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On Leighton’s graph covering theorem

Walter D. Neumann

Abstract. We give short expositions of both Leighton’s proof and the Bass–Kulkarni proof
of Leighton’s graph covering theorem, in the context of colored graphs. We discuss a further
generalization, needed elsewhere, to “symmetry-restricted graphs”. We can prove it in some
cases, for example, if the “graph of colors” is a tree, but we do not know if it is true in general.
We show that Bass’s Conjugation Theorem, which is a tool in the Bass–Kulkarni approach,
does hold in the symmetry-restricted context.
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Introduction

Leighton’s graph covering theorem says:

Theorem (Leighton [5]). Two finite graphs which have a common covering have a
common finite covering.

It answered a conjecture of Angluin and Gardiner who had proved the case that
both graphs are k-regular [1]. Leighton’s proof is short (two pages) but has been
considered by some to lack transparency. It was reframed in terms of Bass–Serre
theory by Bass and Kulkarni [3], [2], expanding its length considerably but providing
group-theoretic tools which have other uses.

The general philosophy of the Bass–Kulkarni proof is that adding more structure
helps. Let us illustrate this by giving a very short proof of Angluin and Gardiner’s
original k-regular case.

We assume all graphs considered are connected. “Graph” will thus mean a con-
nected 1-complex. “Covering” means covering space in the topological sense. Two
graphs are isomorphic if they are isomorphic as 1-complexes (i.e., homeomorphic by
a map which is bijective on the vertex and edge sets). We want to show that if G
and G0 are finite k-regular graphs (i.e., all vertices have valence k) then they have a
common finite covering.
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Proof of the k-regular case. Replace G and G0 by oriented “fat graphs” – thicken
edges to rectangles of length 10 and width 1, say, and replace vertices by regular
planar k-gons of side length 1, to which the rectangles are glued at their ends (see
Figure 1; the underlying space of the fat graph is often required to be orientable

Figure 1. 3-regular fat graph

as a 2-manifold but we do not need this). G and G0 both have universal covering
the k-regular fat tree Tk , whose isometry group � acts properly discontinuously (the
orbit space Tk=� is the 2-orbifold pictured in Figure 2). The covering transformation

�=k

Figure 2. Tk=Aut.Tk/; bold edges are mirror edges.

groups for the coverings Tk ! G and Tk ! G0 are finite index subgroupsƒ andƒ0
of � . Soƒ\ƒ0 is finite index in each ofƒ andƒ0 and the quotient Tk=.ƒ\ƒ0/ is
a common finite covering of G and G0.

We return now to unfattened graphs. In addition to the simplicial view of graphs,
it is helpful to consider in parallel a combinatorial point of view, in which an edge of
an undirected graph consists of a pair .e; Ne/ of directed edges. From this point of view
a graph G is defined by a vertex set V.G/ and directed edge set E.G/, an involution
e 7! Ne on E.G/, and maps @0 and @1 from E.G/ to V.G/ satisfying @0 Ne D @1e for
all e 2 E.G/. One calls @0e and @1e the tail and head of e.

The combinatorial point of view is especially convenient for quotients of graphs
by groups of automorphisms: if a group of automorphisms inverts some edge, the
corresponding edge in the quotient graph will be a directed loop (an edge satisfying
e D Ne; in the simplicial quotient this is a “half-edge” – an orbifold with underlying
space an interval having a vertex at one end and a mirror at the other).

A coloring of a graphG will mean a graph-homomorphism ofG to a fixed graph
of colors. The vertex and edge sets of this graph are the vertex-colors and edge-
colors respectively. By a graph-homomorphism of a colored graph we always mean
one which preserves colors; in particular, covering maps should preserve colors,
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and for a colored graph G, Aut.G/ will always mean the group of colored graph
automorphisms.

It is an exercise to derive from Leighton’s theorem the version for colored graphs.
But it is also implicit in Leighton’s proof, so we will describe this in Section 1.
This paper was motivated by the desire in [4] of a yet more general version, which we
describe in Section 2, and prove in a special case in Section 4, using the Bass–Kulkarni
approach, which we expose in Section 3.

The universal covering zG of a colored graph G is its universal covering in the
topological sense, i.e., of the underlying undirected graph as a simplicial complex.
This is a colored tree, with the coloring induced from that of G. If Aut. zG/ does not
act transitively on the set of vertices or edges of zG of each color, we can refine the
colors to make it so, by replacing the graph of colors by the refined graph of colors
C ´ zG=Aut. zG/. This does not change Aut. zG/. We will usually use refined colors,
since graphs which have a common covering have the same universal covering and
therefore have the same refined colors.

1. Leighton’s theorem for colored graphs

We give Leighton’s proof, mildly modified to clarify its structure and to make explicit
the fact that it handles colored graphs. To ease comparison with his version, we have
copied some of his notation.

Theorem 1.1. Two finite colored graphs G and G0 which have a common covering
have a common finite covering.

Proof. We can assume that we are working with refined colors, so C ´ zG=Aut. zG/
is our graph of colors. We denote the sets of vertex and edge colors by I D V.C /,
K D E.C /. For k 2 K we write @k D ij if @0k D i and @1k D j . An i -vertex is
one with color i and a k-edge is one with color k.

Denote by ni and mk the numbers of i -vertices and k-edges of G. For k 2 K

with @k D ij denote by rk the number of k-edges from any fixed i -vertex v of G.
Clearly

nirk D mk D m Nk D nj r Nk :
Let s be a common multiple of the mk’s. Put ai ´ s

ni
and bk ´ ai

rk
D s

mk
. Then

bk D ai

rk
D aj

r Nk
D b Nk : (1)

The ai and bk can be defined by equations (1), without reference to G (or G0).
For if positive integers ai (i 2 I ) and bk (k 2 K) satisfy (1) whenever @k D ij , then
ai D rkaj

r Nk
, so niai D ni rkaj

r Nk
D nj r Nk

aj

r Nk
D njaj , so s ´ niai is independent of i .

This s is divisible by every mk and ai D s
ni

.
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For i 2 I choose a set Ai of size ai . For k 2 K choose a group …k of size rk , a
set Bk D B Nk of size bk and a bijection �k W …k � Bk ! A@0k .

For each i -vertex v of G choose a bijection  vk of the set of k-edges at v to…k .
Do the same for the graph G0.

Define a graph H as follows (v and v0 will refer to vertices of G and G0 respec-
tively, and similarly for edges e, e0):

V.H/ ´ f.i; v; v0; ˛/ W v; v0 of color i; ˛ 2 Aig;
E.H/ ´ f.k; e; e0; ˇ/ W e; e0 of color k; ˇ 2 Bkg;

@0.k; e; e
0; ˇ/ ´ .@0k; @0e; @0e

0; �k. vk.e/ v0k.e
0/�1; ˇ//;

.k; e; e0; ˇ/ ´ . Nk; Ne; Ne0; ˇ/;
so

@1.k; e; e
0; ˇ/D .@1k; @1e; @1e

0; � Nk. v Nk. Ne/ v0 Nk. Ne0/�1; ˇ//:

We claim that the projection map H ! G given by second coordinate is a
covering. So let v be a i -vertex of G and e a k-edge at v and .i; v; v0; ˛/ a vertex of
H lying over v. We must show that there is exactly one edge ofH at this vertex lying
over e. The edge must have the form .k; e; e0; ˇ/with �k. vk.e/ v0k.e

0/�1; ˇ/ D ˛.
Since �k is a bijection, this equation determines ˇ and  vk.e/ v0k.e

0/�1 uniquely,
hence also  v0k.e

0/, which determines e0. This proves the claim. By symmetry, H
also covers G0, so the colored Leighton’s theorem is proved.

Remark 1.2. Leighton’s original proof is essentially the above proof with Ai the
cyclic group Z=ai , Bk its cyclic subgroup of order bk , and …k the quotient group
Ai=Bk Š Z=rk .

2. Symmetry-restricted graphs

We define a concept of a “symmetry-restricted graph”. The underlying data consist
of a graph of colors C together with, for each vertex-color i 2 I , a finite permutation
group�i together with a bijection between the set of orbits of�i and the edge colors
k with @0k D i .

Definition 2.1. A symmetry-restricted graph for these data is aC -colored graphG and
for each i -vertex v 2 V.G/ a representation of�i as a color-preserving permutation
group on the set star.v/ of edges departing v (thus j star.v/j equals the degree of the
permutation group�i ). A morphism of symmetry-restricted graphs � W G ! G0 is a
colored graph homomorphism � which restricts to a weakly equivariant isomorphism
from star.v/ to star.�.v// for each v. (A map � W X ! Y of �-sets is weakly
equivariant if it is equivariant up to conjugation, i.e., there is a � 2 � such that
�.ıx/ D �ı��1�.x/ for each x 2 X and ı 2 �.) Note that a morphism is a
covering map; if it is bijective it is an automorphism.
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An example of a symmetry-restricted graph in this sense is a k-regular oriented
fat graph; we have just one vertex color and the group � is a cyclic group of order k
acting transitively on each star.v/. Another example is the following:

Example 2.2. Consider a “graph” G in which each vertex is a small dodecahedron
or cube, and each corner of a dodecahedron is connected by an edge to a corner
of a cube and vice versa. The graph of colors is a graph C with V.C / D fd; cg,
E.C / D fe; Neg, @0e D d , @1e D c. The groups�d and�c are the symmetry groups
of the dodecahedron and cube respectively, acting as permutation groups of the 20
corners of the dodecahedron and the 8 corners of the cube. The graph G is thus
bipartite, with 20 edges at each d -vertex and 8 edges at each c-vertex.

The desired application in [4] of Leighton’s theorem for symmetry-restricted
graphs often needs a more general concept of symmetry restriction, which we de-
scribe, although we have no significant results for it. We first reformulate the definition
of a symmetry-restricted graph.

Let T be any infinite tree and � a subgroup of its full automorphism group such
that C ´ T=� is finite. For a vertex v of T , denote by �.v/ the restriction to the
star of v of the vertex group �v (the isotropy group of v); this is a finite permutation
group on the edges at v which we call the restricted vertex group for the action. Up
to isomorphism as a permutation group, this group only depends on the image of v
in C , so it can be taken as the datum�i for symmetry restriction, where i 2 C is the
color of v.

Now assume that � is maximal among groups that act on T with quotient C and
with prescribed restricted vertex groups. Then � is the symmetry-restricted auto-
morphism group Auts.T / of T (the superscript reminds to consider only symmetry-
restricted automorphisms). Any T=�0, where �0 � � D Auts.T / is a subgroup
which acts freely on T , is a symmetry-restricted graph for the given data.

Now, for an edge e of T define the restricted edge group �.e/ to be the restriction
to the star of e (e together with adjacent edges) of the isotropy group �e . The version
of symmetry restriction needed in [4] is as follows:

Definition 2.3. Suppose that � is maximal among groups that act on T with quotient
C and with restricted vertex and edge groups equal to those of � . The quotients
T=�0, where �0 � � acts freely on T , are symmetry-restricted graphs for the data
.T; C; �/.

Note that�.e/ is a subgroup of .�.�e//e�.�.�e// Ne , or ..�.�e//e�.�.�e// Ne/ÌZ=2 if�
inverts e. The “vertex-only” definition of symmetry restriction (Definition 2.1) is the
special case when the restricted edge groups are as large as possible: .�.�e//e�.�.�e// Ne
or ..�.�e//e � .�.�e// Ne/ Ì Z=2.

We would like to know if Leighton’s theorem extends to this setting. More gen-
erally one could ask if Leighton’s theorem extends when symmetry is restricted on
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possibly larger finite portions of T . Unfortunately, the only case in which we can give
any answers is the “vertex-only” version (Definition 2.1) of symmetry restriction.

Theorem 2.4. For the “vertex-only” version of symmetry restriction suppose the
graph of colors is a tree. Then any two finite symmetry-restricted graphs G and G0
which have a common covering have a common finite covering.

For Example 2.2 one has a simple geometric proof similar to the fat-graph proof
for k-regular graphs. Create a 3-dimensional “fat graph” from G by truncating the
corners of the dodecahedra and cubes to form small triangles and thickening each edge
ofG to be a rod with triangular cross-section joining these triangles. The rods should
have a fixed length and thickness, and be attached rigidly to the truncated polyhedra
which play the role of vertices. Then the universal covering is a 3-dimensional fat tree
whose isometry group acts properly discontinuously, so the result follows as before.

But if we have a graph G made, say, of icosahedra connected to cubes by edges,
then it is less obvious how to create a rigid fat-graph version, since the vertex degrees
of icosahedron and cube are 5 and 3, which do not match.

To prove the above theorem we will need the graph of groups approach of Bass
and Kulkarni.

3. The Bass–Kulkarni proof

We give a simplified version of the Bass–Kulkarni proof of Leighton’s theorem in its
colored version, Theorem 1.1.

Proof. We retain the notation of Section 1. In particular, C D zG=Aut. zG/ is the
(refined) graph of colors, with vertex set I and edge set K. For the moment we
assume that Aut. zG/ acts without inversions, so C has no edge with k D Nk.

We use this graph as the underlying graph for a graph of groups, associating a
group Ai of size ai to each vertex i and a group Bk D B Nk of size bk to each edge k,
along with an injection �k W Bk ! A@0k . Of course we have to choose our groups so
that Bk embeds in A@0k for each k; one such choice is the one of Remark 1.2.

Let � be the fundamental group of this graph of groups and T the Bass–Serre
tree on which � acts; this action has quotient T=� D C , vertex stabilizers Ai , and
edge stabilizers Bk . Then T is isomorphic to the tree zG. Now � acts properly
discontinuously on T . So, if we can express G and G0 as quotients T=ƒ and T=ƒ0
withƒ andƒ0 in � , thenƒ andƒ0 are finite index in � so T=.ƒ\ƒ0/ is the desired
common covering.

To complete the proof we must show that such ƒ and ƒ0 exist in � . This is the
content of Bass’s Conjugacy Theorem ([2], see also [6]). We replace it for now by a
“fat graph” argument (but see Theorem 4.2).

For each finite group � choose a finite complex B� with fundamental group
� and denote its universal covering by E�. We also assume that any inclusion
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� W ˆ ! � of finite groups which we consider can be realized as the induced map
on fundamental groups of some map B� W Bˆ ! B� (this is always possible, for
example, if Bˆ is a presentation complex for a finite presentation of ˆ). We now
create a “fat graph” version of our graph of groups by replacing vertex i by BAi ,
edges k and Nk byBBk � Œ0; 1� (with the parametrization of the interval Œ0; 1� reversed
when associating this to Nk), and gluing each BBk � Œ0; 1� to BA@0k by the map
B�k W BBk � f0g ! BA@0k which realizes the inclusion �k W Bk ! A@0k .

This is a standard construction which replaces the graph of groups by a finite
complex K whose fundamental group is � . The universal covering of K is a fat-
graph version T of the tree T , obtained by replacing i -vertices by copies of EAi

and k-edges by copies of EBk � Œ0; 1�. The “fat edges” EBk � Œ0; 1� are glued to
the “fat vertices” EAi by the lifts of the maps B�k . An automorphism of T will be
a homeomorphism which is an isomorphism on each piece EAi and EBk � Œ0; 1�

(where the only isomorphisms allowed on an E� are covering transformations for
the covering E� ! K�).

We can similarly construct fat versions of the graphs G and G0, replacing each
i -vertex by a copy of EAi and each k-edge by a copy of EBk � Œ0; 1�. There is
choice in this construction: if @0k D i then at the EAi corresponding to an i -vertex
v there are rk edge-piecesEBk � Œ0; 1� to glue toEAi and rk “places” onEAi to do
the gluing, and we can choose any bijection between these edge-pieces and places;
moreover, each gluing is then only determined up to the action of Bk . Nevertheless,
however we make these choices, we have:

Lemma 3.1. The above fattened graphs have universal covering isomorphic to T .

Proof. We construct an isomorphism of T to the universal covering of the fattened
G inductively over larger and larger finite portions. The point is that if one has
constructed the isomorphism on a finite connected portion of T , when extending to
an adjacent piece (either anEAi or anEBk � Œ0; 1�), the choice in the gluing map for
that piece is an element of a Bk , which extends over the piece, so the isomorphism
can be extended over that piece.

Since the fattened versions of G and G0 each have universal covering T , they are
each given by an action of a subgroup of � D Aut.T /, as desired, thus completing
the proof of the colored Leighton’s theorem for the case that � has no inversions.

If � does invert some edge, so C has an edge k D Nk, then the edge stabilizer is an
extension xBk of the cyclic groupC2 by Bk . We can assume that the inclusion Bk � xBk

is represented by a double coveringKBk ! KxBk . The complex .KBk � Œ0; 1�/=C2

(diagonal action of C2) is then the object that the “half-edge” k of C should be
replaced by in fattening C . The proof then goes through as before.

Our earlier fat graph proofs for the k-regular case and for Example 2.2 are special
cases of the proof we have just given if we generalize the proof to allow orbifolds.
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4. Proofs for symmetry-restricted graphs

Proof of Theorem 2.4. Recall the situation of Theorem 2.4: we have a graph of colors
C defining the set of vertex colors I D V.C /, and for each i 2 I we have a finite
permutation group�i which acts as a permutation group of star.v/ for each i -vertex
v of our colored graphs. Theorem 2.4 also required the graph of colorsC to be a tree;
for the moment we will not assume this.

Consider an edge-color k 2 K D E.C / with @k D ij . For a k-edge e of G the
stabilizer e in the �i action on star.@0e/ will be denoted �k; it is a subgroup of �i

which is determined up to conjugation, so we make a choice.
Suppose that for every k we have�k Š � Nk . This is the case, for example, for the

dodecahedron-cube graphs of Example 2.2, where these stabilizer groups are dihedral
of order 6. In this case the proof of the previous section works with essentially no
change, using Ai D �i and Bk D �k . The only change is that when fattening the rk
k-edges at a fattened i -vertex v, our freedom of choice in attaching the rk edge-pieces
EBk � Œ0; 1� to rk places onEAi is now restricted: we must attach them equivariantly
with respect to the action of Ai D �i on star.v/ (this still leaves some choice). This
proves 2.4 for this case.

Now assume that C is a tree. We can reduce the general case to the above special
case as follows: For any vertex color i define Ki ´ fk 2 K W k points towards
ig and then replace each �i by N�i ´ �i � Q

k2Ki
�k , acting on star.i/ via the

projection to �i . Then the stabilizer N�k is �k � Q
k2K@0k

�k , which equals N� Nk , so
we are in the situation of the previous case.

It is not hard to extend the above proof to prove the following theorem, which we
leave to the reader.

Theorem 4.1. Suppose that for every closed directed path .k1; k2; : : : ; kr/ in the
graph of colors we have

Qr
iD1�ki

Š Qr
iD1� Nki

(note that these groups have the
same order). Then any two finite symmetry-restricted graphs with these data which
have a common covering have a common finite covering.

One of the two ingredients of the original Bass–Kulkarni proof of Leighton’s
theorem is Bass’s Conjugacy Theorem. This theorem holds for symmetry-restricted
graphs (see below), but this appears not to help extend the above results. The other
ingredient in the Bass–Kulkarni proof is to find a subgroup of Aut.T / which acts
properly discontinuously on T with quotient C . Such a group would necessarily be
given by a graph of finite groups with underlying graph C , and we are back in the
situation of the proof we have already given, which appears to need strong conditions
on C .

The Conjugacy Theorem says, in our language, that if T is a colored tree whose
colored automorphism group acts without inversions (i.e., the graph of colors C D
T=Aut.T / has no loops k D Nk), and H � Aut.T / is a subgroup with T=H D C ,
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then any � which acts freely on T can be conjugated into H by an element of
Aut.T /. In the symmetry-restricted setting we write Auts.T / to remind that we
mean symmetry-restricted automorphisms.

Theorem 4.2 (Conjugacy Theorem). Fix data for symmetry-restricted graphs
(“vertex-only” version), and assume the graph of colors C has no loops. If T is
the symmetry-restricted tree for this data (it is unique) andH � Auts.T / a subgroup
with T=H D C , then for any � � Auts.T / which acts freely on T , there exists
g 2 Auts.T / with g�g�1 � H .

Proof. In [2] Bass includes a short proof of his Conjugacy Theorem proposed by the
referee. That proof constructs the conjugating element g directly, and one verifies by
inspection that g is a symmetry-restricted automorphism. The point is that g is the
identity on the stars of a representative set S of vertices for orbits of the � action.
If v is any vertex of T let � 2 � be the element that takes v to a vertex in S and
h D g�g�1 2 H . Restricted to the star of v the map g is h�1� , which is in Auts.T /.

It is worth noting that the “fat graph argument” in Section 3 proves Bass’s Con-
jugacy Theorem in its original form (see also [6]). However, neither that proof nor
Bass’s proof can be applied to the symmetry-restricted case, so it is somewhat re-
markable that the above proof works.

The above approach to extend Leighton’s theorem involved extending each vertex
group to make it act non-effectively on the star of the vertex; we used trivial exten-
sions (direct products). By using other extensions we can prove isolated additional
cases. But this approach has no hope of working if C has a closed directed path
fk1; : : : ; kng for which

Pr
iD1Œ�ki

� ¤ Pr
iD1Œ� Nki

�, where Œ�� means the class of �
in the Grothendieck group of finite groups modulo the relations given by short exact
sequences (so a group is equivalent to the sum of its composition factors).

In the application to [4], the groups �k and � Nk are both extensions of a finite
cyclic group Fk D F Nk of order 1, 2, 3, 4 or 6 by a finite 2-generator abelian group,
so the above the obstruction does not arise. Nevertheless, we have been unable to
resolve the question in general for this case, even if the Fk are trivial. And when an
Fk is non-trivial we have a corresponding edge restriction (Definition 2.3), namely
the subgroup of .a; b/ 2 �k �� Nk for which a and b have the same image in Fk , so
we are outside the cases of symmetry restriction where we have any results.
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