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On the extraction of roots in exponential A-groups
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Abstract. An exponential A-group is a group which comes equipped with an A-action (A is
a commutative ring with unity), satisfying certain axioms. In this paper, we investigate some
aspects of root extraction in the category of exponential A-groups. Of particular interest is the
extraction of roots in nilpotent R-powered groups. Among other results, we prove that if R
is a PID and G is a nilpotent R-powered group for which root extraction is always possible,
then the torsion R-subgroup of G lies in the center. Furthermore, if the torsion R-subgroup is
finitely R-generated, then G is torsion-free.
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1. Introduction

Let G be a group, n a positive integer, and g an element of G. Then g is said to have
an nth root if there exists h 2 G such that hn D g:An element ofG need not have an
nth root. On the other hand, there may be elements ofG with more than one nth root.

A group G in which every element has an nth root for every integer n > 0 is
termed a radicable or complete (or divisible when G is abelian) group. Thus, for
every g 2 G and every integer n > 0, there exists h 2 G such that g D hn: One can
interpret this definition in terms of mappings: G is radicable if and only if the map

 W G ! G defined by  .g/ D gn

is surjective for every n > 0.
If every element of G has at most one nth root (that is, nth roots are unique when

they exist), then G is called an R-group. Thus, if g; h 2 G and gn D hn for some
integer n > 0, then g D h: Put another way, G is an R-group if and only if the
mapping  defined above is injective.

In [1], Baumslag developed the theory of certain groups containing radicable
groups, R-groups, and radicable R-groups as special cases. For each non-empty set
of primes !, he defined the following classes:

�The first-named author was supported by the PSC-CUNY Research Award Program (Grant # 62302).
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� E! denotes the class of groups in which pth roots exist for all p 2 !;
� U! denotes the class of groups in which pth roots are unique (whenever they

exist) for all p 2 !;
� D! denotes the class E! \ U! .

As before, these notions can be described in terms of maps. If G is a group and
 W G ! G is defined as  .g/ D gp for some prime p 2 !, then G 2 E! if and
only if  is surjective, G 2 U! if and only if  is injective, and G 2 D! if and
only if  is bijective. In case ! is the set of all primes, then the classes E! ; U! , and
D! are denoted by E; U, and D , respectively. Thus, in the terminology set forth by
Baumslag, a U-group is anR-group, an E-group is a radicable group, and a D-group
is a radicable R-group.

Our research focuses on the study of the classes E! ; U! and D! in the category
of exponential A-groups, where A is an integral domain and ! is a non-empty set of
primes in A. Of particular interest is the category of nilpotent R-powered groups,
where R is a binomial ring. The results presented in this paper have been selected
from a work in progress by the authors and deal mainly with nilpotent R-powered
groups.

We recall the definition of an exponential A-group (see [12]).

Definition. An exponential A-group is a group G, equipped with an action by a
commutative ring with unityA, such that for all g 2 G and for all ˛ 2 A, the element
g˛ 2 G is uniquely defined and the following axioms hold:

(1) g1 D g; g˛gˇ D g˛Cˇ , and .g˛/ˇ D g˛ˇ for all g 2 G and ˛; ˇ 2 A.
(2) .h�1gh/˛ D h�1g˛h for all g; h 2 G and ˛ 2 A.
(3) If g and h are commuting elements of G, then .gh/˛ D g˛h˛ for all ˛ 2 A.

Examples of exponentialA-groups includeA-modules, Lyndon’s free ZŒx�-group
[6] and Baumslag’s Q-completion of a free group [1]. Categorical notions such as
A-subgroup, normal A-subgroup, and A-homomorphism are defined in the obvious
way. The interested reader should consult the works of Majewicz ([8] and [10]), and
Myasnikov and Remeslennikov [12] for more details.

In this paper, A will always be an integral domain and MA will denote the class
of exponential A-groups.

A rich collection of exponential A-groups consists of the nilpotent R-powered
groups, where R is a binomial ring. Recall that a binomial ring R is an integral
domain of characteristic zero with unity such that for any r 2 R and k 2 ZC,

�
r

k

�
D r.r � 1/ : : : .r � k C 1/

kŠ
2 R:

The definition of a nilpotent R-powered group is due to Hall (see [3]).
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Definition. LetG be a (locally) nilpotent group, and suppose thatG is equipped with
an action by a binomial ringR, such that for all g 2 G and for all ˛ 2 R, the element
g˛ 2 G is uniquely defined. Then G is termed a nilpotent R-powered group if the
following axioms hold:

(1) g1 D g, g˛gˇ D g˛Cˇ and .g˛/ˇ D g˛ˇ for all g 2 G and ˛; ˇ 2 R.
(2) .h�1gh/˛ D h�1g˛h for all g; h 2 G and for all ˛ 2 R.
(3) If fg1; : : : ; gng � G and ˛ 2 R, then

g˛
1 : : : g

˛
n D �1. Ng/˛�2. Ng/.˛

2/ : : : �k�1. Ng/. ˛
k�1/�k. Ng/.˛

k/;

where k is the class of the nilpotent group generated by fg1; g2; : : : ; gng and
Ng D .g1; : : : ; gn/.

Axiom (3) is called the Hall–Petresco axiom and the �i . Ng/’s are the Hall–Petresco
words. By setting ˛ D 1; ˛ D 2, and so on, one can compute the Hall–Petresco
words:

�1. Ng/ D g1 : : : gn; �2. Ng/ D .g1 : : : gn/
�2.g2

1 : : : g
2
n/; etc.

By a theorem of Hall [3], each �i . Ng/ is contained in �i .G/, the i th term of the
lower central series ofG. This allows one to deduce that a nilpotentR-powered group
is, indeed, an exponential R-group.

A well-known example of a nilpotentR-powered group is the Mal’cev completion
of a torsion-free locally nilpotent group G, which is a torsion-free locally nilpotent
radicable group containing G (see [7]). In the terminology set forth, this is just a
nilpotent Q-powered group. Other examples of nilpotent R-powered groups can be
found in the works of Hall [3], Majewicz [9], and Warfield [14].

From this point on,R will always be a binomial ring and NR will denote the class
of nilpotent R-powered groups.

In Section 2 we provide some preliminary material on exponential A-groups and
nilpotent R-powered groups.

Section 3 contains a selection of results on U!-groups and E!-groups in the class
NR. We begin by proving

Theorem 3.1. Suppose that G 2 NR, where R contains Q. If fg1; : : : ; gmg � G,
then the product gˇ

1 : : : g
ˇ
m has a ˇth root for any ˇ 2 R.

A well-known theorem of Mal’cev [7] states that if ! is a non-empty set of
primes, then every !-torsion-free nilpotent group is a U!-group. Our next theorem
generalizes this result for nilpotent R-powered groups.

Theorem 3.2. Let! be a non-empty set of primes inR. A nilpotentR-powered group
G is a U!-group if and only if it is !-torsion-free.
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Next we prove a theorem similar to one due to Baumslag [1]. In [8], Majewicz
introduced the notion of a �-primary component of a nilpotent R-powered group. If
G 2 NR and � 2 R is prime, then the �-primary component of G is the set

G� D fg 2 G j g�k D 1 for some k 2 ZCg:

Theorem 3.3. If G 2 NR is an E!-group for some non-empty set of primes ! and
� 2 !, then G� is an R-subgroup of Z.G/, the center of G.

A consequence of this theorem which generalizes a result of C̆ernikov (see [2] or
[5], p. 234) is

Corollary 3.4. LetR be aPID. IfG 2 NR is an E-group, then �.G/ is anR-subgroup
of Z.G/, where �.G/ is the torsion R-subgroup of G.

Another theorem of C̆ernikov that carries over to nilpotent R-powered groups is

Theorem 3.7. If G 2 NR is an E-group and �.G/ is finitely R-generated, then G is
torsion-free.

2. Preliminaries

In this section we provide some elementary results on exponential A-groups and
nilpotent R-powered groups.

Notation: If H is an A-subgroup (a normal A-subgroup) of an exponential A-group
G, then we write H �A G (H EA G).

We begin by stating a useful computational lemma. The proof follows from a
result of Hall [3] which states that �i . Ng/ 2 �i .G/ for each i � 1.

Lemma 2.1. Let G 2 NR and ˛ 2 R. If g1 and g2 commute in G, then

.g1g2/
˛ D g˛

1g
˛
2 :

We remind the reader of some well-known commutator identities.

Lemma 2.2. Let x, y and z be elements of any group. Then

Œxy; z� D y�1Œx; z�yŒy; z� and Œx; yz� D Œx; z�z�1Œx; y�z:

Using the Hall–Petresco axiom, one can establish the following identity (see [14],
p. 86):
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Lemma 2.3. LetG 2 NR, and suppose that Œg; h� 2 Z.G/ for some g; h 2 G. Then
for any � 2 R,

Œg�; h� D Œg; h�� D Œg; h��:

Using Lemmas 2.2 and 2.3, one can prove

Lemma 2.4. If G 2 NR is non-abelian, then there exists anR-homomorphism from
G into Z.G/ whose image is non-trivial.

The factor group of an exponential A-group by a normal A-subgroup need not be
an exponential A-group (see [10] or [12]).

Definition 2.1. Let G 2 MA and N EA G. We call N an ideal of G if

Œg; h� 2 N H) h�˛g�˛.gh/˛ 2 N for any g; h 2 G and ˛ 2 A:

Lemma 2.5. If G 2 MA and N is an ideal of G, then the A-action on G induces an
A-action on G=N ,

.gN /� D g�N for all gN 2 G=N and � 2 A;
which turns G=N into an exponential A-group.

If G 2 NR, then an application of the Hall–Petresco axiom shows that every
normal R-subgroup of G is an ideal. It can readily be verified that the isomorphism
theorems hold for nilpotent R-powered groups.

Definition 2.2. Let G 2 MA, and let S D fs1; : : : ; sj g be a subset of G. Then

H D T
S�Hi �AG

fHig D gpA.s1; : : : ; sj /

is called the A-subgroup of G, which is A-generated by s1; : : : ; sj . We term S a set
of A-generators for H .

The next theorem can be found in [14], p. 87.

Theorem 2.6. The upper and lower central subgroups of a nilpotent R-powered
group G, denoted by �i .G/ and �i .G/ respectively, are R-subgroups of G.

Recall that if fg1; : : : ; gng is a set of elements in a group G, then

Œg1; : : : ; gn� D ŒŒg1; : : : ; gn�1�; gn�

is a simple commutator of weight n (see [13], p. 123).
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Lemma 2.7. If G 2 NR, then

�n.G/ D gp.Œg1; : : : ; gn� j gi 2 G/:
The next lemma is useful for proving nilpotency by induction on the class.

Lemma 2.8. If G 2 NR is of class c � 2 and g 2 G, then H D gpR.g; �2.G// is
of class at most c � 1.

It is well known that subgroups of finitely generated nilpotent groups are finitely
generated. In the case of finitely R-generated nilpotent R-powered groups, this
property is inherited by R-subgroups provided that R is a certain type of ring. The
next theorem is mentioned in [4].

Theorem 2.9. If R is a noetherian ring and G is a finitely R-generated nilpotent
R-powered group, then every R-subgroup of G is finitely R-generated.

The notion of a torsion element in an exponentialA-group is defined in the obvious
way.

Definition 2.3. IfG 2 MA, then an element g 2 G is called a torsion element if there
exists a non-zero element ˛ 2 A for which g˛ D 1. The set of torsion elements of
G is denoted by �.G/. We call G a torsion A-group if �.G/ D G, and a torsion-free
A-group if �.G/ D 1.

In [14], p. 87, Warfield proves the next theorem which does not hold for exponen-
tial A-groups in general.

Theorem 2.10. If G 2 NR, then �.G/ ER G and G=�.G/ is torsion-free.

From this point on, if G 2 NR, then we refer to �.G/ as the torsion R-subgroup
of G.

In the remainder of this paper, ! will always denotes a non-empty set of primes
in A and !0 will denote the set of all primes in A which are not in !.

Definition 2.4. An element ˛ 2 A is an !-member if either ˛ D 1 or all prime
divisors of ˛ are in !. If G 2 MA, then an element g 2 G is an !-torsion element
if g˛ D 1 for some !-member ˛. If every element of G is an !-torsion element, we
say that G is an !-torsion group. If the only !-torsion element of G is the identity,
then G is !-torsion-free.

In case! D f�g for a prime� 2 A, we use the terms�-torsion and�-torsion-free.

Theorem 2.11. If G 2 NR and Z.G/ is !-torsion-free, then each factor R-group
�iC1.G/=�i .G/ is !-torsion-free. Consequently, G is !-torsion-free.
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The theorem follows from Lemma 2.3 and induction on i .

Corollary 2.12. If G 2 NR is !-torsion-free, then G=Z.G/ is !-torsion-free.

Next we provide the definition of a nilpotent R-powered group of finite type
introduced by Majewicz in [9].

Definition 2.5. A nilpotent R-powered group is of finite type if it is a finitely
R-generated torsion R-group.

By Theorem 2.9, ifR is a noetherian ring andG is a finitelyR-generated nilpotent
R-powered group, then �.G/ is of finite type.

One can understand nilpotentR-powered groups of finite type by examining their
�-primary components.

Definition 2.6. Let G 2 NR and let � 2 R be prime. The �-primary component of
G is the set

G� D fg 2 G j g�k D 1 for some k 2 ZCg:
If G D G� , then G is referred to as a �-primary R-group. A finitely R-generated
�-primary R-group is said to be of finite �-type.

NilpotentR-powered groups of finite �-type are the analogues of p-groups in the
category of finite groups.

The following theorem is due to Majewicz and Zyman [11]:

Theorem 2.13. Let R be a noetherian ring and � a prime in R. Consider the short
exact sequence

1 ! H ! G ! G=H ! 1

in the category of nilpotentR-powered groups. ThenG is of finite type (finite �-type)
if and only ifH and G=H are both of finite type (finite �-type).

Consequently, everyR-subgroup of a nilpotentR-powered group of finite �-type
is again of finite �-type when R is noetherian.

The next result can be proven in a similar way to Theorem 3.25 in [14].

Theorem 2.14. If G 2 NR and � 2 R is prime, then G� ER G.

The direct product of nilpotentR-powered groups whose classes are bounded can
be turned into a nilpotent R-powered group in the obvious way.

In [9], Majewicz proved the following:

Theorem 2.15. Suppose that R is a PID and G is a torsion R-group. If f�i j i 2 I g
is the set of all primes in R, then G is the direct product of the G�i

.



842 S. Majewicz and M. Zyman

3. U!-groups and E!-groups in the class NR

The first theorem is proven in [9] for the ring QŒx�. For completeness, we recreate
the proof for any binomial ring containing Q.

Theorem 3.1. Suppose thatR contains Q, and letG 2 NR be of class c. Letˇ be any
element of R. If g1; : : : ; gm 2 G, then there exists h 2 G such that gˇ

1 : : : g
ˇ
m D hˇ .

Thus, every element of the form g
ˇ
1 : : : g

ˇ
m inG 2 NR has a ˇth root whenever R

contains Q.

Proof. The proof is by induction on c. If c D 1, then h D g1 : : : gm satisfies the
theorem by Lemma 2.1.

Suppose that c > 1 and assume that the result holds for every nilpotentR-powered
group of class less than c. Suppose that gp.g1; : : : ; gm/ is of class k � c. By the
Hall–Petresco axiom,

g
ˇ
1 : : : g

ˇ
m D �1. Ng/ˇ �2. Ng/.ˇ

2/ : : : �k�1. Ng/. ˇ
k�1/�k. Ng/.ˇ

k/

D �1. Ng/ˇ Œ�2. Ng/j2 �ˇ : : : Œ�k�1. Ng/jk�1 �ˇ Œ�k. Ng/jk �ˇ ;

where

ji D .ˇ � 1/.ˇ � 2/ : : : .ˇ � i C 1/

iŠ
for 2 � i � k:

By the comment preceding Lemma 2.1, �i . Ng/ 2 �2.G/ for each i D 2; : : : ; k.
Consequently, each �1. Ng/, �2. Ng/j2 , : : : , �k. Ng/jk is contained in gpR.�1. Ng/; �2.G//

which, by Lemma 2.8, is an R-subgroup of G of class less than c. By induction,

�1. Ng/ˇ Œ�2. Ng/j2 �ˇ : : : Œ�k�1. Ng/jk�1 �ˇ Œ�k. Ng/jk �ˇ D hˇ

for some h 2 gpR.�1. Ng/; �2.G//. Therefore, gˇ
1 : : : g

ˇ
m D hˇ .

A fundamental result of Mal’cev in the theory of nilpotent groups is that every
torsion-free nilpotent group admits unique root extraction whenever roots exist (see
[7]). This result carries over to nilpotent R-powered groups.

Theorem 3.2. A nilpotent R-powered group G is a U!-group if and only if it is
!-torsion-free.

Proof. Suppose that G is an !-torsion-free group of class c. We prove that G is a
U!-group by induction on c. If c D 1, there is nothing to prove.

Let c > 1, and suppose g; h 2 G such that g� D h� for some � 2 !. By
Corollary 2.12, G=Z.G/ is !-torsion-free. Hence, by induction, there exists an
element z 2 Z.G/ such that g D hz. Lemma 2.1 yields

g� D .hz/� D h�z� D g�z� :
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Consequently, z� D 1. Since G is !-torsion-free, z D 1; that is, g D h.
Conversely, if G is a U!-group and g 2 G, then g� D 1 D 1� for some � 2 !

implies g D 1. Thus, G is !-torsion-free.

We remark that every exponentialA-group which is a U!-group is!-torsion-free,
but not every !-torsion-free exponential A-group is a U!-group.

In [2], C̆ernikov proved that the torsion elements of a complete ZA-group G lie
in Z.G/ (see [5], p. 234). A similar result holds for nilpotent R-powered groups
in the class E . We establish this by first proving a generalization of a theorem of
Baumslag [1].

Theorem 3.3. If G 2 NR is an E!-group of class c and � 2 !, thenG� �R Z.G/.

Proof. The bulk of the proof rests on proving that G=Z.G/ 2 U! or equivalently,
by Theorem 3.2, that G=Z.G/ is !-torsion-free. Let g 2 G, g ¤ 1, and let � 2 !

such that g� 2 Z.G/. There exists an integer k, 0 � k < c, such that g … �k.G/

and g 2 �kC1.G/. We claim that k D 0; that is, g 2 Z.G/.
Let h be any element of G. If k D 0, we are done. Assume k D 1, and suppose

h0 2 G is a � th root of h. Then Œg; h� 2 Z.G/ because g 2 �2.G/. Thus, by
Lemma 2.3,

Œg; h� D Œg; h�
0 � D Œg� ; h0� D 1:

Therefore, g 2 Z.G/, a contradiction. Hence k cannot be 1.
Suppose that k > 1, and assume that the set

S D f Qg 2 �i .G/ j Qg�n 2 Z.G/ for some n 2 ZCg
is contained in Z.G/ for 1 < i � k. Notice that g� 2 Z.G/ implies both
.g�1Z.G//� D Z.G/ and .h�1ghZ.G//� D Z.G/ in G=Z.G/. Hence, by The-
orem 2.14, Œg; h��

m
Z.G/ D Z.G/ in G=Z.G/ for some integer m � 0; that is,

Œg; h��
m 2 Z.G/. Since g 2 �kC1.G/, Œg; h� 2 �k.G/ and so Œg; h� 2 S . Hence,

Œg; h� 2 Z.G/. Since this holds for all h 2 G, we have g 2 �2.G/, which implies
g 2 Z.G/ as before. This contradicts the assumption that g … �k.G/ and k > 1. We
conclude that k � 1, so we must have k D 0, as claimed.

We have established that g� 2 Z.G/ implies g 2 Z.G/. To complete the proof,
observe that if g 2 G� , then there exists an integer t � 0 such that g�t D 1.
Therefore, g�t 2 Z.G/ and, consequently, g 2 Z.G/.

Our analogue of C̆ernikov’s result is:

Corollary 3.4. If R is a PID and G 2 NR is an E-group, then �.G/ �R Z.G/.

Proof. This follows from Theorems 2.15 and 3.3.
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Next we prove that ifR is a PID and a nilpotentR-powered group in E has a finitely
R-generated torsion R-subgroup, then the torsion R-subgroup must be trivial. This
generalizes another result due to C̆ernikov (see [5], p. 235). First we mention an easy
generalization of a well-known fact about abelian groups.

Lemma 3.5. If R is a PID and G is a non-trivial divisible abelian R-group, then G
is not finitely R-generated.

Another useful result is

Lemma 3.6. IfG 2 NR is an E-group, then anyR-homomorphic image ofG is also
an E-group.

Theorem 3.7. Let R be a PID, and suppose G 2 NR \ E . If �.G/ is finitely
R-generated, then �.G/ D 1.

The proof of the theorem further shows thatG has an ascending central R-series,
all of whose factors are divisible abelian torsion-free R-groups.

Proof. Suppose thatG is a divisible abelianR-group and �.G/ is finitelyR-generated,
and assume �.G/ ¤ 1. Let g 2 �.G/, g ¤ 1, satisfy g˛ D 1 for some ˛ 2 R. If
� 2 R, then there exists h 2 G such that g D h�. Since h�˛ D .h�/˛ D g˛ D 1, it
follows that h 2 �.G/. Thus, �.G/ is divisible, contradicting Lemma 3.5.

Next let G 2 E be a non-abelian nilpotent R-powered group and suppose that
�.G/ is finitelyR-generated. We claim thatG has a strictly ascending centralR-series

H1 < H2 < � � � < Hi < � � �
satisfying

(1) Hi \ �.G/ D 1;
(2) �.G=Hi / D �.G/Hi=Hi and is finitely R-generated;
(3) HiC1=Hi is a divisible torsion-free abelian R-group.

To begin, we show that H1 exists and satisfies (1) and (2). By Lemmas 2.4 and 3.6,
there exist non-trivial R-homomorphic images of G in Z.G/ which are E-groups.
LetH1 2 E be one suchR-subgroup ofZ.G/. ThenH1 is abelian and �.H1/ <R G

is finitely R-generated by Theorem 2.9. Hence,

H1 \ �.G/ D �.H1/ D 1

and (1) holds. Next we prove that �.G=H1/ D �.G/H1=H1 and is finitely R-
generated, establishing (2). Observe that if gH1 2 �.G=H1/, then there exists ˛ 2 R
such that .gH1/

˛ D H1; that is, g˛ 2 H1. Since H1 2 E , there exists k 2 H1

such that g˛ D k˛ . By Lemma 2.1, .gk�1/˛g˛k�˛ D 1 because k 2 Z.G/. Thus,
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gk�1 2 �.G/ and gH1 D .gk�1/H1 2 �.G/H1=H1. Now, by the R-isomorphism
theorems,

�.G/H1=H1 ŠR �.G/=.�.G/ \H1/ D �.G/:

Since �.G/ is finitely R-generated by hypothesis, so is �.G=H1/.
Next we concoct an R-subgroup Hk , assuming that Hk�1 has been constructed

and satisfies (1)–(3). Notice that G=Hk�1 2 E by Lemma 3.6 and �.G=Hk�1/ is
finitely R-generated by Theorem 2.9. By Lemmas 2.4 and 3.6, there exists a non-
trivial normal R-subgroup Hk=Hk�1 of Z.G=Hk�1/ which is an E-group. Using
the same argument as before and the fact that �.G=Hk�1/ D �.G/Hk�1=Hk�1, we
have

.�.G/Hk�1=Hk�1/ \ .Hk=Hk�1/ D Hk�1:

Thus,
.�.G/Hk�1/ \Hk D Hk�1:

Since Hk�1 \ �.G/ D 1, we also have Hk \ �.G/ D 1. Moreover,

�..G=Hk�1/=.Hk=Hk�1// D .�.G=Hk�1/ � .Hk=Hk�1//=.Hk=Hk�1/;

from which it follows that �.G=Hk/ D �.G/Hk=Hk . Hence, Hk satisfies the re-
quired properties.

The ascending central series fHkg must reach G in a finite numbers of steps
since G is nilpotent. Thus, there exists n > 0 such that Hn D G. Consequently,
G \ �.G/ D 1; that is, �.G/ D 1.
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