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A conjecture on product decompositions in simple groups
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Abstract. We propose a conjecture concerning decompositions of finite simple groups as
products of conjugate subgroups, and prove it for a large class of maximal subgroups.

Mathematics Subject Classification (2010). 20G40.

Keywords. Finite simple groups, conjugate subgroups.

1. Introduction

In this paper we propose the following conjecture:

Conjecture. There exists an absolute constant c such that if G is a finite simple
group and H is any nontrivial subgroup of G, then G is a product of N conjugates
ofH for some N � c log jGj=log jH j.

Note that since a product of n conjugates of H has size at most jH jn, the upper
bound for N in the conjecture is best possible, up to the value of the constant c.
The conjecture is in the spirit of the main result of [17], which shows that if C
is a non-identity conjugacy class of the simple group G, then G D CN for some
N � c log jGj=log jC j.

Our conjecture is a far reaching generalization of various recent results. For ex-
ample, [15], Theorem 1, shows that ifG is a simple group of Lie type in characteristic
p, thenG is a product of at most 25 of its Sylowp-subgroups (see also [4] for a recent
improvement from 25 to 5). Also [18] shows that every classical group over Fq is a
product of at most 200 conjugate subgroups of type SLn.q/. These results support
the special case of the conjecture where jH j > jGj� for some fixed � > 0, and one
has to show thatG is a bounded product of conjugates ofH . Particular results of this
type are essential in the proof that simple groups can be made into expanders (see the
announcement [8] and [14]).

�The third author acknowledges the support of an ERC Advanced Grant 247034, and grants from ISF,
BSF and EPSRC.
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In this paper we prove two results which go some way towards establishing the
conjecture in the case where H is a maximal subgroup of G. The first is a proof of
the conjecture in this case when G is a group of Lie type of bounded rank, and the
second when log jGj=log jH j is bounded.

Theorem 1. If G is a finite simple group of Lie type of rank r and H is a
maximal subgroup of G, then G is a product of N conjugates of H for some
N � c log jGj=log jH j, where c D c.r/ depends only on r .

Theorem 2. There is a function f W N ! N and an absolute constant c such that the
following holds. If k 2 N, and G is a finite simple group with a maximal subgroup
H such that log jGj=log jH j � k and jGj > f .k/, then G is a product of at most
c log jGj=log jH j conjugates ofH .

In Theorem 1 the constant c is not explicit. Likewise the function f in Theorem 2
is not explicit; however our proof shows that the constant c can be taken to be less
than 108 provided the rank of G is sufficiently large.

Our proof of Theorem 1, given in Section 2, uses a variety of tools. For the
case where jH j is bounded (in terms of the rank r), we use results from [3] and [6]
concerning diameters of Cayley graphs. If H is of unbounded order and is not a
subfield subgroupG.q0/ (whereG D G.q/ and Fq0

is a subfield of Fq), we use [13],
Theorem 1.2, which relies heavily on model theory.

The proof of Theorem 2 is divided into the case of alternating groups (Section 3)
and groups of Lie type (Section 4). The alternating case is based on combinatorial
arguments. For the groups of Lie type, we need to consider only classical groups
of large rank by Theorem 1, and for these our arguments are mostly constructive
although we also use some character theoretic methods via recent results from [19]
and [23].

2. Proof of Theorem 1

First we state a result taken from [19], Corollary 1, which will be useful at several
points in this section and the next.

Lemma 2.1. Let G be a finite group and let k be the minimal degree of a nontrivial
complex character ofG. Suppose S is a subset ofG such that jS j > jGj=k1=3. Then
G D S3.

Now we begin the proof of Theorem 1 with a general result about maximal sub-
groups of groups of Lie type.

Lemma 2.2. There is a function f W N ! N such that if G D Gr.q/ is a simple
group of Lie type of rank r over Fq , andH is a maximal subgroup of G, then one of
the following holds:
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(i) jH j < f .r/;
(ii) H is a subfield subgroup;

(iii) jH j � q � 1.

Proof. For G of classical type this is well known, and we give a sketch proof. First,
if H lies in one of the collections of Aschbacher subgroups Ci defined in [2], then
by inspection of these subgroups (see [9] for their explicit structure), one sees that
(i), (ii) or (iii) holds. Otherwise, the main theorem of [2] shows that H is almost
simple, and [10] implies that either (i) holds or F �.H/ 2 Lie.p/, where p is the
characteristic of Fq; say F �.H/ D H.q0/. By [22], Corollary 6, we have either
q0 � q1=2 or q0 D q1=3 and H.q0/ D 3D4.q0/; in either case jH.q0/j > q � 1 and
(iii) holds.

Now suppose that G is of exceptional Lie type. Write G D xG0
� , where xG is a

simple adjoint algebraic group of the same type as G over the algebraic closure xFq

and � is a Frobenius morphism of xG. Now [16], Corollary 8, states that if H is a
maximal subgroup ofG then either jH j < c (an absolute constant), orH is a subfield
subgroup, orH D NG. xX� / for some � -stable closed connected subgroup xX of xG of
positive dimension. In the latter case we establish that jH j � q � 1. This is clear if
H is parabolic, so we may assume that xX is reductive. If xX has a nontrivial simple
factor then H contains a group of Lie type over Fq by [16], 1.13, and this clearly
has order greater than q � 1. Otherwise, xX is a torus, and it is easily seen that the
minimum possible order of a torus normalizer is at least q � 1. This completes the
proof.

For the case of bounded maximal subgroups in Theorem 1 (i.e.,H as in case (i) of
Lemma 2.2), we prove the following result, which is rather more general than what
is required.

Proposition 2.3. Suppose G is a simple group of Lie type of rank r , let 1 ¤ h 2 G
and letS D f1; hg. ThenG is a product ofN conjugates ofS for someN � c log jGj,
where c D c.r/ depends only on r .

Proof. By [3] there exists k � 7 and g1; : : : ; gk 2 G generating G, such that the
diameter of the Cayley graph ofG with respect to these generators is at most b log jGj,
where b is an absolute constant. Also, by [6] (see also [11]), if C D hG then there
exists d � ar such that G D C d , where a is an absolute constant.

For each i with 1 � i � k, write gi D hi1 : : : hid and g�1
i D h0

i1 : : : h
0
id

with
all hij ; h

0
ij 2 C . Consider the sequence g1; : : : ; gk; g

�1
1 ; : : : ; g�1

k
repeated at least

b log jGj times. By the above, every element ofG is equal to a sub-product of elements
in this sequence. Replacing each gi by the sequence hi1; : : : ; hid and likewise for
g�1

i , we see that each element of G is a sub-product of the resulting sequence. This
means that G is a product of 2kdb log jGj � 14arb log jGj conjugates of S . The
result follows.
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Note that the case of Theorem 1 where jH j is bounded by a function of r follows
immediately from Proposition 2.3, taking 1 ¤ h 2 H .

Next we consider the maximal subgroups in case (iii) of Lemma 2.2, excluding
subfield subgroups. The main ingredient here is [13], Theorem 1.2, which is proved
using a substantial amount of model theory.

Proposition 2.4. Let G D G.q/ be a finite simple group of Lie type of rank r , and
suppose thatH is a maximal non-subfield subgroup ofG of order at least q�1. Then
G is a product of c conjugates ofH , where c D c.r/ depends only on r .

Proof. Let X be the coset space G=H . Recall that an orbital graph is a graph with
vertex set X , and edge set an orbit of G on the set of unordered pairs of elements of
X ; as G is primitive on X , all the orbital graphs are connected by a classical result
of D. G. Higman.

By [13], Theorem 1.2, there is a constant d D d.r/ such that the diameters of all
the orbital graphs are at most d . Each orbital consists of elements of X in double
cosetsHg˙1H for some 1 ¤ g 2 G nH . It follows that for each g 2 G nH , every
element x 2 G can be written as x D h1g

�1 : : : heg
�e , where hi 2 H , �i D ˙1

and e � d . Hence G is the union of at most
Pd

eD0 2
e < 2dC1 products of the form

Hg�1 : : :Hg�e with e � d . One of these products, say Hg�1 : : :Hg�e therefore
has size greater than jGj=2dC1. This implies that there is a product S of at most d
conjugates of H such that jS j > jGj=2dC1.

We now use Lemma 2.1 to complete the proof: by [10], if q is large enough
(as we may assume) then the minimal nontrivial character degree k of G satisfies
k > 23.dC1/, so for the set S in the previous paragraph, we have G D S3. It follows
that G is a product of at most 3d conjugates of H .

It remains to prove Theorem 1 in the case where H is a subfield subgroup. For
this we require the following result.

Lemma 2.5. Let Fq be a field and let Fq0
be a subfield with jFq W Fq0

j D d .
Let G be SL2.q/, Sz.q/ or SU3.q/, and let G0 be a subfield subgroup SL2.q0/,
Sz.q0/ or SU3.q0/, respectively. Then G is a product of at most 26d conjugates of
a subgroup G0.

Proof. First consider G D SL2.q/ and let G0 be a subgroup SL2.q0/. Take U;U0

to be Sylow p-subgroups of G, G0 respectively, and choose notation so that U D
fu.˛/ j ˛ 2 Fqg and U0 D fu.˛/ j ˛ 2 Fq0

g, where

u.˛/ D
�
1 ˛

0 1

�
:

If h.�/ D diag.��1; �/ 2 G, then U h.�/
0 D fu.�2˛/ j ˛ 2 Fq0

g. Choose a basis
�1; : : : ; �d for Fq over Fq0

. Now every element of a finite field is a sum of two
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squares (since more than half of the field elements are squares). Expressing each �i

as a sum of two squares, it follows that there is a spanning set ˛2
1 ; : : : ; ˛

2
2d

for Fq

over Fq0
, where ˛i 2 Fq . Hence

U D U
h.˛1/
0 : : : U

h.˛2d /
0 : (1)

By [15], Theorem D, G is a product of 13 conjugates of U , and the result follows.
Next consider G D Sz.q/. Again let U;U0 be Sylow p-subgroups of G;G0.

By [24] (see Section 4), we have q D 22kC1 and U D f.˛; ˇ/ j ˛; ˇ 2 Fqg with
multiplication

.˛; ˇ/ .�; ı/ D .˛ C �; ˛�� C ˇ C ı/

where �� D �2kC1
. Also U0 D f.˛; ˇ/ j ˛; ˇ 2 Fq0

g.
Now NG.U / contains a subgroup f�.�/ j � 2 F�

q g, where

.˛; ˇ/�.�/ D .�˛; �1C�ˇ/:

If �1; : : : ; �d is a basis for Fq over Fq0
, then as above we see that for any ˛ 2 Fq ,

there exists ˇ such that .˛; ˇ/ lies in the product U �.�1/
0 : : : U

�.�d /
0 . Also 1 C � is

surjective on Fq (since .22kC1 � 1; 2kC1 C 1/ D 1), so there is a basis for Fq over
Fq0

of the form 	1C�
1 ; : : : ; 	1C�

d
, and any element .0; ı/ (ı 2 Fq) lies in the product

U
�.�1/
0 : : : U

�.�d /
0 . Since .˛; ˇ/ .0; ı/ D .˛; ˇ C ı/, it follows that

U D U
�.�1/
0 : : : U

�.�d /
0 � U �.�1/

0 : : : U
�.�d /
0 ; (2)

a product of 2d conjugates of U0. Now the result follows from [15] as above.
Finally, letG D SU3.q/. This is similar to the previous case. Hered D jFq W Fq0

j
is odd, and from [20], p. 255, a Sylow p-subgroup U of G can be taken as

U D f.˛; ˇ/ j ˛; ˇ 2 Fq2 ; ˇ C Ň C ˛ N̨ D 0g
where N̨ D ˛q , and the multiplication is .˛; ˇ/ .�; ı/ D .˛ C �; ˇ C ı � N̨�/. Also
U0 D f.˛; ˇ/ j ˛; ˇ 2 Fq2

0
g 2 Sylp.G0/. For � 2 F�

q2 , NG.U / contains an element
k.�/ such that

.˛; ˇ/k.�/ D .�2 N��1˛; � N�ˇ/:
We can choose �1; : : : ; �d such that �2

i
N��1

i .1 � i � d/ form a basis for Fq2 over
Fq2

0
. Hence for any ˛ 2 Fq2 , there exists ˇ such that .˛; ˇ/ lies in the product

U
k.�1/
0 : : : U

k.�d /
0 . Similarly there exist 
1; : : : ; 
d 2 Fq2 such that any .0; ı/ (ı 2

Fq2 , ı C Nı D 0) lies in the product U k.	1/
0 : : : U

k.	d /
0 . Hence

U D U
k.�1/
0 : : : U

k.�d /
0 � U k.	1/

0 : : : U
k.	d /
0 : (3)

Now the result follows as in the previous cases.
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Now we are able to prove Theorem 1 for subfield subgroups. The next result is
slightly more general than we need since it deals with arbitrary subfield subgroups,
not just maximal ones.

Proposition 2.6. Let G D G.q/ be a finite simple group of Lie type of rank r , and
let H D G.q0/ be a subfield subgroup of G, where jFq W Fq0

j D d . Then G is a
product of at most 100r2d conjugates ofH .

Proof. First consider the case where G is an untwisted group. As in [5], take G to
be generated by root groups U˛ D fx˛.t/ j t 2 Fqg for ˛ in the root system ˆ of G,
andH to be generated by subgroups U 0

˛ D fx˛.t/ j t 2 Fq0
g. By [5], 5.3.3, we have

U D Q
˛2ˆC U˛ 2 Sylp.G/ and U0 D Q

˛2ˆC U 0
˛ 2 Sylp.G0/, where the product

is taken over positive roots in increasing order. Since U˛ is a Sylow p-subgroup of
the group hU˙˛i Š .P/SL2.q/, the equality (1) shows that U˛ is a product of 2d
conjugates of U 0

˛ . It follows that U is a product of 2d jˆCj conjugates of U0, and
hence by [15], Theorem D, G is a product of at most 26d jˆCj conjugates of G0.
Since jˆCj < 2r2, the result follows in the untwisted case.

Now suppose that G is a twisted group. Again let U , U0 be Sylow p-subgroups
of G, H respectively. Then [5], 13.6.1, shows that we can write U D U1 : : : Uk ,
where k � jˆCj and eachUi is a Sylow p-subgroup of one of the groups .P/SL2.q

i /

(i 2 f1; 2; 3g), .P/SU3.q/ or Sz.q/, with a similar expression U0 D U 0
1 : : : U

0
k

for
U0. By (1), (2), (3), each Ui is a product of at most 2d conjugates of U 0

i , and so U is
a product of 2dk conjugates of U0. Now [15], Theorem D, shows thatG is a product
of at most 50dk conjugates of G0. This completes the proof.

The proof of Theorem 1 is now complete.

3. Proof of Theorem 2 for alternating groups

Let G D An, k 2 N, and let H be a maximal subgroup of G with jH j � jGj1=k .

Lemma 3.1. For n sufficiently large in terms of k, one of the following holds:

(i) H D .Sm � Sn�m/ \G for some m (H intransitive);
(ii) H D .Sm o Sn=m/ \G for some proper divisor m of n (H imprimitive).

Proof. The only alternative to (i) and (ii) is that H is primitive on f1; : : : ; ng. If this
is the case then jH j < 4n by [21], which is not possible provided 4nk < nŠ=2.

The next lemma allows us to work withSn instead ofAn in the proof of Theorem 2,
which is convenient.

Lemma 3.2. Let H be a subgroup of Sn with H 6� An, and define K D H \ An.
Suppose that Sn D Qt

iD1H
ai for some ai 2 Sn. Then, provided n > 23t , An is a

product of 3t conjugates of K.
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Proof. Note first that since by hypothesis H is normalized by an odd permutation,
any Sn-conjugate of H is also an An-conjugate. Now pick an element x 2 HnK so
that H D K [ xK. Then

tQ
iD1

H ai D
tQ

iD1

.K [ xK/ai D Qt
iD1.K

ai [ xaiKai /:

For any t -tuple b D .b1; : : : ; bt / with bi 2 f1; xai g, define the set

Xb D
tQ

iD1

biK
ai D b1 : : : bt

tQ
iD1

Kgi ;

where gi D aibiC1 : : : bt .
Altogether we see that An is a union of the 2t�1 sets Xb as b ranges over all

possible t -tuples b with an even number of terms bj D 1. By the pigeonhole principle
jXbj > jAnj=2t for at least one such b. PutX D Xb. Then by Lemma 2.1 and the fact
that the minimal degree of a nontrivial complex representation of An is n� 1 � 23t ,
we have An D X3, and it easily follows that An is a product of 3t conjugates of K.

In view of Lemma 3.2, to prove Theorem 2 for alternating groups it is sufficient to
express the symmetric groupSn as a product of the appropriate numbers of conjugates
of the subgroups H D Sm � Sn�m and H D Sm o Sn=m in Lemma 3.1.

In the following lemmas, the inclusions of the groups Sk and S t
k

in Sn are the
natural ones: the Sk fixes n � k points, and the S t

k
acts imprimitively on kt points

and fixes the rest.

Lemma 3.3. S4n is a product of 6 conjugates of S2n. More generally if k � n � 2k

then Sn is a product of at most 8 conjugates of Sk .

Proof. We will prove the first part of the statement; the proof of the second is similar.
For i D 1; : : : ; 4 define subsets Xi of f1; 2; : : : ; 4ng as follows:

X1 D f1; : : : ; 2ng;
X2 D f2nC 1; : : : ; 4ng;
X3 D f1; : : : ; n; 2nC 1; : : : ; 3ng;
X4 D fnC 1; nC 2; : : : ; 2n; 3nC 1; 3nC 2; : : : ; 4ng:

Let Ji be the copy of S2n acting on the set Xi and fixing all points outside.
Let g 2 S4n and put Y D gX1 \X2, Z D gX2 \X1. Then jY j D jZj and with

an application of an element h 2 J1J2 we can make hY and hZ to be initial segments
ofX2 andX1 respectively. Now with an application of an element h0 2 J3J4 we can
swap hY and hZ fixing all the other elements and thus achieve that h0hg stabilizes
X1 and X2 and so h0hg 2 J1J2. Therefore g 2 J1J2J3J4J1J2.
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Lemma 3.4. Snm D ABA where A is a conjugate of .Sn/
m and B is a conjugate of

.Sm/
n.

Proof. This is the content of Lemma 4 of [1].

Corollary 3.5. For an integer t � 2 the group Snt is a product of 2t � 1 conjugates
of .Sn/

nt�1
.

Proof. Use induction on t . The case t D 1 is trivial. If the result is true for some
t � 1 apply Lemma 3.4 with m D nt to get that

SntC1 D ABA; A D Snt

n ; B conjugate to Sn
nt ;

and apply the induction hypothesis to B .

Proposition 3.6. Suppose that n D mk. Then Sn is a product of at most 16 log n
log m

C24
copies ofH D .Sm/

k .

Proof. Let l be the largest integer such that ml � n. Then l � log n
log m

and if a D ml

then a > k. By Corollary 3.5, Sa is a product of 2l � 1 conjugates of .Sm/
ml�1

.
Let b be the largest integer such that ba � n. Then ab � n=2 and also bml�1 � k.
Hence .Sm/

bml�1 � H and so .Sa/
b is a product of 2l � 1 conjugates of H .

Again using Lemma 3.4 we see that Sab is a product of two conjugates of .Sb/
a

and a conjugate of .Sa/
b . We saw that .Sa/

b is contained in a product of at most
2l � 1 conjugates of H and we claim that .Sb/

a is contained in a product of at most
2 conjugates of H . To see this, observe that each copy of Sm contains the direct
product of at least Œm=b� � m=2b copies of Sb and so H D .Sm/

k contains the
direct product of at least km=.2b/ D n=2b � ab=2b D a=2 copies of Sb . Therefore
.Sb/

a is contained in at most 2 conjugates of H , proving the claim.
ThereforeSab is contained in the product of at most 2l�1C4 D 2lC3 conjugates

ofH . Since ab � n=2 it follows from Lemma 3.3 that Sn is a product of 8 conjugates
of Sab , which proves the proposition.

Proposition 3.7. For 2 � m � n, the groupSn is a product of atmost 320t conjugates
of Sm, where t D n log n

m log m
.

Proof. Let n0 be the largest multiple of m which is less than or equal to n. Then
n0 > n=2 and so Sn is a product of at most 8 conjugates of Sn0 . Put T D S

n0=m
m . By

Proposition 3.6, Sn0 is in a product of at most 16 logn0=logmC 24 conjugates of T ,
and T is a product of n0=m copies of Sm. Altogether Sn is a product of at most

8
n0

m

�
16

logn0

logm
C 24

�
� 8

n

m

�
16 logn

logm
C 24

�
< 320

n logn

m logm

conjugates of Sm.
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Proposition 3.8. Suppose n D mk for integersm; k 2 N. The group Sn is a product
of at most 1280t conjugates of L D Sm o Sk , where t D log jSnj=log jLj.

Proof. In the case where jSkj < jSmjk , we have

log jGj=log jLj > 1

2
log jGj=k log jSmj � 1

4
logn=logm;

and we can apply Proposition 3.6 with subgroupH D Sk
m. Otherwise, jSkj � jSmjk ,

which gives

log jGj=log jLj � 1

2
log jSnj= log jSkj � 1

4

n logn

k log k
;

and we apply Proposition 3.7 with H D Sk .

As observed above, this proposition together with Lemmas 3.2 and 3.3 gives the
bounds necessary to complete the proof of Theorem 2 for alternating groups.

4. Proof of Theorem 2 for groups of Lie type

Before embarking on the proof, we prove two lemmas we shall need concerning the
generation of SLn.q/. In the statement we abuse notation slightly by referring to the
derived subgroup of a Levi subgroup of G also as a Levi subgroup.

Lemma 4.1. There is an absolute constant b such that if G D SLn.q/ and K is a
Levi subgroup SLr.q/ ofG, thenG is a product of at most b.n=r/2 conjugates ofK.

Proof. Write n D t r C k with 0 � k < r . We first find a suitable product of
conjugates of K containing all the upper unitriangular matrices in a Levi subgroup
SLtr.q/ of G. This is trivial if t D 1, so assume t � 2.

We first get all the upper unitriangular matrices in a Levi subgroup SL2r.q/.
Define

l D
�
I I

0 I

�
2 SL2r.q/:

Then for d D diag.a; I / 2 K (where a 2 SLr.q/) we have

dld�1l�1 D
�
I a � I
0 I

�
:

Thus the product .KKl/2 contains all matrices in SL2r.q/ of the form
�
I aC b � 2I
0 I

�
.a; b 2 SLr.q//:
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Now we claim that an arbitrary matrix in Mr.q/ (the set of all r � r matrices over
Fq) can be expressed as a sum of three matrices of the form aC b � 2I with a; b 2
SLr.q/. To see this, observe first that taking a to be upper unitriangular and b lower
unitriangular, we can make aC b � 2I equal to any matrix with 0’s on the diagonal.
If q > 2, we can add a further matrix a0 Cb0 �2I with a0; b0 diagonal to make the first
r � 1 diagonal entries arbitrary; then we can adjust the last diagonal entry by adding
a further diagonal matrix a00 C b00 � 2I . If q D 2, let a 2 SLr.q/ be a monomial
matrix with prescribed diagonal entries, and let b D I ; then aC b can have arbitrary
diagonal entries. This proves the claim.

It follows from the previous paragraph that there is a product of 12 conjugates of
K which contains all the matrices

�
I X
0 I

�
in SL2r.q/. Adding two further conjugates

to get the matrices diag.a; I /, diag.I; a/ (a 2 SLr.q/), we see that there is a product
of 14 conjugates of K containing all the upper unitriangular matrices in SL2r.q/.

To get to SL3r.q/ we repeat the above argument to get two further products of 12
conjugates of K containing the matrices0

@I 0 X

0 I 0

0 0 I

1
A ;

0
@I 0 0

0 I X

0 0 I

1
A :

Similarly, to get SLtr.q/ we choose products of 12 conjugates of K to get matrices
as above with X in one of

�
t
2

�
obvious r � r blocks, and a further t conjugates to get

block diagonal matrices, to conclude that the groupP of upper unitriangular matrices
in SLtr.q/ is contained in a product of 12

�
t
2

�C t conjugates ofK. By [15], SLtr.q/ is
a product of 25 conjugates ofP (improved to 5 in [4]), hence of 60

�
t
2

�C5t conjugates
of K.

Now let s D Œn=2� and take a Levi subgroup R D SLs.q/ in SLtr.q/. By the
above argument, a subgroup SL2s.q/ of G is contained in a product of 14 � 5 D 70

conjugates of R. If n is even then SL2s.q/ D G; and if n is odd then by [18],
Lemma 2, G is a product of 4 conjugates of SL2s.q/. We conclude that G is a
product of

4 � 70 � �
60

�
t
2

� C 5t
�

conjugates of K, giving the result.

Lemma 4.2. Let G D SLn.q/ and write k D Œn=2�. Define T to be the subgroup²�
I X .0/
0 I .0/

.0/ .0/ .1/

� ˇ̌
X 2 Mk.q/

³

(where bracketed entries are present only if n is odd ). Then G is a product of 152
conjugates of T .

Proof. It follows from [7], 2.1, that SL2k.q/ is a product of 38 conjugates of T . And
if n is odd, [18], Lemma 2, implies that G is a product of 4 conjugates of SL2k.q/.
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We now embark on the proof of Theorem 2 forG a simple group of Lie type. Let
k 2 N and let H be a maximal subgroup of G with jH j � jGj1=k . By Theorem 1
we may assume that the rank of G is large (in terms of k), so that G is a classical
group. Write G D Cln.q/, a classical group with natural module V of dimension n
over F D Fqu , where u D 2 if G is unitary and u D 1 otherwise.

By [2], the maximal subgroup H is either in one of the Aschbacher families Ci

(1 � i � 8) or it lies in the collection � of almost simple, irreducible subgroups
(satisfying various other conditions); see [9] for descriptions of all these families.

In the following statement, we say a quantity is ‘bounded’ if it is bounded in terms
of k.

Lemma 4.3. The maximal subgroupH is of one of the following types:

(i) a parabolic subgroup of G;
(ii) the stabilizer of a nonsingular subspace of V (G ¤ Ln.q/);

(iii) H 2 C2: Cla.q/ o Sb with ab D n and b bounded, or GLn=2.q
u/:2

(G ¤ Ln.q/);
(iv) H 2 C3: Cla.qb/ with ab D n and b bounded; or GUn=2.q/:2 (G orthogonal

or symplectic);
(v) H 2 C4: Cla.q/˝ Clb.q/ with ab D n and b bounded;

(vi) H 2 C5: Cln.q1=r/ with r bounded, or Spn.q/, SOn.q/ (G unitary);
(vii) H 2 C8: Spn.q/, SOn.q/, SUn.q

1=2/ (G D Ln.q/), or On.q/ (G D Spn.q/,
q even).

Proof. This follows from inspection of [9], Chap. 4, noting that subgroups in families
C6 and C7 do not contain subgroups of order larger than jGj1=k , and neither does
family � , by [12].

Lemma 4.4. Assume thatH is not a subfield subgroup Cln.q1=k/. ThenH contains
a subgroup S Š SLr.q

u/ with the following properties:

(i) n=r is bounded;

(ii) there is a Levi subgroup L Š SLs.q
u/ of G containing S ;

(iii) the embedding of S in L takes the form

 W A ! diag.A; �2.A/; : : : ; �t .A/; Il/ .A 2 SLr.q
u//;

where s D rt C l and the �i are automorphisms of SLr.q
u/.

Proof. This is clear from Lemma 4.3 when H is not as in 4.3 (iv), (v). In case (iv)
of 4.3 with H of type Cla.qb/, we take a large Levi subgroup of H of the form
SLr.q

bu/, and a subgroup S D SLr.q
u/ of this; then S is embedded in the required

fashion in a Levi L D SLbr.q
u/ of G. Similarly in case (v), we take S to be a large

Levi in the factor Cla.q/ of H .
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Lemma 4.5. Assume that H is not a subfield subgroup Cln.q1=k/, and let S be as
in the previous lemma. Then there is a Levi subgroup R Š SLr.q

u/ of G, and an
element x 2 L, such that .SSx/3 contains R.

Proof. Let S;L be as in the previous lemma, and let y 2 SLr.q
u/ be a regu-

lar semisimple element. Define x D diag.y�1; Is�r/ 2 L. Then for  .A/ D
diag.A; �2.A/; : : : ; �t .A/; Il/ 2 S as in 4.4 (iii), we have

 .A/�1 .A/x D diag.A�1yAy�1; Is�r/:

Hence the product SSx contains all matrices diag.yAy�1; Is�r/ 2 L for A 2
SLr.q

u/. These matrices lie in a Levi subgroup R Š SLr.q
u/ of G. By [23],

2.3, if C is the class yR then C 3 D R, and hence also .Cy�1/3 D R. Hence .SSx/3

contains R.

Lemma 4.6. AssumeH is not a subfield subgroup. Then Theorem 2 holds.

Proof. Let R Š SLr.q
u/ be as in the previous lemma, and choose a Levi subgroup

L of G of type SL, maximal subject to containing R. Then L Š SLm.q
u/ with

m � 1
2
n�1. By Lemma 4.1,L is contained in a product of b.n=r/2 conjugates ofR;

by 4.5, R is contained in a product of 6 conjugates ofH ; and by [18], Theorem 1, G
is a product of 200 conjugates ofL. We conclude thatG is a product of 1200b.n=r/2

conjugates ofH . AsH contains S Š SLr.q
u/, we have log jGj=log jH j � b0.n=r/2

for some positive constant b0, and the conclusion follows.

Lemma 4.7. Theorem 2 holds ifH is a subfield subgroup.

Proof. AssumeH is a subfield subgroup Cln.q1=r/. We may choose a Levi subgroup
L Š SL2m.q

u=r/ ofH with 2m � 1
2
n� 2, and a Levi subgroup L0 Š SL2m.q

u/ of
G containing L. Define

M D
°�

Im X
0 Im

� ˇ̌
X 2 Mm.q

u=r/
±

� L;

M0 D
°�

Im Y
0 Im

� ˇ̌
Y 2 Mm.q

u/
±

� L0:

Write k D Fqu=r ,K D Fqu . There is a set of 2r squares a2
1; : : : ; a

2
2r (ai 2 K) which

span K over k. Define �i D diag.a�1
i Im; aiIm/ 2 L. Then

�
Im X

0 Im

��i

D
�
Im a2

i X

0 Im

�
;

and hence we see that the product M�1 : : :M�2r D M0. By Lemma 4.2, L0 is a
product of 152 (actually the proof gives 38) conjugates ofM0. Finally,G is a product
of 200 conjugates of L0 by [18]. It follows that G is a product of 2r � 38 � 200
conjugates of H . This completes the proof.

The proof of Theorem 2 is now complete.
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