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Can Dehn surgery yield three connected summands?

James Howie

Abstract. A consequence of the Cabling Conjecture of Gonzalez-Acuña and Short is that Dehn
surgery on a knot in S3 cannot produce a manifold with more than two connected summands. In
the event that some Dehn surgery produces a manifold with three or more connected summands,
then the surgery parameter is bounded in terms of the bridge number by a result of Sayari.
Here this bound is sharpened, providing further evidence in favour of the Cabling Conjecture.
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1. Introduction

The Cabling Conjecture of Gonzalez-Acuña and Short [4] asserts that Dehn surgery
on a knot in S3 can produce a reducible 3-manifold only if the knot is a cable knot
and the surgery slope is that of the cabling annulus.

The Cabling Conjecture is known to hold in many special cases [2], [8], [9], [12],
[13], [17], [19].

If k is the .p; q/-cable on a knot K, then the cabling annulus on k has slope pq,
and the corresponding surgery manifold M.k; pq/ splits as a connected sum

M.K; p=q/ # L.p; q/I
see [5]. (Here L.p; q/ is a lens space.) In particular both connected summands are
prime [5]. Thus the Cabling Conjecture implies the weaker conjecture below:

Conjecture 1 (Two summands conjecture). Let k be a knot in S3 and r 2 Q[f1g a
slope. Then the Dehn surgery manifold M.k; r/ cannot be expressed as a connected
sum of three non-trivial manifolds.

Since any knot group has weight 1 (in other words, is the normal closure of a single
element), the same is true for any homomorphic image of a knot group. Thus the
two summands conjecture would follow from the group-theoretic conjecture below,
which remains an open problem.
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Conjecture 2. A free product of three non-trivial groups has weight at least 2.

The best known upper bound for the number of connected summands in M.k; r/

is 3, obtained by combining results of Sayari [14], Valdez Sánchez [18] and the
author [11]. These results also show that, should some M.k; r/ have three connected
summands, then two of these must be lens spaces (necessarily with fundamental
groups of coprime orders) and the third must be a Z-homology sphere. (See [11] for
details.)

Suppose that k is a knot in S3 with bridge number b, and that the 3-manifold M

obtained by performing Dehn surgery on k with surgery parameter r has more than
two connected summands. It is known from the work of Gordon and Luecke [5] that
r must be an integer.

If `1, `2 are the orders of the fundamental groups of the lens spaces, then Sa-
yari [15] has proved that jr j D `1`2 � .b � 1/.b � 2/.

In this paper we shall prove the following inequality.

Theorem 1. Let k be a knot in S3 with bridge-number b. Suppose that r is a slope
on k such that M D M.k; r/ D M1 # M2 # M3 where M1, M2 are lens spaces and
M3 is a homology sphere but not a homotopy sphere. Then

j�1.M1/j C j�1.M2/j � b C 1:

As an immediate consequence, we obtain a sharpening of Sayari’s inequality.

Corollary 2. Under the hypotheses of Theorem 1 we have

jr j D j�1.M1/j � j�1.M2/j � b.b C 2/=4:

We use the standard techniques of intersection graphs developed by Scharle-
mann [16] and by Gordon and Luecke [1], [6], [7]. In §2 below, we recall the
construction of the intersection graphs in the particular context of this problem. A
key feature of these is the existence of Scharlemann cycles, which correspond in a
well-understood way to the lens space summands. In §3 we show that, should the
inequality `1 C `2 � b C 1 fail, then we can find, trapped between two Scharlemann
cycles, a sandwiched disk (see Definition 3.3). We then show in §4 that sandwiched
disks are impossible, which completes our proof.

2. The graphs

Throughout the remainder of the paper, we assume that the manifold M D M.k; r/

obtained by r-Dehn surgery on k � S3 is a connected sum of three factors M1,
M2, M3, where M1 and M2 are lens spaces while M3 is a (prime) integer homology
sphere. Note that, since �1.M/ has weight 1, the orders `1, `2 of �1.M1/ and
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�1.M2/ are necessarily coprime. It follows that the factors M1, M2, M3 are pairwise
non-homeomorphic.

An essential embedded sphere † � M necessarily separates, with one component
of M X † homeomorphic to a punctured Ms and the other to a punctured Mt # Mu,
where fs; t; ug D f1; 2; 3g. We will say that such a † separates Ms and Mt (and also
separates Ms and Mu).

For i D 1; 2 let Pi be a planar surface in the exterior X.k/ of k (the complement
of an open regular neighbourhood of k in S3) that extends to an essential sphere
�Pi � M such that �Pi separates Mi and M3. Assume also that Pi has the smallest
possible number of boundary components amongst all such planar surfaces.

A standard argument ensures that we may also choose P1, P2 to be disjoint
(without increasing the number of boundary components of either).

Following Gabai [3], Section 4 (A), we put k in thin position, find a level surface
Q for k and isotope P ´ P1 [ P2 such that P meets Q transversely, and such that
no component of Q \ P is an arc that is boundary-parallel in P . (The minimality
condition in the definition of P1 and P2 ensures also that no component of Q \ P is
a boundary-parallel arc in Q.)

The number q of boundary components of Q is necessarily even, and is bounded
above by twice the bridge number, q � 2b. We can complete Q to a sphere yQ � S3

by attaching q meridional disks.
We denote the intersection graph of Pi and Q in yQ by Gi for i D 1; 2. The ( fat)

vertices of Gi are the meridional disks yQ X Q, and the edges are the components
of Pi \ Q (some of which may be closed curves rather than arcs). Each fat vertex
contains precisely one point of intersection of k with yQ, so a choice of orientation
for k and for Q induces an orientation on the collection of fat vertices – that is, a
partition of fat vertices into two types, which we call positive and negative. There
are precisely q=2 vertices of each type.

Note that the graphs G1 and G2 have the same vertex set but disjoint edges sets.
Let GQ denote their union: GQ ´ G1 [ G2.

Similarly, we denote the intersection graph of P and Q in yP D �P1 [ �P2 by
GP (noting that this graph is the union of two disjoint non-empty subgraphs GPi

´
GP \ �Pi , i D 1; 2, and hence is not connected).

The edges incident at a vertex v of GQ are labelled by the boundary components of
P . These labels always occur in the same cyclic order around v (subject to change of
orientation). We choose a numbering 1; : : : ; p of �0.@P / in such a way that the labels
1; : : : ; p always occur in that cyclic order around each vertex of GQ (without loss of
generality, clockwise for positive vertices and anti-clockwise for negative vertices).

The corner at a vertex v of GQ between the edges labelled x and x C 1 (modu-
lo p) is also given a label: gx if v is positively oriented, and g�1

x if v is negatively
oriented. Note that corners are arcs in @X.k/ with endpoints in P . In the usual
set-up for intersection disks, P is connected, and one can interpret the labels g˙1

x as
elements of �1.M/ (relative to a base-point on P ). In our context it is more natural
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to interpret g˙1
x as an element of the path-groupoid … D �.M; P /, whose elements

are (free) homotopy classes of maps of pairs from .Œ0; 1�; f0; 1g/ to .M; P /. Thus …

is a connected 2-vertex groupoid whose vertex groups are isomorphic to �1.M/.
Let T � M denote the Dehn-filling solid torus, and k0 � T its core (a knot in M ).
A Scharlemann cycle in Gi is a cycle C bounding a disk-component � of yQ X Gi

(which we call a Scharlemann disk), such that each edge of C , regarded as an arc in
Pi , joins two fixed components of @Pi (x and y, say). Thus each edge of C has label
x at one end, and y at the other. Since x; y are consecutive edges of Gi at each vertex
of C , the edges of GQ \ � between x and y at v belong to G3�i and correspond to
intersection points of k0 with P3�i . Since P3�i is separating, it follows that x � y is
odd, and hence from the parity rule (see for example [6], p. 386) that all vertices of
C have the same orientation.

It is well known (see for example [1], [6]) that any Scharlemann cycle in Gi

corresponds to a lens-space summand of M . We have set things up in such a way that
this summand is necessarily isotopic to Mi , which leads to the following observation.
(Compare also [10], Lemma 2.1, which states a similar conclusion under slightly
different hypotheses.)

Lemma 2.1. Any Scharlemann cycle in Gi has length `i ´ j�1.Mi /j.

Proof. Without loss of generality, we may assume that i D 1. Let C be a Scharlemann
cycle in G1, and � the corresponding Scharlemann disk. Assume that x, y are the
labels on the edges of C .

Following [1], [6], we construct a twice punctured lens space in M as follows.
The fat vertices of GP1

can be regarded as meridional slices of the filling solid torus
T . The fat vertices x and y divide T into two 1-handles, one of which – H , say –
satisfies @� � P1 [ @H .

Then a regular neighbourhood L of �P1 [ H [ � is a twice-punctured lens space,
with �1.L/ Š Z`, where ` is the length of C .

One component of @L is �P1. The second component † has precisely two fewer
points of intersection with k0 than �P1.

By the uniqueness of the prime decomposition M D M1 # M2 # M3, L is home-
omorphic to a twice-punctured copy of M1 or of M2. In the latter case, † also
separates M1 from M3, which contradicts the minimality hypothesis on P1. Hence L

is homeomorphic to a twice-punctured copy of M1, whence ` D `1 as claimed.

More generally, we have the following essentially well-known result, which is an
important tool in our proof.

Define the 2-complex K as follows. K has two vertices, labelled 1 and 2, and p

edges, labelled g1; : : : ; gp . The initial (resp. terminal) vertex of gi is 1 or 2 depending
on whether the vertex i (resp. i C1) of GP is contained in P1 or in P2. The 2-cells of
K are in one-to-one correspondence with the disk-regions of GQ; the attaching map
for a 2-cell being read off from the corner-labels of the corresponding region of GQ.
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Lemma 2.2. Let K0 be a subcomplex ofK with H 1.K0; Z/ D f0g. If K0 is connected
then M has a connected summand with fundamental group isomorphic to �1.K0/.
If K0 is disconnected, then M has a connected summand with fundamental group
isomorphic to �1.K0; 1/ � �1.K0; 2/.

Proof. The intersection of yP with the filling solid torus T is precisely the set of fat
vertices of GP , each of which is a meridional disk in T . These disks divide T into
1-handles H1; : : : ; Hp , where Hi is the section of T between the fat vertices i and
i C 1 (modulo p).

Suppose first that K0 is connected. Define K 0 to be the union of the following
subsets of M :

(1) P1 if K0 contains the vertex 1 of K;
(2) P2 if K0 contains the vertex 2 of K;
(3) the one-handle Hi for each edge gi 2 K0;
(4) the disk-region of GQ corresponding to each 2-cell of K0.

It is easy to check that K 0 is connected, and that �1.K 0/ Š �1.K0/. Let N be a
regular neighbourhood of K 0 in M

Then N is a compact, connected, orientable 3-manifold with �1.N / Š �1.K0/

and hence H 1.N; Z/ D f0g. It follows that @N consists entirely of spheres, by
Poincaré duality.

Capping off each boundary component of N by a ball yields a closed manifold
yN with �1. yN / Š �1.N / Š �1.K0/, and yN is a connected summand of M since
N � M .

Next suppose that K0 is disconnected. Then K0 contains both vertices 1; 2 of
K, but no edge from 1 to 2. Choose an edge gz of K joining 1 to 2, and define
K1 D K0 [ fgzg. Then K1 is connected and �1.K1/ Š �1.K0; 1/ � �1.K0; 2/.
Replacing K0 by K1 in the above gives the result.

Corollary 2.3. No subcomplex of K has fundamental group which is a free product
of three or more finite cyclic groups.

Proof. Suppose that K has such a subcomplex. Then by Lemma 2.2 M has a con-
nected summand which is the connected sum of three lens spaces. This contradicts
[11], Corollary 5.3.

Finally, the element R D g1g2 : : : gp 2 �1.M/ is a weight element – that is,
its normal closure is the whole of �1.M/ – since it is represented by a meridian in
S3 X k. This leads to the following observation, which will be useful later.

Lemma 2.4. Let x 2 f1; : : : ; pg. There is at least one integer i 2 f1; : : : ; .p �2/=2g
such that no 2-gonal region of GQ has corners gxCi and gx�i (or g�1

xCi and g�1
x�i ).
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Proof. Otherwise we have gxCi D g�1
x�i in �1.M/ for each i D 1; : : : ; .p � 2/=2,

and hence the weight element W D g1 : : : gp is conjugate to a word of the form
gxUgyU �1 (where U D gxC1 : : : gxC.p�2/=2 and y D xC p

2
modulo p). Moreover,

gx is conjugate in �1.M/ to an element of �1.Mi / for some i 2 f1; 2; 3g, and a
similar statement holds for gy . Hence W belongs to the normal closure in �1.M/ D
�1.M1/ � �1.M2/ � �1.M3/ of the free factors containing conjugates of gx and gy .
Since all three free factors are non-trivial, this normal subgroup is proper, which
contradicts the fact that W is a weight element.

3. Analysis of Scharlemann cycles

By [6], Proposition 2.8.1, there are Scharlemann cycles in G1 and in G2. In this
section we show that, if `1 C`2 is big enough, then these form a configuration we call
a sandwiched disk (which we will show in the next section to be impossible). Our next
two results should be compared to [15], Lemmas 3.2 and 5.3, and [7], Theorem 2.4,
respectively, where the conclusions are similar but the hypotheses slightly different.

Lemma 3.1. If � is a Scharlemann disk in bounded by a Scharlemann cycle in G1

(resp. G2) then � contains no edges of G2 (resp. G1).

Proof. Suppose that � is bounded by a Scharlemann cycle C in G1, and that it con-
tains edges of G2. By [6], Proposition 2.8.1, we know that there exists a Scharlemann
cycle in G2 \�. We will find such a Scharlemann cycle explicitly, and use it to obtain
a contradiction.

Recall that C has length `1, by Lemma 2.1. Let v1; : : : ; v`1
denote the vertices of

C in cyclic order. Each edge of C has labels x and xC2tC1, say, which correspond to
vertices in GP1

, and the intermediate labels xC1; : : : ; xC2t correspond to vertices of
GP2

. (Necessarily, these are even in number and alternating in orientation, since they
correspond to consecutive intersection points of k0 with �P2 between two consecutive
intersection points of k0 with �P1.)

The graph Y ´ G2 \ � has `1 vertices, each of valence 2t and each of the same
orientation (which we assume to be positive).

If `1 D 2, then every edge of Y joins v1 to v2. Such an edge has labels x C j at
one end and x C 2t C 1 � j at the other, for some j . The two edges whose labels are
x C t and x C t C 1 bound a 2-gonal region, and hence form a Scharlemann cycle of
length 2. But then `1 D `2 D 2, contradicting the fact that `1, `2 are coprime.

Suppose then that `1 > 2. There must be a vertex vj in C that is joined only
to vj �1 and vj C1 (subscripts modulo `1) by edges of Y . In particular there are two
consecutive vertices of C that are joined by s � t edges of Y . The resulting s 2-gonal
regions of GQ \ � give rise to relations gxCj gxC2t�j D 1 for 0 � j � s � 1 in the
path-groupoid … D �.M; P /. But all the corners of the Scharlemann disk � have



Can Dehn surgery yield three connected summands? 791

label h ´ gxgxC1 : : : gxC2t , so h has order `1 in …. Hence gxCt also has order
`1 > 2. Hence also s D t in the above, for otherwise g2

xCt D 1 in ….
Choose a pair vi ; vj of vertices of C with i < j � 1 with j � i minimal

subject to the condition that vi ; vj are joined by an edge of Y . Then each pair
.vi ; viC1/; : : : ; .vj �1; vj / is joined by precisely t edges of Y , so there is an edge join-
ing vi and vj that has labels x C t and x C t C1, and this forms part of a Scharlemann
cycle of length j C 1 � i in G2. (See Figure 1.)

vi vj

Figure 1

Since gxCt has order `1 in …, we deduce that `1 D `2, which again contradicts
the fact that `1, `2 are coprime.

In particular, if C is a Scharlemann cycle in G1 or G2, then the two labels appearing
on the edges of C are consecutive (modulo p): say x, x C 1. We call x the label of
C . Note that all the corners of the corresponding Scharlemann disk have the same
label gx or g�1

x .

Corollary 3.2. Any two Scharlemann cycles in G1 (respectively in G2) have the same
label.

Proof. Let C , C 0 be Scharlemann cycles in G1, bounding Scharlemann disks �, �0
respectively. By Lemma 3.1, � and �0 contain no edges of G2, so are Scharlemann
disks of GQ. By Lemma 2.1 each of C , C 0 has length `1. Suppose that C has label x

and C 0 has label y ¤ x. Then K has a subcomplex K0 with one vertex 1, two edges
gx , gy and two 2-cells �, �0, so that

�1.K0/ D hgx; gy j g`1
x D g`1

y D 1i Š Z`1
� Z`1

:

In particular, �1.K0/ has weight 2, so cannot be isomorphic to a free factor of �1.M/,
which contradicts Lemma 2.2.

Definition 3.3. A sandwiched disk in yQ is a disk D � yQ such that

(a) @D is the union of a subpath a1 of a Scharlemann cycle C1 � G1 and a subpath
a2 of a Scharlemann cycle C2 � G2, with a1 \ a2 D @a1 D @a2;
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(b) there are no vertices of GQ in the interior of D.

Lemma 3.4. If j�1.M1/j C j�1.M2/j > .q C 2/=2, then there exists a sandwiched
disk D � yQ.

Proof. As observed in [10], p. 551, and [15], Lemma 6.1, we know that there are at
least two Scharlemann cycles in G1 – necessarily with disjoint sets of vertices, since
they have the same label (Corollary 3.2). Similarly there are at least two Scharlemann
cycles in G2 – again with the same label and hence with disjoint sets of vertices.

By hypothesis, at least one of `1 D j�1.M1/j, `2 ´ j�1.M2/j is greater than q=4.
Without loss of generality, assume that `1 > q=4. If G1 contained two Scharlemann
cycles with the same (say, positive) orientation, then G1 would have at least 2`1 > q=2

positive vertices, contradicting the fact that G1 has precisely q=2 vertices of each
orientation.

Hence G1 must contain precisely two Scharlemann cycles, one of each possible
orientation. Let us call them C C

1 and C �
1 , and let �1̇ denote the Scharlemann disks

bounded by C1̇ .
Now let C2, C 0

2 denote two disjoint Scharlemann cycles in G2, and �2, �0
2 the

corresponding Scharlemann disks. Since `1 C `2 > q=2, C2 must intersect C C
1 (if

the vertices of C2 are positive) or C �
1 (if the vertices of C2 are negative). On the

other hand, consideration of vertex orientations shows that C2 cannot intersect both
C C

1 and C �
1 . Similar remarks apply to C 0

2.
Now .C C

1 [ C �
1 / \ .C2 [ C 0

2/ consists only of some set V (of cardinality t , say)
of vertices.

Then � ´ �C
1 [ ��

1 [ �2 [ �0
2 has precisely two components, 2`1 C 2`2 � t

vertices, 2`1 C2`2 edges, and four 2-cells. The complement of � in yQ thus contains
t � 1 components, one of which is an annulus and t � 2 are disks. But yQ X � also
contains precisely q � 2`1 � 2`2 C t vertices. Since 2`1 C 2`2 � q C 4, this number
is at most t � 4. Hence there are at least two disk-components of yQ X � that contain
no vertices of GQ.

Moreover, each vertex of V appears twice in @. yQ X �/, so there are 2t such
occurrences in total. Each occurrence separates an arc of C C

1 [ C �
1 from an arc of

C2 [ C 0
2 in @. yQ X �/, so each component of @. yQ X �/ contains an even number of

occurrences of vertices from V .
The number of boundary components of yQ X � is precisely t . If the vertices in

C2 and those in C 0
2 have the same orientation, then one of C C

1 ; C �
1 is a boundary

component of (the annulus component of) yQ X � and contains no vertices from
V . With that exception, each boundary component of yQ X � contains at least two
occurrences of vertices from V . Hence at most one boundary component of yQ X �

can contain more than two occurrences of vertices from V .
Hence, of the two (or more) disk-components of yQ X � that contain no vertices

of GQ, each contains at least two occurrences of vertices from V , while at most one
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of these disk-components contains more than two occurrences of vertices from V .
It follows that there is at least one disk component D of yQ X � whose boundary
contains precisely two occurrences of vertices from V and whose interior contains
no vertices of GQ.

Any such D is, by definition, a sandwiched disk.

4. Analysis of sandwiched disks

In this section we complete the proof of our upper bound on jr j by showing that
sandwiched disks do not exist. This result holds with no assumptions on `1 or `2, so
may have wider applications.

We assume throughout that G1, G2 contain Scharlemann cycles of length `1, `2,
respectively, with labels x1, x2 respectively.

Lemma 4.1. Let D be a sandwiched disk with @D D a1 [ a2, where a1, a2 are
sub-paths of Scharlemann cycles in G1, G2, respectively. Then no two consecutive
vertices of a1 (or of a2) are joined by p=2 edges in GQ.

Proof. Suppose that two vertices of (say) a1 are joined by p=2 edges. Then there
are 2-gonal regions Di in GQ \ D such that the corner labels of Di are gx1Ci and
gx1�i . This contradicts Lemma 2.4.

Corollary 4.2. Let D, a1, a2 be as in Lemma 4.1. If two vertices of a1 (or of a2) are
connected by an edge in GQ, then they are consecutive vertices of a1 (respectively
of a2).

Proof. Let w0; : : : ; wt be the vertices of a1, in order. Suppose that wi , wj are joined
by an edge in GQ, where j > i C1, and that j �i is minimal for such pairs of vertices.
Then wiC1 has precisely two neighbours in GQ: wi and wiC2. By Lemma 4.1 it is
connected to each by fewer than p=2 edges, contradicting the fact that it has valence p.

Corollary 4.3. Let D, a1, a2 be as in Lemma 4.1. Each of a1, a2 has length greater
than 1, and each interior vertex of a1 (respectively a2) is joined to an interior vertex
of a2 (respectively a1) by an edge of GQ \ D.

Proof. If a1, a2 both have length 1, then every edge of GQ \D joins the two common
endpoints u, v of a1 and a2. Without loss of generality, the edges of GQ \ D

incident at u have labels x1 C 1; x1 C 2; : : : ; x2, while those incident at v have labels
x2 C 1; x2 C 2; : : : ; x1. Hence jx1 � x2j D p=2, and D contains precisely p=2 arcs
joining u to v. But this contradicts Lemma 4.1.

If w is an interior vertex of (say) a1, then w has two neighbours in @D. It is joined
to each of these by strictly fewer than p=2 arcs, by Lemma 4.1, and hence is also
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joined to a third vertex in GQ. Since all the edges of GQ incident at w are contained
in D, this third vertex is also in @D. By Corollary 4.2 it cannot be a vertex of a1, so
it must be an interior vertex of a2.

Lemma 4.4. Let D be a sandwiched disk in GQ. Then there are no Scharlemann
cycles in GQ \ D.

Proof. Any Scharlemann cycle C in GQ \ D is a Scharlemann cycle in G1 or in G2,
so has label x1 or x2 by Corollary 3.2. Assume without loss of generality that C has
label x2. For any vertex v of a2, the corner labelled gx2

does not lie in D, so the
vertices of C are interior vertices of a1.

By Corollary 4.2, the vertices of C must be pairwise consecutive vertices of a1,
and hence C has length 2. Moreover, if v1, v2 are the vertices of C , then v1, v2 are
connected by edges labelled x1 C 1; : : : ; x2 at one end (say the v1 end), and by edges
labelled x2 C 1; : : : ; x1 at the other (v2) end. In particular, they are joined by at least
p=2 edges, contradicting Lemma 4.1.

Corollary 4.5. If there is a sandwiched disk D in GQ such that @D D a1 [ a2 where
ai is a subpath of a Scharlemann cycle with label xi , then jx1 � x2j D p=2.

Proof. Let a1 \ a2 D fu; vg. Without loss of generality, x1 D p and the edges of
GQ \ D meeting u are labelled 1; : : : ; x2 at u, while those meeting v are labelled
x2 C 1; : : : ; p at v. If (say) x2 < p=2, then there is a label y with x2 < y � p such
that y does not appear as either label of any edge meeting u that is contained in D.
Consider the subgraph � of GQ \ D that is obtained by removing u and its incident
edges. At each vertex of � , the edge labelled y leads to another vertex of � . Since
all vertices of � are positive, it follows that � contains a great y-cycle, and hence a
Scharlemann cycle by [1], Lemma 2.6.2. This contradicts Lemma 4.4.

Theorem 4.6. There are no sandwiched disks in GQ.

Proof. We assume that there is a sandwiched disk D in GQ, and derive a contradiction.
Suppose that @D D a1 [ a2, where ai is a subpath of a Scharlemann cycle Ci . Let
xi be the label of Ci . By Corollary 4.5, it follows that jx1 � x2j D p=2.

Let u, v denote the common vertices of a1, a2. By Corollary 4.2 each of a1, a2

has length greater than 1. Let s1, s2 be the vertices of a1, a2, respectively, which are
adjacent to u, and let t1, t2 be the vertices of a1, a2, respectively, which are adjacent
to v. (Note that neither of the possibilities s1 D t1, s2 D t2 is excluded at this stage.)

By Corollary 4.2 again, s1 is connected to a vertex of a2 other than u; v by an
edge contained in D. Similarly, s2 is connected to a vertex of a1 other than u; v by
an edge contained in D. These edges cannot cross; hence s1 and s2 are joined by an
edge. Similarly t1 and t2 are joined by an edge. Hence each of u, v is incident at a
triangular region of GQ \ D: call them �u and �v .
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Suppose that the edges of GQ \D that are incident at u have labels x1 C1; : : : ; x2

at u, and suppose that i of these edges (namely those with labels x1 C 1; : : : ; x1 C i )
are connected to s1. Then these edges have labels x1; x1 �1; : : : ; x1 � i C1 at s1, and
together they bound i � 1 2-gonal faces of GQ, of which the j ’th has corner labels
gx1Cj and gx1�j .

The remaining .p � 2i/=2 edges of GQ \ D incident at u join u to s2. They
have labels x1 C i C 1; : : : ; x2 at u, and x1 � i; : : : ; x2 C 1 at s2. Together they
bound .p � 2i � 2/=2 2-gonal regions of GQ, the j ’th of which has corner labels
gx2�j and gx2Cj . Thus the triangular region �u of D \ GQ that is incident at u has
corner labels gy at u and gz at each of s1 and s2, where y D x1 C i and z D x1 � i

(modulo p).
We can now perform a similar analysis on the edges of GQ \ D that are incident

at v. Note, however, that for all j 2 f1; : : : ; .p � 2/=2g X fig there is a 2-gonal
region of GQ \ D with corner labels gx1�j and gx1Cj . By Lemma 2.4 there cannot
be a 2-gonal region of GQ \ D with corner labels gx1�i and gx1Ci . It follows that
there are also precisely i edges joining v to t1, and .p � 2i/=2 joining v to t2. The
triangular region �v of D \ GQ that is incident at v then has corner labels gz at v

and gy at each of t1; t2, where y D x1 C i and z D x1 � i as above (see Figure 2).

u

gy

gy

gy

gz

gz

gz

s1
t1

s2 t2

v

Figure 2

Finally, let K0 denote the (disconnected) subcomplex of K with vertices f0; 1g,
edges fgx1

; gx2
; gy ; gzg and 2-cells f�1; �2; �u; �vg.

Then by Lemma 2.2, M has a connected summand with fundamental group

�1.K0; 1/ � �1.K0; 2/ Š hgx1
; gx2

; gy ; gz j g`1
x1

D g`2
x2

D gyg2
z D gzg2

y D 1i
Š Z`1

� Z`2
� Z3:

But this contradicts Corollary 2.3, which completes the proof.

Theorem 4.7 (= Theorem 1). Let k be a knot in S3 with bridge-number b. Suppose
that r is a slope on k such that M D M.k; r/ D M1 # M2 # M3 where M1, M2 are
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lens spaces and M3 is a homology sphere but not a homotopy sphere. Then

j�1.M1/j C j�1.M2/j � b C 1:

Proof. As discussed in §2, we put k in thin position, and choose a level surface Q

and disjoint planar surfaces P1; P2 such that

� Pi extends to a sphere in M separating Mi from M3, and has fewest boundary
components among all such;

� no component of Q \ Pi is a boundary-parallel arc in Q or Pi .

By Gordon and Luecke [5], there are Scharlemann cycles Ci in Gi for i D 1; 2.
Moreover, the Scharlemann cycle Ci has length `i ´ j�1.Mi /j and bounds a disk-
region �i of GQ. If `1 C `2 > b C 1 � .q C 2/=2, then by Lemma 3.4 there is at
least one sandwiched disk D in GQ. But this contradicts Theorem 4.6.

Hence `1 C `2 � b C 1 as claimed.

Corollary 4.8 (= Corollary 2). With the hypotheses and notation of Theorem 4.7, we
have

jr j D j�1.M1/j � j�1.M2/j � b.b C 2/

4
:

Proof. Let `1 D j�1.M1/j and `2 D j�1.M2/j. The equation jr j D `1 � `2 comes
from computing jH1.M; Z/j in two different ways.

Given that `1, `2 are distinct positive integers, the inequality `1 �`2 � b.b C2/=4

follows easily from Theorem 4.7.

References

[1] M. Culler, C. M. Gordon, J. Luecke, and P. B. Shalen, Dehn surgery on knots. Ann. of
Math. (2) 125 (1987), 237–300. Zbl 0633.57006 MR 881270

[2] M. Eudave-Muñoz, Band sums of links which yield composite links. The cabling con-
jecture for strongly invertible knots. Trans. Amer. Math. Soc. 330 (1992), 463–501.
Zbl 0778.57004 MR 1112545

[3] D. Gabai, Foliations and the topology of 3-manifolds. III. J. Differential Geom. 26 (1987),
479–536. Zbl 0639.57008 MR 910018

[4] F. González-Acuña and H. Short, Knot surgery and primeness. Math. Proc. Cambridge
Philos. Soc. 99 (1986), 89–102. Zbl 0591.57002 MR 809502

[5] C. M. Gordon and J. Luecke, Only integral Dehn surgeries can yield reducible manifolds.
Math. Proc. Cambridge Philos. Soc. 102 (1987), 97–101. Zbl 0655.57500 MR 886439

[6] C. M. Gordon and J. Luecke, Knots are determined by their complements. J. Amer. Math.
Soc. 2 (1989), 371–415. Zbl 0678.57005 MR 965210

[7] C. M. Gordon and J. Luecke, Reducible manifolds and Dehn surgery. Topology 35 (1996),
385–409. Zbl 0859.57016 MR 1380506

http://www.emis.de/MATH-item?0633.57006
http://www.ams.org/mathscinet-getitem?mr=881270
http://www.emis.de/MATH-item?0778.57004
http://www.ams.org/mathscinet-getitem?mr=1112545
http://www.emis.de/MATH-item?0639.57008
http://www.ams.org/mathscinet-getitem?mr=910018
http://www.emis.de/MATH-item?0591.57002
http://www.ams.org/mathscinet-getitem?mr=809502
http://www.emis.de/MATH-item?0655.57500
http://www.ams.org/mathscinet-getitem?mr=886439
http://www.emis.de/MATH-item?0678.57005
http://www.ams.org/mathscinet-getitem?mr=965210
http://www.emis.de/MATH-item?0859.57016
http://www.ams.org/mathscinet-getitem?mr=1380506


Can Dehn surgery yield three connected summands? 797

[8] C. Hayashi and K. Motegi, Dehn surgery on knots in solid tori creating essential annuli.
Trans. Amer. Math. Soc. 349 (1997), 4897–4930. Zbl 0885.57001 MR 1373637

[9] C. Hayashi and K. Shimokawa, Symmetric knots satisfy the cabling conjecture. Math.
Proc. Cambridge Philos. Soc. 123 (1998), 501–529. Zbl 0910.57005 MR 1607989

[10] J. A. Hoffman, There are no strict great x-cycles after a reducing or P 2 surgery on a knot.
J. Knot Theory Ramifications 7 (1998), 549–569. Zbl 0912.57009 MR 1637581

[11] J. Howie, A proof of the Scott-Wiegold conjecture on free products of cyclic groups. J.
Pure Appl. Algebra 173 (2002), 167–176. Zbl 1026.20019 MR 1915093

[12] E. Luft and X. Zhang, Symmetric knots and the cabling conjecture. Math. Ann. 298
(1994), 489–496. Zbl 0792.57001 MR 1262772

[13] W. W. Menasco and M. B. Thistlethwaite, Surfaces with boundary in alternating knot
exteriors. J. Reine Angew. Math. 426 (1992), 47–65. Zbl 0737.57002 MR 1155746

[14] N. Sayari, The reducibility of surgered 3-manifolds and homology 3-spheres. Topology
Appl. 87 (1998), 73–78. Zbl 0926.57020 MR 1626088

[15] N. Sayari, Reducible Dehn surgery and the bridge number of a knot. J. Knot Theory
Ramifications 18 (2009), 493–504. Zbl 1188.57004 MR 2514544

[16] M. Scharlemann, Smooth spheres in R4 with four critical points are standard. Invent.
Math. 79 (1985), 125–141. Zbl 0559.57019 MR 774532

[17] M. Scharlemann, Producing reducible 3-manifolds by surgery on a knot. Topology 29
(1990), 481–500. Zbl 0727.57015 MR 1071370

[18] L. G. Valdez Sánchez, Dehn fillings of 3-manifolds and non-persistent tori. Topology
Appl. 98 (1999), 355–370. Zbl 0935.57024 MR 1720012

[19] Y.-Q. Wu, Dehn surgery on arborescent knots. J. Differential Geom. 43 (1996), 171–197.
Zbl 0851.57018 MR 1424423

Received August 17, 2009; revised January 6, 2010

J. Howie, Department of Mathematics and Maxwell Institute for Mathematical Sciences,
Heriot–Watt University, Edinburgh EH14 4AS, UK

E-mail: jim@ma.hw.ac.uk

http://www.emis.de/MATH-item?0885.57001
http://www.ams.org/mathscinet-getitem?mr=1373637
http://www.emis.de/MATH-item?0910.57005
http://www.ams.org/mathscinet-getitem?mr=1607989
http://www.emis.de/MATH-item?0912.57009
http://www.ams.org/mathscinet-getitem?mr=1637581
http://www.emis.de/MATH-item?1026.20019
http://www.ams.org/mathscinet-getitem?mr=1915093
http://www.emis.de/MATH-item?0792.57001
http://www.ams.org/mathscinet-getitem?mr=1262772
http://www.emis.de/MATH-item?0737.57002
http://www.ams.org/mathscinet-getitem?mr=1155746
http://www.emis.de/MATH-item?0926.57020
http://www.ams.org/mathscinet-getitem?mr=1626088
http://www.emis.de/MATH-item?1188.57004
http://www.ams.org/mathscinet-getitem?mr=2514544
http://www.emis.de/MATH-item?0559.57019
http://www.ams.org/mathscinet-getitem?mr=774532
http://www.emis.de/MATH-item?0727.57015
http://www.ams.org/mathscinet-getitem?mr=1071370
http://www.emis.de/MATH-item?0935.57024
http://www.ams.org/mathscinet-getitem?mr=1720012
http://www.emis.de/MATH-item?0851.57018
http://www.ams.org/mathscinet-getitem?mr=1424423

	Introduction
	The graphs
	Analysis of Scharlemann cycles
	Analysis of sandwiched disks
	References

