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Abstract. In this paper we prove that the conjugacy problem in the Grigorchuk group � has
polynomial time complexity. This solves a problem posed by Grigorchuk rather unexpectedly.
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1. Introduction

In this paper we discuss algorithmic complexity of the conjugacy problem in the orig-
inal Grigorchuk group � . The group � first appeared in [5] almost thirty years ago,
now it plays an important part in several areas of modern group theory: growth in
groups [6], Burnside problems [5], amenability [7], just infinite groups [8]. Recently
the group � was proposed as a possible platform for cryptographic schemes (see [4],
[15], [14]), where the algorithmic security of the schemes is based on the computa-
tional hardness of certain variations of the word and conjugacy problems in � . The
bibliography on � is quite extensive; here we refer to [10] and [9], which provide a
comprehensive and accessible survey on � .

Our interest in � comes from a rather different direction: it is concerned with
the foundations of algorithmic group theory. Recall that the classical approach to
algorithmic problems in groups deals mostly with finitely presented groups – an old
tradition, coming from topology. Another way to study algorithmic problems in
groups stems from constructive mathematics, where the elements of a group must
be given as finitary objects (matrices over number fields, automorphisms of graphs,
complexes, or other constructible objects) and the group multiplication has to be
effectively described or is computable. Rabin’s recursive groups [16] or Malcev’s
constructible groups [13] provide typical examples of this type. A more general
approach to algorithmic group theory is concerned with groups given by arbitrary
recursive presentations. There are some known general results in this direction,
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including the spectacular Higman embedding theorem [11], but a cohesive theory
is lacking (perhaps due to the huge variety of groups in this class). The Grigorchuk
group� may serve as a case study here. Indeed,� can be easily described as generated
by four particular automorphisms of the infinite rooted binary tree, but it is not finitely
presented, though it has a nice infinite recursive “self-similar” presentation. Studying
algorithmic problems in � may provide some interesting insight on how to deal with
recursively presented groups whose presentations are infinite but can be described by
repeating some typical finite pattern or obvious self-similarity.

The word, conjugacy, and isomorphism problems are the three famous algorithmic
problems in group theory raised by Max Dehn in 1911. The word problem (WP) in
� is decidable and its time complexity is O.n logn/ (see, for example, [10], [9]). It
has been shown in [12], [17] that the conjugacy problem (CP) is decidable in � . In
fact, � is conjugacy separable [18]. Moreover, [12] gives a complete characterization
of the Grigorchuk groups G! with decidable CP: these are precisely those where the
sequence ! is recursive. Another decision algorithm for CP in � is described in [2]
and [9]. This is a branching algorithm, it is based on a branching rewriting process,
similar to the original decision algorithm for the word problem in � [5]. The time
upper bound for this algorithm given in [9] is double exponential. This raises a natural
question (see Problem 5.1 in [9]): what is the time complexity of CP in �?

We show below that CP in � can be solved in polynomial time. To prove this
we modify the decision algorithm from [9]: given two elements u; v 2 � we first
construct a unique conjugacy tree Tu;v (there are exponentially many trees in [9]),
then we provide a routine, similar to the one in [9], which given a conjugacy tree Tu;v
checks whether or not u and v are conjugate in G. This routine requires polynomial
time in the size of Tu;v . Finally, we show, and this the main technical result of the
paper, that the size of Tu;v is polynomial in the total length juj C jvj, so the decision
algorithm is polynomial in time. This part is tricky, to prove it we replace, following
[1], the standard length on � by a new “weighted” length, called the norm, and show
that the standard splittingw ! .w0; w1/ of elements from St�.1/ has very nice metric
properties relative to the norm. These metric properties allow one to prove that the
length of the elements that appear in the construction of Tu;v drops exponentially, so
the height of the tree Tu;v is about log.jujC jvj/, hence the size of Tu;v is polynomial
in juj C jvj. The degree d of the polynomial depends on the metric properties of
the splitting, currently d D 7. The resulting decision algorithm for CP in � has the
upper time bound O.n8/. We would like to point out that it is not clear whether this
upper bound is tight or not. In fact, all our computer experiments indicate that the
algorithm is quite practical, it behaves like an algorithm with a quadratic time upper
bound. The algorithm itself is available online [3]. Finally, we want to mention
that it seems plausible that a similar method could give a polynomial time decision
algorithm for CP in some other self-similar contracting groups.
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2. Preliminaries on the Grigorchuk group

In this section, following [10] and [9], we define the Grigorchuk group � and recall
some of its properties. Notation and the techniques introduced here are heavily used
throughout the paper.

2.1. The Grigorchuk group � . For a set X we denote by X� the set of all finite
words (sequences) inX . If u 2 X� and x 2 X then jujx is the number of occurrences
of x in u and juj is the length of u.

Let T be an infinite rooted regular binary tree. Recall that the vertex set of T is
precisely the set f0; 1g� of all finite binary words (the empty word " at the root) and
two words u and v are connected by an edge in T if and only if one of them, say v,
is obtained from the other by adding one bit b 2 f0; 1g at the end, so v D ub. The
tree T is shown in Figure 1.

00 01 10 11

000 001 010 011 100 101 110 111

"

0 1

Figure 1. Binary tree with labeled vertices.

Let Aut.T / be the group of automorphisms of T as a rooted tree. Note that any
automorphism of T fixes the root ". Clearly, every � 2 Aut.T / either fixes the
vertices 0, 1 or permutes them. The ones that fix 0 and 1 form a normal subgroup
St.1/ of Aut.T / of index 2. Let T0 be the “left” subtree of T , i.e., the subgraph
induced by all vertices that start with 0, and T1 the “right” subtree of T induced by
all vertices starting with 1. The automorphism a 2 Aut.T /, defined on vertices of T

by

a.b1; b2; : : : ; bn/ D .1 � b1; b2; : : : ; bn/;

swaps the subtrees T0 and T1, hence a 62 St.1/ and Aut.T / D St.1/ t St.1/a.

The Grigorchuk group � is the subgroup of Aut.T / generated by four automor-
phisms a, b, c, d , where b; c; d 2 St.1/ are defined recursively as follows:

b.b1/ D b1; c.b1/ D b1; d.b1/ D b1
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and

b.b1; b2; : : : ; bn/ D
´
.b1; 1 � b2; b3; : : : ; bn/ if b1 D 0;

.b1; c.b2; : : : ; bn// if b1 D 1I

c.b1; b2; : : : ; bn/ D
´
.b1; 1 � b2; b3; : : : ; bn/ if b1 D 0;

.b1; d.b2; : : : ; bn// if b1 D 1I

d.b1; b2; : : : ; bn/ D
´
.b1; b2; : : : ; bn/ if b1 D 0;

.b1; b.b2; : : : ; bn// if b1 D 1:

It is easy to see that the automorphisms a, b, c, d satisfy the relations

a2 D b2 D c2 D d2 D 1; bc D cb D d: (1)

In particular,
hai ' Z2 and hb; c; d i ' Z2 � Z2:

Consider the group

�0 D ha; b; c; d j a2 D b2 D c2 D d2 D 1; bc D cb D d i:
The group �0 is the free product of the subgroups hai and hb; c; d i. Let X D
fa; b; c; dg. It follows that any word w 2 .X [ X�1/� is equal in �0 to a unique
reduced word

red.w/ D u0au1 : : : unaunC1; (2)

where u1; : : : ; un 2 fb; c; dg, u0; unC1 2 f"; b; c; dg. In particular, u0 and unC1
could be empty. The following rewriting system, W ,

x2 ! "; x�1 ! x .x 2 X/;
rs ! t .r; s; t 2 fb; c; dg; r ¤ s ¤ t /

is terminating and confluent, and red.w/ is precisely the reduced form of w relative
to W . Clearly, j red.w/j � jwj. Furthermore, given a word w 2 .X [ X�1/� one
can compute red.w/ in time O.jwj/.

From now on we only consider words overX . Denote by R the set of all reduced
words in X� and by Re the set of all reduced words w in X� such that jwja is even.

Let St�.1/ D St.1/\� be the set of automorphisms in � stabilizing the first level
of T , i.e., stabilizing the vertices f0; 1g.

Lemma 2.1. The following holds:

1) A word w 2 X� represents an element of St�.1/ if and only if jwja is even.

2) � D St�.1/ t a St�.1/.
3) St�.1/ D hb; c; d; aba; aca; adai.
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Every automorphism g 2 St.1/ fixes the first level of T and hence induces
automorphisms g0 and g1 on the subtrees T0 and T1 of T . Since the subtrees T0
and T1 are naturally isomorphic to T , the mapping g 7! .g0; g1/ gives a group
isomorphism

 W St.1/ ! Aut.T / � Aut.T /

and, hence, in the event g
 7�! .g0; g1/ we can write g D .g0; g1/.

If g; h 2 St.1/ and g D .g0; g1/ and h D .h0; h1/ then (since  is an isomor-
phism)

gh D .g0h0; g1h1/ (3)

and (by an easy computation)

a�1ga D .g1; g0/: (4)

We use these formulas frequently and without references. Also, it is easy to check
that for generators b, c, d the following equalities hold:

b D .a; c/; aba D .c; a/;

c D .a; d/; aca D .d; a/;

d D .1; b/; ada D .b; 1/:

(5)

Therefore, the restriction of  to St�.1/ gives a monomorphism

 W St�.1/ ! � � �;
which is not onto (see [10] or [9]). If g 2 St�.1/ is represented by a reduced word
w 2 X� then one can easily find the reduced forms of the automorphisms g0 and g1.
Indeed, in this case one can assume that w 2 Re and is represented as a product

w D u0 � .au1a/ � u2 � .au3a/ � u4 : : : uk�2 � .auk�1a/ � uk; (6)

where u0; : : : ; uk 2 fb; c; dg and u0, uk are, possibly, trivial. We refer to these ui
and .auja/ as to the factors ofw. Now define two mappings �i W Re ! R, i D 1; 2,
inductively on the number of factors. First, define �i on the factors according to the
formulas in (5):

�0.b/ D a; �0.aba/ D c;

�0.c/ D a; �0.aca/ D d;

�0.d/ D "; �0.ada/ D bI
(7)

�1.b/ D c; �1.aba/ D a;

�1.c/ D d; �1.aca/ D a;

�1.d/ D b; �1.ada/ D 1:

(8)
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Then define by induction

wi D �i .w/ D red.�i .v0/�i .v1 : : : vk//; i D 0; 1;

where w D v0 : : : vk is the factor decomposition (6) of w. It follows immediately
from the construction that

w
 7�! .w0; w1/:

for any w 2 Re . Notice that it takes time O.jwj/ to compute the pair .w0; w1/.

Lemma 2.2. Let w 2 Re and w D .w0; w1/. Then the following holds.

1) jw0j; jw1j � jwjC1
2

.

2) Moreover, if w starts with a then jw0j; jw1j � jwj
2

.

Remark 2.3. Let w 2 Re . Then conjugating, if necessary, w by some of its initial
segments and reducing the result, one either obtains b, c, d , or a word w0 2 Re that
begins with a and does not end on a.

2.2. The word problem in � . Following [10], [9], in this section we discuss an
algorithm for the word problem in � . The algorithm is based on three observations:

� If jwja is odd then w 62 St�.1/, hence w ¤ 1 in � .
� If jwja is even then w 2 Re and w D .�0.w/; �1.w//. Moreover, since  is a

monomorphism, we then have

w D� 1 () �0.w/ D� 1 and �1.w/ D� 1:

(Here and beloww D� 1means thatw D 1 in � .) Therefore, the word problem
for w reduces to the word problem for �0.w/ and �1.w/, i.e., the process splits
or branches.

� If w D .w0; w1/ and jwj > 1 then jw0j; jw1j < jwj. Thus, the process stops
after finitely many steps.

It is convenient to visualize the corresponding algorithm as an algorithm that on an
input w 2 X� constructs a finite, labeled, rooted binary tree Tw .

Algorithm 2.4 (Constructing the decision tree Tw ).
Input. w 2 X�.
Output. A finite labeled rooted binary tree Tw .
Computations.

A. (Initialization) Let T0 be a rooted binary tree with a single vertex (the
root) w.

B. (Verification) LetT be a current rooted binary tree whose vertices are words
inX� and some of them are marked by “yes” or “no”. Letu be an unmarked
leaf in T . Then:
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Compute juja. If juja is odd, then label u by “no” and output the resulting
tree as Tw .
Otherwise, compute red.u/ and take its conjugate red.u/0 from Remark 2.3.
If red.u/ is empty then label u by “yes” and go to step B. If j red.u/0j D 1

then label u with “no”. Otherwise, go to C.
If there are no unmarked leaves in T output T as Tw .

C. (Splitting) Compute �0.u/ and �1.u/ and add them as the “left” and the
“right” children of u. Go to B.

Proposition 2.5. For a given word w 2 X� the height of the tree Tw is at most
log2 jwj C 1.

Proof. By Lemma 2.2 we have jwi j � jwj=2, i D 0; 1, for w 2 Re provided that it
begins with a but does not end on a. Hence, starting with w, the Algorithm 2.4 can
make at most log2 jwj splittings since it does not split words of length at most 1. The
verification step does not increase the height.

The following result is known (see, for example, [10], [9]), but we need the proof
for the reference sake.

Theorem 2.6 (Word problem). The computational complexity of the word problem
for the group � is bounded by O.n log2 n/.

Proof. The algorithm for WP in � works as follows. Givenw 2 X� it computes first
the decision tree Tw . If Tw has a vertex marked by “no” then w ¤ 1 in � , otherwise
w D 1 in � . By Proposition 2.5 the decision tree Tw has at most log2 jwj levels.
Hence, to estimate the time required for the algorithm to construct Tw one needs only
to bound the time required to construct an arbitrary level in Tw . The verification step,
as well as the splitting step, at a leaf u requires only linear time in juj. The total length
of the vertices at a given level in Tw is at most jwj. Hence the upper time bound for
the complexity is O.jwj log2 jwj/, as claimed.

2.3. The subgroup K . As we mentioned above, the monomorphism  W St�.1/ !
��� is not onto. In this section we describe a method how one can effectively check
if a given pair .w0; w1/ 2 � �� has a pre-image under , and, if so, how to compute
it. We refer to [10], Sections VIII.30 and VIII.25, for details.

Let
K D hababi�

be the normal subgroup of � generated by the element abab. It turns out that K has
index 16 in � and

K D habab; badabada; abadabad i:
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The Schreier coset graph of K is shown in Figure 2. We denote the coset represen-
tatives of K in � by 1 D g0, g1, : : : , g15 according to the numbers in Figure 2.
Observe that K is a subgroup of St�.1/ of index 8 with coset representatives g0, g1,
g4, g5, g8, g9, g12, g13.

a

ad

d

a

ad

b bb
d

0

1 2 3 4

567

10

14 13

11 12

15

9

8

a d

dd

b

a

Figure 2. Schreier graph of K � � relative to generators fa; b; dg.

Lemma 2.7. For any k 2 K there exist elements u; v 2 K such that u D .k; 1/ and
v D .1; k/. In particular,  .K/ � K �K.

Proof. It is sufficient to prove the statement for the generators abab, badabada,
abadabad of the subgroup K. A straightforward verification shows that

b � ada � b � ada D .abab; 1/;

badab � aca � badab � aca D .abadabad; 1/;

c � badab � aca � badab � aca � c D .badabada; 1/:

Note that the words w on the left-hand side of these equalities represent elements
from K. Indeed, starting at the vertex 0 and reading such a word w in the Schreier
graph above (beforehand replacing c with bd ) one ends up again at 0, thus proving
the claim.

Lemma 2.8. LetD D h.1; d/; .1; a/i � � � � . Then

1) D is isomorphic to the dihedral group of order 8,

2) � � � D  .St�.1// ÌD.

Proof. See [10], p. 229.

The Schreier coset graph of  .St�.1// � � � � is shown in Figure 3.
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Figure 3. Schreier coset graph of  .St�.1// � � � � relative to the generating set
f.1; a/; .1; b/; .1; d/; .a; 1/; .b; 1/; .d; 1/g. The big black dot corresponds to the coset St�.1/.

Lemma 2.9. Let .u0; u1/; .v0; v1/ 2 � � � be such that Ku0 D Kv0 and Ku1 D
Kv1. If there exists u 2 � such that  .u/ D .u0; u1/, then there exists v 2 � such
that  .v/ D .v0; v1/. Moreover, Ku D Kv.

Proof. Indeed, let u0 D k0v0, u1 D k1v1 for some k1; k2 2 K. Then

.u0; u1/ D .k0v0; k1v1/ D .k0; 1/.1; k1/.v0; v1/:

By Lemma 2.7, .k0; 1/ and .1; k1/ have pre-images in K under  . Therefore if
.u0; u1/ has a pre-image in St�.1/ then .v0; v1/ also has a pre-image in St�.1/ and
these pre-images lie in the same K-coset, as required.

Table 1 below describes completely theK-cosets of the pre-imagesw under  of
pairs .w0; w1/ of elements from � � � if the cosets of the components w0, w1 are
given (here numbers i are the indices of the representatives gi of the cosets of K).

Lemma 2.10. Let v0; v1 2 � , Kv0 D Kgi and Kv1 D Kgj . Then there exists
v 2 St�.1/ such that v D .v0; v1/ if and only if the pair .i; j / is listed in the Table 1.



822 I. Lysenok, A. Myasnikov and A. Ushakov

.w0; w1/ w .w0; w1/ w .w0; w1/ w .w0; w1/ w

.0; 0/ 0 .8; 0/ 5 .4; 4/ 0 .12; 4/ 5

.0; 8/ 1 .8; 8/ 4 .4; 12/ 1 .12; 12/ 4

.1; 7/ 13 .9; 7/ 8 .5; 3/ 13 .13; 3/ 8

.1; 15/ 12 .9; 15/ 9 .5; 11/ 12 .13; 11/ 9

.2; 6/ 4 .10; 6/ 1 .6; 2/ 4 .14; 2/ 1

.2; 14/ 5 .10; 14/ 0 .6; 10/ 5 .14; 10/ 0

.3; 5/ 9 .11; 5/ 12 .7; 1/ 9 .15; 1/ 12

.3; 13/ 8 .11; 13/ 13 .7; 9/ 8 .15; 9/ 13

Table 1

Proof. By Lemma 2.9 the answer to the question whether a pair .u0; u1/ has a pre-
image in St�.1/ under  depends only on the coset .K � K/.u0; u1/, which is
completely determined by the cosets Ku0; Ku1 of the components. Therefore, it
suffices to check which of the pairs .gi ; gj /, i; j D 0; : : : ; 15, lie in the subgroup
 .St�.1//. This can be easily done using the Schreier coset graph for  .St�.1/; see
Figure 3.

3. Splittings

In this section for a word w 2 Re we study the metric properties of the splitting
w ! .w0; w1/, where wi D red.�i .w//, i D 1; 2. Namely, following [1], we study
relations between norms (i.e., weighted lengths) of w, w0, w1.

Recall that
b D .a; c/; aba D .c; a/;

c D .a; d/; aca D .d; a/;

d D .1; b/; ada D .b; 1/:

(9)

Let �a, �b , �c , �d be fixed positive real values, termed weights. For a word
w 2 X� the number

kwk D �ajwja C �bjwjb C �cjwjc C �d jwjd
is called the norm of w. The length jwj is a special case of the norm when �a D
�b D �c D �d D 1. In the following lemma we collect some simple properties of
the norm k � k.

Lemma 3.1. Let u; v; w 2 X�. Then the following holds:

1) minf�a; �b; �c ; �d g � jwj � kwk � maxf�a; �b; �c ; �d g � jwj.
2) kuvk D kuk C kvk.
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3) If the numbers �b , �c , �d satisfy the triangular inequality then

k red.w/k � kwk:
Proof. Straightforward verification.

We define the weights �a, �d , �c , �b which we are using for the remainder of the
paper. Let ˛ be the unique real root of the polynomial 2x3 � x2 � x � 1,

˛ 2 .1:233751; 1:233752/ � 1:23375:

Put

�a D ˛2 C ˛ � 1 2 .1:755892; 1:755896/ � 1:7559;

�b D 2;

�c D ˛2 � ˛ C 1 2 .1:28839; 1:288392/ � 1:288;

�d D �˛2 C ˛ C 1 2 .0:711608; 0:71161/ � 0:712:

Obviously, the weights �a, �d , �c , �b satisfy the triangle inequality. Note that, up to
a multiplicative constant, they are the same as the weights used in [1].

Lemma 3.2. The following equalities hold:

kak C kbk D ˛.kak C kck/;
kak C kck D ˛.kak C kdk/;
kak C kdk D ˛kbk:

(10)

Remark 3.3. The choice of the weights �a, �b , �c , �d is optimal in the following
sense: the value of ˛ is maximal for the weights satisfying the triangle inequality (for
�b , �c , �d ) and relations in (10).

The following results establish some relations between kwk and kw0k; kw1k
(cf. [1], Proposition 5).

Lemma 3.4. Let w 2 Re and wi D red. i .w// for i D 0; 1. Then the following
holds:

1) If w is of the form �a � a : : : � a or a � a � : : : a� (where stars stand for letters
b, c, d ) then ˛.kw0k C kw1k/ � kwk.

2) If w is of the form �a � a : : :� then ˛.kw0k C kw1k/ � kwk C kak.

3) If w is of the form a � a : : : � a then ˛.kw0k C kw1k/ � kwk � kak.

Proof. To prove 1) suppose that w is in the form �a � a : : :� a. If w D � � a � a then
the routine case by case verification, based on (9) and (10), shows that

˛.kw0k C kw1k/ � ˛.k 0.w/k C k 1.w/k/ D kwk:
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In general w can be presented as a product of factors of the type � � a � a:

w D .x1 � ay1a/ : : : .xk � ayka/
where xi ; yi 2 fb; c; dg, i D 1; : : : ; k. In this case Lemma 3.1, item 2), gives (using
the fact that  0,  1 are homomorphisms)

˛.k 0.w/k C k 1.w/k/ D ˛.
kP
iD1

k 0.xi � ayia/k C
kP
iD1

k 1.xi � ayia/k/

D
kP
iD1

kxi � ayiak D jwk:

Hence, by Lemma 3.1, item 3), ˛.kw0k C kw1k/ � kwk, as claimed.
To show 2) observe first that for w D �a � a� one has

˛.kw0k C kw1k/ � kwk C kak:
Now the result follows from this and the case 1) above.

To see 3) it suffices to notice that for w D a � a
˛.k 0.w/k C k 1.w/k/ � kwk � kak

and then apply an argument as above.

Corollary 3.5. Let w 2 R. For i D 0; 1 put

wi D
´

red. i .w// if w 2 Re;

red. i .wa// if w 62 Re:

Then
˛.kw0k C kw1k/ � kwk C kak:

Proof. If w 2 Re then the result follows directly from Lemma 3.4. Suppose that
w 62 Re . There are two cases to consider. Case 1. w ends on a letter from fb; c; dg,
i.e.,w D u � �. Thenwa D u � � �a and if u starts with � then by Lemma 3.4, item 1),

˛.kw0k C kw1k/ � kwak D kwk C kak;
as required. Otherwise, u starts with a, then by Lemma 3.4, item 3),

˛.kw0k C kw1k/ � kwak � kak D kwk;
which implies the result.
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Proposition 3.6. Let w 2 R. For i D 0; 1 put

wi D
´

red. i .w// if w 2 Re;

red. i .wa// if w 62 Re:

Then the following holds:

1) If kwk � 9 then kwk
kw0kCkw1k � 1:03.

2) If kwk � 200 then kwk
kw0kCkw1k � 1:22.

Proof. By Corollary 3.5,

˛.kw0k C kw1k/ � kwk C kak:
Hence, if kak < 0:01kwk, which is the case when kwk � 200, then the second
inequality holds. Similarly, if kwk � 9 then the first inequality holds.

4. The conjugacy problem in the Grigorchuk group

In this section we prove that the conjugacy problem (CP) in � has a polynomial time
decision algorithm.

Lemma 4.1. If u; v 2 X� are conjugate in � then u 2 St�.1/ () v 2 St�.1/:

Proof. Follows from Lemma 2.1 and the definition of conjugate elements.

The next lemma describes behavior of conjugation relative to the splittings w !
.w0; w1/. Below we frequently use the same notation for a word from X� and the
element it represents in � since it is clear from the context what is meant.

Lemma 4.2 ([9]). Let u; v; x 2 X�. Then the following holds in �:

(S1) If u; v; x 2 St�.1/ and u D .u0; u1/, v D .v0; v1/, x D .x0; x1/ then

u D x�1vx ()
´
u0 D x�1

0 v0x0;

u1 D x�1
1 v1x1:

(S2) If u; v; xa 2 St�.1/ and u D .u0; u1/, v D .v0; v1/, xa D .x0; x1/ then

u D x�1vx ()
´
u0 D x�1

1 v1x1;

u1 D x�1
0 v0x0:
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(N1) If ua; va; x 2 St�.1/ and ua D .u0; u1/, va D .v0; v1/, x D .x0; x1/ then

u D x�1vx ()
´
u0u1 D x�1

0 v0v1x0;

x1 D v1x0u
�1
1 :

(N2) If ua; va; xa 2 St�.1/ and ua D .u0; u1/, va D .v0; v1/, xa D .x0; x1/ then

u D x�1vx ()
´
u1u0 D x�1

0 v0v1x0;

x1 D v1x0u
�1
0 :

Proof. (S1) and (S2) immediately follow from (3) and (4).
To see (N1) observe first that u D uaa, v D vaa and so:

u D x�1vx () .u0; u1/a D .x�1
0 ; x�1

1 /.v0; v1/a.x0; x1/

() .u0; u1/ D .x�1
0 ; x�1

1 /.v0; v1/a.x0; x1/a

() .u0; u1/ D .x�1
0 ; x�1

1 /.v0; v1/.x1; x0/:

This implies the equalities

u0 D x�1
0 v0x1; u1 D x�1

1 v1x0: (11)

Multiplying the equalities (11) one gets u0u1 D x�1
0 v0v1x0 – the first equality in

(N1). Now from this equality one gets x�1
0 v0 D u0u1x

�1
0 v�1

1 . Substituting this
into the first equality in (11) gives (after standard manipulations) the second equality
x1 D v1x0u

�1
1 of (N1), as required. It is straightforward to prove the converse. A

similar argument proves (N2).

For a pair of elements u; v 2 � define a set

Q.u; v/ D fgi j there exists x 2 � such that u D x�1vx and Kx D Kgig;
where g0; : : : ; g15 are K-coset representatives of � chosen above. Clearly, u and v
are conjugate in � if and only if Q.u; v/ ¤ ;.

The following is a key lemma in the solution of the conjugacy problem in � (see
[9]).

Lemma 4.3. Let u; v 2 X�. Then the following holds:

1) If u D .u0; u1/; v D .v0; v1/ 2 St�.1/ then

Q.u; v/ D  �1ŒQ.u0; v0/ �Q.u1; v1/� [  �1ŒQ.u1; v0/ �Q.u0; v1/�:
Moreover, it takes constant time to compute Q.u; v/ if the sets Q.u0; v0/,
Q.u1; v1/,Q.u0; v1/ andQ.u1; v0/ are given.
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2) If ua D .u0; u1/; va D .v0; v1/ 2 St�.1/ then

Q.u; v/ D  �1f.gi ; gj / j gi 2 Q.u0u1; v0v1/ and Kgj D Kv1giu
�1
1 g

[  �1f.gi ; gj / j gi 2 Q.u1u0; v0v1/ and Kgj D Kv1giu
�1
0 g:

Moreover, it takes constant time to compute Q.u; v/ if the sets Q.u0u1; v0v1/
andQ.u1u0; v0v1/ are given.

Proof. 1) follows directly from Lemma 4.2, items (S1) and (S2), and Lemma 2.10.
Similarly, 2) follows from Lemma 4.2, items (N1) and (N2), and Lemma 2.10.

Lemma 4.3 suggests a branching decision algorithm for the CP (abbreviated to
BDAC) in � . The main idea of BDAC is the following: to check whether two given
words u; v 2 X� are conjugate or not in � it suffices to verify if the set Q.u; v/ is
empty or not. Hence the conjugacy problem for elementsu, v is reduced to computing
the setQ.u; v/. To computeQ.u; v/ we are going to compute first the setsQ.u0; v0/
for a finite set of pairs .u0; v0/ that occur in the branching process. To see how the
algorithm works let .u0; v0/ be a current pair that occurs in BDAC. There are four
cases to consider:

(BDAC0) If ju0j; jv0j � 1 then we use precomputed sets Q.u0; v0/. We compute
them later in Lemmas 4.7, 4.8, 4.9, 4.10 and 4.11,

(BDAC1) If one of u0, v0 is in St�.1/ and the other is not then by Lemma 4.1 the set
Q.u0; v0/ is empty, in which case we mark the current pair .u0; v0/ by ;.

(BDAC2) Ifu0 D .u0
0; u

0
1/; v D .v0

0; v
0
1/ 2 St�.1/ then, by Lemma 4.3, case 1), com-

putation ofQ.u0; v0/ reduces to computing the setsQ.u0
0; v

0
0/,Q.u

0
1; v

0
1/,

Q.u0
0; v

0
1/, Q.u

0
1; v

0
0/.

(BDAC3) If u0a D .u0
0; u

0
1/; v

0a D .v0
0; v

0
1/ 2 St�.1/ then, by Lemma 4.3, case 2),

computation of Q.u0; v0/ reduces to computing the sets Q.u0
0u

0
1; v

0
0v

0
1/

and Q.u0
1u

0
0; v

0
0v

0
1/.

Thus, the process either assigns ; to the current pair of words or branches at the
pair (with four or two branches, depending on the case at hand). By Proposition 3.6,
each branching results in pairs of words with smaller norm, so the process eventually
terminates in finitely many steps.

To study the complexity of BDAC it is convenient to break it into two stages.

Stage 1 (Construction of the decision conjugacy tree Tu;v). At the first stage, on
an input u; v 2 X� BDAC constructs a finite labeled rooted tree Tu;v , where every
vertex is a pair of words .ui ; vi / from R. Each vertex has degree at most four and
some of them are decorated with the symbol ;. The pair .u; v/ is at the root of Tu;v .
The construction of Tu;v follows the rules BDAC0–BDAC3. Namely, if .u0; v0/ is a
current node such that .u0; v0/ falls into the case BDAC0 or BDAC1 then we leave
this node as a leaf in Tu;v . If .u0; v0/ falls into the case BDAC2 then the algorithm
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constructs four children nodes .u0
0; v

0
0/, .u

0
1; v

0
1/, .u

0
0; v

0
1/ and .u0

1; v
0
0/ according to

BDAC2 (see Figure 4 a)). If .u0; v0/ falls into the case BDAC3 then the algorithm
constructs two children nodes .u0

0u
0
1; v

0
0v

0
1/ and .u0

1u
0
0; v

0
0v

0
1/ as described in BDAC3

(see Figure 4 b)). Notice that it takes linear time in juj C jvj to assign ; to a given
node or to produce its children.

a) b)

.u0; v0/.u1; v1/ .u0; v1/.u1; v0/

.u; v/.u; v/

.u0u1; v0v1/ .u1u0; v0v1/

Figure 4. Two types of nodes in Tu;v corresponding to cases BDAC2 and BDAC3.

Stage 2 (Computing the sets Q.ui ; vi / involved in Tu;v). At the second stage,
BDAC, going from the leafs of the tree Tu;v to the root .u; v/, assigns to each vertex
.u0; v0/ of Tu;v the set Q.u0; v0/, computed as described in Lemma 4.3. It is left to
assign the set Q.u0; v0/ to each leaf .u0; v0/ in Tu;v . If the leaf .u0; v0/ corresponds
to the case BDAC0 then we use the precomputed sets Q.u0; v0/. If the leaf .u0; v0/
corresponds to the case BDAC1 then Q.u0; v0/ D ;. It takes constant time to assign
the set Q.u0; v0/ to a vertex .u0; v0/, indeed, it is obvious for the leaves and follows
from Lemma 4.3 for the other vertices.

It is clear from the description of BDAC that the time required for BDAC to stop
and to obtain the answer on an input .u; v/ can be estimated from above by the time to
construct the tree Tu;v and the time spent on labeling the vertices. Using the standard
breadth-first algorithm the construction of the tree Tu;v takes linear time in the size
jTu;vj multiplied by the time spent at every vertex, so altogether is bounded from the
above by jTu;vj.juj C jvj/. To get the polynomial estimate on the time complexity of
BDAC we show below that the size of the tree Tu;v is polynomial in terms of jujCjvj.

The next result shows that for any words u; v 2 R the size jTu;vj of the tree Tu;v
is polynomial in terms of juj and jvj and gives estimates on the size.

Lemma 4.4. Let u; v 2 R. If kvk < 9 and kuk < 9 then the size of the tree Tu;v is
not greater than 42.

Proof. The set of pairs of words .u; v/ such that kvk < 9 and kuk < 9 is finite, though
relatively large, and so the statement of the lemma can be checked by a straightforward
verification.

Nevertheless, it is possible to check the correctness of the statement by hand.
Notice that for any child .u0; v0/ of .u; v/ the element u0 depends only on the element
u and the element v0 depends only on the element v. In other words, one can assume
that the left and right words in the vertices are independent of each other, so that one
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can consider each of them separately. Table 2 contains all 95 words w of norm up to
9. For eachw it specifies the children ofw (defined as in cases BDAC2 and BDAC3)
and the size of the tree necessary to reach words of lengths up to 1 at the leaves. The
greatest size is 21 and hence, since we have 2 coordinates, the size of Tu;v does not
exceed 2 � 21 D 42.

w w1 w2 # w w1 w2 # w w1 w2 #

ab ca ac 15 adadad b b 3 cadac aba 1 5

aba c a 3 ba ac ca 15 cadaca aba aba 7

abab ca ac 15 bab 1 1 3 cadad ab c 17

abac ca ad 11 baba ac ca 15 cadada ad cab 9

abaca b aba 5 babac aca cad 21 cadadad ac ca 15

abad c ab 17 babad ac cab 13 da b b 3

abada cab ad 9 bac aba b 5 dab da bac 9

abadad dab ac 17 baca ad ca 11 daba c ba 17

ac da ad 7 bacab ada cac 7 dabab ca bac 13

aca d a 3 bacac ada cad 21 dabac ca bad 17

acab da ac 11 bacad ad cab 9 dabad c bab 5

acaba b aba 5 bad ad cab 9 dabada dab bad 19

acac da ad 7 bada ab c 17 dac ca bad 17

acaca 1 1 3 badab aba 1 5 daca d ba 17

acacad dabad b 7 badac aba b 5 dacab da bac 9

acad d ab 17 badad ab d 17 dacac da bad 13

acada dab ac 17 badada ac dab 17 dacaca dabad b 7

acadac aba aba 7 ca ad da 7 dacad d bab 5

acadad cab ad 9 cab aba b 5 dacada cab bac 11

ad b b 3 caba ac da 11 dacadad dab bad 19

ada b 1 3 cabab aca dac 21 dad 1 1 3

adab ba c 17 cabac aca dad 7 dada b b 3

adaba bac da 9 cabad ac dab 17 dadab ba d 17

adabad bad dab 19 cac 1 1 3 dadaba bad ca 17

adac ba d 17 caca ad da 7 dadac ba c 17

adaca bad ca 17 cacab ada dac 21 dadaca bac da 9

adacac b dabad 7 cacac ada dad 7 dadacad bad dab 19

adacad bac cab 11 cacad ad dab 13 dadad b 1 3

adad b b 3 cacada b dabad 7 dadada b b 3

adada 1 1 3 cad ac dab 17 dadadac ca ac 15

adadab ca bad 17 cada ab d 17 dadadad 1 1 3

adadac da bac 9 cadab aba b 5

Table 2
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Proposition 4.5. Let u; v 2 R. Then the size of the tree Tu;v is bounded by
2366.maxf2juj; 2jvjg/7.

Proof. Let u; v 2 R. As in the proof of Lemma 4.4 one can consider the left and
right words in the vertices of the tree separately.

By Lemma 3.1, item 1), kwk � 2jwj. Consider an arbitrary branch

.u0; v0/; : : : ; .uk; vk/

in the tree Tu;v , starting at the root .u0; v0/ D .u; v/ and ending at a leaf .uk; vk/. It
follows from Proposition 3.6 that for some s � log1:22 maxf2juj; 2jvjg the inequali-
ties kvsk � 200 and kusk � 200 hold, i.e., any branch reaches a pair of words of norm
up to 200 in at most log1:22 maxf2juj; 2jvjg steps. Furthermore, by Proposition 3.6
there exists a number t � log1:03 200 < 180 such that kvsCtk < 9 and kusCtk < 9.
By Lemma 4.4 the size of the tree TvsCt ;usCt

is not greater than 42. Thus, since the
degree in each node in Tu;v is not greater than 4, it follows that the size of Tu;v is
bounded by

jTu;vj � 42 � 4180Clog1:22 maxf2juj;2jvjg

� 2366.maxf2juj; 2jvjg/log1:22 4

� 2366.maxf2juj; 2jvjg/7;
as claimed.

Theorem 4.6. The conjugacy problem in the Grigorchuk group � is decidable in
O.n8/ time.

Proof. Given two words u; v 2 R the algorithm BDC constructs the tree Tu;v , the
size of which is bounded by 2366.maxf2juj; 2jvjg/7. Processing each of the nodes
of the tree requiresO.maxfjuj; jvjg/ elementary steps. Thus, the total complexity of
the algorithm is bounded by O..maxfjuj; jvjg/8/.

For completeness we list below the sets Q.u; v/ with juj; jvj � 1.

Lemma 4.7. The following holds:

Q.a; b/ D Q.a; c/ D Q.a; b/ D ;;
Q.1; a/ D Q.1; b/ D Q.1; c/ D Q.1; d/ D ;;

Q.1; 1/ D f0; : : : ; 15g:

Proof. This follows immediately from Lemma 4.1.

Lemma 4.8. Q.b; c/ D Q.b; d/ D Q.c; d/ D ;.
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Proof. Since b; c; d 2 St�.1/ by Lemma 4.3 we have

Q.c; d/ D  �1ŒQ.a; 1/ �Q.d; b/� [  �1ŒQ.a; b/ �Q.d; 1/�
D  �1Œ; �Q.d; b/� [  �1ŒQ.a; b/ � ;� D ;:

Similarly,

Q.b; d/ D  �1ŒQ.a; 1/ �Q.c; b/� [  �1ŒQ.a; b/ �Q.c; 1/�
D  �1Œ; �Q.d; b/� [  �1ŒQ.a; b/ � ;� D ;:

Finally, using the obtained equalities we obtain

Q.b; c/ D  �1ŒQ.a; a/ �Q.c; d/� [  �1ŒQ.a; d/ �Q.c; a/�
D  �1ŒQ.a; a/ � ;� [  �1Œ; � ;� D ;: �

Lemma 4.9. Q.a; a/ D f0; 3; 4; 7g.
Proof. There are two cases to consider. If x�1ax D a and x 2 St�.1/ then  .x/ is
of the form .y; y/ 2 � �� . It follows from Lemma 2.10 and Table 1 that in this case
Kx D Kg0 or Kx D Kg4.

If x�1ax D a and x 62 St�.1/ then  .xa/ is of the form .y; y/a 2 � � � .
Using Figure 2 it is easy to find that Kg0a D Kg7 and Kg4a D Kg3. Hence
Q.a; a/ D f0; 3; 4; 7g.

Lemma 4.10. Q.b; b/ D f0; 1; 8; 9g,Q.c; c/ D f0; 1; 8; 9g.
Proof. Notice that 1; b; c; d 2 C�.b/, whereC�.b/ denotes the centralizer of b in � .
Hence Q.b; b/ 	 f0; 1; 8; 9g. On the other hand assume that x�1bx D b. Then it is
easy to see that x D .x0; x1/ 2 St�.1/ and splitting b into a pair .a; c/ we get

Q.b; b/ D  �1ŒQ.a; a/ �Q.c; c/�:
We proved in Lemma 4.9 that Q.a; a/ D f0; 3; 4; 7g. Notice that in Table 1 all pairs
.i; j / with i 2 f0; 3; 4; 7g define cosets with numbers f0; 1; 8; 9g. Hence Q.b; b/ 

f0; 1; 8; 9g.

The proof for Q.c; c/ is the same.

Lemma 4.11. Q.d; d/ D f0; 1; 4; 5; 8; 9; 12; 13g.
Proof. Notice that 1; b; c; d 2 C�.d/, whereC�.d/ denotes the centralizer of d in� .
Hence Q.d; d/ 	 f0; 1; 8; 9g Furthermore, ada; ada � b; ada � c; ada � d 2 C�.d/.
Hence Q.d; d/ 	 f4; 5; 12; 13g.

On the other hand assume that x�1dx D d . Then it is easy to see that x D
.x0; x1/ 2 St�.1/ and splitting d into a pair .1; b/ we obtain that

Q.d; d/ D  �1ŒQ.1; 1/ �Q.b; b/�:
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Notice that in Table 1 all pairs .i; j / with i 2 f0; : : : ; 15g and j 2 f0; 1; 8; 9g define
cosets with numbers f0; 1; 4; 5; 8; 9; 12; 13g. Therefore it follows that Q.d; d/ 

f0; 1; 4; 5; 8; 9; 12; 13g.
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