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Nil graded self-similar algebras

Victor M. Petrogradsky’, Ivan P. Shestakov?and Efim Zelmanov?

Abstract. In [19], [24] we introduced a family of self-similar nil Lie algebras L over fields of
prime characteristic p > 0 whose properties resemble those of Grigorchuk and Gupta—Sidki
groups. The Lie algebra L is generated by two derivations

vi =01+ 10T @+ 17T @3 + 187 @0s + 18705 + 187 (96 + ).
vy = 02 +lf7_1(83 + t2p_1(34 +l§)_l(a5 + zf‘1(86 +::4))

of the truncated polynomial ring K[t;,i € N | tip = 0,7 € N] in countably many variables.
The associative algebra A generated by v1, v2 is equipped with a natural Z & Z-gradation. In
this paper we show that for p, which is not representable as p = m> +m + 1, m € Z, the
algebra A is graded nil and can be represented as a sum of two locally nilpotent subalgebras.
L. Bartholdi [3] and Ya. S. Krylyuk [15] proved that for p = m? + m + 1 the algebra A is not
graded nil. However, we show that the second family of self-similar Lie algebras introduced in
[24] and their associative hulls are always Z 7 -graded, graded nil, and are sums of two locally
nilpotent subalgebras.
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1. Definitions and constructions

Let L be a Lie algebra over a field K of characteristic p > Oandletadx: L — L,
ad x(y) = [x, y]for x, y € L, be the adjoint map. Recall that L is called a restricted
Lie algebra or Lie p-algebra [12], [26], [1]if L additionally affords a unary operation
x> xlPl xeL, satisfying

i) (APl = ArxlPl forall A € K, x € L;

ii) ad(x!?l) = (adx)? forall x € L;
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2The second author was partially supported by grants FAPESP 05/60337-2 and CNPq 304991/2006-6.
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iii) for all x, y € L one has

p—1
(x + )P =Pl 7 4 5 s ), (1)
i=1

where i s; (x, y) is the coefficient of Z/~! in the polynomial (ad(Zx 4 y))?~1(x)
in L[Z], with Z is an indeterminate. Also, s;(x, y) is a Lie polynomial in x, y
of degrees i and p — i, respectively.

Suppose that L is a restricted Lie algebra and X C L. Then by Lie,(X) we
denote the restricted subalgebra generated by X. Let H C L be a Lie subalgebra,
i.e., H is a vector subspace which is closed under the Lie bracket. Then by H, we
denote the restricted subalgebra generated by H. In what follows by an associative
enveloping algebra of a Lie algebra we mean the associative algebra without 1.

We recall the notion of growth. Let A be an associative (or Lie) algebra generated
by a finite set X. Denote by AX") the subspace of A spanned by all monomials in
X of length not exceeding n. If A is a restricted Lie algebra, then we define [16]
AXn) — ([xil,...,xix]pk | xi; € X, spk < n)g. In either situation, one defines
the growth function:

ya(n) = ya(X.n) = dimg AX™, n e N.

The growth function clearly depends on the choice of the generating set X . Further-
more, it is easy to see that the exponential growth is the highest possible growth for
Lie and associative algebras. The growth function y4(n) is compared with the poly-
nomial functions n¥, k € Rt, by computing the upper and lower Gelfand—Kirillov
dimensions [14], namely

GKdim 4 — Tim 4

n—oo Inn

]
GKdim A = lim /4@

nooo NN

’

This setting assumes that all elements of X have the same weight equal to 1. We shall
mainly use a somewhat different growth function. Namely, we consider the weight
function wtv, v € A, and the growth with respect to it: y4(n) = dimg(y | y €
A, wty < n), n € N, where the elements of the generating set X have different
weights. Standard arguments [14] prove that this growth function yields the same
Gelfand—Kirillov dimensions.

Now suppose that char K = p > 0. Denote I = {0,1,2,...} and N, =
{0,1,..., p — 1}. Consider the truncated polynomial algebra

R=Kl;,iel|tf =0,i €Il

Let N; = {a: I — N,} be the set of functions with finitely many nonzero values.
For o € N}{ denote |a| = Y ;o and 1% = [[;; 1" € R. The set {t% | o € NI{}
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is clearly a basis of R. Consider the ideal R™ spanned by all elements %, « € le ,

|| > 0. Let 9; = a%, i € I, denote the partial derivatives of R.
We introduce the so-called Lie algebra of special derivations of R [22], [23], [20]:

W(R) = { X yens t* T1Y Ay 3, | i, € K, ij € 1).
It is essential that the sum at each t%, @ € le, is finite.

Lemma 1.1 ([21]). For arbitrary complex numbers a; € C, i € N, there exist
gradations on the algebras R, W (R) such that wt(t;) = —a;, wt(0;) = a;.

Denote by 7: R — R the shift endomorphism t(#;) = t;41,{ € I. Extending it
by t(d;) = di+1,1 € I, we get the shift endomorphism v: W (R) — W (R).

2. First example
We define the following two derivations of R:

vy =01 + l‘g’_l(az + l‘lp_l(83 + 15_1(84 + l‘f_l(as + tf_l(aé +--)))),
v =8y + 177 @3 + 127 @y + 12705 + 127 (06 + --4)))).

These operators are special derivations vq,v2, € W (R). Observe that we can
write these derivations recursively:

v =3d1 + t(f_lr(vl), vy = t(v1).

Let L = Lie,(v1,v2) C W(R) C Der R be the restricted subalgebra generated
by {v1, v2}. This algebra was introduced in [24]. In the case of characteristic p = 2,
it coincides with the Fibonacci restricted Lie algebra introduced in [19]. Similarly,
define

v =77 ) =0 + 175 @ipr + 177 Qi + 177 Gigz + ). (@)
i =1,2,.... Wealso can write
v; = 0; +l 1v,+1, i=1,2,.... 3)

Lemma 2.1. Let L = Lie,(v1,v2) C Der R be the restricted Lie algebra generated
by {v1, v2}. Then the following relations holds:

(1) [vi,vig1] = 17 2vigs fori =1,2,...;
(2) [vi,vig2] = =1 1161;1 vit3 fori =1,2,.
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(3) in general, forall 1 <i < j we have

—1,p—2
[vi,vj] = =(ti—1ti ... tj—3)? 1ff_1 V)15

4) foralln > 1, j > 0 we have the action

(tn—ltn '..tj—z)p_la n< .j’
vn(tj) =41, n = j,
0, n>j;

(5) forallk,n > 1,

(ke - b)) P P Vg0, k<41,
0, k>n+1;

6) vP = —tF viys foralli > 1.

Proof. The claims (1)—(5) are proved in [24]. The last claim for p = 2 is checked
in [19], we assume that p > 3. We have v/ = (3; + tf__llviﬂ)”. By formula
(1) we obtain the sum of commutators of length p. We apply the previous claim
[0, tf’__llviﬂ] = —tip__lltf_zvprz. In further commutators we cannot use tf__llviﬂ
anymore because of the total power of #;_;. Thus, only one term in (1) is nontrivial,
namely s,—1(x,y) = (ad x)?~1(y). We get

v? = @ + 177 vig1)?
= (ad ai)p_l(f,-p__llvi+1)
= (ad ;)P 2(=t? 't P vi40)

p—1
= —1;_{ Vi42. U

Lemma 2.2. Let H be the K-linear span of all elements tgotf” .. t:ﬁgz v, where

0<o; <p—1lLoy— <p—2n=>1. Then H is a restricted subalgebra of Der R
and L C H.

Proof. Let us prove that H is a Lie subalgebra. We apply Lemma 2.1 to check that
the product of two monomials of type above is expressed via such monomials again.
Letn < m. Then

(120 102, 1o P2y,
= 180 P2ty tz)P B0 P2 P2

m—2 tm—1Vm+1 4)

m
_ ; i —1
+15° .52 Y (O T1 zl.ﬂ )ﬂjzj’ Vn () V-
BiF0 i=0,i#]
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The first te?rm is of type . .. lﬁ’fngﬁj Um+1, 8 required.

By claim (4), v,, acts on all £;"s trivially because m > n > n —2 > i, and no

respective terms appear. It remains to consider the second term above. Similarly,
vy (tj) is nonzero only for n < j, namely

Un (1) = (ta—ttn ... 1;2)""', n < j.

In this case, n < j < m — 2 and the new ¢;’s above have indices such thatn — 1 <
-+ < j —2 < m — 4. We again obtain monomials of the required type. Hence,
H C DerR is a Lie subalgebra. The last claim of Lemma 2.1 implies that the
subalgebra H C Der R is restricted. O

Let H, denote the K-linear span of all elements 7,° . . . 7,52y, where 0 < o; <

p_l’am—Zip_Q'?mzn-

Corollary 2.3. (1) H,<H,n>1;H =Hy D Hy D ---.
2) Let L, = L N H, forn > 1. Then the factor algebras H,/Hy, > and
L, /L, 5 are abelian with the trivial p-mapping for alln > 1.

Proof. The fact that H,, are ideals and H, /H}, 1 are abelian follows from eq. (4) and
other arguments of Lemma 2.2. In order to check that the p-mapping on H, /H, 4>
is trivial, we use claim (6) of Lemma 2.1 and eq. (1). ]

A Lie algebra L is said to be just-infinite if it is infinite-dimensional and any proper
factor algebra L/ J is finite dimensional.

Lemma 2.4. The algebra L is not just-infinite.

Proof. Inthe case p = 2 all elements {v,, | n > 1} belong to L; see [19]. In the case
of arbitrary characteristic the situation is more complicated, nevertheless, we have
V2, € L forall n > 1; see [24]. Now let J be the restricted ideal of L generated by
the elements

— -2
[V1,v2n] = —(tot1 - . . t2n—3)? 15 2 V2nt1, 1 >2.

Observe that they all contain the common factor t(‘)” _1, which has no chances to
disappear by any further commutation. So, all elements of J have the factor té’ -1
Hence, the ideal J is abelian, infinite-dimensional, and has the trivial p-mapping.
Since the elements {v,, | n > 1} are linearly independent modulo J, we conclude

that dim L/J = oo. O

In our constructions we are motivated by analogies with constructions of self-
similar groups and algebras [9] [8], [2]. In particular, the following property is
analogous to the periodicity of the Grigorchuk and Gupta—Sidki groups [7], [10].

Theorem 2.5 ([19], [24]). Let L = Lie,(vy,v2) C Der R be the restricted subalge-
bra generated by {v1,v2}. Then L has a nil p-mapping.
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3. The first example: the gradation

In this section we introduce a Z&@7Z-gradation on our algebras. Suppose that all
elements v; are homogeneous, wtv; = —wtt; = a; € R, wherei = 1,2..., such
that all terms in (3) are homogeneous. To achieve this, we assume that

ai =wtv; =wtd; =(p—Dwtti_; +wtvip; = —(p—Daj—1 +aj41.
Hence, we get the recurrence relation
aj+1 =a; + (p—1a;—1, i €N. )
This equation has the characteristic polynomial ¢(t) = t> —t — (p — 1) with two

different roots
1+ JAp =3 1—4p -3
B 2 ’ 2 '
It is well known that all solutions of the recurrence relation (5) are linear combinations
of the two sequences a; = A ieN,andag; = )Ui,i e N.
We distinguish two cases.

A AL =

Irrational: A, Ay are irrational, e.g., for primes p = 2,5, 11, 17,19, ....

Rational: )\, A are rational (moreover, in this case A, A, are integers), e.g., for
primes p = 3,7,13,31,43,.... Note that in thiscase A € Z and p = A2 — 1 + 1.

Remark. To the best of our knowledge the question if there are infinitely many such
primes is open. A more general question asks whether there are infinitely many primes
of the form an? + bn + c, where a, b, ¢ are relatively prime integers, a positive,
a + b and ¢ are not both even, and b? — 4ac is not a perfect square; see [11], p. 19.

The existence of two linearly independent weight functions yields a Z & Z-
gradation.

Theorem 3.1. Let L = Lie, (v, v2) C Der R be the restricted subalgebra generated
by {v1, v2}. We introduce weight and superweight functions as follows:

14+ V4p —3
wtv, = —wtt, = A", n=1,2,...,l=++,
1—4p—3
swtvn=—swtt,,=)t’1’_2, n=1,2,...,11=+.

Then:

(1) Both functions are additive on products of homogeneous elements of L.

(2) We have the Z.&®Z.-gradation L = @a,bzo L, p, where L,y is spanned by
products with a factors vy and b factors v,.
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(3) Letv € L, p, wherea,b > 0. Then

wtv = Aa + A%b, swtv = — a—+b.

p—1
Proof. Let us introduce one more function that takes values in R?:
Wt(v;) = — Wt(;) = (wt(v;), swt(v;)), i € N.

Consider a monomial v € L that is a product of a elements v, and b elements vs.
Then both weight functions are well defined on v. Moreover, Wt(x) is additive on
products of monomials in v; and ¢;. Therefore, we get

Wt(v) = a Wt(vy) + b Wt(vo).

Consider another pair of integers (a’,b’) # (a,b) and a monomial v € L that
contains a’, b’ letters vy, v, respectively. By construction,

Wt(v1) = (4, A7) = (4, =4/ (p = 1)),
Wt(vp) = (A%, 1) =A+p—1,1).
Since these two vectors are linearly independent over R, we get Wt(v') = a’ Wt(vy)+

b" Wt(v2) # Wt(v) and the claimed Z @ Z-gradation L = P, 5> La.p-
Letv € L, , where a,b > 0. Then

Wty = awtvy + bwtvy = al + bAZ,
A

a+b. O
p—1

SWtv = a swtvy + b swtv, =akl_1 +b=—

Let us introduce a new coordinate system on the plane. For a point A = (x, y) €
R? we define its new coordinates as
£ =wt(x,y) = Ax + A%y = A(x + Ay),
(x,y) € R%. (©6)

n =swt(x,y) = — x+y:kl_1(x+/\1y)

p—1

We will refer to these coordinates as the weight and the superweight of the point
(x, y) respectively. Gradations by superweights yield triangular decompositions.

Corollary 3.2. Consider the restricted Lie algebra L = Lie, (v1, v2), the associative
algebra A = Alg(vy,vy) generated by v1, vy, the universal enveloping algebra
U = U(L), and the universal restricted enveloping algebra u = u(L). Then:

(1) All these algebras have decompositions into direct sums of three subalgebras,

L=L,.®dLy®dL_, A=A DPA)D A_,
U=Us0Uy0U-, u=u duydu_,
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where L 1, Lo, and L _ are spanned by homogeneous elements v € L such that
swtv > 0, swtv = 0, and swtv < 0, respectively. The decompositions of other
algebras are defined similarly.

(2) In the irrational case we have Lo = {0}, Ag = {0}, Uy = {0}, up = {0}.

Proof. Suppose that A is irrational. Consider 0 # v € L, 5, where (a,b) € Z2.
Suppose that swt(v) = —aA/(p—1)+b = 0. If b # Othen A € Q, a contradiction.
O

Lemma 3.3. In the irrational case for an arbitrary lattice point (a,b) € Z?> C R?

we have )

A
|wi(a,b) -swila.b)| = ——. (a.b) € 2.
p_

\Y

Proof. Note that the polynomial ¥ (1) = t2 + ¢t — (p — 1) has the discriminant
D = 4p — 3 and no rational roots. For arbitrary integers a,b € Z we have 0 #
|¥(a/b)| = |a® +ab — (p — 1)b?|b~2. Hence, |a®> + ab — (p — 1)b?| > 1. By the
formulas (6),

|wt(a.b) - swt(a, b)| = |A(a + Ab)AT (@ + A1D)]

= [AA7Ma® + (A + Ap)ab + Ad b
A2 A2
= la®> +ab— (p — DHb*| =
p—1 P

O

Lemma 3.4. Supposethat p > 3. Letw = tgotfl ...t:ﬁgz Up, 1 > 1, be amonomial
of the subalgebra H above, namely, 0 < a; < p —1, ap—» < p—2. Then

(1) A2 < wt(w) <A™,

() [swt(w)| < C|A1|" 2 in case p > 5;

(3) |swt(w)| < pnincase p = 3.

Proof. Clearly, wtw < wtv, < A". Incase n = 1 we have only one monomial
w = vp and our estimates are valid. Let n > 2, we obtain the bounds

n—2
wt(w) = wt(vy) + D o Wt
i=0
n—2
= /\n — Z Oli/\l
i=0

n—-2
>AM—(p=1 Y XN 4+ A2
i=0
(p—DA2 1
z )L"(l - pl—l/)t + A_Z)

A2—A—(p— —
— (B 1y = g2,
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Claims 2 and 3. In case p > 5 we have |A| > 1 and get the bound

n—2 n—2
fswi)] = [ switvn) + 3 aswis| < "+ (p = D8 = Cll
1=
If p =3 then A; = —1; in this case we have the bound
n—2
| swt(w)| = ‘swt(vn) + Y aiswtti| <14+ (p—1Dm—1) < pn. O
i=0
In [24] it is shown that
. Inp i 2Inp
GKdimL = —, GKdimA < ;
m InA ma = InA

where 1 < Inp/InA < 2. This and the theory of M. Smith [25] imply that the
growth of u(L) is subexponential and therefore intermediate. Let us determine the
growth of u (L) more precisely. We will need some definitions. Consider two series
of functions ®Z (n), ¢ = 2, 3, of natural argument with the parameter « € R*:

Cbi(n) = n“, CDZ(n) = exp(n“/(“H)).

We compare functions f: N — R™T by means of the partial order: f(n) <* g(n) if
and only if there exists N > 0 such that f(n) < g(n),n > N. Suppose that A is a
finitely generated algebra and y4(n) is its growth function. We define the dimension
of level q, q € {2, 3}, and the lower dimension of level q by

Dim? A = inf{e € RT | y4(n) <* ®4(n)},
Dim? A4 = sup{a € RY | y4(n) >* ®4(n)}.

The g-dimensions for arbitrary level ¢ € N were introduced by the first au-
thor in order to specify the subexponential growth of universal enveloping algebras
[17]. They generalize the Gelfand—Kirillov dimensions. The condition Dim? A =
Dim? A = « means that the growth function y4(n) behaves like ®Z(n). The di-
mensions of level 2 are exactly the upper and lower Gelfand—Kirillov dimensions
[6], [14]. The dimensions of level 3 correspond to the superdimensions of [4] up to
normalization (see [18]). We describe the growth of u(L) in terms of Dim> A.

Lemma 3.5. Let 0 = In p/InA. The growth of the restricted enveloping algebra
u(L) is intermediate and
1 < Dim? u(L) < 6.

Proof. We have Dim? L = GKdim L = 6. Now the claim follows from (the proof)
of Proposition 1 in [18]. That proposition deals with the growth of the universal
enveloping algebra, some minor changes are needed to modify the proof for the
restricted enveloping algebra. O
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4. The first example: weight structure

The weights in the case p = 2 were studied in [21]. In that case the weights of
the algebras L = Lie,(vy,v2) and A = Alg(vy, v2) lie in the strips || < const,
while the weights of the restricted enveloping algebra # = u(L) are bounded by a
parabola-like curve || < C£?, for some constant 0 < 6 < 1.

Now we assume that p > 3. We shall show that the weights of all three algebras
L, A, u belong to a region bounded by a parabola-like curve as well.

Inl < B+ Cln§

Figure 1. p = 3, weights of L.

Theorem 4.1. Let p > 3. Consider subalgebras the H, L of Der R. Then in terms
of the new coordinates (£, 1), homogeneous elements of these algebras belong to the
following plane regions.

(1) For p = 5 we have |n| < C&?, where 0 < 6 = LICITRSS ]

InA
(2) For p = 3 we have || < B + C Iné,

for some positive constants B, C.

Proof. Take a basis monomial w = 7,°1;" ...1,"5%v, € H. Consider the new

coordinates (£,7) of w. By Lemma 3.4 we have § = wt(w) > A""2. Hence,
n <2+ In&/InA. Consider the case p > 5, we apply the second estimate of
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Lemma 3.4:
In| = [swt(w)| < C|A1["=2 < C|A, "€/ % = cghlrrl/mA,
In the case p = 3 we use the third estimate of Lemma 3.4 to get
Inl = lswt(w)| < pn < p(2+1n§/InA). O
Theorem 4.2. Consider the restricted enveloping algebra u = u(L). Then there

exist constants C > 0 and 0 < 6 < 1 such that homogeneous elements of u belong
to the plane region

In| < Cé&°.

Vs

111213141516 1718 1920 *

Figure 2. p = 5, weights of L.

Proof. The case p = 2 was settled in [21]. First, consider the case p > 5.

We shall consider coordinates of homogeneous elements of the bigger algebra
u(H) D u =u(L). Let {w; | i € N} be the ordered basis of H, which consists of
the elements w = 7 °17" ... 15", vy, where 0 < @; < p—1and0 < @y < p—2.
Consider the function /: {w; | i € N} — N, [(¢;°1{"...1,"5%v,) = n. By
Lemma 3.4 we have the estimates

A2 < wt(w) < A", |swt(w)| < C|A]"%, neN. (7

Consider a standard basis element of u(H) of type v = wj, ... w;,, where the w;;
enter the product in ordered way and each w; occurs at most p — 1 times. Let
N = max{l(w;;) | 1 < j =< s}. Denote by py the number of w;; such that
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k = l(w;;), forall k = 1,...,N. Consider the new coordinates (&, ), where
& = wt(v) and n = swt(v). We apply (7) and obtain the estimates
1 N k N k C N k
= 2 MAT <E< 3 AT, Il = e X kAl (®)
A% k= k=1 L

Let @« = a(v) be the number such that || = £*. Then

N
oy i)
n§ = In(y i1 miAk)

The number of different basis elements w; such that /(w;) = k equals p*¥~2(p—1) <
p*=1 for all k > 2. Each of them can enter v at most (p — 1) times. Hence we get

(€))

e < p*lp -1 <pk. k=1.....N. (10)

Let us evaluate the maximal value of «(v) among all v’s with the fixed value
E(v) = &. From (8) we have & < Z,Icvzl Ak < A2, this estimate yields the
range of values for the denominator of (9). To estimate the numerator of (9) we
consider the maximum of the linear function

N
fxr, .. xn) = > xk|)tl|k, 0 < xx fpk, k=1,...,N,
k=1

subject to a constraint of the form of a hyperplane Z,ICVZI xxAK = A, where the
constant A is such that §g < A4 < /\250. Note that the denominator of (9) is fixed on
each hyperplane. Since |A;| < A, the maximum on each hyperplane is achieved when
we assign the biggest possible values for x; with the smallest k’s. By (10), we have
the bounds 0 < x; < p*,k = 1,..., N. Thus, we take the point on the hyperplane
X = pk, k=1,...,m, for some m < N, the appropriate value x;1; € [0, pk+1),
and xg 4, = -+ = xn§ = 0. This point yields the upper bound

In (ﬁ(zgq PRIAE + X1 |Ar[FHD))
In (35 (2821 (PA)F 4 xp 1 AFHT))

_In(Cp" ") _ 5 In G+ In(plda))

In (Cp p™A™) %lncz—l-ln(px) )

a(v) <

When £ increases, the number m increases as well. Let us choose the number 6 such
that In(p|A1])/In(pA) < @ < 1. Then for sufficiently large & we have a(v) < 0,
hence || < £9. By choosing an appropriate constant C we get |n| < C&? for all
£>0.

It remains to consider the case p = 3. For elements of the Lie algebra we have the
bound || < B 4 C In&. Recall that A1 = —1 in this case. Take A, = 3/2 < A = 2.
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Let {w; | i € N} be the ordered basis of H as above. Then we have |[swt(w;)| < A],
where n = I(w;), for i > N, provided that the number N is sufficiently large. We
find constant C; such that [swt(w;)| < Clx\lz(wf ) for all w;. Now we can formally
apply the arguments above. O

Consider the triangular decompositions of Corollary 3.2.

Corollary 4.3. Let L, A, u be as above and consider the decompositions given by
the superweight

L=L,6LydL_, A=A PAyDPA_, u=uy dugdu_.

(1) Then the upper and lower components L 1, A+, uy, are locally nilpotent.
(2) In the irrational case, the zero components above are trivial and we obtain
decompositions into a direct sum of two locally nilpotent subalgebras.

Proof. Consider, for example, #4. The line n = swt(x,y) = 0 separates the
upper and lower components. By (6), this line is given by the equation x + A1y =
0. Consider homogeneous monomials uy,...,ux € u4 above this line and the
subalgebra A = Alg(uy,...,ur) generated by these elements. Let N € N and
consider u = ;. y U, ... uj;,, &; € K. Then it is geometrically clear (see
Figure 3) that the respective vectors of all homogeneous components belong to the

Figure 3. p > 2, weights of u.

shaded angle. All components go out of the region |n| < C&? provided that N is
sufficiently large. Hence, AN = 0. O

In irrational case, we obtain some more examples of finitely generated infinite-
dimensional associative algebras that are direct sums of two locally nilpotent subal-
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gebras. Those examples were constructed in [13], [5]. Our examples, A and u, are
of polynomial and intermediate growth.

5. Second example

Now we turn to the study of the second example suggested in [24]. We keep the same
notations I, R, L, A, H as in the first example, but now they denote another objects.

We add some negative indices to the index set / = {2—p,2—p+1,...,0,1,...}
and consider the truncated polynomial ring R = K[t; | i € I1/(tf | i € I). Then
we introduce the derivations

Vm = O + 1 Ot + 1] Omaz + 10 3@ +..))). m = L.

As above, 7: R — R is the endomorphism given by t(f;) = t;4+1,i € I. Observe
that
U = O + t,ﬁi;ﬂrlvmﬂ =" (), m=>1.

Now let L = Lie,(vy,...,vp) C Der R denote the restricted subalgebra gener-
ated by {v1, v, ..., vp}. In the case of characteristic p = 2, this example coincides
with the Fibonacci restricted Lie algebra [19]. In what follows we assume that p > 3.

We also can consider a slight modification L= Lie,(01,...,0p—1,vp) C Der R.

Let us make the convention that if the upper index of a product (sum) is less than
the lower index, then the product is empty. Similarly, if we listasetas{i,i+1,...,j}
and i > j, then the set is assumed to be empty.

Lemma 5.1. Let p > 3. The following commutation relations hold:

D) [vm, vm+1] = _( ;nz_r:;—p—{-z tjp_l)tﬁ_zvm—i—p Jorm = 1;
(2) forn > 1, k > 2 we have (both sets in the product below may be empty)
k—1
[Vn: Vntr] = — > ( I1 t:—_;+l)trf;12'1’n+j+p§

j =max{0,k—p+1 [€{l...../7}U
Jmmadk—p+1} A5

3) foralln,m > 1

— —1 -
~(ITjZm—pr )8 Vnpe m <n+p—1,

(00, vm] = { =12 " Vntp, m=n+p-—1,
0, m>n+p—1;

(4) foralln > 1, j > 0 we have the action

j—p (P71
i=m—p+1"7i
Um(t]) = 19 m = j’

0, m> j;

, m<j,
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5) v = —(ln_(p_l)...ln_l)P_lvn+p foralln > 1.

Proof. Let us check the first claim:

—1
[Vins Vm+1] = [Om + tg_p+1vm+1’ VUm+1] = [0m, VUm+1]

-1
= [am7 OIm+1 + I,Z_p+2(am+2 4.
p—1 -1
ot by (Ot p— 1+ Umtp) )]
p—1 P 1 -2
~ly—pi2 - tm—1 "l Vmtp-

To prove the claim (3), observe that the product is nontrivial only form < n+ p—1
In this case we get

[0, Vm] = [0, O + 1 iy (oo 17 B pt + 177

n—1 1 5
=—( TII zj” )tr Vnp-
j=m—p+1

Untp) - )]

Now we prove claim (2). Let k > 2. We have
[Vn, Vntk] = [0 + [p p+1(an+1 +-

4P +k p—1 Onti— 1+ln+k pUn+k) -
= [0, —i—l‘,f ;—H(a”‘*‘l + - +tn+k —p— 13n+k 1)s Vntk]

Z(

)9 vn+k]

L p+1)[8n+1’ Un+k]

1

M’r T

J
p—1
Jj=max{0,k— p+1}(ll_[1 t” p+l)[an+j,an+k

+1 +k p+1(
k—1 J Jj+p—1
()1

)27 vy s
n—p+I n— p+q n+j ‘ntj+p-
j=max{0,k—p+1} [=1 q=k+1

-1
“t+ t:—f—j Un+j+p)]

Claim 4 is proved as follows:

j—p _
Um(t;) = @m + 125 G @+ )N =TT 7
i=m—p+1

Consider the last claim.

. 1 p—1
v = (O + 100 p0n+1) + 4y plwis pUnt2)? = (x + y)P.
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We have

adx(y) —ad(a +tn+1 —p n+1)(tn+1 ptnp+2 pvn+2)
1 1
= t;f+1 pt:+2 pad(an)(vn+2)
-1 —1,.p—2
- :_(p_l) n_(p_z)([n—(p—:&) oo ln—l)p ty{) Un+p

)p_ll,f)_z

= _([n—(p—l) N ] Un+p>

where the factor (¢,—(p—1)tn—(p—2))? ~1is present for all p > 3. We consider all Lie
polynomials in x and y. We observe that a further multiplication by y is zero due to
the total power of the letter ¢, 11—, which cannot be killed by derivations involved.
Thus, only one term in (1) is nontrivial, namely s,—1(x, y) = (ad x)?~1(y). We get

vy = (x+y)?
= (ad x)?7(y)
= (ad x)?7?([x, y])
(ad(a + tn (p 1) n+1))p_2(_(tn—(p—l) s tn—l)p_ll;f_Zvn-i-p)
= (ad an)p 2(_(l‘n—(p—l) cee ln—l)p_lt;f_Zvn+p)
= _([n—(p—l) cee ln—l)p_lvn-l—p' 0
Lemma 5.2. Let H be the K-linear span of the set
{tw2 P ,?”p"llt,?”p”vn |0<a;<p—l,opp<p—-2,n>1}.

Then H is a restricted subalgebra of Der R and L C H.

Proof. We use Lemma 5.1 and proceed as in Lemma 2.2. O

6. Second example: weights

As above we will define a gradation on the Lie algebra L by presenting it as a
direct sum of weight spaces, all weights being complex numbers. We assume that
wt(0;) = —wt(t;) = a; € C foralli € N. Let us choose numbers a; so that all
terms in the expression of v; are homogeneous. We obtain @; = wtd; = wtd; 1 +
(p—Dwtti—pt1 = a;+1 — (p — 1)a;—p+1, which implies the recurrence relation

ai =ai—1+ (p—Dai—p, i>p.
Let us study its characteristic polynomial ¢(x) = x? — x?~1 — (p —1).

Lemma 6.1. Consideraprime p > 3 andthe polynomial ¢ (x) = xP—xP~1—(p—1).
Then:
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(1) ¢(x) is irreducible and has distinct roots.
(2) The equation ¢(x) = 0 has a unique real root M.

(3) Let Ay, ..., Ap—1 be the remaining complex roots. Then 1 < |A;| < A9 <2 for
ali=1,...,p—1
(4) Let |A;| = |Aj|. Theni = j, or A = A;.

Proof. Let us prove that ¢(x) is irreducible modulo p. Making the substitution
x = 1/y, we see that it is sufficient to prove that g(y) = y? — y + 1 is irreducible
over Z,. Leta be aroot of g, thensoisa + 1 andhencea +i,i =0,...,p—1,are
all roots of g(y). If m(x) is the minimal polynomial of a then m; (x) = m(x —i) is
the minimal polynomial of the root a + i. Therefore, the minimal polynomials of all
roots of g(y) have the same degree k, and hence any polynomial that has a common
root with g(y) has an irreducible factor of degree k. If g(y) is not irreducible then
it is a product of several polynomials of degree k, which implies that k is a proper
factor of p = deg g, a contradiction.

Since the equation is over Q, the roots are distinct.

We consider the derivative ¢(x)’ = x?72(px — (p — 1)). It has two roots
xXo = 0and x; = 1 —1/p. Observe that $(0) = ¢(1) = —(p — 1). Also,
$(2) =2P71 — (p — 1) > 0. We conclude that ¢(x) = 0 has a unique real root Ao,
moreover 1 < Ag < 2.

Now let A1 be a root. Recall that 11 ¢ R. Suppose that |A;| > Ao. We have two
equalities AZ —AZ™" = p—1and A? — A?~" = p — 1, the latter can be depicted as
a non-degenerate triangle in C. By the triangle inequality, p — 1 > |A{|? — |A{|?~ L.
Consider the function f(x) = x? — x?~1, x € R. Using the derivative f’(x) =
xP72(px — (p — 1)) we see that f(x) is increasing for x > 1 — 1/p. We obtain

p—1=A0 =227 = f(o) < fF(M]) = P = M|P P < p—1

This contradiction proves that |11| < Ag. Suppose that [A;| < 1 for aroot A; ¢ R.
Then p— 1 = A? —AP~' = |A? —AP7!| < 2, a contradiction. Thus |A;| > 1 and
the third claim is proved.

To prove claim (4), let A1, A5 be two different complex roots of our equation such
that |A1| = |A,|. Consider the triangle in C given by p — 1 = A2 — A?™", where
p — 1, A¥ start from the origin. Consider all triangles on the plane with the same
side p — 1, with the other sides of lengths |A|?, |A1|?~! and with the longest side
starting from the origin. There are only two such trlangles They correspond to A
and A;. We have two possibilities. a) 1Y = Aé’, )Lp = /Xp ,and sO A1 = As.
b) AP = A2 AP71 = X2 and we get A1 = A,. O

Denote s = (p — 1)/2. For simplicity, order the roots so that A ;s = A; for
i =1,...s. Weintroduce the p weight functions

wtj () =27, neN, j=0,....,p—1
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By Lemma 1.1, these weight functions define a gradation on the subalgebra
H C Der R defined above. For a homogeneous element v € H let

Wt(v) = (Wto v, Wty v, ..., Wt,_1v), v e H.

Theorem 6.2. Let L = Lie,(vy,...,vp) C H C Der R be the restricted subalge-
bras defined above. Then:

(1) The weight functions are additive on products of homogeneous elements of H
and L.
(2) We have the Z.P-gradation
L= @ La1 ..... aps

ajp,....ap>0

where Lg, ... a, is spanned by products with a; factors vi, i = 1,..., p.
(3) Letv € Lg,,..a, wherea; > 0. Then

p
wtiv = ) akk’-‘, j=0,1,....,p—1.
k=1
Proof. The additivity follows from Lemma 1.1 and our construction.

Also, by our construction all components of v,, n € N, have the same weights,
namely, wtj(v,) = wt; 0, = /\;‘, j=01,....,.p—1,n e N. Letv e Lbea
monomial that contains a; factors v; fori = 1,..., p. From additivity of the weight
functions we get

(Wtov, ..., Wty v) = Wto

14
= Y ar Wt(vg)
k=1

)4
= 3 ap(b.. Ak )

k
p p
= ( Z aklk,..., Z akk’;_l).

k=1 k=1

The vectors Wt(vy) = ()tk, e A’Ij_l), k = 1,..., p, are linearly independent by
Vandermonde’s argument. Thus we get the claimed Z?-grading and the third claim
as well. (]

This example also has a nil p-mapping.

Theorem 6.3. Let L = Lie,(vi,v2,...,vp) C Der R be the restricted Lie algebra
as above. Then L has a nil p-mapping.

Proof. We refer the reader to the arguments in [24], where it was proved that the
p-mapping is nil for a class of restricted Lie algebras. O
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7. Second example: triangular decomposition

Now we want to introduce new coordinates in R?. Let X = (xq,...,xp) € R? and
set

Eo(X) = x1Ag + x2A3 + -+ 4+ xpA 0,
E1(X) = X141 + XA + -+ + xpAL,

Ep—1(X) = x1hy_ +x2A0 4+ xpAD

Since &; (x), & 45(X) are conjugate complex numbers for j = 1,...,s, we get real
coordinates (19, 11, ...,Np—1) € R? as follows (recall that s = (p — 1)/2). Let
X = (x1,...,xp) € R? and define

X1A 4+ X243 + - + xpAL, k=0,
M (X) = {Re(x1 + x24; +---+x,,)t,f_1), k=1,...,s,
Im(x1+x2)t}c+---+xp/\,€_l), k=s+1,...,p—1.

We also consider these functions on homogeneous elements v € L. Suppose that
v € Lg,,...a,- Then we take X = (ai,...,ap) € R? and define

E(w) =§(x), n=nix), j=0..p—-L

Lemma 7.1. The introduced weight functions have the following properties:
(1) Letv € Lg,, .4, Then

& (v) = wt; v, j=0,....,p—1,
no(v) = §o(v) = wto v,

nj(v) = Re(wt;j(v)/A;), j=1,....5,

nj(v) = Im(wt; (v)/A;), j=s+1,...,p—1L

(2) These functions are additive on products of homogeneous elements of L.

(3) Consider a lattice point 0 # X = (ny,...,n,) € ZP C RP. Then n; (%) # 0
forall j =1,...,5s.

(4) Denote X = (ny,...,np) € Z? C RP, and let n;(x) = 0 for some
je{s+1,...,p—1}. Thenx = (n1,0,...,0).

Proof. The first and second claims are obvious.
Let us prove the third claim. Fix 0 # X = (ny,...,n,) € ZP and j € {1,...,s}.
Suppose that
r]j()_c)=Re(n1—{—nz/\j—l—--'—l—np)kf_l):O. (11
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We have the field extension Q@ C Q(A;). Denote r = ny +naAj +--- + np/\f_l.
Suppose that r # 0. From (11) it follows that » = iq, where ¢ € R. Consider
r2 € RNQ(A;) # Q(A;). Since [Q(A;) : Q| = p is a prime, we obtain r? € Q.
Then |Q(r) : Q| = 2 divides p, a contradiction. Therefore, r = n; + nzA; +
cetn p)kf ~! = 0, which is a contradiction to the fact that A j satisfies an irreducible
polynomial of degree p.

We now turn to claim (4). Fixx = (ny,...,np) € ZPand j € {s+1,...,p—1}.
Suppose that

nj(x) =Im(ny +nyd; +--- +npkj’_1) =0.

Denote r = ny 4+ naA; + -+ + np)tf_l. Thenr € RN Q(A;) # Q(A;). Since
|Q(A;) : Q] = pis aprime, we get r € Q. We obtain (n; —r) + nzA; +--- +
np)k},]_l = 0, which is possible only in the case ny = r,ny =--- =n, = 0. O

Now we get triangular decompositions where the zero component is always trivial.

Corollary 7.2. Let L = Lie,(vy,...,vp), let A = Alg(vy,...,vp) be the restricted
Lie algebra and associative algebra generated by {vy,...,vp}. Let U = U(L),
u = u(L) be the universal enveloping algebra and the restricted enveloping algebra.
Then all these algebras have decompositions into direct sums of two subalgebras as
follows:

L=L,®L_, A=A, DA_, U=U+0U_, u=u;rdu_.

Proof. Fix j € {1,...,s} and set, for example,
L,=(weL|n>0), L_=(velL]|njk) <O0). O

Observe that the weight functions 1, j € {s+1,..., p—1}, also yield triangular
decompositions, but in this case the components L, and A are nontrivial and finite
dimensional. Indeed, consider Ly = (v € L | nj(v) = 0). By claim (4) of
Lemma 7.1, Ly is spanned by products of the element v; only. Since v g 0, we

conclude that Lo = (v, v]), similarly, A9 = (v{ | 1 < j < p?)is of dimension at

most p2.

Lemma 7.3. Let v = t;xf;” ...t,?ﬁ;,” v, € H,n € N, be as in Lemma 5.2. Then
(1) 2577 < wtov < Ag;

(2) |wtjv| < C|Aj|"forall j =1,..., p—1, where C is some constant;

3) Inj)| = ClAj|" forall j =1,...,p—1.
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Proof. The upper bound wtg v < Aj is obvious. We check the lower bound. Recall
that oy, < p —2. Then

wio(v) = A5 — X aikp
i=2—p
n—p n—p
>d—(p—=1) 2 A+ 2
i=2—p
Ay © n—p
A —(p—1)———+ Ay
=40 = (P =Dy A
— Ag_p(kop - Aop_1 - (p - 1)) + /\n—p — An—p
1—1/4 0 o
Similarly,
n g |
|wtj (v)| = |/\j - > oz,-/\;|
i=2—
=T+ k=D X Al
i=2—p
< A" +(p_1)M < C|A"]
- L=1/[A;1 = 77
The third claim follows by the previous lemma. O

Now we are going to show that the weights of all three algebras L, A, u again
belong to a paraboloid-like region of R” stretched along the axis 7.

Theorem 7.4. Let p > 3 and L = Lie,(v1,...,vp), H be the subalgebras of Der R
as above. Then the new coordinates (1o, 11, . .., Np—1) of homogeneous elements of
these algebras belong to the following region of RP:

6 In|A;| .
|1<Cny, 6, =——— <1, =1,....,p—1,
Injl < Mo j In A J p

where C is a positive constant.

Proof. Take a basic monomial w = t;f;” .. .t,‘f’_’gz v, € H and consider its new
coordinates (1o, 71, -, 7p—1). By Lemma 7.3, we have o = wto(w) > Ay 7.
Hence, n < p + Inno/InAy. We apply the third estimate of Lemma 7.3

ln|lj|/lnl()
0

In;] < CIA; " < C|A;|PHm0/ 4o — Cy ., j=1...,p—1. 0O
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Theorem 7.5. Let p > 3. Consider A = Alg(vy,...,vp) and u = u(L). Then
the new coordinates of homogeneous elements of these algebras also belong to the
following region of R?:

mil<Cng. j=1...p—1,
for some constants C > 0and 0 < 6 < 1.

Proof. Letv = t;f;” .. .t,?ﬁ;”vn € H,n € N. By Lemma 7.3 we have bounds
similar to (7),

Ao P =wov =AG, I = CIGIY, Al <o, j=1.....p— 1
It remains to repeat the arguments of Theorem 4.2. O

Corollary 7.6. Consider the triangular decompositions of Corollary 7.2,
L=L+@L_, A=A+€BA_, u=u+69u_.
Then all the components L 1, Ay, and u are locally nilpotent subalgebras.

Proof. The arguments of Corollary 4.3 apply. O

8. Second example: growth

In this section we study the growth of the algebras that appear in the second example.
In particular we check that L is infinite-dimensional.

Theorem 8.1. Let L = Lie,(vy,...,vp), and let Ao be the root of the characteristic
polynomial above. Then GKdim L < 1n p/In Ao.

Proof. We use the embedding of Lemma 5.2. Fix a number m. Consider a homoge-
neous element g € L C H such that wtg(g) < m. Then it is a sum of monomials
v = t;xf;” ...t,‘fﬁ;"vn, where 0 < o; < p—1landa,—, < p—2. By Lemma 7.3,
m > wto(g) > Ay ©. Hence,n <ng = p + [Inm/In A
We estimate the number of monomials v of weight not exceeding m and obtain
the bound
n
Primy < 35 pl < Bk < pITIUNA o Copinp/ i, O

n=1

Corollary 8.2. Let L = Lie,(vy,...,Vp), Ag as above and 6 = In p/InAq. Then
the growth of the restricted enveloping algebra u(L) is intermediate and

1 < Dim? u(L) < 6.
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Proof. The result follows by Proposition 1 of [18]. O

Theorem 8.3. Let A = Alg(vy,....vp). Then GKdim A < 21n p/In Ay, where A
is as above.

Proof. We embed our algebra into a bigger associative subalgebra A C Alg(H) C
End(R), where H was defined in Lemma 5.2. We claim that elements of Alg(H)
can be expressed as linear combinations of the monomials

. 0= fi<p-1.B=1neN, (12

_ 2—p an—p B Bn
w=1t," "ty 2 vy

where in case 8, = 1 we additionally assume that o, , < p — 2.

Indeed, let us consider a product w = u;...us of basis monomials u; =
t;/i;p...trlf,?i;pvmi € H, where yp,—p < p—2,i = 1,...,s. Consider the
largest index M(w) = max{m; | i = 1,...,s}. Then the highest #; is tas—,. Our

product satisfies the following property VTmax: if the highest vy is unique in the
product, then the highest variable 73/, has the total occurrence at most p — 2. We
straighten the product to the form (12). Let us check that VTmax is kept under the
process. We perform the following transformations.

Case 1. vyVy, = VU, + [Un, U] if n > m. Consider the terms of the product
[Vn, Um], see Lemma 5.1, claims (1), (2). If we get a new highest vy, we obtain the
highest 737/, in degree p — 2 as well, the property VTmax is kept. If we get one
more term vy, then there is nothing to check. If we obtain v; such that j < M,
then we get at most ¢, ,, and the total degree of the highest 737, is not changed, as
required.

Case 2. vY is expressed as in claim (5) of Lemma 5.1. We can only get a new
highest vps+ with no occurrence of #ps/_p, at all.

Case 3. The remaining operation is v,t; = t;v, + v, (). Observe the second
term. This operation cannot kill the highest vys sincei < M — p < M. Also, ¢; is
replaced by a product of smaller #;s only. Thus, VI'max is kept.

Finally, we arrive at a monomial of type (12), the property VI'max means that in
the case 8, = 1 we have o,—, < p — 2. Thus, Alg(H ) is spanned by the claimed
monomials.

Let us estimate the weight of a monomial (12). In case §,, = 1, we use the fact
that o, < p — 2 and obtain, as in Lemma 7.3, the estimate

n—p . n—p .
wto(w) > Ag— Y wiAg=Af—(p—1) > Ay+ A'O’_p
i=2—p i=2—p
> An —(p_ ])ﬂ +An_p
-0 1—1/Ag  °

_ A P0G -2 —(p 1)
1—1/¢

+Ao P =2p "
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In the case B, > 1 we have

n— n—
Wo) = 205~ (p—1) % Ay =M (p—1) S Mty =
i=2—p i=2—p

Fix a number m. Consider all monomials w of type (12) such that wto(w) < m.
Both cases above yield the estimate m > wto(w) > Aq ”. Thenn < no = p +
[Inm/1n Ag].

Now we can estimate the number of monomials w of weight not exceeding m and
obtain the bound

no 2ng—1 2mm/InAg+2p—1
~ 2n—1 po— P 0 ~ 2Inp/InA
7am) <> p <37 = Y ~ Com?np/inko, O
1

n=

Let us prove the following commutation relation.
Lemma 8.4. Foralln > 1 we have

(ad Un)p_l(vn-l-p—l)

= —VUn+p
— tn(tn— p+1) n+1 Un+p+1
p—2
—ta(tn—p+1tn—p+2 “ tar1)?™ 'fn+2 Un+p+2

-1 .p—2
—ta(tn—pt1 -tz tny1 ... tngp-3)? byt p—2VUn+2p—2

-1, ,p2
=2ty (tn—p+1---n—1"nt1--. Zn+p—2)p : tn+p_1vn+2p—l'

Proof. In claim (2) of Lemma 5.1 we take k = p — 1

p—2
p—1 p—2
[Vn Untp—1] = — > ( I1 t,_ p+l)[n+j Un+j+p (13)
j=0 lefl....j}U
{p....p+j—1}
-2
=—t/""vyp (14)
— (tn— p+1° t)?” n+1vn+p+1
-2
— (th—p+1tn—p+2 - tatn+1)?~ 'ln+2 Un+p+2

— (th—ptitn—pt2. 2 tnlpy1 .. . tngp— 3)p n+p —oUn42p—2.

Let us further commute this expression with v,. Recall that v, acts trivially on
tn—p+1.-..th—2. By Lemma 5.1 all elements v,(t;), where j > n + 1, contain the

factor 17!

n—p+1 and we get zero due to the other factor tf__; +1- The same argument
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applies to [v,,v;], where j > n 4+ p + 1. Thus, we get a nontrivial action only in
the cases v, (t,) = 1 and [vy, Vn4 p]. Therefore when commuted with v, all terms in
the sum above except the first one change only the power of #,,. Considering the first
term we take into account that

[vnyvn+p] —(th— p+1) n+1 vn+p+1

— (th—ptitn—pi2 - thr1)?™ n+2Un+p+2

-2
— (tn—p+1ln—p+2ln—p+3 - Zn+1tn+2)p : tn+3 Un+p+3

)77

— (tn—p+1ln—p+2 - In—1"In+1ln+2 . . . Inyp—2 ,,J:p 1Vn+2p—1.

Each time when commuting the first term of (14) with v,, these summands add to
the existing ones. As a result, there exist some scalars By ; fors = 1,...,p —1,
j =1,..., p—1suchthat
(ad vy)* (Un-i-p—l)

= (D=2 ... (=) ongp

- —1,p—2
+ Bt (th—p+1)? tn+1vn+p+1

+ Bs,2t (Zn p+1ln—p+2- tn+l) n+2 Un+p+2

+ Bs pat?  (tn—ptitn—p+2 - - tn—2 " tnt1 .. . tntp—3)P~ n+p —2VUn+2p—2

+ Bs,p—ll,{)_s([n—p-i-l[n—p—l—z coidp—1Ingr iy p— 2)P™ n+p 1Vn+2p-1-
We have the recurrence relations B4, ; = —sBsj — (—1)°s!, s > 1 forall j =
1,..., p — 1 and the original conditions By,;; = B1p = --- = By,p—» = —1 and

Bi,p—1 =0. Wecheck thatforall j =1,...,p—2weget By j = (=1)°sl,s > 1;
in particular, B,_; ; = —1. For j = p—1wehave Bs ,—; = (=1)’(s —1)(s — 1)!,
s > 1, in particular B,_1 p—1 = —2. O

Let us introduce the following convenient notations. Let v = Zizm ajv; € H,
where a; € R. Then we write v = O(vy,). Also suppose that rq,...,rs € R. Then
denote by O((r1,...,7s)vm) an element h € H of the form

N
h= 3 rigi, & = O(vm).
i=1
Lemma 8.5. For all m > 1 we have [H, O(vy,)] = O(vpm).

Proof. Follows from the commutation relations of Lemma 5.1. O
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Lemma 8.6. Let L = Lie,(vy....,vp). Then there exist homogeneous elements of
the form

Uy = v + O((t2” p,.. t_ 2[,Jrl)v,prl) elL, n=1,2,....

Proof. We begin with U; = vy,...,0, = vp,. Assume that all elements U;, with
i <n+ p—1,are defined. By assumption we have elements

n = vn + O((12) P 54 2p+1)vn+1) €L,

Untp—1 = Untp— 1+0((t2 p,---,l,f) pl)vn+p)€L-

Consider [V, Un+p—1]. We use (13) and the commutation relations of Lemma 5.1 to
get

g e z,f‘;+10<vn+p+1)

[un, O((13- py---alf ,;)Un+p)] o3, POV S p)vn+p)

[Vt p 1,0<<r2 e P )Vt = 05, 17

[0, 12" 2,,+1)vn+1) Oty 120t p)]
= 0((z2 e T Ont pg)

Let us explain the third relation. The action v,y ,—1(¢;) for some v,, inside O (v,+1)
can appear only form > j 4+ p > n + 2p — 1. On the other hand, by Lemma 5.1
[Vt p—1,Vn+1] = O(Unyp+1). The second and forth equations are obtained by
similar arguments. Thus,

2p+1)vn+p+1)

[On, Ontp—1] = =17 2Vt p + 17 p+10(vn+P+1) + 0((t5- p’ el p)vn+p)
We repeat this process and observe that our additional factors cannot disappear:
(ad 5n)p_1(5n+p—1) = —Un+p + tn p+1 O(Un—i-p—i-l) + 0(([2 —pr ,l,f) I})vn+p)~
15)

The last term can contain a summand with vy, p, it is of the form 7/ "oy p» where
r € Rand2—p <i < n— p. But, by construction, the element (15) is homogeneous.
Then

Wto(vn+p) = WtO(tip_lrvn+p)
= Wto(Un+p) + Wio(t/ ')
< Wto(Vn+p) — (p — 1)” )

a contradiction. Therefore, the last term (15) contains only v, withm >n + p + 1.
Then we set

~ ~ -1
Untp = —(ad 0p)?" (vn+p 1) = Unyp + 0(02 p""’tnp—p+1)vn+p+1)’

and the induction step is proved. O

Corollary 8.7. The Lie algebra L = Lie,(v1, ..., vp) is infinite-dimensional.
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