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On the extraction of roots in exponential A -groups
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Abstract. An exponential A-group is a group which comes equipped with an A-action (4 is
a commutative ring with unity), satisfying certain axioms. In this paper, we investigate some
aspects of root extraction in the category of exponential A-groups. Of particular interest is the
extraction of roots in nilpotent R-powered groups. Among other results, we prove that if R
is a PID and G is a nilpotent R-powered group for which root extraction is always possible,
then the torsion R-subgroup of G lies in the center. Furthermore, if the torsion R-subgroup is
finitely R-generated, then G is torsion-free.
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1. Introduction

Let G be a group, n a positive integer, and g an element of G. Then g is said to have
an n™ root if there exists & € G such that " = g. An element of G need not have an
n'" root. On the other hand, there may be elements of G with more than one n™ root.
A group G in which every element has an n™ root for every integer n > 0 is
termed a radicable or complete (or divisible when G is abelian) group. Thus, for
every g € G and every integer n > 0, there exists & € G such that g = h". One can
interpret this definition in terms of mappings: G is radicable if and only if the map

¥:G— G definedby y(g)=g"

is surjective for every n > 0.

If every element of G has at most one n™ root (that is, n' roots are unique when
they exist), then G is called an R-group. Thus, if g,h € G and g" = h”" for some
integer n > 0, then g = h. Put another way, G is an R-group if and only if the
mapping ¥ defined above is injective.

In [1], Baumslag developed the theory of certain groups containing radicable
groups, R-groups, and radicable R-groups as special cases. For each non-empty set
of primes w, he defined the following classes:
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+ &, denotes the class of groups in which p roots exist for all p € w;

* U, denotes the class of groups in which p™ roots are unique (whenever they
exist) for all p € w;

e D, denotes the class &, N U,,.

As before, these notions can be described in terms of maps. If G is a group and
¥: G — G is defined as ¥ (g) = g? for some prime p € w, then G € &, if and
only if v is surjective, G € U, if and only if ¥ is injective, and G € D,, if and
only if ¥ is bijective. In case w is the set of all primes, then the classes &,, U, and
D, are denoted by &, U, and D, respectively. Thus, in the terminology set forth by
Baumslag, a U-group is an R-group, an &-group is a radicable group, and a $-group
is a radicable R-group.

Our research focuses on the study of the classes &,, U, and O,, in the category
of exponential A-groups, where A is an integral domain and w is a non-empty set of
primes in A. Of particular interest is the category of nilpotent R-powered groups,
where R is a binomial ring. The results presented in this paper have been selected
from a work in progress by the authors and deal mainly with nilpotent R-powered
groups.

We recall the definition of an exponential A-group (see [12]).

Definition. An exponential A-group is a group G, equipped with an action by a
commutative ring with unity A, such that for all g € G and for all @ € A, the element
g% € G is uniquely defined and the following axioms hold:

(1) g' =g, g%gP = g**# and (g*)# = g* forallg € G and @, B € A.
2) (h'gh)* =h 'g*hforallg, h € G anda € A.
(3) If g and h are commuting elements of G, then (gh)® = g®h* for all « € A.

Examples of exponential A-groups include A-modules, Lyndon’s free Z[x]-group
[6] and Baumslag’s Q-completion of a free group [1]. Categorical notions such as
A-subgroup, normal A-subgroup, and A-homomorphism are defined in the obvious
way. The interested reader should consult the works of Majewicz ([8] and [10]), and
Myasnikov and Remeslennikov [12] for more details.

In this paper, A will always be an integral domain and M4 will denote the class
of exponential A-groups.

A rich collection of exponential A-groups consists of the nilpotent R-powered
groups, where R is a binomial ring. Recall that a binomial ring R is an integral
domain of characteristic zero with unity such that forany r € R and k € ZT,

r\ _r(r=1...(r—k+1)
(k)_ 0 € R.

The definition of a nilpotent R-powered group is due to Hall (see [3]).
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Definition. Let G be a (locally) nilpotent group, and suppose that G is equipped with
an action by a binomial ring R, such that for all g € G and for all @ € R, the element
g% € G is uniquely defined. Then G is termed a nilpotent R-powered group if the
following axioms hold:

(1) g' =g, g%P = g*"P and (g*)# = g*P forallg € G and, B € R.
(2) (h'gh)* =h 'g%hforall g,h € G and forall & € R.
(3) If{g1,...,8n} C G and @ € R, then

gt gt =n@ 2@ 0@ 5@,

where k is the class of the nilpotent group generated by {g1, g2,...,gx} and
g§=1(81.---.8n)

Axiom (3) is called the Hall-Petresco axiom and the 7; (g)’s are the Hall-Petresco
words. By setting o = 1, « = 2, and so on, one can compute the Hall-Petresco
words:

@) =g1..-gn. @) =(g1-..81)72(g7...g2). etc.

By a theorem of Hall [3], each 7;(g) is contained in y; (G), the i™ term of the
lower central series of G. This allows one to deduce that a nilpotent R-powered group
is, indeed, an exponential R-group.

A well-known example of a nilpotent R-powered group is the Mal’cev completion
of a torsion-free locally nilpotent group G, which is a torsion-free locally nilpotent
radicable group containing G (see [7]). In the terminology set forth, this is just a
nilpotent Q-powered group. Other examples of nilpotent R-powered groups can be
found in the works of Hall [3], Majewicz [9], and Warfield [14].

From this point on, R will always be a binomial ring and Nz will denote the class
of nilpotent R-powered groups.

In Section 2 we provide some preliminary material on exponential A-groups and
nilpotent R-powered groups.

Section 3 contains a selection of results on U -groups and &, -groups in the class
NR. We begin by proving

Theorem 3.1. Suppose that G € Ng, where R contains Q. If {g1.,...,.gm} C G,

then the product g'lg .. .g,‘i, has a B" root for any B € R.

A well-known theorem of Mal’cev [7] states that if @ is a non-empty set of
primes, then every w-torsion-free nilpotent group is a U, -group. Our next theorem
generalizes this result for nilpotent R-powered groups.

Theorem 3.2. Let w be a non-empty set of primes in R. A nilpotent R-powered group
G is a Uy-group if and only if it is w-torsion-free.
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Next we prove a theorem similar to one due to Baumslag [1]. In [8], Majewicz
introduced the notion of a w-primary component of a nilpotent R-powered group. If
G € Ng and 7 € R is prime, then the 7 -primary component of G is the set

G ={geG|g”k = 1forsome k € ZT}.

Theorem 3.3. If G € Ng is an &,-group for some non-empty set of primes @ and
T € w, then G is an R-subgroup of Z(G), the center of G.

A consequence of this theorem which generalizes a result of Cernikov (see [2] or
[5], p. 234) is

Corollary 3.4. Let Rbea PID.IfG € Ngisan &-group, then ©(G) is an R-subgroup
of Z(G), where t(G) is the torsion R-subgroup of G.

Another theorem of Cernikov that carries over to nilpotent R-powered groups is

Theorem 3.7. If G € Ng is an &-group and t(G) is finitely R-generated, then G is
torsion-free.

2. Preliminaries

In this section we provide some elementary results on exponential A-groups and
nilpotent R-powered groups.

Notation: If H is an A-subgroup (a normal A-subgroup) of an exponential A-group
G, then we write H <4 G (H <4 G).

We begin by stating a useful computational lemma. The proof follows from a
result of Hall [3] which states that 7;(g) € y; (G) for eachi > 1.

Lemma 2.1. Let G € Ng and @ € R. If g1 and g, commute in G, then
(8182)" = 8183
We remind the reader of some well-known commutator identities.
Lemma 2.2. Let x, y and z be elements of any group. Then
[xy.2] =y~ [x.zlyly. 2] and [x,yz] = [x,2]z7 [x, y]z.

Using the Hall-Petresco axiom, one can establish the following identity (see [14],
p. 86):
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Lemma 2.3. Let G € Ny, and suppose that (g, h] € Z(G) for some g,h € G. Then
forany u € R,

(", h] = [g,h"'] = [g, h]".
Using Lemmas 2.2 and 2.3, one can prove

Lemma 2.4. If G € Ny is non-abelian, then there exists an R-homomorphism from
G into Z(G) whose image is non-trivial.

The factor group of an exponential A-group by a normal A-subgroup need not be
an exponential A-group (see [10] or [12]).

Definition 2.1. Let G € M4 and N <4 G. We call N an ideal of G if

[g.h]e N = h%g %(gh)* e N forany g,h € Ganda € A.

Lemma 2.5. If G € M4 and N is an ideal of G, then the A-action on G induces an
A-action on G/ N,

(gN)* =gltN forallgN € G/N and u € A,
which turns G/ N into an exponential A-group.

If G € N, then an application of the Hall-Petresco axiom shows that every
normal R-subgroup of G is an ideal. It can readily be verified that the isomorphism
theorems hold for nilpotent R-powered groups.

Definition 2.2. Let G € My, and let S = {sq,...,s;} be a subset of G. Then

H= () {Hi}=gpy(s1,....5))
SCH;<4G

is called the A-subgroup of G, which is A-generated by s1,...,s;. We term S a set
of A-generators for H.

The next theorem can be found in [14], p. 87.

Theorem 2.6. The upper and lower central subgroups of a nilpotent R-powered
group G, denoted by C;(G) and y; (G) respectively, are R-subgroups of G.

Recall that if {g1,..., gn} is a set of elements in a group G, then

(g1.-...&n]l = [[g1.- .- &n—1]. &nl

is a simple commutator of weight n (see [13], p. 123).
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Lemma 2.7. If G € Ng, then

Yn(G) = gp([g1.....8n] | &i € G).

The next lemma is useful for proving nilpotency by induction on the class.

Lemma 2.8. If G € Ngisofclassc > 2and g € G, then H = gpp(g, y2(G)) is
of class at most ¢ — 1.

It is well known that subgroups of finitely generated nilpotent groups are finitely
generated. In the case of finitely R-generated nilpotent R-powered groups, this
property is inherited by R-subgroups provided that R is a certain type of ring. The
next theorem is mentioned in [4].

Theorem 2.9. If R is a noetherian ring and G is a finitely R-generated nilpotent
R-powered group, then every R-subgroup of G is finitely R-generated.

The notion of a torsion element in an exponential A-group is defined in the obvious
way.

Definition 2.3. If G € My, then anelement g € G is called a torsion element if there
exists a non-zero element o« € A for which g = 1. The set of torsion elements of
G is denoted by 7(G). We call G a torsion A-group if ©(G) = G, and a torsion-free
A-group if T(G) = 1.

In [14], p. 87, Warfield proves the next theorem which does not hold for exponen-
tial A-groups in general.

Theorem 2.10. If G € N, then 1(G) <gr G and G/t(G) is torsion-free.

From this point on, if G € N, then we refer to (G) as the torsion R-subgroup
of G.

In the remainder of this paper, w will always denotes a non-empty set of primes
in A and ' will denote the set of all primes in A which are not in w.

Definition 2.4. An element « € A is an w-member if either « = 1 or all prime
divisors of @ are in w. If G € My, then an element g € G is an w-torsion element
if g% = 1 for some w-member «. If every element of G is an w-torsion element, we
say that G is an w-torsion group. If the only w-torsion element of G is the identity,
then G is w-torsion-free.

Incasew = {m}foraprime w € A, we use the terms s -torsion and 7 -torsion-free.

Theorem 2.11. If G € Ng and Z(G) is w-torsion-free, then each factor R-group
Li+1(G) /i (G) is w-torsion-free. Consequently, G is w-torsion-free.
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The theorem follows from Lemma 2.3 and induction on i.
Corollary 2.12. If G € N is w-torsion-free, then G/ Z(G) is w-torsion-free.

Next we provide the definition of a nilpotent R-powered group of finite type
introduced by Majewicz in [9].

Definition 2.5. A nilpotent R-powered group is of finite type if it is a finitely
R-generated torsion R-group.

By Theorem 2.9, if R is a noetherian ring and G is a finitely R-generated nilpotent
R-powered group, then 7(G) is of finite type.

One can understand nilpotent R-powered groups of finite type by examining their
JT-primary components.

Definition 2.6. Let G € Ng and let w € R be prime. The w-primary component of
G is the set .
Gr=1{geG|g" =lforsomek € Z*}.

If G = Gy, then G is referred to as a 7w-primary R-group. A finitely R-generated
m-primary R-group is said to be of finite w-type.

Nilpotent R-powered groups of finite 7 -type are the analogues of p-groups in the
category of finite groups.
The following theorem is due to Majewicz and Zyman [11]:

Theorem 2.13. Let R be a noetherian ring and w a prime in R. Consider the short

exact sequence
1-H—-G—>G/H —1

in the category of nilpotent R-powered groups. Then G is of finite type (finite 7 -type)
if and only if H and G/H are both of finite type (finite m-type).

Consequently, every R-subgroup of a nilpotent R-powered group of finite w-type
is again of finite 7-type when R is noetherian.
The next result can be proven in a similar way to Theorem 3.25 in [14].

Theorem 2.14. [f G € Nr and w € R is prime, then G, <g G.

The direct product of nilpotent R-powered groups whose classes are bounded can
be turned into a nilpotent R-powered group in the obvious way.
In [9], Majewicz proved the following:

Theorem 2.15. Suppose that R is a PID and G is a torsion R-group. If {m; | i € 1}
is the set of all primes in R, then G is the direct product of the G, .
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3. U,-groups and &, -groups in the class Ng

The first theorem is proven in [9] for the ring Q[x]. For completeness, we recreate
the proof for any binomial ring containing Q.

Theorem 3.1. Suppose that R contains Q, andlet G € Ng be of class c. Let 8 be any
element of R. If g1,...,8m € G, then there exists h € G such that gf .. .g,’:}l = hP.

Thus, every element of the form g'lg . g,’; in G € Ng has a B root whenever R

contains Q.

Proof. The proof is by induction on c. If ¢ = 1, then h = g; ... g, satisfies the
theorem by Lemma 2.1.

Suppose that ¢ > 1 and assume that the result holds for every nilpotent R-powered
group of class less than ¢. Suppose that gp(gy, ..., gm) is of class k < ¢. By the
Hall-Petresco axiom,

&b =u@e@® . ua @ n@®
= 1@’ [2@” .. (a1 @ P [w@) P
where
_(B=DB-2...(B—i+])
e i
By the comment preceding Lemma 2.1, 7;(g) € y2(G) for each i = 2,...,k.

Consequently, each 71(g), 12(g)72, ..., 7% (g)’* is contained in gpg(t1(g). y2(G))
which, by Lemma 2.8, is an R-subgroup of G of class less than ¢. By induction,

()P [r2(2)21P .. 1 (@) 1P [t (8) K1 = WP

for some i € gpgr(71(g), y2(G)). Therefore, g'l6 . ..g,é, = hP. O

for2 <i <k.

A fundamental result of Mal’cev in the theory of nilpotent groups is that every
torsion-free nilpotent group admits unique root extraction whenever roots exist (see
[7]). This result carries over to nilpotent R-powered groups.

Theorem 3.2. A nilpotent R-powered group G is a Uy-group if and only if it is
w-torsion-free.

Proof. Suppose that G is an w-torsion-free group of class c. We prove that G is a
U -group by induction on c. If ¢ = 1, there is nothing to prove.

Let ¢ > 1, and suppose g,h € G such that g = h”™ for some 7 € w. By
Corollary 2.12, G/Z(G) is w-torsion-free. Hence, by induction, there exists an
element z € Z(G) such that g = hz. Lemma 2.1 yields

gT[ — (hZ)T[ =hﬂZT[ =gJTZ7T'
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Consequently, z™ = 1. Since G is w-torsion-free, z = 1; that is, g = h.
Conversely, if G is a U -group and g € G, then g” =1 = 1” for some 7w € w
implies g = 1. Thus, G is w-torsion-free. O

We remark that every exponential A-group which is a U, -group is w-torsion-free,
but not every w-torsion-free exponential A-group is a U, -group.

In [2], Cernikov proved that the torsion elements of a complete ZA-group G lie
in Z(G) (see [5], p. 234). A similar result holds for nilpotent R-powered groups
in the class &. We establish this by first proving a generalization of a theorem of
Baumslag [1].

Theorem 3.3. If G € Ny is an &,-group of class c and w € w, then G, <r Z(G).

Proof. The bulk of the proof rests on proving that G/ Z(G) € U, or equivalently,
by Theorem 3.2, that G/ Z(G) is w-torsion-free. Let g € G, g # 1,andlet 7 € w
such that g™ € Z(G). There exists an integer k, 0 < k < ¢, such that g ¢ & (G)
and g € {x+1(G). We claim that k = 0; that is, g € Z(G).

Let /& be any element of G. If k = 0, we are done. Assume k = 1, and suppose
ho € G is a " root of h. Then [g, h] € Z(G) because g € {»(G). Thus, by
Lemma 2.3,

[g.h] = [g.hg] = [g" . ho] = 1.

Therefore, g € Z(G), a contradiction. Hence k cannot be 1.
Suppose that k > 1, and assume that the set

S ={3€t(G)| g™ € Z(G)forsomen € Z*}

is contained in Z(G) for 1 < i < k. Notice that g7 € Z(G) implies both
(g7'Z(G))™ = Z(G) and (h"'ghZ(G))*™ = Z(G) in G/Z(G). Hence, by The-
orem 2.14, [g, h]™" Z(G) = Z(G) in G/Z(G) for some integer m > 0; that is,
[g.h]™" € Z(G). Since g € &x1+1(G), [g.h] € & (G) and so [g.h] € S. Hence,
[g,h] € Z(G). Since this holds for all 2 € G, we have g € {>(G), which implies
g € Z(G) as before. This contradicts the assumption that g ¢ ¢ (G) and k > 1. We
conclude that &k # 1, so we must have k = 0, as claimed.

We have established that g™ € Z(G) implies g € Z(G). To complete the proof,
observe that if g € G, then there exists an integer ¢ > 0 such that g”t = 1.
Therefore, g™ € Z(G) and, consequently, g € Z(G). O

Our analogue of Cernikov’s result is:
Corollary 3.4. If R is a PID and G € Ng is an &-group, then ©(G) <g Z(G).

Proof. This follows from Theorems 2.15 and 3.3. O
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Next we prove that if R is a PID and a nilpotent R-powered group in & has a finitely
R-generated torsion R-subgroup, then the torsion R-subgroup must be trivial. This
generalizes another result due to Cernikov (see [5], p. 235). First we mention an easy
generalization of a well-known fact about abelian groups.

Lemma 3.5. If R is a PID and G is a non-trivial divisible abelian R-group, then G
is not finitely R-generated.

Another useful result is

Lemma 3.6. If G € Ng is an &-group, then any R-homomorphic image of G is also
an &-group.

Theorem 3.7. Let R be a PID, and suppose G € Nr N &. If ©(G) is finitely
R-generated, then ©(G) = 1.

The proof of the theorem further shows that G has an ascending central R-series,
all of whose factors are divisible abelian torsion-free R-groups.

Proof. Supposethat G is adivisible abelian R-group and 7(G) is finitely R-generated,
and assume 7(G) # 1. Let g € 7(G), g # 1, satisfy g% = 1 for some @ € R. If
W € R, then there exists & € G such that g = h”. Since I** = (h*)* = g% =1, it
follows that & € 7(G). Thus, 7(G) is divisible, contradicting Lemma 3.5.

Next let G € & be a non-abelian nilpotent R-powered group and suppose that
7(G) is finitely R-generated. We claim that G has a strictly ascending central R-series

H<Hy<---<H; <---

satisfying

(1) HiNnt(G) =1,

(2) t(G/H;) = ©(G)H;/H; and is finitely R-generated;

(3) H;41/H; is a divisible torsion-free abelian R-group.
To begin, we show that H; exists and satisfies (1) and (2). By Lemmas 2.4 and 3.6,
there exist non-trivial R-homomorphic images of G in Z(G) which are &-groups.

Let H, € & be one such R-subgroup of Z(G). Then H; is abelian and t(H;) <r G
is finitely R-generated by Theorem 2.9. Hence,

H1 N ’L’(G) = ‘L'(H]) =1

and (1) holds. Next we prove that t(G/H;) = ©(G)H;/H; and is finitely R-
generated, establishing (2). Observe that if gH; € 1(G/H1), then there exists @ € R
such that (gH1)* = Hy; thatis, g% € Hy. Since H; € &, there exists k € H;
such that g% = k%. By Lemma 2.1, (gk~1)*g% % = 1 because k € Z(G). Thus,
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gk™' € 1(G) and gH, = (gk™')H, € ©(G)H,/H,. Now, by the R-isomorphism
theorems,

©1(G)H/Hy =g ©(G)/(x(G) N Hy) = (G).

Since 7(G) is finitely R-generated by hypothesis, so is 7(G/H1).

Next we concoct an R-subgroup Hj, assuming that Hy_; has been constructed
and satisfies (1)—(3). Notice that G/Hy—; € & by Lemma 3.6 and 7(G/Hk—1) is
finitely R-generated by Theorem 2.9. By Lemmas 2.4 and 3.6, there exists a non-
trivial normal R-subgroup Hy/Hy_q of Z(G/Hy—1) which is an &-group. Using
the same argument as before and the fact that t(G/Hy—1) = t(G)Hy—1/Hp—1, we
have

(v(G)Hg—1/Hg-1) N (Hg/Hg—1) = Hy—1.

Thus,
(t(G)Hg—1) N Hy = Hy_;.

Since Hy_; N t(G) = 1, we also have H; N ©(G) = 1. Moreover,

t1((G/Hi-1)/(Hi/Hk-1)) = (2(G/Hy-1) - (Hi/Hik-1))/(Hi /H—1),

from which it follows that t(G/Hy) = t©(G)Hy/Hy. Hence, Hy satisfies the re-
quired properties.

The ascending central series { H} must reach G in a finite numbers of steps
since G is nilpotent. Thus, there exists n > 0 such that H, = G. Consequently,
G Nt(G) = 1;thatis, 1(G) = 1. O
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