Groups Geom. Dyn. 4 (2010), 835–846 DOI 10.4171/GGD/109

Groups, Geometry, and Dynamics © European Mathematical Society

On the extraction of roots in exponential A**-groups**

Stephen Majewicz and Marcos Zyman*

Abstract. An exponential A-group is a group which comes equipped with an A-action (A is a commutative ring with unity), satisfying certain axioms. In this paper, we investigate some aspects of root extraction in the category of exponential A-groups. Of particular interest is the extraction of roots in nilpotent R -powered groups. Among other results, we prove that if R is a PID and G is a nilpotent R -powered group for which root extraction is always possible, then the torsion R -subgroup of G lies in the center. Furthermore, if the torsion R -subgroup is finitely R -generated, then G is torsion-free.

Mathematics Subject Classification (2010). 20F18, 20F19; 13C12, 13C13.

Keywords. Nilpotent R-powered group, exponential A-group, extraction of roots.

1. Introduction

Let G be a group, n a positive integer, and g an element of G. Then g is said to have an n^{th} *root* if there exists $h \in G$ such that $h^n = g$. An element of G need not have an nth root. On the other hand, there may be elements of G with more than one nth root.

A group G in which every element has an n^{th} root for every integer $n>0$ is termed a *radicable* or *complete* (or *divisible* when G is abelian) group. Thus, for every $g \in G$ and every integer $n>0$, there exists $h \in G$ such that $g = h^n$. One can interpret this definition in terms of mappings: G is radicable if and only if the map

$$
\psi: G \to G \quad \text{defined by} \quad \psi(g) = g^n
$$

is surjective for every $n>0$.

If every element of G has at most one n^{th} root (that is, n^{th} roots are unique when they exist), then G is called an R-group. Thus, if $g, h \in G$ and $g^n = h^n$ for some integer $n>0$, then $g = h$. Put another way, G is an R-group if and only if the mapping ψ defined above is injective.

In [1], Baumslag developed the theory of certain groups containing radicable groups, R-groups, and radicable R-groups as special cases. For each non-empty set of primes ω , he defined the following classes:

^{*}The first-named author was supported by the PSC-CUNY Research Award Program (Grant # 62302).

- ϵ ε_{ω} denotes the class of groups in which p^{th} roots exist for all $p \in \omega$;
- \cdot \mathcal{U}_{ω} denotes the class of groups in which p^{th} roots are unique (whenever they exist) for all $p \in \omega$;
- \mathcal{D}_{ω} denotes the class $\mathcal{E}_{\omega} \cap \mathcal{U}_{\omega}$.

As before, these notions can be described in terms of maps. If G is a group and $\psi: G \to G$ is defined as $\psi(g) = g^p$ for some prime $p \in \omega$, then $G \in \mathcal{E}_{\omega}$ if and only if ψ is surjective, $G \in \mathcal{U}_{\omega}$ if and only if ψ is injective, and $G \in \mathcal{D}_{\omega}$ if and only if ψ is bijective. In case ω is the set of all primes, then the classes \mathcal{E}_{ω} , \mathcal{U}_{ω} , and \mathcal{D}_{ω} are denoted by \mathcal{E} , \mathcal{U} , and \mathcal{D} , respectively. Thus, in the [term](#page-11-0)inology set forth by Baumslag, a \mathcal{U} -group is an R-group, an \mathcal{E} -group is a radicable group, and a \mathcal{D} -group is a radicable R-group.

Our research focuses on the study of the classes ε_{ω} , \mathcal{U}_{ω} and \mathcal{D}_{ω} in the category of exponential A-groups, where A is an integral domain and ω is a non-empty set of primes in A. Of particular interest is the category of nilpotent R-powered groups, where R is a binomial ring. The results presented in this paper have been selected from a work in progress by the authors and deal mainly with nilpotent R-powered groups.

We recall the definition of an exponential A-group (see [12]).

[De](#page-10-0)finition. An *exponential* A*-group* is a group G[, e](#page-10-0)quipped with an action by a commutative ring with unity A, such that for all $g \in G$ and for all $\alpha \in A$, the element $g^{\alpha} \in G$ is uniquely defined and the following axioms hold:

- (1) $g^1 = g$, $g^\alpha g^\beta = g^{\alpha+\beta}$, a[nd](#page-11-0) $(g^\alpha)^\beta = g^{\alpha\beta}$ for all $g \in G$ and $\alpha, \beta \in A$.
- (2) $(h^{-1}gh)^{\alpha} = h^{-1}g^{\alpha}h$ for all g, $h \in G$ and $\alpha \in A$.
- (3) If g and h are commuting elements of G, then $(gh)^{\alpha} = g^{\alpha}h^{\alpha}$ for all $\alpha \in A$.

Examples of exponential A-groups include A-modules, Lyndon's free $\mathbb{Z}[x]$ -group
and Baumslag's $\mathbb{O}_{\mathbb{Z}}$ completion of a free group [1]. Categorical potions such as [6] and Baumslag's Q-completion of a free group [1]. Categorical notions such as A-subgroup, normal A-subgroup, and A-homomorphism are defined in the obvious way. The interested reader should consult the works of Majewicz ([8] and [10]), and Myasnikov and Remeslennikov [12] for more details.

In this paper, A will always be an integral domain and M_A will d[en](#page-10-0)ote the class of exponential A-groups.

A rich collection of exponential A-groups consists of the nilpotent R-powered groups, where R is a binomial ring. Recall that a *binomial ring* R is an integral domain of characteristic zero with unity such that for any $r \in R$ and $k \in \mathbb{Z}^+$,

$$
\binom{r}{k} = \frac{r(r-1)\dots(r-k+1)}{k!} \in R.
$$

The definition of a nilpotent R -powered group is due to Hall (see [3]).

Definition. Let G be a (locally) nilpotent group, and suppose that G is equipped with an action by a binomial ring R, such that for all $g \in G$ and for all $\alpha \in R$, the element $g^{\alpha} \in G$ is uniquely defined. Then G is termed a *nilpotent R-powered group* if the following axioms hold:

- (1) $g^1 = g$, $g^\alpha g^\beta = g^{\alpha+\beta}$ and $(g^\alpha)^\beta = g^{\alpha\beta}$ for all $g \in G$ and $\alpha, \beta \in R$.
- (2) $(h^{-1}gh)^{\alpha} = h^{-1}g^{\alpha}h$ for all $g, h \in G$ and for all $\alpha \in R$.

(3) If $\{g_1,\ldots,g_n\} \subset G$ and $\alpha \in R$, then

$$
g_1^{\alpha} \dots g_n^{\alpha} = \tau_1(\bar{g})^{\alpha} \tau_2(\bar{g})^{(\alpha)} \dots \tau_{k-1}(\bar{g})^{(\alpha-1)} \tau_k(\bar{g})^{(\alpha)}.
$$

where k is the class [of](#page-10-0) the nilpotent group generated by $\{g_1, g_2, \ldots, g_n\}$ and $\bar{g} = (g_1, \ldots, g_n).$

Axiom (3) is called the *Hall–Petresco axiom* and the $\tau_i(\bar{g})$'s are the *Hall–Petresco words*. By setting $\alpha = 1$, $\alpha = 2$, and so on, one can compute the Hall–Petresco words:

$$
\tau_1(\bar{g}) = g_1 \dots g_n, \quad \tau_2(\bar{g}) = (g_1 \dots g_n)^{-2} (g_1^2 \dots g_n^2),
$$
 etc.

By a theorem of Hall [3], each $\tau_i(\bar{g})$ is contained in $\gamma_i(G)$, the ith term of the lower central [ser](#page-3-0)ies of G. This allows one to deduce that a nilpotent R-powered group is, indeed, an exponential R-group.

A well-[kn](#page-7-0)own example of a nilpotent R-powered group is the Mal'cev completion of a torsion-free locally nilpotent group G , which is a torsion-free locally nilpotent *radicable* group containing G (see [7]). In the terminology set forth, this is just a nilpotent ^Q[-p](#page-7-0)owered group. Other examples of nilpotent R-powered groups can be found in the works of Hall [3], Majewicz [9], and Warfield [14].

From this point on, R will always be a binomial ring and \mathcal{N}_R will denote the class of nilpotent R-powered groups.

In Section ² we provide some preliminary material on exponential A-groups and nilpotent R-powered groups.

Section 3 contains a selection of results on \mathcal{U}_{ω} -groups and \mathcal{E}_{ω} -groups in the class \mathcal{N}_R . We [begin](#page-7-0) by proving

Theorem 3.1. *Suppose that* $G \in \mathcal{N}_R$, where R contains \mathbb{Q} . If $\{g_1, \ldots, g_m\} \subset G$, then the product g^{β} , g^{β} has g g^{th} post for any $g \in R$. then the product $g_1^{\beta} \ldots g_m^{\beta}$ has a β^{th} root for any $\beta \in R$.

A well-known theorem of Mal'cev [7] states that if ω is a non-empty set of primes, then every ω -torsion-free nilpotent group is a \mathcal{U}_{ω} -group. Our next theorem generalizes this result for nilpotent R-powered groups.

Theorem 3.2. Let ω be a non-empty set of primes in R. A nilpotent R-powered group G is a \mathcal{U}_{ω} -group if and only if it is ω -torsion-free.

Next we prove a theorem similar to one due to Baumslag [1]. In [8], Maj[ew](#page-10-0)icz i[nt](#page-10-0)roduced the notion of a π -primary component of a nilpotent R-powered group. If $G \in \mathcal{N}_R$ and $\pi \in R$ is prime, then the π -primary component of G is the set

$$
G_{\pi} = \{ g \in G \mid g^{\pi^k} = 1 \text{ for some } k \in \mathbb{Z}^+ \}.
$$

Theorem 3.3. If $G \in \mathcal{N}_R$ is an \mathcal{E}_{ω} -group for some non-empty set of primes ω and $\pi \in \omega$, then G_{π} G_{π} is an R-subgroup of $Z(G)$, the center of G.

A consequence of this theorem which generalizes a result of Černikov (see $[2]$ or [5], p. 234) is

Corollary 3.4. *Let* R *be a PID. If* $G \in \mathcal{N}_R$ *is an* \mathcal{E} *-group, then* $\tau(G)$ *is an* R*-subgroup of* $Z(G)$ *, where* $\tau(G)$ *is the torsion* R-subgroup of G.

Another theorem of Černikov that carries over to nilpotent *-powered groups is*

Theorem 3.7. If $G \in \mathcal{N}_R$ *is an* \mathcal{E} *-group and* $\tau(G)$ *is finitely* R*-generated, then* G *is torsion-free.*

2. Preliminaries

In this section we provide some elementary results on exponential A-groups and nilpotent R-powered groups.

Notation: If H is an A-subgroup (a normal A-subgroup) of an exponential A-group G, then we write $H \leq_A G$ ($H \leq_A G$).

We begin by stating a useful computational lemma. The proof follows from a result of Hall [3] which states that $\tau_i(\bar{g}) \in \gamma_i(G)$ for each $i \geq 1$.

Lemma 2.1. *Let* $G \in \mathcal{N}_R$ *and* $\alpha \in R$ *. If* g_1 *and* g_2 *commute in* G *, then*

$$
(g_1g_2)^{\alpha} = g_1^{\alpha}g_2^{\alpha}.
$$

We remind the reader of some well-known commutator identities.

Lemma 2.2. *Let* x*,* y *and* z *be elements of any group. Then*

 $[x, z] = y^{-1}[x, z]y[y, z]$ and $[x, yz] = [x, z]z^{-1}[x, y]z$.

Using the Hall–Petresco axiom, one can establish the following identity (see [14], p. 86):

Lemma 2.3. *Let* $G \in \mathcal{N}_R$, and suppose that $[g, h] \in Z(G)$ for some $g, h \in G$. Then for any $u \in R$ *for any* $\mu \in R$ *,*

$$
[g^{\mu}, h] = [g, h^{\mu}] = [g, h]^{\mu}.
$$

Using Lemmas 2.2 and 2.3, one can prove

Lemma 2.4. *If* $G \in \mathcal{N}_R$ *is non-abelian, then there exists an* R *-homomorphism from* G *into* $Z(G)$ *whose image is non-trivial.*

The factor group of an exponential A-group by a normal A-subgroup *need not* be an exponential A -group (see [10] or [12]).

Definition 2.1. Let $G \in M_A$ and $N \leq_A G$. We call N an *ideal* of G if

$$
[g, h] \in N \implies h^{-\alpha} g^{-\alpha} (gh)^{\alpha} \in N \quad \text{for any } g, h \in G \text{ and } \alpha \in A.
$$

Lemma 2.5. If $G \in M_A$ and N is an ideal of G , then the A-action on G induces an A-action on G/N ,

$$
(gN)^{\mu} = g^{\mu}N \quad \text{for all } gN \in G/N \text{ and } \mu \in A,
$$

which turns G/N *into an exponential* A-group.

If $G \in \mathcal{N}_R$, then an application of the Hall–Petresco axiom shows that every normal R -subgroup of G is an ideal. It can readily be verified that the isomorphism theorems hold for nilpotent R-powere[d gr](#page-11-0)oups.

Definition 2.2. Let $G \in M_A$, and let $S = \{s_1, \ldots, s_j\}$ be a subset of G. Then

$$
H = \bigcap_{S \subset H_i \leq_A G} \{H_i\} = \text{gp}_A(s_1, \dots, s_j)
$$

is called the A-subgroup of G, which is A-generated by s_1, \ldots, s_j . We term S a set of A*-generators* for H.

The next theorem can be found in [1[4\],](#page-11-0) [p](#page-11-0). 87.

Theorem 2.6. *The upper and lower central subgroups of a nilpotent* R*-powered group G*, *denoted by* $\zeta_i(G)$ *and* $\gamma_i(G)$ *respectively, are R*-*subgroups of G*.

Recall that if ${g_1,...,g_n}$ is a set of elements in a group G, then

 $[g_1,\ldots,g_n] = [[g_1,\ldots,g_{n-1}],g_n]$

is a *simple commutator of weight* n (see [13], p. 123).

Lemma 2.7. *If* $G \in \mathcal{N}_R$ *, then*

$$
\gamma_n(G) = \text{gp}([g_1, \ldots, g_n] \mid g_i \in G).
$$

The next lemma is useful for proving nilpotency by induction on the class.

Lemma 2.8. *If* $G \in \mathcal{N}_R$ *is of class* $c \geq 2$ *and* $g \in G$ *, then* $H = gp_R(g, \gamma_2(G))$ *is of class at most* $c - 1$.

It is well known that subgroups of finitely generated nilpotent groups are finitely generated. In the case of finitely R -generated nilpotent R -powered groups, this property is inherited by R -subgroups provided that R is a certain type of ring. The next theorem is mentioned in [4].

Theorem 2.9. *If* R *is a noetherian ring and* G *is a finitely* R*-generated nilpotent* R*-po[were](#page-11-0)d group, then every* R*-subgroup of* G *is finitely* R*-generated.*

The notion of a torsion element in an exponential A-group is defined in the obvious way.

Definition 2.3. If $G \in M_A$, then an element $g \in G$ is called a *torsion element* if there exists a non-zero element $\alpha \in A$ for which $g^{\alpha} = 1$. The set of torsion elements of G is denoted by $\tau(G)$. We call G a *torsion A-group* if $\tau(G) = G$, and a *torsion-free A*-group if $\tau(G) = 1$.

In [14], p. 87, Warfield proves the next theorem which does not hold for exponential A-groups in general.

Theorem 2.10. *If* $G \in \mathcal{N}_R$, then $\tau(G) \leq_R G$ *and* $G/\tau(G)$ *is torsion-free.*

From this point on, if $G \in \mathcal{N}_R$, then we refer to $\tau(G)$ as the *torsion* R-subgroup of G.

In the remainder of this paper, ω will always denotes a non-empty set of primes in A and ω' will denote the set of all primes in A which are not in ω .

Definition 2.4. An element $\alpha \in A$ is an ω -member if either $\alpha = 1$ or all prime divisors of α are in ω . If $G \in M_A$, then an element $g \in G$ is an ω -torsion element if $g^{\alpha} = 1$ for some ω -member α . If every element of G is an ω -torsion element, we say that G is an ω -torsion group. If the only ω -torsion element of G is the identity, then G is ω -torsion-free.

In case $\omega = {\pi}$ for a prime $\pi \in A$, we use the terms π -torsion and π -torsion-free.

Theorem 2.11. *If* $G \in \mathcal{N}_R$ *and* $Z(G)$ *is* ω -torsion-free, then each factor R-group $\zeta_{i+1}(G)/\zeta_i(G)$ *is* ω *-torsion-free. Consequently, G is* ω *-torsion-free.*

The theore[m](#page-5-0) [foll](#page-5-0)ows from Lemma 2.3 and induction on i .

Corollary 2.12. *If* $G \in \mathcal{N}_R$ *is* ω -torsion-free, then $G/Z(G)$ *is* ω -torsion-free.

Next we provide the definition of a nilpotent R -powered group of finite type introduced by Majewicz in [9].

Definition 2.5. A nilpotent R-powered group is of *finite type* if it is a finitely R-generated torsion R-group.

By Theorem 2.9, if R is a noetherian ring and G is a finitely R -generated nilpotent R-powered group, then $\tau(G)$ is of finite type.

One can understand nilpotent R -powered groups of finite type by examining their π -primary components.

Definition 2.6. Let $G \in \mathcal{N}_R$ and let $\pi \in R$ be prime. The π [-p](#page-11-0)rimary component of G is the set

 $G_{\pi} = \{ g \in G \mid g^{\pi^k} = 1 \text{ for some } k \in \mathbb{Z}^+ \}.$

If $G = G_{\pi}$, then G is referred to as a π -primary R-group. A finitely R-generated π -primary R-group is said to be of finite π -type π -primary *R*-group is said to be of *finite* π -type.

Nilpotent R-powered groups of finite π -type are the analogues of p-groups in the category of finite groups.

The following theorem is due to Majewicz and Zyman [11]:

Theorem 2.13. *Let* R *be a noetherian ring and a prime in* R*. Cons[ider](#page-11-0) the short exact sequence*

> $1 \rightarrow H \rightarrow G \rightarrow G/H \rightarrow 1$ $\frac{1}{\sqrt{1-\frac{1$

in the category of nilpotent R-powered groups. Then G *is of finite type* (*finite* π -type) *if* and only if H and G/H are both of finite type (finite π -type) *if and only if* H *and* G/H *are both of finite type* (*finite* π *-type*).

Consequently, every R-subgroup of a nilpotent R-powered group of finite π -type is again of finite π -type when R is noetherian.

The next result can be proven in a similar way to Theorem 3.25 in [14].

Theorem 2.14. *If* $G \in \mathcal{N}_R$ *and* $\pi \in R$ *is prime, then* $G_{\pi} \leq_R G$ *.*

The direct product of nilpotent R -powered groups whose classes are bounded can be turned into a nilpotent R-powered group in the obvious way.

In [9], Majewicz proved the following:

Theorem 2.15. *Suppose that* R *is a PID and* G *is a torsion* R-group. If $\{\pi_i \mid i \in I\}$ is the set of all primes in R, then G is the direct product of the G_{π_i} .

3. \mathcal{U}_{ω} -groups and \mathcal{E}_{ω} -groups in the class \mathcal{N}_{R}

The first theorem is proven in [9] for the ring $\mathbb{Q}[x]$. For completeness, we recreate the proof for any binomial ring containing \mathbb{Q} the proof for any bi[nom](#page-3-0)ial ring containing Q.

Theorem 3.1. *Suppose that* R *contains* \mathbb{Q} *, and let* $G \in \mathcal{N}_R$ *be of class c. Let* β *be any element of* R. If $g_1, \ldots, g_m \in G$, then there exists $h \in G$ such that $g_1^{\beta} \ldots g_m^{\beta} = h^{\beta}$.

Thus, every element of the form $g_1^{\beta} \dots g_m^{\beta}$ in $G \in \mathcal{N}_R$ has a β^{th} root whenever R tains \mathbb{O} contains Q.

Proof. The proof is by induction on c. If $c = 1$, then $h = g_1 \dots g_m$ satisfies the theorem by Lemma 2.1.

Suppose that $c>1$ and assume that the result holds for every nilpotent R-powered group of class less than c. Suppose [that](#page-3-0) $gp(g_1,...,g_m)$ is of class $k \leq c$. By the Hall–Petresco axiom,

$$
g_1^{\beta} \cdots g_m^{\beta} = \tau_1(\bar{g})^{\beta} \tau_2(\bar{g})^{(\beta)} \cdots \tau_{k-1}(\bar{g})^{(\beta-1)} \tau_k(\bar{g})^{(\beta)} = \tau_1(\bar{g})^{\beta} [\tau_2(\bar{g})^{j_2}]^{\beta} \cdots [\tau_{k-1}(\bar{g})^{j_{k-1}}]^{\beta} [\tau_k(\bar{g})^{j_k}]^{\beta},
$$

where

$$
j_i = \frac{(\beta - 1)(\beta - 2)\dots(\beta - i + 1)}{i!} \quad \text{for } 2 \le i \le k.
$$

[By](#page-10-0) the comment preceding Lemma 2.1, $\tau_i(\bar{g}) \in \gamma_2(G)$ for each $i = 2,..., k$.
Consequently, each $\tau_i(\bar{g})$, $\tau_i(\bar{g})^{j_2}$, $\tau_i(\bar{g})^{j_k}$ is contained in $\mathfrak{m}_i(\tau_i(\bar{g}))^{j_k}$. Consequently, each $\tau_1(\bar{g}), \tau_2(\bar{g})^{j_2}, \ldots, \tau_k(\bar{g})^{j_k}$ is contained in $gp_R(\tau_1(\bar{g}), \gamma_2(G))$ which, by Lemma 2.8, is an R -subgroup of G of class less than c . By induction,

$$
\tau_1(\bar{g})^{\beta} [\tau_2(\bar{g})^{j_2}]^{\beta} \dots [\tau_{k-1}(\bar{g})^{j_{k-1}}]^{\beta} [\tau_k(\bar{g})^{j_k}]^{\beta} = h^{\beta}
$$

 \Box

for some $h \in gp_R(\tau_1(\bar{g}), \gamma_2(G))$. Therefore, $g_1^{\beta} \dots g_m^{\beta} = h^{\beta}$.

A fundamental result of Mal'cev in the theory of nilpotent groups is that every torsion-fr[ee nilp](#page-6-0)otent group admits unique root extraction whenever roots exist (see [7]). This result carries over to nilpotent R -po[wer](#page-3-0)ed groups.

Theorem 3.2. A nilpotent R-powered group G is a \mathcal{U}_{ω} -group if and only if it is !*-torsion-free.*

Proof. Suppose that G is an ω -torsion-free group of class c. We prove that G is a \mathcal{U}_{ω} -group by induction on c. If $c = 1$, there is nothing to prove.

Let $c > 1$, and suppose $g, h \in G$ such that $g^{\pi} = h^{\pi}$ for some $\pi \in \omega$. By collary 2.12 $G/Z(G)$ is ω -torsion-free. Hence by induction, there exists an Corollary 2.12, $G/Z(G)$ is ω -torsion-free. Hence, by induction, there exists an element $z \in Z(G)$ such that $g = hz$. Lemma 2.1 yields

$$
g^{\pi} = (hz)^{\pi} = h^{\pi} z^{\pi} = g^{\pi} z^{\pi}.
$$

Consequen[tly](#page-10-0), $z^{\pi} = 1$. Since G is ω -torsion-free, $z = 1$; that is, $g = h$.
Conversely, if G is a \mathcal{U} , group and $g \in G$, then $g^{\pi} = 1 - 1^{\pi}$ for s

Conversely, if G is a \mathcal{U}_{ω} -group and $g \in G$, then $g^{\pi} = 1 = 1^{\pi}$ for some $\pi \in \omega$ implies $g = 1$. Thus, G is ω -torsion-free.

We remark that every exponential A-group which is a \mathcal{U}_{ω} -group is ω -torsion-free, but not every ω -torsion-free exponential A-group is a \mathcal{U}_{ω} -group.

In $[2]$, Cernikov proved that the torsion elements of a complete ZA -group G lie in $Z(G)$ (see [5], p. 234). A similar result holds for nilpotent R-powered groups in the class ε . We establish this by first proving a generalization of a theorem of Baumslag [1].

Theore[m](#page-3-0) [3.](#page-3-0)3. *If* $G \in \mathcal{N}_R$ *is an* \mathcal{E}_{ω} -group of class c and $\pi \in \omega$, then $G_{\pi} \leq_R Z(G)$ *.*

Proof. The bulk of the proof rests on proving that $G/Z(G) \in \mathcal{U}_{\omega}$ or equivalently, by Theorem 3.2, that $G/Z(G)$ is ω -torsion-free. Let $g \in G$, $g \neq 1$, and let $\pi \in \omega$ such that $g^{\pi} \in Z(G)$. There exists an integer $k, 0 \le k < c$, such that $g \notin \zeta_k(G)$
and $g \in \zeta_{k+1}(G)$. We claim that $k = 0$; that is $g \in Z(G)$. and $g \in \zeta_{k+1}(G)$. We claim that $k = 0$; that is, $g \in Z(G)$.

Let h be any element of G. If $k = 0$, we are done. Assume $k = 1$, and suppose $h_0 \in G$ is a π^{th} root of h. Then $[g, h] \in Z(G)$ because $g \in \zeta_2(G)$. Thus, by Lemma 2.3. Lemma [2.3](#page-6-0),

$$
[g, h] = [g, h_0^{\pi}] = [g^{\pi}, h_0] = 1.
$$

Therefore, $g \in Z(G)$, a contradiction. Hence k cannot be 1.

Suppose that $k>1$, and assume that the set

$$
S = \{ \tilde{g} \in \zeta_i(G) \mid \tilde{g}^{\pi^n} \in Z(G) \text{ for some } n \in \mathbb{Z}^+ \}
$$

is contained in $Z(G)$ for $1 < i \leq k$. Notice that $g^{\pi} \in Z(G)$ implies both $(g^{-1}Z(G))^{\pi} = Z(G)$ and $(h^{-1}ghZ(G))^{\pi} = Z(G)$ in $G/Z(G)$. Hence by Theis contained in $Z(G)$ for $1 \lt i \leq k$. Notice that $g^{\pi} \in Z(G)$ implies both $(g^{-1}Z(G))^{\pi} = Z(G)$ and $(h^{-1}ghZ(G))^{\pi} = Z(G)$ in $G/Z(G)$. Hence, by Theorem 2.14. La $h\vert \pi^m Z(G) = Z(G)$ in $G/Z(G)$ for some integer $m > 0$; that is orem 2.14, $[g, h]^{\pi^m} Z(G) = Z(G)$ in $G/Z(G)$ for some integer $m \ge 0$; that is,
 $[a, h]^{\pi^m} \in Z(G)$. Since $g \in \mathcal{E}_{k+1}(G)$, $[a, h] \in \mathcal{E}_{k}(G)$ and so $[a, h] \in S$. Hence $[g,h] \in Z(G)$. Since this holds for all $h \in G$, we have $g \in \zeta_2(G)$, which implies $g \in Z(G)$ as before. This contradicts the assumption that $g \notin \zeta_1(G)$ and $k > 1$. We $\pi^m \in Z(G)$. Since $g \in \zeta_{k+1}(G), [g, h] \in \zeta_k(G)$ and so $[g, h] \in S$. Hence,
 $\in Z(G)$. Since this holds for all $h \in G$, we have $g \in \zeta_k(G)$, which implies $g \in Z(G)$ as before. This contradicts the assumption that $g \notin \zeta_k(G)$ and $k > 1$. We conclude that $k \times 1$, so we must have $k = 0$, as claimed conclude that $k \neq 1$ $k \neq 1$, so we must have $k = 0$, as claimed.

We have established that $g^{\pi} \in Z(G)$ implies $g \in Z(G)$. To complete the proof,
erve that if $g \in G$, then there exists an integer $t > 0$ such that $g^{\pi^t} = 1$. observe that if $g \in G_\pi$, then there exists an integer $t \ge 0$ such that $g^{\pi^t} = 1$.
Therefore $g^{\pi^t} \in Z(G)$ and consequently $g \in Z(G)$ Therefore, $g^{\pi^t} \in Z(G)$ and, consequently, $g \in Z(G)$.

Our analogue of Černikov's result is:

Corollary 3.4. *If* R *is a PID and* $G \in \mathcal{N}_R$ *is an* \mathcal{E} *-group, then* $\tau(G) \leq_R Z(G)$ *.*

Proof. This follows from Theorems 2.15 and 3.3.

Next we prove that if R is a PID and a nilpotent R-powered group in $\mathcal E$ has a finitely R-generated torsion R-subgroup, then the torsion R-subgroup must be trivial. This generalizes another result due to Černikov (see $[5]$, p. 235). First we mention an easy generalization of a well-known fact about abelian groups.

Lemma 3.5. *If* R *is a PID and* G *is a non-trivial divisible abelian* R*-group, then* G *is not finitely* R*-generated.*

Another useful result is

Lemma 3.6. *If* $G \in \mathcal{N}_R$ *is an* \mathcal{E} *-group, then any R*-homomorphic image of G *is also an* E*-group.*

Theorem 3.7. Let R be a PID, and suppose $G \in \mathcal{N}_R \cap \mathcal{E}$. If $\tau(G)$ is finitely *R*-generated, then $\tau(G) = 1$.

The proof of the theorem further shows that G has an ascending central R -series, all of whose factors are divisible abelian torsion-free R-groups.

Proof. Suppose that G is a divisible abelian R-group and $\tau(G)$ is finitely R-generated, and assume $\tau(G) \neq 1$. Let $g \in \tau(G)$, $g \neq 1$, satisfy $g^{\alpha} = 1$ for some $\alpha \in R$. If $\mu \in R$, then there exists $h \in G$ such that $g = h^{\mu}$. Since $h^{\mu\alpha} = (h^{\mu})^{\alpha} = g^{\alpha} = 1$, it follows that $h \in \tau(G)$. Thus, $\tau(G)$ is divisible, contradicting Lemma 3.5.

Next let $G \in \mathcal{E}$ be a non-abelian nilpotent R-powered group and suppose that $\tau(G)$ is finitely R-generated. We claim that G has a strictly ascending cen[tral](#page-4-0) R-series

$$
H_1 < H_2 < \cdots < H_i < \cdots
$$

satisfying

(1) $H_i \cap \tau(G) = 1;$

(2) $\tau(G/H_i)=\tau(G)H_i/H_i$ and is finitely R-generated;

(3) H_{i+1}/H_i is a divisible torsion-free abelian R-group.

To begin, we show that H_1 exists and satisfies (1) and (2). By Lemmas 2.4 and 3.6, there exist non-trivial R-homo[morp](#page-3-0)hic images of G in $Z(G)$ which are \mathcal{E} -groups. Let $H_1 \in \mathcal{E}$ be one such R-subgroup of $Z(G)$. Then H_1 is abelian and $\tau(H_1) <_R G$ is finitely R-generated by Theorem 2.9. Hence,

$$
H_1 \cap \tau(G) = \tau(H_1) = 1
$$

and (1) holds. Next we prove that $\tau(G/H_1) = \tau(G)H_1/H_1$ and is finitely Rgenerated, establishing (2). Observe that if $gH_1 \in \tau(G/H_1)$, then there exists $\alpha \in R$ such that $(gH_1)^{\alpha} = H_1$; that is, $g^{\alpha} \in H_1$. Since $H_1 \in \mathcal{E}$, there exists $k \in H_1$ such that $g^{\alpha} = k^{\alpha}$. By Lemma 2.1, $(gk^{-1})^{\alpha} g^{\alpha} k^{-\alpha} = 1$ because $k \in Z(G)$. Thus,

On the extraction [of](#page-5-0) [ro](#page-5-0)ots in exponent[ial](#page-4-0) A-gro[ups](#page-9-0) 845

 $gk^{-1} \in \tau(G)$ and $gH_1 = (gk^{-1})H_1 \in \tau(G)H_1/H_1$. Now, by the R-isomorphism theorems,

$$
\tau(G)H_1/H_1 \cong_R \tau(G)/(\tau(G) \cap H_1) = \tau(G).
$$

Since $\tau(G)$ is finitely R-generated by hypothesis, so is $\tau(G/H_1)$.

Next we concoct an R-subgroup H_k , assuming that H_{k-1} has been constructed and satisfies (1)–(3). Notice that $G/H_{k-1} \in \mathcal{E}$ by Lemma 3.6 and $\tau(G/H_{k-1})$ is finitely R -generated by Theorem 2.9. By Lemmas 2.4 and 3.6, there exists a nontrivial normal R-subgroup H_k/H_{k-1} of $Z(G/H_{k-1})$ which is an E-group. Using the same argument as before and the fact that $\tau(G/H_{k-1})=\tau(G)H_{k-1}/H_{k-1}$, we have

$$
(\tau(G)H_{k-1}/H_{k-1}) \cap (H_k/H_{k-1}) = H_{k-1}.
$$

Thus,

$$
(\tau(G)H_{k-1})\cap H_k=H_{k-1}.
$$

Since $H_{k-1} \cap \tau(G) = 1$, we also have $H_k \cap \tau(G) = 1$. Moreover,

$$
\tau((G/H_{k-1})/(H_k/H_{k-1})) = (\tau(G/H_{k-1}) \cdot (H_k/H_{k-1}))/(H_k/H_{k-1}),
$$

from which it follows that $\tau(G/H_k) = \tau(G) H_k/H_k$. Hence, H_k satisfies the requir[ed properties.](http://www.emis.de/MATH-item?178.34901)

The ascending central series ${H_k}$ must reach G in a finite numbers of steps since G is nilpotent. [Thus, there ex](http://www.emis.de/MATH-item?0063.07321)ists $n>0$ such that $H_n = G$. Consequently, $G \cap \tau(G) = 1$: that is $\tau(G) = 1$ $G \cap \tau(G) = 1$; that is, $\tau(G) = 1$.

References

- [1] G. Baumslag, Some aspects of groups with unique roots.*[Acta](http://www.emis.de/MATH-item?0238.20050) [Math.](http://www.emis.de/MATH-item?0238.20050)* **104** [\(1960\),](http://www.ams.org/mathscinet-getitem?mr=0283060) [217–3](http://www.ams.org/mathscinet-getitem?mr=0283060)03. Zbl 178.34901 MR 0122859
- [2] S. N. Černikov, [Complete](http://www.ams.org/mathscinet-getitem?mr=109842) [gr](http://www.ams.org/mathscinet-getitem?mr=109842)oups possessing ascending central series. *Mat. Sb.* **18** (60) (1946), 397–422. Zbl 0063.07321 MR 0018646
- [3] P. Hall, *[Nilpotent](http://www.emis.de/MATH-item?0108.02501) [groups](http://www.emis.de/MATH-item?0108.02501)*. [Queen](http://www.ams.org/mathscinet-getitem?mr=0151502) [Mary](http://www.ams.org/mathscinet-getitem?mr=0151502) [C](http://www.ams.org/mathscinet-getitem?mr=0151502)ollege Mathematics Notes, Mathematics Department, Queen Mary College, London 1969. Zbl 0211.34201 MR 0283083
- [4] M. I. Kar[gapolov,](http://www.emis.de/MATH-item?0034.01702) [V.](http://www.emis.de/MATH-item?0034.01702) [N.](http://www.emis.de/MATH-item?0034.01702) [Re](http://www.emis.de/MATH-item?0034.01702)[meslennikov,](http://www.ams.org/mathscinet-getitem?mr=0028843) N. S. Romanovskii, V. A. Roman'kov, and V. A. Churkin, Algorithmic problems for σ -power groups. *Algebra i Logika* **8** (1969), 643–659; English transl. *Algebra and Logic* **8** (1969), 364–373. Zbl 0238.20050 MR 0283060
- [5] A. G. Kurosh, *The theory of groups*. Vol. II, Chelsea Publishing, New York 1960. Zbl 0064.25104 MR 109842
- [6] R. C. Lyndon, Groups with parametric exponents. *Trans. Amer. Math. Soc.* **96** (1960), 518–533. Zbl 0108.02501 MR 0151502
- [7] A. I. Mal'cev, Nilpotent torsion-free groups. *Izv. Akad. Nauk SSSR. Ser. Mat.* **13** (1949), 201–212. Zbl 0034.01702 MR 0028843

- [8] S. Majewicz, Nilpotent $\mathbb{Q}[x]$ -powere[d](http://www.emis.de/MATH-item?05680262) [groups](http://www.emis.de/MATH-item?05680262) [and](http://www.emis.de/MATH-item?05680262) $\mathbb{Z}[x]$ [-groups.](http://www.ams.org/mathscinet-getitem?mr=2598996) [Ph](http://www.ams.org/mathscinet-getitem?mr=2598996).D. thesis, The City
Liniversity of New York, New York 2004 University of New York, New York 2004.
- [9] S. Majewicz, Nilpotent $\mathbb{Q}[x]$ -powered groups. In *[Combinator](http://www.emis.de/MATH-item?0851.20050)[ial group theo](http://www.ams.org/mathscinet-getitem?mr=1308240)ry, discrete*
groups, and number theory, Contemp, Math, 421, Amer, Math, Soc., Providence, RI *groups, and number theory*, Contemp. Math. 421, Amer. Math. Soc., Providence, RI, 2006, 227–249. Zbl 1173.20313 [MR 2303839](http://www.emis.de/MATH-item?0836.20001)
- [10] S. Majewicz, On classes of exponential A-groups. *[Comm.](http://www.ams.org/mathscinet-getitem?mr=1357169) [Algebra](http://www.ams.org/mathscinet-getitem?mr=1357169)* **³⁸** (2010), 1363–1384. Zbl 0[5710465 MR 265](http://www.emis.de/MATH-item?0347.20018)[6582](http://www.ams.org/mathscinet-getitem?mr=0409661)
- [11] S. Majewicz and M. Zyman, Power-commutative nilpotent R-powered groups. *Groups Complex. Cryptol.* **1** (2009), 297–309. Zbl 05680262 MR 2598996
- [12] A. G. Myasnikov and V. N. Remeslennikov, Groups with exponents I. Fundamentals of the theory and tensor completions. *Sibirsk. Mat. Zh.* **35** (1994), 1106–1118; English transl. *Siberian Math. J.* **35** (1994), 986–996. Zbl 0851.20050 MR 1308240
- [13] D. J. S. Robinson, *A course in the theory of groups*. 2nd ed., Graduate Texts in Math. 80, Springer-Verlag, New York 1996. Zbl 0836.20001 MR 1357169
- [14] R. B. Warfield, Jr., *Nilpotent groups*. Lecture Notes in Math. 513, Springer-Verlag, Berlin 1976. Zbl 0347.20018 MR 0409661

Received September 28, 2009; revised March 24, 2010

S. Majewicz, Department of Mathematics, Kingsborough Community College, 2001 Oriental Boulevard, Brooklyn, NY 11235-2398, U.S.A. E-mail: smajewicz@kbcc.cuny.edu

M. Zyman, Department of Mathematics, Borough of Manhattan Community College, 199 Chambers Street, N-520, New York, NY 10007, U.S.A. E-mail: mzyman@bmcc.cuny.edu

