we
have wr D ux

ar;c
c for some u 2 G.Z/, where xr … Z and, since AD is the identity

ws 2 G.Zs/, where xr … Zs for all s > r .
As � 2 St.L/ we have x�r 2 cl.xr/, thus xc 2 cl.xr/, which implies that

cl.xc/ � cl.xr/. Since xc … Œxr �? it follows that cl.xc/ ¤ cl.xr/. Hence trxr ;xc
2

Tr? � St.L/. Let �1 D .trxr ;xc
/�ar;c 2 T . Then x�1

r D xrx
�ar;c
c and x�1

l
D xl for

all l ¤ r . Let �0 D ��1; so �0 2 St.L/. We have

x�0
r D .xrux

ar;c
c /�1 D xru and x�0

s D .xsws/
�1 D xsws D x�s

for s > r . If s < r then

x�0
s D xsw

�1
s D

´
xswsx

ar;c
c D x

�
s x

ar;c
c if xr occurs in ws;

xsws D x
�
s otherwise:

Therefore all diagonal blocks of Œ�0� are the identity matrix and either r.Œ�0�/ < r

or c.Œ�0�/ < c. We may then assume inductively that Œ�0� 2 SX and �0 2 T : so
� 2 T . Now defineE to be the matrix which has zero in every position except row r

column c, which is equal to ar;c . Then Œ�˙1
1 � D I �E 2 SX and from Lemma 2.11

it follows that Œ�� D Œ�0�Œ�
�1
1 � 2 SX . By induction it follows that for all � such that

Œ�� D A D AD C AN , with AD the identity, we have � 2 T and �� 2 SX . The
same argument shows that if A 2 SX and A D AD CAN , with AD the identity, then
A D �� for some � 2 T .

Case 3. In the general case let � 2 St.L/ and write Œ�� D A D AD C AN
as before. Let B D A�1

D . Then from case 1, B˙1 2 SX and B D Œ�B � for some
�B 2 T . Let 	 D ��B . Then all diagonal blocks of Œ	� are the identity, so 	 2 T and
Œ	� 2 SX , from case 2. Therefore � 2 T and Œ�� 2 SX . If we begin this argument
with an arbitrary element A of SX instead of an element of St.L/ it shows again that
A 2 T � and A 2 SX .

We now show that the group St.L/ is an arithmetic group. LetK be the subgroup
of GL.jX j;C/ satisfying conditions (1), (2) and (3) in the definition of SX above.
Then K is a Q-defined linear algebraic group. As SX D K \ GL.jX j;Z/ it now
follows that St.L/ is arithmetic.
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Combining the final statement of the theorem with Proposition 2.6 we obtain the
following corollary.

Corollary 2.13. St.Lmax/ is an arithmetic group.

Proof. From the proof of Proposition 2.6 it follows that St.L/ is a finite index sub-
group of St.Lmax/. Also the proof of of Theorem 2.12 goes through to show that
St.Lmax/ is isomorphic to a subgroup Smax of GL.jX j;Z/. To see this for each
x 2 X , let Mx D fz 2 X j z is L-maximal and x <L zg. Then G.Mx/ is Abelian
and contains x� for all � 2 St.Lmax/. Let � 2 St.Lmax/ and, as at the beginning
of Section 2.5, write x� D x

a1

1 : : : x
ak

k
, where aj ¤ 0 only if xj 2 Mx . As before

this allows us to associate an integer valued matrix Œ�� to �. The proof that the map
� 7! Œ�� is a monomorphism from St.Lmax/ into GL.jX j;Z/ is exactly the same as
the first paragraph of the proof of Theorem 2.12. Thus St.Lmax/ is isomorphic to its
image Smax � GL.jX j;Z/. Moreover this monomorphism restricts to St.L/ to give
the map � and so SX is a finite index subgroup of Smax.

Keeping the notation of the proof of the previous theorem we have SX D K \
GL.jX j;C/. Now choose a transversal a1, : : : , as for cosets of SX in Smax. Then
g 2 Smax if and only if ga�1

r 2 SX � K for some r . As Smax 2 GL.jX j;Z/ so
a�1
r 2 GL.jX j;Z/ for all r . Hence the condition that an element h 2 GL.jX j;C/

satisfies h D ga�1
r for some g, can be expressed using jX j2 polynomials with integer

coefficients (namely the entries of the matrix a�1
r ). Set p D jX j and let these

polynomials be mr;1;1, : : : , mr;p;p . (Thus if h D ga�1
r D .hij / then substitution of

entries of g for variables of the mr;i;j gives hij D mr;i;j .g/ for all i , j .) Suppose
that the algebraic variety K is defined by polynomials f1, : : : , fl . Then g 2 Kar if
and only if g satisfies the polynomial equations fi .mr;1;1; : : : ; mr;p;p/, i D 1; : : : ; l .
As fi and mr;i;j are polynomials with integer coefficients, this implies that Kar is a
Q-defined affine algebraic variety. Thus

Ss
rD1Kar is a variety and

� sS
rD1

Kar

�
\ GL.jX j;Z/ D

sS
rD1

.K \ GL.jX j;Z//ar D
sS
rD1

SXar D Smax;

so St.Lmax/ is an arithmetic group.

In the previous theorem we restricted attention to the entire group St.L/ and its
isomorphic image SX . However, we shall now show that the set SY is a group for all
closed sets Y inL, and in fact all these groups are arithmetic. By defining appropriate
maps corresponding to inclusion, as follows, it can be seen that the lattice L maps
contravariantly to a sublattice of the lattice of subgroups of Aut.G/. If Y;Z 2 L

with Y � Z then M.A; Y;Z/ 2 GL.jZj;Z/ and so 
.Y;Z/ W A 7! M.A; Y;Z/ is a
map from SY to GL.jZj;Z/.

Lemma 2.14. Let Z; Y 2 L with Z � Y . The set SY is an arithmetic group and
the map 
.Y;Z/ is a surjective homomorphism from SY to SZ . There is an injective
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homomorphism ".Z; Y / from SZ to SY such that ".Z; Y /
.Y;Z/ is the identity
on SZ .

Proof. We show that 
.Y;Z/ is an surjective monoid homomorphism for all Z �
Y 2 L. Since SX is a group it will then follow that SY is a group for all Y 2 L. The
proof that SY is arithmetic is then the same as for SX , replacing X by Y throughout.
Let Y min D fv1; : : : ; vmg, where v1 	 � � � 	 vm. Also let Y D fu1; : : : ; urg, where
u1 	 � � � 	 ur and let I D fi j 1 � i � r and ui 2 Zg. Let A D .ai;j / 2 SY and
suppose that A has diagonal blocks A1, : : : , Am. As A is upper block-triangular it
follows from the definition thatM.A; Y;Z/ is upper block-triangular. If vi 2 Z then
Œvi �? � Z and the diagonal block containing Ai is unaffected in the transformation
ofA toM.A; Y;Z/. On the other hand if vi … Z then the diagonal blockAi is deleted
in forming M.A; Y;Z/. As Zmin D Y min \ X , the diagonal blocks of M.A; Y;Z/
satisfy condition (1) of the definition of SZ .

It remains to verify condition (3). Suppose that i; j 2 I and that ai;j ¤ 0 and ai;j
does not belong to a diagonal block of M.A; Y;Z/. From the above, ai;j does not
belong to a diagonal block of A, and since A is upper block-triangular and satisfies
condition (3), i < j and uj <L ui . Then the same holds forM.A; Y;Z/, as required.
Therefore 
.Y;Z/ maps SY into SZ .

To see that 
.Y;Z/ is a homomorphism letA D .ai;j / andB D .bi;j / be elements
of SY and let C D .ci;j / D AB . From Lemma 2.11, we have C 2 SY . Suppose that
i; j 2 I and that ai;kbk;j ¤ 0 for some k. Then uk �L ui and ui 2 Z. Hence uk 2
cl.uk/ � cl.ui / � Z. Therefore i; j; k 2 I and ci;j D P

k2I ai;kbk;j . It follows
that M.AB; Y;Z/ D M.A; Y;Z/M.B; Y;Z/, so 
.Y;Z/ is a homomorphism.

To construct ".Z; Y / note that if P 2 SZ then we may write P D .pi;j /i;j2I ,
by expressing Z as a subset of fu1; : : : ; urg. Then let the diagonal blocks of P be
Pi , where i 2 I . With this notation define an r � r integer matrix A by first of all
setting ai;j D pi;j for i; j 2 I , then setting ai;i D 1 for i … I , and finally setting
ai;j D 0 for all other i , j . Then A is upper block-triangular and has blocks A1,
: : : , Am, where Ai D Pi if i 2 I , and Ai is the identity matrix in GL.jŒvi �?j;Z/
otherwise. AsP satisfies condition (3) then so doesA. HenceAbelongs toSY . Define
M.P;Z; Y / D A (where Z � Y ) and P ".Y;Z/ D M.P;Z; Y / for all P 2 SZ . By
definition, P ".Y;Z/�.Y;Z/ D P for all P 2 SZ , so ".Y;Z/ is injective and 
.Y;Z/ is
surjective. Moreover, from the definition, ".Y;Z/ is a homomorphism.

2.7. Restriction to closed sets. Here we consider the restriction of automorphisms
in St.L/ to subgroups G.Y /, where Y is in L. Given Y 2 L let us define L.Y / D
fZ 2 L j Z � Y g. Note that L.Y / is not in general the same as L.�.Y //, the set of
closed sets of the full subgraph�.Y / of� generated byY ; althoughL�.Y // � L.Y /.
We define StY .L/ D f�Y j � 2 Lg. Then StY .L/ is a subgroup of Aut.G.Y // and
is contained in the subgroup of stabilisers, in Aut.G.Y //, of L.Y /.
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Lemma 2.15. The map 
Y W St.L/ ! StY .L/ given by � 7! �Y is a surjective ho-
momorphism. The map �Y W StY .L/ ! SY given by �Y 7! Œ�Y � is an isomorphism,
so StY .L/ is arithmetic for all Y 2 L. Moreover 
Y �Y D �X
.X; Y /.

Proof. Let �; 2 St.L/. Then x� 2 G.Y / for all x 2 Y , so x� D .x�/ D
.x�Y / Y for all x 2 Y . Hence .� /Y D �Y Y and 
Y is a homomorphism;
surjective onto its image which is, by definition, StY .L/.

From Theorem 2.12 the map �X D � is an isomorphism from St.L/ to SX . From
Lemma 2.14 the map 
.X; Y / is a surjective homomorphism from SX to SY . Let
� D �X
.X; Y /. An element � 2 St.L/ belongs to ker.
Y / if x� D x for all x 2 Y :
in which case Œ�Y � is the identity matrix of dimension jY j. Hence the diagonal
blocks of ��X corresponding to Œx�? � Y are identity matrices; and �� D I , the
jY j-dimensional identity matrix. This shows that ker.
Y / � ker.�/, so � induces a
homomorphism from StY .L/ to SY . The image of �Y under this homomorphism is
�� D Œ���.X;Y / D M.Œ��; Y / and from the definitions we have ��Y

Y D M.Œ��; Y /.
Therefore �Y is a homomorphism and 
Y �Y D �X
.X; Y /. As � is surjective, so is
�Y . If ��Y

Y D I then x�Y D x for all x 2 Y , so �Y is the identity on G.Y / and �Y
is injective.

If Z � Y 2 L and � 2 St.L/ we define 
Y;Z to be the map sending � 2 StY .L/
to �jG.Z/ 2 StZ.L/.

Corollary 2.16. Let Y;Z 2 L with Z � Y . Then 
.X;Z/ D 
.X; Y /
.Y;Z/ and

Z D 
Y 
Y;Z . Moreover 
Y;Z is surjective and �Y 
.Y;Z/ D 
Y;Z�Z .

Proof. This follows from Lemmas 2.10, 2.14 and 2.15.

The various maps we have defined are illustrated in the commutative diagram of
Figure 1.

St.L/

StY .L/

StZ.L/

SX

SY

SZ


Y


Z


Y;Z


.X; Y /


.Y;Z/


.X;Z/

�X

�Y

�Z

Figure 1. Maps defined on subgroups of St.L/.
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2.8. The structure of Stconj.L/. First we examine the structure of StY .L/ and SY
for an arbitrary closed set Y .

Definition 2.17. Let Y 2 L and Y D Sm
iD1Œvi �?, where Y min D fv1; : : : ; vmg

with v1 	 � � � 	 vm. Denote by DY the set of block diagonal elements of SY with
diagonal blocksA1, : : : ,Am such thatAi 2 GL.jŒvi �?j;Z/. Denote byUY the subset
of SY consisting of matrices for which Ai is the identity matrix of GL.jŒvi �?j;Z/ for
i D 1; : : : ; m.

Lemma 2.18. Let Y 2 L and Y D Sm
iD1Œvi �?, where Y min D fv1; : : : ; vmg with

v1 	 � � � 	 vm. Both UY and DY are subgroups of SY and SY D UY Ì DY .
Moreover

DY D
mQ
iD1

GŒvi �?:

Proof. LetA 2 SY with diagonal blocks A1, : : : , Am and defineAD to be the block-
diagonal matrix with diagonal blocks A1, : : : , Am, and let d be the map sending A
to AD . Then .Ad /�

�1
Y is clearly an element of StY .L/ and so Ad 2 SY . Hence

Ad 2 DY and d is a surjective map from SY to DY . If B is also in SY and has
diagonal blocks B1, : : : , Bm then, as in the proof of Lemma 2.11, AB has blocks
A1B1, : : : , AmBm, so d is a homomorphism and DY is a group. If A 2 SY then
A 2 ker.d/ if and only if every diagonal block of A is an identity matrix. Hence
ker.d/ D UY . If i is the inclusion of DY in SY then id is the identity map on DY
and so SY D UY Ì DY , as claimed. That DY D Qm

iD1GŒvi �? is immediate from
the definitions.

In the case where Y is the closure of a single element ofX we have the following
corollary of the above results.

Corollary 2.19. (1) Œ�x� 2 Sx for all � 2 St.L/.

(2) There are automorphisms �x;s and �x;u of G.cl.x// such that �x D �x;s�x;u
and Œ�x;s� is the block-diagonal matrix with diagonal blocks A1; : : : ; Am and Œ�x;u�
is an upper unitriangular matrix (the unipotent part of Œ�x�).

(3) Given A 2 Sx there exists  2 St.L/ such that Œ x� D A.

(4) If y <L x then Œ�y � D M.Œ�x�; cl.y//.

(5) The set Sx is a group.

Proof. Assertions (1), (3) and (4) follow from Lemma 2.15. Statement (5) follows
from Lemma 2.10, and claim (2) follows from Lemma 2.18.

Theorem 2.20. Stconj.L/ D Conj.G/ Ì St.L/.
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Proof. First we show that Conj.G/ � Stconj.L/. As Conj.G/ is generated by auto-
morphisms of the form given in Definition 1.3 it suffices to show that � D ˛C .y/

belongs to Stconj.L/, where y 2 X and C is a connected component of the full
subgraph on Xny?. Let V 2 L, so V D T ? for some T 2 L. If y 2 V then
G.Y /� D G.V /, so assume y … V . Let v1; v2 2 V . If v1 2 y? then v�1 D v

�
2 , so

assume vi … y? for i D 1; 2. Now y … V implies there exists some t 2 T such that
Œy; t � ¤ 1. As vi 2 T ? and vi … y? it follows that v1, v2 and t lie in a connected
component of �.Xny?/. In particular v�1 D v

�
2 . Therefore either G.V /� D G.V /

or G.V /� D G.V /y and so � 2 Stconj.L/, as required.
Next we show that Conj.G/ C Stconj.L/. It suffices to show that ��1�� 2

Conj.G/, where � is defined as above and � 2 Stconj.L/. Let x 2 X and let
g 2 G such that G.cl.x//� D G.cl.x//g . Then G.cl.x//�

�1 D G.cl.x//h, where
h D .g�1/��1

. Thus x�
�1 D wh for some w 2 G.cl.x//, so x D .w� /h� and

xg D w� . Now x�
�1�� D .wh/�� D ..w�/h

�
/� , so

x�
�1�� D

´
..wy/h

�
/� D .w� /y

�h�� D xgy
�h��

if cl.x/ � C [ y?;
.wh

�
/� D .w� /h

�� D xgh
��

otherwise.

Therefore ��1�� is a conjugating automorphism.
Now we shall show that any element � 2 Stconj.L/ can be expressed as � D ��

for some � 2 Conj.G/ and � 2 St.L/. Fix � 2 Stconj.L/ and for all Y 2 L fix
gY 2 G such that G.Y /� D G.Y /gY . Without loss of generality we may choose gY
so that none of its left divisors belong to G.Y / or to CG.Y / D G.Y ?/. Given two
non-empty closed sets Y;Z 2 L with Y � Z, we claim that gY g�1

Z D ab where
a 2 G.Z/ and b 2 CG.Y /. To see this suppose that u 2 G.Y / and let r 2 G.Y /,
s 2 G.Z/ such that u� D rgY D sgZ . From [6], Corollary 2.4, and the choice of gY
and gZ there exist c; c0; d1; d 0

1; d2; d
0
2; v 2 G such that gY D c B d2, gZ D c0 B d 0

2,
r D d�1

1 B v B d1, s D d 0�1
1 B v B d 0

1, and with d D d1 B d2 and d 0 D d 0
1 B d 0

2,

rgY D d�1 B v B d and sgZ D d 0�1 B v B d 0.
By definition of � for x 2 Y there exists u 2 G.Y / such that u� D xgY . We may

then take r D x and s 2 G.Z/ such that u� D sgZ D xgY . In this case we have
r D x D v and so d1 D 1 and, again by [6], Corollary 2.4, c; c0 2 CG.x/. Allowing
x to range over Y we see that c; c0 2 CG.Y /, and by choice of gY it follows that
c D 1 and gY D d2. Now, with r D x 2 Y , again we have d�1

2 B x B d2 D rgY D
sgZ D d 0�1 B x B d 0, so d 0 D d2. As ˛.d 0

1/ � ˛.s/ � Z we have d 0
1 2 G.Z/. If d 0

1

has a left divisor in G.Y / then so does gY , and c0 … CG.Z/ since it is a left divisor
of gZ . This completes the proof of the claim as gY g�1

Z D d 0
1c

0�1.
Next we use � to construct a homomorphism from G to itself and subsequently

show that this homomorphism is an element of St.L/. Let x 2 X , so G.cl.x//� D
G.cl.x//gx . Then there exists ux 2 G.cl.x// such that x� D u

gx
x . Define a map

� W X ! G by x� D ux for all x 2 X . Suppose that x; y 2 X with Œx; y� D 1.
Then x; y 2 x? \ y?, hence cl.x/ [ cl.y/ � x? \ y?. Let Z D x? \ y? and
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so G.Z/� D G.Z/gZ . As cl.x/ � Z we have, from the above, gx D abgZ , with
a 2 G.Z/ and b 2 CG.cl.x// D G.x?/. Thus ab 2 G.x?/ and uabx D ux .
Hence ugx

x D u
gZ
x and similarly ugy

y D u
gZ
y . Because � is an automorphism, we

have 1 D Œu
gx
x ; u

gy
y � D Œux; uy �

gZ , so Œux; uy � D 1. Therefore � extends to an
endomorphism of G.

The next step is to show that � is surjective. To this end suppose that y; z 2 X and
cl.y/ � cl.z/. If u 2 cl.y/ then Œu; v� D 1 for all v 2 cl.z/ since cl.z/ � z? � y?.
We have gy D abgz , where a 2 G.cl.z// and b 2 G.y?/. Hence uaby D uy and so
u
gy
y D u

gz
y . Now let x 2 X . As G.cl.x//� D G.cl.x//gx there exists w 2 G.cl.x//

such thatw� D xgx . Assume thatw D y
"1

1 : : : y
"n
n for some yi 2 cl.x/ and "i D ˙1.

Let ui D uyi
. Then cl.yi / � cl.x/, hence y�i D u

gx

i from the preceding argument,
and w� D .u

"1

1 : : : u
"n
n /

gx D xgx . Hence w� D u
"1

1 : : : u
"n
n D x and � is surjective.

To show that � is injective consider the automorphism ��1 and let hx D .g�1
x /�

�1

for all x 2 X . Choose, for all x 2 X , an element kx 2 G and vx 2 G.cl.x// such
that G.cl.x//�

�1 D G.cl.x//kx , x�
�1 D v

kx
x and kx has no left divisor in G.cl.x//.

Then, as in the case of� and� above, the map N� W x ! vx extends to an endomorphism
of G. Moreover hx D jxkx for some jx 2 G.x?/. Suppose that ux D y

"1

1 : : : y
"n
n ,

where yi 2 cl.x/. Write vi D vyi
D y

N�
i for i D 1; : : : ; n. Then, from the above,

y�
�1

i D v
kx

i D v
hx

i since cl.yi / � cl.x/, vi 2 cl.yi / and jx 2 G.x?/. Now

x D x��
�1 D .u

gx
x /

��1 D .u�
�1

x /h
�1
x D .v

"1hx

1 : : : v
"nhx
n /h

�1
x D v

"1

1 : : : v
"n
n ; so

x�
N� D u

N�
x D v

"1

1 : : : v
"n
n D x. It follows that � is a bijection and hence is an

automorphism. By definition � mapsG.cl.x// to itself for all x 2 X , and so belongs
to St.L/.

Now define lx D g
��1

x for all x 2 X . Then x� D u
gx
x D .x�/l

�
x D .xlx /� ,

so � D ���1 is a conjugating automorphism. Note that if 
 2 Conj.G/ \ St.L/
then x� D xwx for some wx 2 G, and G.cl.x//� D G.cl.x//. Therefore, xwx 2
G.cl.x//. It follows that wx 2 G.x?/, so x� D x and 
 is the identity map. Hence
Conj.G/ \ St.L/ D f1g. Now suppose that �; � 0 2 Conj.G/ and �; �0 2 St.L/.
Then �� D � 0�0 implies � 0�1� D �0� 2 Conj.G/ \ St.L/, so � D � 0 and � D �0.
What we have shown is that every element � 2 Stconj.L/ can be uniquely expressed
as � D �� with � 2 Conj.G/ and � 2 St.L/. The theorem now follows.
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