
Groups Geom. Dyn. 4 (2010), 777–784
DOI 10.4171/GGD/105

Groups, Geometry, and Dynamics
© European Mathematical Society

Garside groups have the falsification by fellow-traveller property

Derek F. Holt

Abstract. A group G is said to have the falsification by fellow-traveller property (FFTP) with
respect to a specified finite generating set X if, for some constant K, all non-geodesic words
over X [ X�1 K-fellow-travel with G-equivalent shorter words. This implies, in particular,
that the set of all geodesic words over X [ X�1 is regular. We show that Garside groups with
appropriate generating set satisfy FFTP.
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1. Introduction

Throughout this article we let G be a group generated by a finite set X and set
A ´ X [ X�1. So elements of G are represented by words w 2 A�. We denote the
length of the word w and the length of a shortest word w0 with w0 DG w by jwj and
jwjG , respectively. Then w is geodesic if jwj D jwjG .

For a non-negative integer i and w 2 A�, w.i/ will denote the prefix of w of length
i if i � jwj, or w if i > jwj. For K � 0, we say that words w and v (synchronously)
K-fellow-travel if jw.i/�1v.i/jG � K for all i � 0.

Definition 1.1. The group G has the falsification by fellow traveller property (FFTP)
with respect to X or A if there is a constant K � 0 such that, for any non-geodesic
word v 2 A�, there exists a word w 2 A� with v DG w and jwj < jvj such that v

and w K-fellow travel.

This property was introduced by Neumann and Shapiro in [6]. They prove in
Proposition 4.1 of that paper that, when this property holds, the set G .G; A/ of
geodesic words is a regular set, and they use it to prove that virtually abelian groups
and geometrically finite hyperbolic groups have regular sets of geodesics with respect
to suitable generating sets.

In fact the definition given in [6] stipulates the apparently weaker condition that
v and w asynchronously K-fellow travel, but it is straightforward to prove (exercise,
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or see [4], Lemma 1) that the two definitions are equivalent. It is also proved in [4]
that groups with FFTP are almost convex, satisfy a quadratic isoperimetric function,
and have the property F3. Furthermore, their word problem is solvable in quadratic
time.

It is not true that the regularity of G .G; A/ implies that G has FFTP with respect
to X . This is demonstrated by an example presented in [5], namely the wreath
product of an infinite cyclic group with a group of order 2 defined by the presentation
ht; a j t2; Œa; tat �i, with X D fa; tg. Note, however, that this group does have FFTP
with respect to X D fa; b; tg, where b D tat .

It is proved in [2] that Garside groups, which include the braid groups, have
regular geodesics with respect to suitable X , and the purpose of this note is to show
that they also satisfy FFTP with respect to the same X . Our proof is self-contained,
but many of our arguments are adaptations of those in [2]. See also [3] for a general
treatment of Garside groups, including the proof of their biautomaticity.

2. Garside groups

The definition of a Garside group depends on the concept of an atomic monoid. An
element m of a monoid M is called indivisible if m ¤ 1 and m D ab implies a D 1

or b D 1. Then M is called atomic if it is generated by its indivisible elements and,
for each m 2 M , the supremum of the lengths of words a1a2 : : : ar equal to m in
M and with each ai indivisible is finite. We can define a partial order with respect
to left divisibility on any atomic monoid by a � b if ac D b for some c 2 M . The
finiteness of the supremum of lengths of words for elements in M implies that we
cannot have a D acd for a; c; d 2 M unless c D d D 1. Hence a � b and b � a

if and only if a D b. We can do the same for right divisibility, but we shall assume
throughout that the partial order � on atomic monoids represents left divisibility.

A Garside group G is defined to be a group having a submonoid GC which is
atomic, and which has the following additional properties:

(1) Any two elements of GC have a least common multiple and a greatest common
divisor on both the left and the right;

(2) there exists an element � of GC with the property that the sets of left and right
divisors of � are the same, and they form a finite generating set for GC as a
monoid and G as a group.

Let G be a Garside group, let zX be the set of left and right divisors of the specified
element �, and set X D zX n f1g. We shall prove that G has FFTP with respect to the
generating set A ´ X [ X�1. In the course of the proof we shall need to consider
words over QA ´ A [ f1g. Since no word in QA� that contains 1 can be a geodesic,
we have G .G; QA/ D G .G; A/.

The Garside groups include the braid groups and, more generally, theArtin groups
of finite type. The simplest example is the braid group on three strings generated by a
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and b, for which � D aba D bab and X D fa; b; ab; ba; abag. Notice that the set
X of divisors of � is generally much larger than the natural minimal generating set of
the group. For the braid group Bn on n strings generated by n � 1 simple crossings,
we have jX j D nŠ � 1. The n � 1 simple crossings are of course the atomic elements.

For g; h 2 GC, we write g ^ h for the greatest common left divisor of g and h.
Then we have:

Lemma 2.1. For g 2 X and h 2 GC, � ^ .gh/ D � ^ .g.� ^ h//.

Proof. Clearly any common divisor of � and g.� ^ h/ is a common divisor of �

and gh. Conversely, let � ^ .gh/ D k, so gh D kl for some l 2 GC. Since g 2 X ,
g � � and hence g � � ^ .gh/ D k, so k D gm for some m 2 GC. Hence
gh D gml and, by the cancellation law, h D ml . Now m is a right divisor of k

which is itself a left and hence right divisor of �, so m 2 zX , and hence m � � ^ h.
So k D gm � g.� ^ h/, which completes the proof.

(By expressing an arbitrary g 2 GC as a word in X�, we can use a straightforward
induction argument on the length of the word to prove that the above result holds for
all g 2 GC, but we shall not need that result.)

Let g 2 GC be represented by the word w D �1�2 : : : �n 2 X�. Then we define
�i 2 X for 1 � i � n by �n D �n and �i D � ^ .�i�iC1/ for 1 � i < n. By
repeated application of Lemma 2.1, we see that �i D � ^ .�i : : : �n/ for 1 � i � n.

Now for each i < n we have �i�iC1 D �i�iC1 for some �iC1 2 GC. But since
�i � � and �i D � ^ .�i�iC1/, we have �i � �i so �iC1 is a right divisor of �iC1,
which implies that �iC1 2 zX .

We have now derived an alternative word �1�2 : : : �n 2 zX� that represents g, and
we shall refer to this process as rewriting the word w.

Lemma 2.2. If g 2 GC is represented by w 2 X� and � � g, then g DG �v for
some v 2 X� with jvj < jwj.

Proof. Let w D �1�2 : : : �n 2 X�. In the notation just introduced, we have g D
�1�2 : : : �n with �1 D � ^ w D � ^ g. But � � g implies that � ^ g D �, so
�1 D � and the result follows.

(By repeating the rewriting process starting with the element �2 : : : �n, we can
find a word �0

1�0
2 : : : �0

k
for g with k � n, where each �0

i D � ^ .�0
i : : : �0

k
/. This is

the known as the left greedy normal form for g, and plays an important role in the
automatic structure for G, but we shall not pursue that further here.)

For � 2 zX , we have � DG ��� where, since zX is the set of right divisors of �,
�� 2 zX . Similarly, there exists �� 2 zX with � DG

���.
It follows from the cancellation laws in G that the maps � 7! �� and � 7! ��

are permutations of zX . Note also that ��� DG
����� DG

���, so there is a
permutation � of zX (which restricts to a permutation of X ) for which �� DG �.�/�
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for all � 2 zX , and �� DG �.��/. We have �r 2 Z.GC/ and hence �r 2 Z.G/,
where r is the order of the permutation � . In the braid groups, for example, we have
r D 2.

Henceforth g will denote an arbitrary element of G, which is represented by the
word w D �

�1

1 �
�2

2 : : : �
�n
n 2 QA�, where each �i 2 zX and �i 2 f1; �1g. (We assume

that �i D 1 if �i D 1.) Let p ´ p.w/ and m ´ m.w/ be the total number of �i

equal to 1 and �1, respectively; so p C m D n.
Suppose that m � 1 and k is maximal with �k D �1. Then, using the relations

�� DG �.�/� and ��1� DG �� for � 2 zX , we have

w� DG �
�1

1 : : : �
�k�1

k�1
��

k��1.�kC1/ : : : ��1.�n/;

and we shall denote this word of length n in QA� by 	.w�/. If m � 2, then we can
define 	.w�2/ as 	.	.w�/�/ and hence by recursion we can define 	.w�r/ for any
0 � r � m. We define 	.�rw/ in a similar manner for 0 � r � m, and we have
	.w�m/; 	.�mw/ 2 zX�.

Analogously, if p � 1 and k is maximal with �k D 1, then

w��1 DG �
�1

1 : : : �
�k�1

k�1
���1

k �.�kC1/�1 : : : �.�n/�1;

and we denote this word by 	.w��1/. We can thus define 	.w��r/ and (simi-
larly) 	.��rw/ for 0 � r � p, and it is straightforward to verify that 	.w��r/ D
	.�rw�1/�1 and 	.��rw/ D 	.w�1�r/�1. These words all have length n D jwj.

For g 2 GC, it is conceivable that the length jgjGC of the shortest word in X�
that represents g could be longer than the length jgjG of the shortest word in A� that
represents g. Our next aim is to prove that this does not happen, and so jgjGC D jgjG .

Lemma 2.3. Let g 2 GC with jgjGC D n. Then j�rgjGC D n C r for any r � 0.

Proof. It is clearly sufficient to prove this for r D 1. Let �1 : : : �k be a shortest word
in X� that represents �g. Then, by Lemma 2.2, we can assume that �1 D �, but
then cancelling � gives g DG �2 : : : �k , so k � 1 � n. But clearly k � n C 1, so
k D n C 1 as claimed.

Proposition 2.4. Let g 2 GC with jgjGC D n, and suppose that g DG w with
w 2 A�. Then jwj � m.w/ � n. In particular, jwj � n and so jgjG D n.

Proof. Let m D m.w/. Since 	.�mw/ is a word in zX� of length jwj with
	.�mw/ DG �mg, Lemma 2.3 implies that jwj � m C n.

The next two results are parts of Lemma 3.2 and Proposition 3.3 of [2].

Lemma 2.5. Let g 2 GC with jgjG D n and let k 2 N with 1 � k � n. Then
jg��kjG D j��kgjG � n with equality if and only if � 6� g.
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Proof. We have g��k D �k.��kg/��k , and X is closed under conjugation by �,
so jg��kjG D j��kgjG .

Let w 2 X� represent g with jwj D n. Since j	.��kw/j D n, we have
j��kgjG � n. Clearly � � g implies that j��kgjG < n when k > 0. Con-
versely, suppose that ��kg DG v with v 2 A� and jvj < n. So g DG �kv. By
Proposition 2.4, we have n D jgjG � k C jvj � m where m D m.v/, so m < k.
Hence g DG �k�m	.�mv/ 2 zX�, so � < g.

Lemma 2.6. Let g 2 GC and let w 2 zX� with w DG g and jwj D n. Then
w 2 G .G; A/ (that is, jgjG D n) if and only if � 6� �nw�1.

Proof. If jgjG < n and g DG v with v D �1 : : : �k 2 X� and k < n, then
�nw�1 DG �n�k	.�kv�1/, so � < �nw�1. Conversely, if � < �nw�1 then,
by Lemma 2.2, we can write �nw�1 DG �v, for some v 2 X� with jvj <

j	.�nw�1/j D n, so g DG w DG v�1�n�1 DG 	.v�1�jvj/�n�1�jvj, which is
a word of length at most n � 1. Hence jgjG < n.

As before, let w D �
�1

1 �
�2

2 : : : �
�n
n 2 QA� represent g 2 G, where each �i 2 zX

and �i 2 f1; �1g, and let p ´ p.w/ and m ´ m.w/. Define xw D 	.g�m/ and
w D 	.g�1�p/. So xw and w are both words in zX� of length n.

Proposition 2.7. For w 2 QA�, we have

(i) xw 2 G .G; QA/ () � 6� �pg�1;
(ii) w 2 G .G; QA/ () � 6� g�m () � 6� �mg.

Proof. (i) follows from Lemma 2.6 and the fact that �n xw�1 DG �pg�1. Lemma 2.6
tells us that w 2 G .G; QA/ if and only if � 6� �nw�1 DG �mg. But since g�m DG

��m.�mg/�m, this is the case if and only if � 6� g�m.

The following result, which is Lemma 3.6 of [2], characterizes the words in
G .G; A/ D G .G; QA/.

Proposition 2.8. Let w 2 A� represent g 2 G, with jwj D n and m D m.w/. Then
w 2 G .G; A/ if and only if one of the following holds:

(1) m D 0 and w D xw 2 G .G; A/;
(2) m D n and w�1 D w 2 G .G; A/;
(3) 0 < m < n and both xw and w lie in G .G; A/.

Proof. The cases m D 0 and m D n are obvious, so suppose that 0 < m < n. Let
k D j xwjG , so k � j xwj D n. First note that, if k < m, then g DG xw��m DG

	.v��k/��mCk , where v is a word in X� of length k representing xw. So jgjG � m

and, since m < n, neither w nor xw is geodesic.
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Hence we may assume that k � m and by Lemma 2.5 applied with xw in place of
g and m in place of k, we have jgjG � k, with equality if and only if � 6� xw. Now
w is geodesic if and only if jgjG D n, which is the case if and only if k D n and
� 6� xw. Clearly k D n is equivalent to xw 2 G .G; A/. By Lemma 2.7, w 2 G .G; A/

if and only if � 6� g�m DG xw.

We are now ready to prove our main result.

Theorem 2.9. If w 2 A� with w 62 G .G; A/, then w 3-fellow travels with an equiv-
alent shorter word. So G has FFTP with respect to A.

Proof. Let w D �
�1

1 �
�2

2 : : : �
�n
n with each �i 2 X , �i 2 f1; �1g, and set p ´ p.w/

and m ´ m.w/. We may assume that the maximal proper prefix w.n � 1/ of w is
geodesic.

By Propositions 2.8 and 2.7 either p > 0 and � � �pg�1 or m > 0 and
� � �mg. These two conditions are clearly symmetrical, so we shall assume that
the first one holds.

For 0 � i � n, let p.i/ ´ p.w.i// D jf j j 1 � j � i; �j D 1 gj. Recalling the
conditions �� DG �.�/� and ���1 DG

�� D �.��/, we find that 	.�pg�1/ D

n
n�1 : : : 
1 where each 
i 2 zX and, for 1 � i � n, 
i D �p.i/.��

i / when �i D 1

and 
i D �p.i/.�i / when �i D �1.
We now rewrite the word 
n
n�1 : : : 
1 as described in the comments preceding

Lemma 2.2. So we define elements �i for 1 � i � n and �i for 1 � i < n of zX which
satisfy �1 D 
1 and 
iC1�i D �iC1�i for 1 � i < n, where �iC1 D � ^ .
iC1�i /.
Then 
n : : : 
1 DG �n�n�1 : : : �1 and �i D � ^ .
i : : : 
1/ for 1 � i � n. So, since
we are assuming that � � �pg�1 DG 
n
n�1 : : : 
1, we have �n D �.

We shall now proceed to define a word v D �1 : : : �n�1 2 QA�, which is equal in
G to w. We shall then go on to show that v 2-fellow travels with w.

Let k be maximal such that k � n and �k D 1. (We are assuming p > 0, so
such a k exists.) Define q.i/ ´ p.i/ for 0 � i < k and q.i/ ´ p.i/ � 1 D p � 1

for k � i < n. Then, for 1 � i < n, since q.i/ D q.i � 1/ or q.i � 1/ C 1, we
have ��q.i�1/��1

i �q.i/ 2 QA, and we define �i to be this element. Since �n D � and
q.n � 1/ D p � 1, we have

v ´ �1 : : : �n�1 DG ��1
1 ��1

2 : : : ��1
n�1�p�1 DG 
�1

1 : : : 
�1
n �p DG w:

The configuration is illustrated in Figure 1 for a word w D �1�2��1
3 �4�5��1

6 ��1
7

in which p D 4, m D 3 and k D 5.
To show that v 2-fellow travels with w, observe that, for 1 � i < n,

w.i/��p.i/ DG 
�1
1 : : : 
�1

i

DG ��1
1 ��1

2 : : : ��1
i�1��1

i

DG ��1
1 ��1

2 : : : ��1
i �q.i/��q.i/�i�

�1
i

DG �1 : : : �i�
�q.i/�i�

�1
i D �.i/��q.i/�i�

�1
i :
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1 2 3 4 5 6 7

1

2 3 4 5 6 7

1 2 2 3 4 4 4

1

2 3 4 5 6

2 3 4 5 6 7 D

1 2 2 3 3 3

1

2 3 4 5 6

Figure 1. w and v fellow travel.

Thus v.i/�1w.i/ DG ��q.i/�i�
�1
i �p.i/. Since p.i/ D q.i/ or q.i/ C 1 for all i ,

we have ��1
i � 2 QA, and QA is closed under conjugation by �. This proves that

jv.i/�1w.i/jG � 2.
Since the word v is in QA�, it could conceivably include occurrences of 1. However,

from our assumption that w.n � 1/ 2 G .G; A/, we have jwjG � n � 2, so in fact
�i D 1 for at most one value of i . By removing such an element �i from v if it
exists, we obtain a word equivalent to w in A� which 3-fellow travels with w. This
completes the proof.
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