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Nil graded self-similar algebras

Victor M. Petrogradsky1, Ivan P. Shestakov2and Efim Zelmanov3

Abstract. In [19], [24] we introduced a family of self-similar nil Lie algebras L over fields of
prime characteristic p > 0 whose properties resemble those of Grigorchuk and Gupta–Sidki
groups. The Lie algebra L is generated by two derivations
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of the truncated polynomial ring KŒti ; i 2 N j tp
i

D 0; i 2 N� in countably many variables.
The associative algebra A generated by v1, v2 is equipped with a natural Z ˚ Z-gradation. In
this paper we show that for p, which is not representable as p D m2 C m C 1, m 2 Z, the
algebra A is graded nil and can be represented as a sum of two locally nilpotent subalgebras.
L. Bartholdi [3] and Ya. S. Krylyuk [15] proved that for p D m2 CmC 1 the algebra A is not
graded nil. However, we show that the second family of self-similar Lie algebras introduced in
[24] and their associative hulls are always Zp-graded, graded nil, and are sums of two locally
nilpotent subalgebras.
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1. Definitions and constructions

Let L be a Lie algebra over a field K of characteristic p > 0 and let ad x W L ! L,
ad x.y/ D Œx; y� for x; y 2 L, be the adjoint map. Recall thatL is called a restricted
Lie algebra or Liep-algebra [12], [26], [1] ifL additionally affords a unary operation
x 7! xŒp�, x 2 L, satisfying

i) .�x/Œp� D �pxŒp� for all � 2 K, x 2 L;
ii) ad.xŒp�/ D .ad x/p for all x 2 L;
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2The second author was partially supported by grants FAPESP 05/60337-2 and CNPq 304991/2006-6.
3The third author was partially supported by the NSF grant DMS-0758487.
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iii) for all x; y 2 L one has

.x C y/Œp� D xŒp� C yŒp� C
p�1P
iD1

si .x; y/; (1)

where isi .x; y/ is the coefficient ofZi�1 in the polynomial .ad.ZxCy//p�1.x/

in LŒZ�, with Z is an indeterminate. Also, si .x; y/ is a Lie polynomial in x, y
of degrees i and p � i , respectively.

Suppose that L is a restricted Lie algebra and X � L. Then by Liep.X/ we
denote the restricted subalgebra generated by X . Let H � L be a Lie subalgebra,
i.e., H is a vector subspace which is closed under the Lie bracket. Then by Hp we
denote the restricted subalgebra generated by H . In what follows by an associative
enveloping algebra of a Lie algebra we mean the associative algebra without 1.

We recall the notion of growth. LetA be an associative (or Lie) algebra generated
by a finite set X . Denote by A.X;n/ the subspace of A spanned by all monomials in
X of length not exceeding n. If A is a restricted Lie algebra, then we define [16]
A.X;n/ D h Œxi1 ; : : : ; xis �

pk j xij 2 X; spk � niK . In either situation, one defines
the growth function:

�A.n/ D �A.X; n/ D dimK A
.X;n/; n 2 N:

The growth function clearly depends on the choice of the generating set X . Further-
more, it is easy to see that the exponential growth is the highest possible growth for
Lie and associative algebras. The growth function �A.n/ is compared with the poly-
nomial functions nk , k 2 RC, by computing the upper and lower Gelfand–Kirillov
dimensions [14], namely

GKdimA D lim
n!1

ln �A.n/

ln n
;

GKdimA D lim
n!1

ln �A.n/

ln n
:

This setting assumes that all elements ofX have the same weight equal to 1. We shall
mainly use a somewhat different growth function. Namely, we consider the weight
function wt v, v 2 A, and the growth with respect to it: Q�A.n/ D dimKhy j y 2
A; wt y � ni, n 2 N, where the elements of the generating set X have different
weights. Standard arguments [14] prove that this growth function yields the same
Gelfand–Kirillov dimensions.

Now suppose that charK D p > 0. Denote I D f0; 1; 2; : : : g and Np D
f0; 1; : : : ; p � 1g. Consider the truncated polynomial algebra

R D KŒti ; i 2 I j tpi D 0; i 2 I �:
Let NI

p D f˛ W I ! Npg be the set of functions with finitely many nonzero values.
For ˛ 2 NI

p denote j˛j D P
i2I ˛i and t˛ D Q

i2I t
˛i

i 2 R. The set ft˛ j ˛ 2 NI
p g
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is clearly a basis of R. Consider the ideal RC spanned by all elements t˛ , ˛ 2 NI
p ,

j˛j > 0. Let @i D @
@ti

, i 2 I , denote the partial derivatives of R.
We introduce the so-called Lie algebra of special derivations ofR [22], [23], [20]:

W .R/ D ˚ P
˛2NI

p
t˛

Pm.˛/
j D1 �˛;ij

@
@tij

j �˛;ij 2 K; ij 2 I�
:

It is essential that the sum at each t˛ , ˛ 2 NI
p , is finite.

Lemma 1.1 ([21]). For arbitrary complex numbers ai 2 C, i 2 N, there exist
gradations on the algebras R, W .R/ such that wt.ti / D �ai , wt.@i / D ai .

Denote by � W R ! R the shift endomorphism �.ti / D tiC1, i 2 I . Extending it
by �.@i / D @iC1, i 2 I , we get the shift endomorphism � W W .R/ ! W .R/.

2. First example

We define the following two derivations of R:
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These operators are special derivations v1; v2 2 W .R/. Observe that we can
write these derivations recursively:

v1 D @1 C t
p�1
0 �.v1/; v2 D �.v1/:

Let L D Liep.v1; v2/ � W .R/ � DerR be the restricted subalgebra generated
by fv1; v2g. This algebra was introduced in [24]. In the case of characteristic p D 2,
it coincides with the Fibonacci restricted Lie algebra introduced in [19]. Similarly,
define

vi D � i�1.v1/ D @i C t
p�1
i�1 .@iC1 C t

p�1
i .@iC2 C t

p�1
iC1 .@iC3 C � � � ///; (2)

i D 1, 2, : : : . We also can write

vi D @i C t
p�1
i�1 viC1; i D 1; 2; : : : : (3)

Lemma 2.1. Let L D Liep.v1; v2/ � DerR be the restricted Lie algebra generated
by fv1; v2g. Then the following relations holds:

(1) Œvi ; viC1� D �tp�2
i viC2 for i D 1; 2; : : : ;

(2) Œvi ; viC2� D �tp�1
i�1 t

p�2
iC1 viC3 for i D 1; 2; : : : ;
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(3) in general, for all 1 � i < j we have

Œvi ; vj � D �.ti�1ti : : : tj �3/
p�1t

p�2
j �1 vj C1I

(4) for all n � 1, j � 0 we have the action

vn.tj / D

8̂
<
:̂

.tn�1tn � � � tj �2/
p�1; n < j;

1; n D j;

0; n > j I

(5) for all k; n � 1,

Œ@n; vk� D

8̂
<
:̂

�.tk�1tk : : : tn�1/
p�1t

p�2
n vnC2; k < nC 1;

�tp�2
n vnC2; k D nC 1;

0; k > nC 1I

(6) vp
i D �tp�1

i�1 viC2 for all i � 1.

Proof. The claims (1)–(5) are proved in [24]. The last claim for p D 2 is checked
in [19], we assume that p � 3. We have vp

i D .@i C t
p�1
i�1 viC1/

p . By formula
(1) we obtain the sum of commutators of length p. We apply the previous claim
Œ@i ; t

p�1
i�1 viC1� D �tp�1

i�1 t
p�2
i viC2. In further commutators we cannot use tp�1

i�1 viC1

anymore because of the total power of ti�1. Thus, only one term in (1) is nontrivial,
namely sp�1.x; y/ D .ad x/p�1.y/. We get

v
p
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Lemma 2.2. Let H be the K-linear span of all elements t˛0

0 t
˛1

1 : : : t
˛n�2

n�2 vn, where
0 � ˛i � p � 1, ˛n�2 � p � 2, n � 1. ThenH is a restricted subalgebra of DerR
and L � H .

Proof. Let us prove that H is a Lie subalgebra. We apply Lemma 2.1 to check that
the product of two monomials of type above is expressed via such monomials again.
Let n < m. Then

Œt
˛0

0 : : : t
˛n�2

n�2 vn; t
ˇ0

0 : : : t
ˇm�2

m�2 vm�

D �t˛0

0 : : : t
˛n�2

n�2 .tn�1 : : : tm�3/
p�1t

ˇ0

0 : : : t
ˇm�2

m�2 t
p�2
m�1 vmC1

C t
˛0
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˛n�2

n�2

P
ǰ ¤0

� m�2Q
iD0;i¤j

t
ˇi

i

�
ǰ t

ǰ �1

j vn.tj /vm:

(4)
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The first term is of type : : : tˇm�2

m�2 t
p�2
m�1 vmC1, as required.

By claim (4), vm acts on all t˛i

i s trivially because m > n > n � 2 � i , and no
respective terms appear. It remains to consider the second term above. Similarly,
vn.tj / is nonzero only for n � j , namely

vn.tj / D .tn�1tn : : : tj �2/
p�1; n � j:

In this case, n � j � m � 2 and the new ti ’s above have indices such that n � 1 <

� � � < j � 2 � m � 4. We again obtain monomials of the required type. Hence,
H � DerR is a Lie subalgebra. The last claim of Lemma 2.1 implies that the
subalgebra H � DerR is restricted.

LetHn denote theK-linear span of all elements t˛0

0 : : : t
˛m�2

m�2 vm, where 0 � ˛i �
p � 1, ˛m�2 � p � 2, m � n.

Corollary 2.3. (1) Hn GH , n � 1; H D H1 � H2 � � � � .
(2) Let Ln D L \ Hn for n � 1. Then the factor algebras Hn=HnC2 and

Ln=LnC2 are abelian with the trivial p-mapping for all n � 1.

Proof. The fact thatHn are ideals andHn=HnC2 are abelian follows from eq. (4) and
other arguments of Lemma 2.2. In order to check that the p-mapping on Hn=HnC2

is trivial, we use claim (6) of Lemma 2.1 and eq. (1).

A Lie algebraL is said to be just-infinite if it is infinite-dimensional and any proper
factor algebra L=J is finite dimensional.

Lemma 2.4. The algebra L is not just-infinite.

Proof. In the case p D 2 all elements fvn j n � 1g belong to L; see [19]. In the case
of arbitrary characteristic the situation is more complicated, nevertheless, we have
v2n 2 L for all n � 1; see [24]. Now let J be the restricted ideal of L generated by
the elements

Œv1; v2n� D �.t0t1 : : : t2n�3/
p�1t

p�2
2n�1v2nC1; n � 2:

Observe that they all contain the common factor tp�1
0 , which has no chances to

disappear by any further commutation. So, all elements of J have the factor tp�1
0 .

Hence, the ideal J is abelian, infinite-dimensional, and has the trivial p-mapping.
Since the elements fv2n j n � 1g are linearly independent modulo J , we conclude
that dimL=J D 1.

In our constructions we are motivated by analogies with constructions of self-
similar groups and algebras [9] [8], [2]. In particular, the following property is
analogous to the periodicity of the Grigorchuk and Gupta–Sidki groups [7], [10].

Theorem 2.5 ([19], [24]). Let L D Liep.v1; v2/ � DerR be the restricted subalge-
bra generated by fv1; v2g. Then L has a nil p-mapping.



878 V. M. Petrogradsky, I. P. Shestakov and E. Zelmanov

3. The first example: the gradation

In this section we introduce a Z˚Z-gradation on our algebras. Suppose that all
elements vi are homogeneous, wt vi D � wt ti D ai 2 R, where i D 1; 2 : : : , such
that all terms in (3) are homogeneous. To achieve this, we assume that

ai D wt vi D wt @i D .p � 1/wt ti�1 C wt viC1 D �.p � 1/ai�1 C aiC1:

Hence, we get the recurrence relation

aiC1 D ai C .p � 1/ai�1; i 2 N: (5)

This equation has the characteristic polynomial �.t/ D t2 � t � .p � 1/ with two
different roots

� D 1C p
4p � 3
2

; �1 D 1 � p
4p � 3
2

:

It is well known that all solutions of the recurrence relation (5) are linear combinations
of the two sequences ai D �i , i 2 N, and ai D �i

1, i 2 N.
We distinguish two cases.

Irrational: �, �1 are irrational, e.g., for primes p D 2, 5, 11, 17, 19, : : : .

Rational: �, N� are rational (moreover, in this case �, �1 are integers), e.g., for
primes p D 3, 7, 13, 31, 43, : : : . Note that in this case � 2 Z and p D �2 � �C 1.

Remark. To the best of our knowledge the question if there are infinitely many such
primes is open. A more general question asks whether there are infinitely many primes
of the form an2 C bn C c, where a, b, c are relatively prime integers, a positive,
aC b and c are not both even, and b2 � 4ac is not a perfect square; see [11], p. 19.

The existence of two linearly independent weight functions yields a Z ˚ Z-
gradation.

Theorem 3.1. Let L D Liep.v1; v2/ � DerR be the restricted subalgebra generated
by fv1; v2g. We introduce weight and superweight functions as follows:

wt vn D � wt tn D �n; n D 1; 2; : : : ; � D 1C p
4p � 3
2

;

swt vn D � swt tn D �n�2
1 ; n D 1; 2; : : : ; �1 D 1 � p

4p � 3
2

:

Then:

(1) Both functions are additive on products of homogeneous elements of L.

(2) We have the Z˚Z-gradation L D L
a;b�0 La;b , where La;b is spanned by

products with a factors v1 and b factors v2.
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(3) Let v 2 La;b , where a; b � 0. Then

wt v D �aC �2b; swt v D � �

p � 1aC b:

Proof. Let us introduce one more function that takes values in R2:

Wt.vi / D � Wt.ti / D .wt.vi /; swt.vi //; i 2 N:

Consider a monomial v 2 L that is a product of a elements v1 and b elements v2.
Then both weight functions are well defined on v. Moreover, Wt.�/ is additive on
products of monomials in vi and tj . Therefore, we get

Wt.v/ D aWt.v1/C bWt.v2/:

Consider another pair of integers .a0; b0/ ¤ .a; b/ and a monomial v0 2 L that
contains a0, b0 letters v1, v2, respectively. By construction,

Wt.v1/ D .�; ��1
1 / D .�;��=.p � 1//;

Wt.v2/ D .�2; 1/ D .�C p � 1; 1/:
Since these two vectors are linearly independent over R, we get Wt.v0/ D a0 Wt.v1/C
b0 Wt.v2/ ¤ Wt.v/ and the claimed Z ˚ Z-gradation L D L

a;b�0 La;b .
Let v 2 La;b , where a; b � 0. Then

wt v D awt v1 C bwt v2 D a�C b�2;

swt v D a swt v1 C b swt v2 D a��1
1 C b D � �

p � 1aC b: �

Let us introduce a new coordinate system on the plane. For a point A D .x; y/ 2
R2 we define its new coordinates as

� D wt.x; y/ D �x C �2y D �.x C �y/;

� D swt.x; y/ D � �

p � 1x C y D ��1
1 .x C �1y/

.x; y/ 2 R2: (6)

We will refer to these coordinates as the weight and the superweight of the point
.x; y/ respectively. Gradations by superweights yield triangular decompositions.

Corollary 3.2. Consider the restricted Lie algebra L D Liep.v1; v2/, the associative
algebra A D Alg.v1; v2/ generated by v1; v2, the universal enveloping algebra
U D U.L/, and the universal restricted enveloping algebra u D u.L/. Then:

(1) All these algebras have decompositions into direct sums of three subalgebras,

L D LC ˚ L0 ˚ L�; A D AC ˚ A0 ˚ A�;
U D UC ˚ U0 ˚ U�; u D uC ˚ u0 ˚ u�;
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where LC, L0, and L� are spanned by homogeneous elements v 2 L such that
swt v > 0, swt v D 0, and swt v < 0, respectively. The decompositions of other
algebras are defined similarly.

(2) In the irrational case we have L0 D f0g, A0 D f0g, U0 D f0g, u0 D f0g.
Proof. Suppose that � is irrational. Consider 0 ¤ v 2 La;b , where .a; b/ 2 Z2.
Suppose that swt.v/ D �a�=.p�1/Cb D 0. If b ¤ 0 then � 2 Q, a contradiction.

Lemma 3.3. In the irrational case for an arbitrary lattice point .a; b/ 2 Z2 � R2

we have

j wt.a; b/ � swt.a; b/j � �2

p � 1; .a; b/ 2 Z2:

Proof. Note that the polynomial  .t/ D t2 C t � .p � 1/ has the discriminant
D D 4p � 3 and no rational roots. For arbitrary integers a; b 2 Z we have 0 ¤
j .a=b/j D ja2 C ab � .p � 1/b2jb�2. Hence, ja2 C ab � .p � 1/b2j � 1. By the
formulas (6),

j wt.a; b/ � swt.a; b/j D j�.aC �b/��1
1 .aC �1b/j

D j���1
1 jja2 C .�C �1/ab C ��1b

2j

D �2

p � 1 ja2 C ab � .p � 1/b2j � �2

p � 1: �

Lemma3.4. Suppose thatp � 3. Letw D t
˛0

0 t
˛1

1 : : : t
˛n�2

n�2 vn, n � 1, be amonomial
of the subalgebraH above, namely, 0 � ˛i � p � 1, ˛n�2 � p � 2. Then

(1) �n�2 � wt.w/ � �n;
(2) jswt.w/j � C j�1jn�2 in case p � 5;
(3) jswt.w/j � pn in case p D 3.

Proof. Clearly, wtw � wt vn � �n. In case n D 1 we have only one monomial
w D v1 and our estimates are valid. Let n � 2, we obtain the bounds

wt.w/ D wt.vn/C
n�2P
iD0

˛i wt ti

D �n �
n�2P
iD0

˛i�
i

� �n � .p � 1/
n�2P
iD0

�i C �n�2

� �n
�
1 � .p�1/��2

1�1=�
C 1

�2

�

D �n
�

�2���.p�1/

�2��
C 1

�2

� D �n�2:
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Claims 2 and 3. In case p � 5 we have j�1j > 1 and get the bound

jswt.w/j D
ˇ̌
ˇ swt.vn/C

n�2P
iD0

˛i swt ti
ˇ̌
ˇ � j�1jn C .p � 1/ j�1jn�2

1�1=j�1j D C j�1jn�2:

If p D 3 then �1 D �1; in this case we have the bound

j swt.w/j D
ˇ̌
ˇ swt.vn/C

n�2P
iD0

˛i swt ti
ˇ̌
ˇ � 1C .p � 1/.n � 1/ � pn:

In [24] it is shown that

GKdim L D lnp

ln �
; GKdim A � 2 lnp

ln �
;

where 1 < lnp= ln � < 2. This and the theory of M. Smith [25] imply that the
growth of u.L/ is subexponential and therefore intermediate. Let us determine the
growth of u.L/ more precisely. We will need some definitions. Consider two series
of functions ˆq

˛.n/, q D 2; 3, of natural argument with the parameter ˛ 2 RC:

ˆ2
˛.n/ D n˛; ˆ3

˛.n/ D exp.n˛=.˛C1//:

We compare functions f W N ! RC by means of the partial order: f .n/ �a g.n/ if
and only if there exists N > 0 such that f .n/ � g.n/, n � N . Suppose that A is a
finitely generated algebra and �A.n/ is its growth function. We define the dimension
of level q, q 2 f2; 3g, and the lower dimension of level q by

Dimq A D inff˛ 2 RC j �A.n/ �a ˆq
˛.n/g;

Dimq A D supf˛ 2 RC j �A.n/ �a ˆq
˛.n/g:

The q-dimensions for arbitrary level q 2 N were introduced by the first au-
thor in order to specify the subexponential growth of universal enveloping algebras
[17]. They generalize the Gelfand–Kirillov dimensions. The condition Dimq A D
Dimq A D ˛ means that the growth function �A.n/ behaves like ˆq

˛.n/. The di-
mensions of level 2 are exactly the upper and lower Gelfand–Kirillov dimensions
[6], [14]. The dimensions of level 3 correspond to the superdimensions of [4] up to
normalization (see [18]). We describe the growth of u.L/ in terms of Dim3A.

Lemma 3.5. Let 	 D lnp= ln �. The growth of the restricted enveloping algebra
u.L/ is intermediate and

1 � Dim3 u.L/ � 	:

Proof. We have Dim2 L D GKdim L D 	 . Now the claim follows from (the proof)
of Proposition 1 in [18]. That proposition deals with the growth of the universal
enveloping algebra, some minor changes are needed to modify the proof for the
restricted enveloping algebra.
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4. The first example: weight structure

The weights in the case p D 2 were studied in [21]. In that case the weights of
the algebras L D Liep.v1; v2/ and A D Alg.v1; v2/ lie in the strips j�j < const,
while the weights of the restricted enveloping algebra u D u.L/ are bounded by a
parabola-like curve j�j � C�� , for some constant 0 < 	 < 1.

Now we assume that p � 3. We shall show that the weights of all three algebras
L, A, u belong to a region bounded by a parabola-like curve as well.

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

0
x

y

v1

v2

v3

v4

v5

v6
j�j � B C C ln �

�

y
D x

�

x C
2y D

0

Figure 1. p D 3, weights of L.

Theorem 4.1. Let p � 3. Consider subalgebras the H , L of DerR. Then in terms
of the new coordinates .�; �/, homogeneous elements of these algebras belong to the
following plane regions.

(1) For p � 5 we have j�j � C�� , where 0 < 	 D ln j�1j
ln �

< 1.

(2) For p D 3 we have j�j � B C C ln �,

for some positive constants B;C .

Proof. Take a basis monomial w D t
˛0

0 t
˛1

1 : : : t
˛n�2

n�2 vn 2 H . Consider the new
coordinates .�; �/ of w. By Lemma 3.4 we have � D wt.w/ � �n�2. Hence,
n � 2 C ln �= ln �. Consider the case p � 5, we apply the second estimate of
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Lemma 3.4:

j�j D jswt.w/j � C j�1jn�2 � C j�1jln �= ln � D C� ln j�1j= ln �:

In the case p D 3 we use the third estimate of Lemma 3.4 to get

j�j D jswt.w/j � pn � p.2C ln �= ln �/:

Theorem 4.2. Consider the restricted enveloping algebra u D u.L/. Then there
exist constants C > 0 and 0 < 	 < 1 such that homogeneous elements of u belong
to the plane region

j�j � C�� :

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1
2
3
4
5
6
7
8
9

0
x

y

v1

v2

v3

v4

v5

j�j � C ��

x
C �1

y
D 0

�

�

x C �y D 0

Figure 2. p D 5, weights of L.

Proof. The case p D 2 was settled in [21]. First, consider the case p � 5.
We shall consider coordinates of homogeneous elements of the bigger algebra

u.H/ � u D u.L/. Let fwi j i 2 Ng be the ordered basis of H , which consists of
the elements w D t

˛0

0 t
˛1

1 : : : t
˛n�2

n�2 vn, where 0 � ˛i � p� 1 and 0 � ˛n�2 � p� 2.
Consider the function l W fwi j i 2 Ng ! N, l.t˛0

0 t
˛1

1 : : : t
˛n�2

n�2 vn/ D n. By
Lemma 3.4 we have the estimates

�n�2 � wt.w/ � �n; jswt.w/j � C j�1jn�2; n 2 N: (7)

Consider a standard basis element of u.H/ of type v D wi1 : : : wis , where the wij

enter the product in ordered way and each wj occurs at most p � 1 times. Let
N D maxfl.wij / j 1 � j � sg. Denote by 
k the number of wij such that
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k D l.wij /, for all k D 1; : : : ; N . Consider the new coordinates .�; �/, where
� D wt.v/ and � D swt.v/. We apply (7) and obtain the estimates

1

�2

NP
kD1


k�
k � � �

NP
kD1


k�
k; j�j � C

j�1j2
NP

kD1


kj�1jk : (8)

Let ˛ D ˛.v/ be the number such that j�j D �˛ . Then

˛.v/ D ln j�j
ln �

�
ln

�
C

j�1j2
PN

kD1 
kj�1jk�

ln
�

1
�2

PN
kD1 
k�k

� : (9)

The number of different basis elementswi such that l.wi / D k equalspk�2.p�1/ <
pk�1 for all k � 2. Each of them can enter v at most .p � 1/ times. Hence we get


k � pk�1.p � 1/ < pk; k D 1; : : : ; N: (10)

Let us evaluate the maximal value of ˛.v/ among all v’s with the fixed value
�.v/ D �0. From (8) we have �0 � PN

kD1 
k�
k � �2�0, this estimate yields the

range of values for the denominator of (9). To estimate the numerator of (9) we
consider the maximum of the linear function

f .x1; : : : ; xN / D
NP

kD1

xkj�1jk; 0 � xk � pk; k D 1; : : : ; N;

subject to a constraint of the form of a hyperplane
PN

kD1 xk�
k D A, where the

constant A is such that �0 � A � �2�0. Note that the denominator of (9) is fixed on
each hyperplane. Since j�1j < �, the maximum on each hyperplane is achieved when
we assign the biggest possible values for xk with the smallest k’s. By (10), we have
the bounds 0 � xk � pk , k D 1; : : : ; N . Thus, we take the point on the hyperplane
xk D pk , k D 1; : : : ; m, for some m � N , the appropriate value xkC1 2 Œ0; pkC1/,
and xkC2 D � � � D xN D 0. This point yields the upper bound

˛.v/ �
ln

�
C

j�1j2
� Pm

kD1 p
kj�1jk C xkC1j�1jkC1

��

ln
�

1
�2

� Pm
kD1.p�/

k C xkC1�kC1
��

� ln
�
C1p

mj�1jm�

ln
�
C2pm�m

� D
1
m

lnC1 C ln.pj�1j/
1
m

lnC2 C ln.p�/
:

When �0 increases, the numberm increases as well. Let us choose the number 	 such
that ln.pj�1j/= ln.p�/ < 	 < 1. Then for sufficiently large � we have ˛.v/ � 	 ,
hence j�j � �� . By choosing an appropriate constant C we get j�j � C�� for all
� > 0.

It remains to consider the casep D 3. For elements of the Lie algebra we have the
bound j�j � B CC ln �: Recall that �1 D �1 in this case. Take �2 D 3=2 < � D 2.
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Let fwi j i 2 Ng be the ordered basis ofH as above. Then we have jswt.wi /j � �n
2 ,

where n D l.wi /, for i � N , provided that the number N is sufficiently large. We
find constant C1 such that jswt.wi /j � C1�

l.wi /
2 for all wi . Now we can formally

apply the arguments above.

Consider the triangular decompositions of Corollary 3.2.

Corollary 4.3. Let L, A, u be as above and consider the decompositions given by
the superweight

L D LC ˚ L0 ˚ L�; A D AC ˚ A0 ˚ A�; u D uC ˚ u0 ˚ u�:

(1) Then the upper and lower components L˙, A˙, u˙, are locally nilpotent.
(2) In the irrational case, the zero components above are trivial and we obtain

decompositions into a direct sum of two locally nilpotent subalgebras.

Proof. Consider, for example, uC. The line � D swt.x; y/ D 0 separates the
upper and lower components. By (6), this line is given by the equation x C �1y D
0. Consider homogeneous monomials u1; : : : ; uk 2 uC above this line and the
subalgebra A D Alg.u1; : : : ; uk/ generated by these elements. Let N 2 N and
consider u D P

j I n�N j̨uj1
: : : ujn

, j̨ 2 K. Then it is geometrically clear (see
Figure 3) that the respective vectors of all homogeneous components belong to the

0
x

y

u1

u2

uk

j�j � C ��

x
C �1

y
D 0

�

�

x C �y D 0

Figure 3. p � 2, weights of u.

shaded angle. All components go out of the region j�j < C�� provided that N is
sufficiently large. Hence, AN D 0.

In irrational case, we obtain some more examples of finitely generated infinite-
dimensional associative algebras that are direct sums of two locally nilpotent subal-
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gebras. Those examples were constructed in [13], [5]. Our examples, A and u, are
of polynomial and intermediate growth.

5. Second example

Now we turn to the study of the second example suggested in [24]. We keep the same
notations I ,R, L, A,H as in the first example, but now they denote another objects.

We add some negative indices to the index set I D f2�p; 2�pC1; : : : ; 0; 1; : : : g
and consider the truncated polynomial ring R D KŒti j i 2 I �=.t

p
i j i 2 I /. Then

we introduce the derivations

vm D @m C t
p�1
m�pC1.@mC1 C t

p�1
m�pC2.@mC2 C t

p�1
m�pC3.@mC3 C : : : ///; m � 1:

As above, � W R ! R is the endomorphism given by �.ti / D tiC1, i 2 I . Observe
that

vm D @m C t
p�1
m�pC1vmC1 D �m�1.v1/; m � 1:

Now let L D Liep.v1; : : : ; vp/ � DerR denote the restricted subalgebra gener-
ated by fv1; v2; : : : ; vpg. In the case of characteristic p D 2, this example coincides
with the Fibonacci restricted Lie algebra [19]. In what follows we assume thatp � 3.

We also can consider a slight modification QL D Liep.@1; : : : ; @p�1; vp/ � DerR.
Let us make the convention that if the upper index of a product (sum) is less than

the lower index, then the product is empty. Similarly, if we list a set as fi; iC1; : : : ; j g
and i > j , then the set is assumed to be empty.

Lemma 5.1. Let p � 3. The following commutation relations hold:

(1) Œvm; vmC1� D �� Qm�1
j Dm�pC2 t

p�1
j

�
t
p�2
m vmCp for m � 1;

(2) for n � 1, k � 2 we have (both sets in the product below may be empty)

Œvn; vnCk� D �
k�1P

j Dmaxf0;k�pC1g

� Q
l2f1;:::;j g[

fkC1;:::;j Cp�1g

t
p�1

n�pCl

�
t
p�2
nCj vnCj CpI

(3) for all n;m � 1

Œ@n; vm� D

8̂
<
:̂

�� Qn�1
j Dm�pC1 t

p�1
j

�
t
p�2
n vnCp; m < nC p � 1;

�tp�2
n vnCp; m D nC p � 1;

0; m > nC p � 1I

(4) for all n � 1, j � 0 we have the action

vm.tj / D

8̂
<
:̂

Qj �p
iDm�pC1 t

p�1
i ; m < j;

1; m D j;

0; m > j I
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(5) vp
n D �.tn�.p�1/ : : : tn�1/

p�1vnCp for all n � 1.

Proof. Let us check the first claim:

Œvm; vmC1� D Œ@m C t
p�1
m�pC1vmC1; vmC1� D Œ@m; vmC1�

D Œ@m; @mC1 C t
p�1
m�pC2.@mC2 C � � �

� � � C t
p�1
m�1.@mCp�1 C tp�1

m vmCp/ : : : /�

D �tp�1
m�pC2 : : : t

p�1
m�1 � tp�2

m vmCp:

To prove the claim (3), observe that the product is nontrivial only form � nCp�1.
In this case we get

Œ@n; vm� D Œ@n; @m C t
p�1
m�pC1.� � � C t

p�1
n�1 .@nCp�1 C tp�1

n vnCp/ : : : /�

D �� n�1Q
j Dm�pC1

t
p�1
j

�
t
p�2
n vnCp:

Now we prove claim (2). Let k � 2. We have

Œvn; vnCk� D Œ@n C t
p�1
n�pC1.@nC1 C � � �

� � � C t
p�1

nCk�p�1
.@nCk�1 C t

p�1

nCk�p
vnCk/ : : : /; vnCk�

D Œ@n C t
p�1
n�pC1.@nC1 C � � � C t

p�1

nCk�p�1
@nCk�1/; vnCk�

D
k�1P
j D0

� jQ
lD1

t
p�1

n�pCl

�
Œ@nCj ; vnCk�

D
k�1P

j Dmaxf0;k�pC1g

� jQ
lD1

t
p�1

n�pCl

�
Œ@nCj ; @nCk

C t
p�1

nCk�pC1
.� � � C t

p�1
nCj vnCj Cp/�

D �
k�1P

j Dmaxf0;k�pC1g

� jQ
lD1

t
p�1

n�pCl

�� j Cp�1Q
qDkC1

t
p�1
n�pCq

�
t
p�2
nCj vnCj Cp:

Claim 4 is proved as follows:

vm.tj / D .@m C t
p�1
m�pC1.� � � C t

p�1
j �p .@j C : : : / : : : //.tj / D

j �pQ
iDm�pC1

t
p�1
i :

Consider the last claim.

vp
n D ..@n C t

p�1
nC1�p@nC1/C t

p�1
nC1�pt

p�1
nC2�pvnC2/

p D .x C y/p:
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We have

ad x.y/ D ad.@n C t
p�1
nC1�p@nC1/.t

p�1
nC1�pt

p�1
nC2�pvnC2/

D t
p�1
nC1�pt

p�1
nC2�p ad.@n/.vnC2/

D �tp�1

n�.p�1/
t
p�1

n�.p�2/
.tn�.p�3/ : : : tn�1/

p�1tp�2
n vnCp

D �.tn�.p�1/ : : : tn�1/
p�1tp�2

n vnCp;

where the factor .tn�.p�1/tn�.p�2//
p�1 is present for all p � 3. We consider all Lie

polynomials in x and y. We observe that a further multiplication by y is zero due to
the total power of the letter tnC1�p , which cannot be killed by derivations involved.
Thus, only one term in (1) is nontrivial, namely sp�1.x; y/ D .ad x/p�1.y/. We get

vp
n D .x C y/p

D .ad x/p�1.y/

D .ad x/p�2.Œx; y�/

D .ad.@n C t
p�1

n�.p�1/
@nC1//

p�2.�.tn�.p�1/ : : : tn�1/
p�1tp�2

n vnCp/

D .ad @n/
p�2.�.tn�.p�1/ : : : tn�1/

p�1tp�2
n vnCp/

D �.tn�.p�1/ : : : tn�1/
p�1vnCp: �

Lemma 5.2. LetH be the K-linear span of the set

ft˛2�p

2�p : : : t
˛n�p�1

n�p�1 t
˛n�p
n�p vn j 0 � ˛i � p � 1; ˛n�p � p � 2; n � 1g:

ThenH is a restricted subalgebra of DerR and L � H .

Proof. We use Lemma 5.1 and proceed as in Lemma 2.2.

6. Second example: weights

As above we will define a gradation on the Lie algebra L by presenting it as a
direct sum of weight spaces, all weights being complex numbers. We assume that
wt.@i / D � wt.ti / D ai 2 C for all i 2 N. Let us choose numbers ai so that all
terms in the expression of vi are homogeneous. We obtain ai D wt @i D wt @iC1 C
.p � 1/wt ti�pC1 D aiC1 � .p � 1/ai�pC1, which implies the recurrence relation

ai D ai�1 C .p � 1/ai�p; i � p:

Let us study its characteristic polynomial �.x/ D xp � xp�1 � .p � 1/.
Lemma6.1. Consider aprimep � 3and the polynomial�.x/ D xp�xp�1�.p�1/.
Then:
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(1) �.x/ is irreducible and has distinct roots.

(2) The equation �.x/ D 0 has a unique real root �0.

(3) Let �1, : : : , �p�1 be the remaining complex roots. Then 1 < j�i j < �0 < 2 for
all i D 1; : : : ; p � 1.

(4) Let j�i j D j�j j. Then i D j , or �i D N�j .

Proof. Let us prove that �.x/ is irreducible modulo p. Making the substitution
x D 1=y, we see that it is sufficient to prove that g.y/ D yp � y C 1 is irreducible
over Zp . Let a be a root of g, then so is aC 1 and hence aC i , i D 0; : : : ; p� 1, are
all roots of g.y/. If m.x/ is the minimal polynomial of a then mi .x/ D m.x � i/ is
the minimal polynomial of the root aC i . Therefore, the minimal polynomials of all
roots of g.y/ have the same degree k, and hence any polynomial that has a common
root with g.y/ has an irreducible factor of degree k. If g.y/ is not irreducible then
it is a product of several polynomials of degree k, which implies that k is a proper
factor of p D degg, a contradiction.

Since the equation is over Q, the roots are distinct.
We consider the derivative �.x/0 D xp�2.px � .p � 1//. It has two roots

x0 D 0 and x1 D 1 � 1=p. Observe that �.0/ D �.1/ D �.p � 1/. Also,
�.2/ D 2p�1 � .p � 1/ > 0. We conclude that �.x/ D 0 has a unique real root �0,
moreover 1 < �0 < 2.

Now let �1 be a root. Recall that �1 … R. Suppose that j�1j � �0. We have two
equalities �p

0 � �p�1
0 D p � 1 and �p

1 � �p�1
1 D p � 1, the latter can be depicted as

a non-degenerate triangle in C. By the triangle inequality, p � 1 > j�1jp � j�1jp�1.
Consider the function f .x/ D xp � xp�1, x 2 R. Using the derivative f 0.x/ D
xp�2.px � .p � 1// we see that f .x/ is increasing for x > 1 � 1=p. We obtain

p � 1 D �
p
0 � �p�1

0 D f .�0/ � f .j�1j/ D j�1jp � j�1jp�1 < p � 1:
This contradiction proves that j�1j < �0. Suppose that j�1j � 1 for a root �1 … R.
Then p � 1 D �

p
1 � �

p�1
1 D j�p

1 � �
p�1
1 j < 2, a contradiction. Thus j�1j > 1 and

the third claim is proved.
To prove claim (4), let �1, �2 be two different complex roots of our equation such

that j�1j D j�2j. Consider the triangle in C given by p � 1 D �
p
1 � �

p�1
1 , where

p � 1, �p
1 start from the origin. Consider all triangles on the plane with the same

side p � 1, with the other sides of lengths j�1jp , j�1jp�1 and with the longest side
starting from the origin. There are only two such triangles. They correspond to �1

and N�1. We have two possibilities. a) �p
1 D �

p
2 , �p�1

1 D �
p�1
2 , and so �1 D �2.

b) �p
1 D N�p

2 , �p�1
1 D N�p�1

2 , and we get �1 D N�2.

Denote s D .p � 1/=2. For simplicity, order the roots so that �iCs D N�i for
i D 1; : : : s. We introduce the p weight functions

wtj .@n/ D �n
j ; n 2 N; j D 0; : : : ; p � 1:
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By Lemma 1.1, these weight functions define a gradation on the subalgebra
H � DerR defined above. For a homogeneous element v 2 H let

Wt.v/ D .wt0 v;wt1 v; : : : ;wtp�1 v/; v 2 H:
Theorem 6.2. Let L D Liep.v1; : : : ; vp/ � H � DerR be the restricted subalge-
bras defined above. Then:

(1) The weight functions are additive on products of homogeneous elements of H
and L.

(2) We have the Zp-gradation

LD L
a1;:::;ap�0

La1;:::;ap
;

where La1;:::;ap
is spanned by products with ai factors vi , i D 1; : : : ; p.

(3) Let v 2 La1;:::;ap
, where ai � 0. Then

wtj v D
pP

kD1

ak�
k
j ; j D 0; 1; : : : ; p � 1:

Proof. The additivity follows from Lemma 1.1 and our construction.
Also, by our construction all components of vn, n 2 N, have the same weights,

namely, wtj .vn/ D wtj @n D �n
j , j D 0; 1; : : : ; p � 1, n 2 N. Let v 2 L be a

monomial that contains ai factors vi for i D 1; : : : ; p. From additivity of the weight
functions we get

.wt0 v; : : : ;wtp�1 v/ D Wt v

D
pP

kD1

ak Wt.vk/

D
pP

kD1

ak.�
k
0 ; : : : ; �

k
p�1/

D � pP
kD1

ak�
k
0 ; : : : ;

pP
kD1

ak�
k
p�1

�
:

The vectors Wt.vk/ D .�k
0 ; : : : ; �

k
p�1/, k D 1; : : : ; p, are linearly independent by

Vandermonde’s argument. Thus we get the claimed Zp-grading and the third claim
as well.

This example also has a nil p-mapping.

Theorem 6.3. Let L D Liep.v1; v2; : : : ; vp/ � DerR be the restricted Lie algebra
as above. Then L has a nil p-mapping.

Proof. We refer the reader to the arguments in [24], where it was proved that the
p-mapping is nil for a class of restricted Lie algebras.
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7. Second example: triangular decomposition

Now we want to introduce new coordinates in Rp . Let Nx D .x1; : : : ; xp/ 2 Rp and
set

�0. Nx/ D x1�
1
0 C x2�

2
0 C � � � C xp�

p
0 ;

�1. Nx/ D x1�
1
1 C x2�

2
1 C � � � C xp�

p
1 ;

:::

�p�1. Nx/ D x1�
1
p�1 C x2�

2
p�1 C � � � C xp�

p
p�1:

Since �j . Nx/, �j Cs. Nx/ are conjugate complex numbers for j D 1; : : : ; s, we get real
coordinates .�0; �1; : : : ; �p�1/ 2 Rp as follows (recall that s D .p � 1/=2). Let
Nx D .x1; : : : ; xp/ 2 Rp and define

�k. Nx/ D

8̂
<
:̂

x1�
1
0 C x2�

2
0 C � � � C xp�

p
0 ; k D 0;

Re.x1 C x2�
1
k

C � � � C xp�
p�1

k
/; k D 1; : : : ; s;

Im.x1 C x2�
1
k

C � � � C xp�
p�1

k
/; k D s C 1; : : : ; p � 1:

We also consider these functions on homogeneous elements v 2 L. Suppose that
v 2 La1;:::;ap

. Then we take Nx D .a1; : : : ; ap/ 2 Rp and define

�j .v/ D �j . Nx/; �j .v/ D �j . Nx/; j D 0; : : : ; p � 1:

Lemma 7.1. The introduced weight functions have the following properties:

(1) Let v 2 La1;:::;ap
. Then

�j .v/ D wtj v; j D 0; : : : ; p � 1;
�0.v/ D �0.v/ D wt0 v;

�j .v/ D Re.wtj .v/=�j /; j D 1; : : : ; s;

�j .v/ D Im.wtj .v/=�j /; j D s C 1; : : : ; p � 1:
(2) These functions are additive on products of homogeneous elements of L.

(3) Consider a lattice point N0 ¤ Nx D .n1; : : : ; np/ 2 Zp � Rp . Then �j . Nx/ ¤ 0

for all j D 1; : : : ; s.

(4) Denote Nx D .n1; : : : ; np/ 2 Zp � Rp , and let �j . Nx/ D 0 for some
j 2 fs C 1; : : : ; p � 1g. Then Nx D .n1; 0; : : : ; 0/.

Proof. The first and second claims are obvious.
Let us prove the third claim. Fix N0 ¤ Nx D .n1; : : : ; np/ 2 Zp and j 2 f1; : : : ; sg.

Suppose that
�j . Nx/ D Re.n1 C n2�j C � � � C np�

p�1
j / D 0: (11)
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We have the field extension Q � Q.�j /. Denote r D n1 C n2�j C � � � C np�
p�1
j .

Suppose that r ¤ 0. From (11) it follows that r D iq, where q 2 R. Consider
r2 2 R \ Q.�j / ¤ Q.�j /. Since jQ.�j / W Qj D p is a prime, we obtain r2 2 Q.
Then jQ.r/ W Qj D 2 divides p, a contradiction. Therefore, r D n1 C n2�j C
� � � C np�

p�1
j D 0, which is a contradiction to the fact that �j satisfies an irreducible

polynomial of degree p.
We now turn to claim (4). Fix Nx D .n1; : : : ; np/ 2 Zp and j 2 fsC1; : : : ; p�1g.

Suppose that

�j . Nx/ D Im.n1 C n2�j C � � � C np�
p�1
j / D 0:

Denote r D n1 C n2�j C � � � C np�
p�1
j . Then r 2 R \ Q.�j / ¤ Q.�j /. Since

jQ.�j / W Qj D p is a prime, we get r 2 Q. We obtain .n1 � r/ C n2�j C � � � C
np�

p�1
p D 0, which is possible only in the case n1 D r , n2 D � � � D np D 0.

Now we get triangular decompositions where the zero component is always trivial.

Corollary 7.2. Let L D Liep.v1; : : : ; vp/, let A D Alg.v1; : : : ; vp/ be the restricted
Lie algebra and associative algebra generated by fv1; : : : ; vpg. Let U D U.L/,
u D u.L/ be the universal enveloping algebra and the restricted enveloping algebra.
Then all these algebras have decompositions into direct sums of two subalgebras as
follows:

L D LC ˚ L�; A D AC ˚ A�; U D UC ˚ U�; u D uC ˚ u�:

Proof. Fix j 2 f1; : : : ; sg and set, for example,

LC D hv 2 L j �j .v/ > 0i; L� D hv 2 L j �j .v/ < 0i:

Observe that the weight functions �j , j 2 fsC1; : : : ; p�1g, also yield triangular
decompositions, but in this case the components L0 and A0 are nontrivial and finite
dimensional. Indeed, consider L0 D hv 2 L j �j .v/ D 0i. By claim (4) of

Lemma 7.1, L0 is spanned by products of the element v1 only. Since vp2

1 D 0, we
conclude that L0 D hv1; v

p
1 i, similarly, A0 D hvj

1 j 1 � j < p2i is of dimension at
most p2.

Lemma 7.3. Let v D t
˛2�p

2�p : : : t
˛n�p
n�p vn 2 H , n 2 N, be as in Lemma 5.2. Then

(1) �n�p
0 � wt0 v � �n

0;

(2) j wtj vj � C j�j jn for all j D 1; : : : ; p � 1, where C is some constant;

(3) j�j .v/j � C j�j jn for all j D 1; : : : ; p � 1.



Nil graded self-similar algebras 893

Proof. The upper bound wt0 v � �n
0 is obvious. We check the lower bound. Recall

that ˛n�p � p � 2. Then

wt0.v/ D �n
0 �

n�pP
iD2�p

˛i�
i
0

� �n
0 � .p � 1/

n�pP
iD2�p

�i
0 C �

n�p
0

� �n
0 � .p � 1/ �

n�p
0

1 � 1=�0

C �
n�p
0

D �
n�p
0 .�

p
0 � �p�1

0 � .p � 1//
1 � 1=�0

C �
n�p
0 D �

n�p
0 :

Similarly,

j wtj .v/j D ˇ̌
�n

j �
n�pP

iD2�p

˛i�
i
j

ˇ̌

� j�j jn C .p � 1/
n�pP

iD2�p

j�j ji

� j�j jn C .p � 1/ j�j jn�p

1 � 1=j�j j � C j�n
j j:

The third claim follows by the previous lemma.

Now we are going to show that the weights of all three algebras L, A, u again
belong to a paraboloid-like region of Rp stretched along the axis �0.

Theorem 7.4. Let p � 3 and L D Liep.v1; : : : ; vp/,H be the subalgebras of DerR
as above. Then the new coordinates .�0; �1; : : : ; �p�1/ of homogeneous elements of
these algebras belong to the following region of Rp:

j�j j � C�
�j

0 ; 	j D ln j�j j
ln �0

< 1; j D 1; : : : ; p � 1;

where C is a positive constant.

Proof. Take a basic monomial w D t
˛2�p

2�p : : : t
˛n�2

n�2 vn 2 H and consider its new
coordinates .�0; �1; : : : ; �p�1/. By Lemma 7.3, we have �0 D wt0.w/ � �

n�p
0 .

Hence, n � p C ln �0= ln �0. We apply the third estimate of Lemma 7.3

j�j j � C j�j jn � C j�j jpCln �0= ln �0 D QC�ln j�j j= ln �0

0 ; j D 1; : : : ; p � 1:
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Theorem 7.5. Let p � 3. Consider A D Alg.v1; : : : ; vp/ and u D u.L/. Then
the new coordinates of homogeneous elements of these algebras also belong to the
following region of Rp:

j�j j � C��
0; j D 1; : : : ; p � 1;

for some constants C > 0 and 0 < 	 < 1.

Proof. Let v D t
˛2�p

2�p : : : t
˛n�p
n�p vn 2 H , n 2 N. By Lemma 7.3 we have bounds

similar to (7),

�
n�p
0 � wt0 v � �n

0; j�j .v/j � C j�j jn; j�j j < �0; j D 1; : : : ; p � 1:
It remains to repeat the arguments of Theorem 4.2.

Corollary 7.6. Consider the triangular decompositions of Corollary 7.2,

L D LC ˚ L�; A D AC ˚ A�; u D uC ˚ u�:

Then all the components L˙, A˙, and u˙ are locally nilpotent subalgebras.

Proof. The arguments of Corollary 4.3 apply.

8. Second example: growth

In this section we study the growth of the algebras that appear in the second example.
In particular we check that L is infinite-dimensional.

Theorem 8.1. Let L D Liep.v1; : : : ; vp/, and let �0 be the root of the characteristic
polynomial above. Then GKdim L � lnp= ln �0.

Proof. We use the embedding of Lemma 5.2. Fix a number m. Consider a homoge-
neous element g 2 L � H such that wt0.g/ � m. Then it is a sum of monomials
v D t

˛2�p

2�p : : : t
˛n�p
n�p vn, where 0 � ˛i � p � 1 and ˛n�p � p � 2. By Lemma 7.3,

m � wt0.g/ � �
n�p
0 . Hence, n � n0 D p C Œlnm= ln �0�.

We estimate the number of monomials v of weight not exceeding m and obtain
the bound

Q�L.m/ �
n0P

nD1

pn�1 � pn0�1

1�1=p
� pp�1Cln m= ln �0

1�1=p
	 C0m

ln p= ln �0 :

Corollary 8.2. Let L D Liep.v1; : : : ; vp/, �0 as above and 	 D lnp= ln �0. Then
the growth of the restricted enveloping algebra u.L/ is intermediate and

1 � Dim3 u.L/ � 	:
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Proof. The result follows by Proposition 1 of [18].

Theorem 8.3. Let A D Alg.v1; : : : ; vp/. Then GKdim A � 2 lnp= ln �0, where �0

is as above.

Proof. We embed our algebra into a bigger associative subalgebra A � Alg.H/ �
End.R/, where H was defined in Lemma 5.2. We claim that elements of Alg.H/
can be expressed as linear combinations of the monomials

w D t
˛2�p

2�p : : : t
˛n�p
n�p v

ˇ1

1 : : : vˇn
n ; 0 � ˛i ; ˇi � p � 1; ˇn � 1; n 2 N; (12)

where in case ˇn D 1 we additionally assume that ˛n�p � p � 2.
Indeed, let us consider a product w D u1 : : : us of basis monomials ui D

t
�2�p

2�p : : : t
�mi �p

mi �p vmi
2 H , where �mi �p � p � 2, i D 1; : : : ; s. Consider the

largest index M.w/ D maxfmi j i D 1; : : : ; sg. Then the highest ti is tM�p . Our
product satisfies the following property VTmax: if the highest vM is unique in the
product, then the highest variable tM�p has the total occurrence at most p � 2. We
straighten the product to the form (12). Let us check that VTmax is kept under the
process. We perform the following transformations.

Case 1. vnvm D vmvn C Œvn; vm� if n > m. Consider the terms of the product
Œvn; vm�, see Lemma 5.1, claims (1), (2). If we get a new highest vM 0 , we obtain the
highest tM 0�p in degree p � 2 as well, the property VTmax is kept. If we get one
more term vM , then there is nothing to check. If we obtain vj such that j < M ,
then we get at most tj �p , and the total degree of the highest tM�p is not changed, as
required.

Case 2. vp
n is expressed as in claim (5) of Lemma 5.1. We can only get a new

highest vM 0 with no occurrence of tM 0�p at all.
Case 3. The remaining operation is vnti D tivn C vn.ti /. Observe the second

term. This operation cannot kill the highest vM since i � M � p < M . Also, ti is
replaced by a product of smaller tj s only. Thus, VTmax is kept.

Finally, we arrive at a monomial of type (12), the property VTmax means that in
the case ˇn D 1 we have ˛n�p � p � 2. Thus, Alg.H/ is spanned by the claimed
monomials.

Let us estimate the weight of a monomial (12). In case ˇn D 1, we use the fact
that ˛n�p � p � 2 and obtain, as in Lemma 7.3, the estimate

wt0.w/ � �n
0 �

n�pP
iD2�p

˛i�
i
0 � �n

0 � .p � 1/
n�pP

iD2�p

�i
0 C �

n�p
0

� �n
0 � .p � 1/ �

n�p
0

1 � 1=�0

C �
n�p
0

D �
n�p
0 .�

p
0 � �p�1

0 � .p � 1//
1 � 1=�0

C �
n�p
0 D �

n�p
0 :
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In the case ˇn > 1 we have

wt0.w/ � 2�n
0 � .p � 1/

n�pP
iD2�p

�i
0 � �n

0 � .p � 1/
n�pP

iD2�p

�i
0 C �

n�p
0 � �

n�p
0 :

Fix a number m. Consider all monomials w of type (12) such that wt0.w/ � m.
Both cases above yield the estimate m � wt0.w/ � �

n�p
0 . Then n � n0 D p C

Œlnm= ln �0�.
Now we can estimate the number of monomialsw of weight not exceedingm and

obtain the bound

Q�A.m/ �
n0P

nD1

p2n�1 � p2n0�1

1�1=p2 � p2 ln m= ln �0C2p�1

1�1=p2 	 C0m
2 ln p= ln �0 :

Let us prove the following commutation relation.

Lemma 8.4. For all n � 1 we have

.ad vn/
p�1.vnCp�1/

D �vnCp

� tn.tn�pC1/
p�1 � tp�2

nC1vnCpC1

� tn.tn�pC1tn�pC2 � tnC1/
p�1 � tp�2

nC2vnCpC2

:::

� tn.tn�pC1 : : : tn�2 � tnC1 : : : tnCp�3/
p�1 � tp�2

nCp�2vnC2p�2

� 2tn.tn�pC1 : : : tn�1 � tnC1 : : : tnCp�2/
p�1 � tp�2

nCp�1vnC2p�1:

Proof. In claim (2) of Lemma 5.1 we take k D p � 1

Œvn; vnCp�1� D �
p�2P
j D0

� Q
l2f1;:::;j g[

fp;:::;pCj �1g

t
p�1

n�pCl

�
t
p�2
nCj vnCj Cp (13)

D �tp�2
n vnCp (14)

� .tn�pC1 � tn/p�1 � tp�2
nC1vnCpC1

� .tn�pC1tn�pC2 � tntnC1/
p�1 � tp�2

nC2vnCpC2

:::

� .tn�pC1tn�pC2 : : : tn�2 � tntnC1 : : : tnCp�3/
p�1 � tp�2

nCp�2vnC2p�2:

Let us further commute this expression with vn. Recall that vn acts trivially on
tn�pC1; : : : tn�2. By Lemma 5.1 all elements vn.tj /, where j � nC 1, contain the
factor tp�1

n�pC1 and we get zero due to the other factor tp�1
n�pC1. The same argument
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applies to Œvn; vj �, where j � n C p C 1. Thus, we get a nontrivial action only in
the cases vn.tn/ D 1 and Œvn; vnCp�. Therefore when commuted with vn all terms in
the sum above except the first one change only the power of tn. Considering the first
term we take into account that

Œvn; vnCp� D �.tn�pC1/
p�1 � tp�2

nC1vnCpC1

� .tn�pC1tn�pC2 � tnC1/
p�1 � tp�2

nC2vnCpC2

� .tn�pC1tn�pC2tn�pC3 � tnC1tnC2/
p�1 � tp�2

nC3vnCpC3

:::

� .tn�pC1tn�pC2 : : : tn�1 � tnC1tnC2 : : : tnCp�2/
p�1 � tp�2

nCp�1vnC2p�1:

Each time when commuting the first term of (14) with vn, these summands add to
the existing ones. As a result, there exist some scalars Bs;j for s D 1; : : : ; p � 1,
j D 1; : : : ; p � 1 such that

.ad vn/
s.vnCp�1/

D .�1/.�2/ : : : .�s/tp�s�1
n vnCp

C Bs;1t
p�s
n .tn�pC1/

p�1t
p�2
nC1vnCpC1

C Bs;2t
p�s
n .tn�pC1tn�pC2 � tnC1/

p�1 � tp�2
nC2vnCpC2

:::

C Bs;p�2t
p�s
n .tn�pC1tn�pC2 : : : tn�2 � tnC1 : : : tnCp�3/

p�1 � tp�2
nCp�2vnC2p�2

C Bs;p�1t
p�s
n .tn�pC1tn�pC2 : : : tn�1 � tnC1 : : : tnCp�2/

p�1 � tp�2
nCp�1vnC2p�1:

We have the recurrence relations BsC1;j D �sBs;j � .�1/ssŠ, s � 1 for all j D
1; : : : ; p � 1 and the original conditions B1;1 D B1;2 D � � � D B1;p�2 D �1 and
B1;p�1 D 0. We check that for all j D 1; : : : ; p � 2 we get Bs;j D .�1/ssŠ, s � 1;
in particular, Bp�1;j D �1. For j D p� 1 we have Bs;p�1 D .�1/s.s � 1/.s � 1/Š,
s � 1, in particular Bp�1;p�1 D �2.

Let us introduce the following convenient notations. Let v D P
i�m aivi 2 H ,

where ai 2 R. Then we write v D O.vm/. Also suppose that r1; : : : ; rs 2 R. Then
denote by O..r1; : : : ; rs/vm/ an element h 2 H of the form

h D
sP

iD1

rigi ; gi D O.vm/:

Lemma 8.5. For all m � 1 we have ŒH;O.vm/� D O.vm/.

Proof. Follows from the commutation relations of Lemma 5.1.
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Lemma 8.6. Let L D Liep.v1; : : : ; vp/. Then there exist homogeneous elements of
the form

Qvn D vn CO..t
p�1
2�p ; : : : ; t

p�1
n�2pC1/vnC1/ 2 L; n D 1; 2; : : : :

Proof. We begin with Qv1 D v1; : : : ; Qvp D vp . Assume that all elements Qvi , with
i � nC p � 1, are defined. By assumption we have elements

Qvn D vn CO..t
p�1
2�p ; : : : ; t

p�1
n�2pC1/vnC1/ 2 L;

QvnCp�1 D vnCp�1 CO..t
p�1
2�p ; : : : ; t

p�1
n�p /vnCp/ 2 L:

Consider Œ Qvn; QvnCp�1�. We use (13) and the commutation relations of Lemma 5.1 to
get

Œvn; vnCp�1� D �tp�2
n vnCp C t

p�1
n�pC1O.vnCpC1/;

Œvn; O..t
p�1
2�p ; : : : ; t

p�1
n�p /vnCp/� D O..t

p�1
2�p ; : : : ; t

p�1
n�p /vnCp/;

ŒvnCp�1; O..t
p�1
2�p ; : : : ; t

p�1
n�2pC1/vnC1/� D O..t

p�1
2�p ; : : : ; t

p�1
n�2pC1/vnCpC1/;

ŒO..t
p�1
2�p ; : : : ; t

p�1
n�2pC1/vnC1/; O..t

p�1
2�p ; : : : ; t

p�1
n�p /vnCp/�

D O..t
p�1
2�p ; : : : ; t

p�1
n�p /vnCpC1/:

Let us explain the third relation. The action vnCp�1.tj / for some vm insideO.vnC1/

can appear only for m � j C p � nC 2p � 1. On the other hand, by Lemma 5.1
ŒvnCp�1; vnC1� D O.vnCpC1/. The second and forth equations are obtained by
similar arguments. Thus,

Œ Qvn; QvnCp�1� D �tp�2
n vnCp C t

p�1
n�pC1O.vnCpC1/CO..t

p�1
2�p ; : : : ; t

p�1
n�p /vnCp/:

We repeat this process and observe that our additional factors cannot disappear:

.ad Qvn/
p�1. QvnCp�1/ D �vnCp C t

p�1
n�pC1O.vnCpC1/CO..t

p�1
2�p ; : : : ; t

p�1
n�p /vnCp/:

(15)
The last term can contain a summand with vnCp , it is of the form t

p�1
i rvnCp , where

r 2 R and 2�p � i � n�p. But, by construction, the element (15) is homogeneous.
Then

wt0.vnCp/ D wt0.t
p�1
i rvnCp/

D wt0.vnCp/C wt0.t
p�1
i r/

� wt0.vnCp/ � .p � 1/�i
0;

a contradiction. Therefore, the last term (15) contains only vm withm � nC pC 1.
Then we set

QvnCp D �.ad Qvn/
p�1. QvnCp�1/ D vnCp CO..t

p�1
2�p ; : : : ; t

p�1
n�pC1/vnCpC1/;

and the induction step is proved.

Corollary 8.7. The Lie algebra L D Liep.v1; : : : ; vp/ is infinite-dimensional.
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