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Universal diagram groups with identical Poincaré series

Stephen J. Pride

Abstract. For a diagram group G, the first derived quotient G1=G2 is always free abelian (as
proved by M. Sapir and V. Guba). However the second derived quotient G2=G3 may contain
torsion. In fact, we show that for any finite or countably infinite direct product of cyclic groups
A, there is a diagram group with second derived quotient A. We use that to construct families
with the properties of the title.
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1. Introduction

A rewriting system K is a pair hX Iˆi, where X is a set (alphabet), and each f 2 ˆ is
a pair of words on X , written as fC1 D f�1. The elements of ˆ are called rewriting
rules. It is allowed that fC1 and f�1 are the same word. It is also allowed that for
two rewriting rules f , g the words fC1, gC1 are the same, and the words f�1, g�1

are the same. For example, the rewriting system hxI x2 D x; x D x; x D xi has
three rules.

Associated with K is a (combinational) 2-complex C.K/. The underlying
1-skeleton is a graph in the sense of Serre [8]: the vertices are all the words on
X (i.e., X�); the edges are triples of the form .u; fC" ! f�"; v/ (u; v 2 X�, f 2 ˆ,
"˙1); the inverse e�1 of the edge e D .u; fC" ! f�"; v/ is .u; f�" ! fC"; v/. Note
that if fC1 and f�1 are the same word, we will still regard eC1 and e�1 as different
edges. The 2-cells are the quintuples .u; f; v; g; w/ (u; v; w 2 X�, f; g 2 ˆ). The
boundary of the 2-cell is the closed path .ufC1v; g; w/.u; f; vg�1w/.uf�1v; g; w/�1

.u; f; vgC1w/�1. The connected components of C.K/ are in one-to-one correspon-
dence with the elements of the semigroup defined by the rewriting system K . The
diagram group D.K; v/ of K is the fundamental group of the connected component
of C.K/ with v as the basepoint.

These groups have been studied comprehensively by V. Guba and M. Sapir in the
monograph [4], and the papers [6], [7]. Other interesting work about these groups
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can be found in [1], [2], [3], [5], [9]. There is a subclass of the class of diagram
groups which is of interest, namely those which are universal. These groups have the
property that they contain a copy of every countable diagram group (see [6], §5).

For any group G we have the lower central series: G1 D G, and inductively,
GnC1 D ŒGn; G�. It is shown in [4], §11, that for a diagram group D, D1=D2

is always free abelian. Since “diagram groups can be considered as 2-dimensional
versions of free groups” [6], p. 2, line 11, it is reasonable to think that D2=D3, would
also be free abelian. However, we will show that for any abelian group A which is a
finite or countably infinite direct product of cyclic groups, there is a diagram group
D such that D2=D3 is isomorphic to A (Theorem 1).

For diagram groups arising from finite complete rewriting systems, the form of the
canonical (minimal) presentation makes it easy to compute D2=D3. We will use this
to exhibit, for any k, a family of universal diagram groups fD.i/ W i D 1; 2; : : : ; kg
which have very similar canonical presentations and the same integral homology, but
which can be separated via their second derived quotients (Theorems 2, 3).

Throughout, ab will mean b�1ab, and Œa; b� will mean a�1b�1ab.
For any elements a; b 2 G we write ha; bi for the element Œa; b�G3 2 G2=G3.

From the commutator calculus we have for any a; b; c 2 G:

(i) ha; bci D ha; biha; ci;
(ii) ha; bi D 1 if a or b is in G2;

(iii) ha; bi D hb; ai�1;
(iv) ha�1ba; ci D hb; ci D hb; aca�1i;
(v) ha�1; bi D ha; bi�1 D ha; b�1i.

These formulae will be used without further mention.
We will make use of the method (and notation) found in [6], pp. 25–26, (see

also [4], p. 53) for computing minimal presentations of diagram groups arising from
complete rewriting systems. This requires the use of left and right forests of C.K/.
For our situation there will be a unique left (respectively right) forest consisting of
the edges .u; fC1 ! f�1; v/˙1, where f 2 F , fC1 and f�1 are distinct words, and
every proper prefix of ufC1 (respectively every proper suffix of fC1v)) is irreducible
(see [6], Lemma 6.3, Remark 6.4).

Acknowledgments. I thank Victor Guba, Mark Sapir, Bjorn Verduijn, and the anony-
mous referee. Thanks also to Steven Roper for the diagrams.

2. The second derived quotients of some diagram groups

Let F be the free group with basis X , linearly ordered by >. The group F2=F3 is a
free abelian group with free basis the elements hx; x0i .x; x0 2 X; x > x0/.

Let G D F=N , where N C F2. Then G2 D F2=N , and G3 D F3N=N . Then

G2=G3 D .F2=N /=.F3N=N / Š F2=.F3N / Š .F2=F3/=.F3N=F3/:
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Suppose that N is the normal closure of a set R � F2. Then F3N=F3 is generated as
a group by the elements rF3 .r 2 R/. For N is generated as a group by elements of
the form u�1ru (u 2 F; r 2 R/, so F3N=N is generated as a group by the elements
u�1ruF3 D .rF3/.Œr; u�F3/ D .rF3/. Thus if we can express each element rF3 as
an expression �r in terms of the basis elements hx; x0i, then G2=G3 is isomorphic to
the free abelian group on the elements hx; x0i (x; x0 2 X , x > x0) factored by the
subgroup generated by the elements �r (r 2 R). Here is a couple of examples of how
this works.

Example 1 (Generalised Thompson groups). Denote P D Pn D hyIyn D yi
(n > 1). As shown in [4], pp. 56–57, the diagram group G D D.P ; y/ has minimal
presentation with generators z0; z1; : : : ; zn�1, and defining relators as follows:

(i) ri;k D Œzk; z0��1Œzk; zi �; 1 � i < k � n � 1;
(ii) si;k D Œzk; z2

0 ��1Œzk; z0zi �, 1 � i; k � n � 1, k � 1 � i ;
(iii) p D Œz1; z3

0 ��1Œz1; z2
0zn�1�.

Then in F2=F3 we have

(i0) �ri;k
D hzk; z0i�1hzk; zi i, 1 � i < k � n � 1;

(ii0) �si;k
D hzk; z0i�2hzk; z0ihzk; zi i D hzk; z0i�1hzk; zi i, 1 � i; k � n � 1,

k � 1 � i ;
(iii0) �p D hz1; z0i�3hz1; z0i2hz1; zn�1i D hz1; z0i�1hz1; zn�1i.
Let K be the subgroup generated by (i0), (ii0), (iii0). For 2 � k � n � 1 (and writing
DK for equal modulo K) we have from (i0):

hzk; z0i DK hzk; zi i .1 � i < k/:

Taking i D k in (ii0) we have

hzk; z0i DK hzk; zki DK 1 .1 � i < k/:

Thus, for 2 � k � n � 1, we have hzk; zi i DK 1 (0 � i < k � n � 1). Then from
(iii0) we have hz1; z0i DK hzn�1; z1i�1, and since from above hzn�1; z1i DK 1, we
obtain hz1; z0i DK 1. Thus G2=G3 is trivial.

Example 2 (The •-product of Guba/Sapir). Let G, H be groups and let Z be an
infinite cyclic group generated by z. Then G • H is the free product G � H � Z

factored out by the normal closure of fŒgzn
; h� W g 2 G; h 2 H; n D 0; 1; 2; : : : g.

This product is closed on the class of diagram groups [4], Theorem 8.6. The diagram
group Z • Z is finitely generated but not finitely presented [4], Theorem 10.5. Let
G Š F=N and H Š yF =M , where F is free on X , yF is free on Y , and M; N are the
normal closures of sets R � F2; S � OF2, respectively. Then P D G • H has group
presentation

hX; Y; zIR; S; Œwzn

; v� .w 2 F; v 2 yF ; n D 0; 1; 2; : : : /i:
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Thus P2=P3 is the free abelian group on the generators hx; x0i (x; x0 2 X , x > x0),
hy; y0i (y; y0 2 Y , y > y0), hx; yi (x 2 X , y 2 Y ), hx; zi (x 2 X ), hy; zi
(y 2 Y ), with relators �r (r 2 R), �s (s 2 S ), �Œwzn

;v� (D �Œw;v�) (w 2 F , v 2 yF ,
n D 0; 1; 2; : : : ). Thus

P2=P3 Š G2=G3 �H2=H3 � A.X/ � A.Y /;

where A.X/, A.Y / are the free abelian groups on the generating sets fhx; zi W x 2 Xg,
fhy; zi W y 2 Y g, respectively.

Theorem 1. For any abelian group A which is a finite or countably infinite direct
product of cyclic groups, there is a diagram group G such that G2=G3 Š A.

Proof. Consider the complete rewriting system

K DKn;m D ha; y; cI h; f; gi;
h W ay D a; f W yn D ym; g W yc D c;

0 < m � n. The generators of the groups G.n; m/ D D.K; ac/ are z D .a; f; c/ and
t D .a; g; 1/, and the defining relators ri are coded by the quintuples .a; f; yi ; f; c/,
0 � i < n. Then according to [6], p. 25, ri is the word

Œa; f; yiCnc��1Œa; f; yiCmc�Œa;f;c�:

Now the negative edge from the right tree that is assigned to ypc is .yp�1; g; 1/.
Thus

Œa; f; ypc� D Œa; f; yp�1c�Œa;g;1�;

and so by induction Œa; f; ypc� is the word ztp
. Hence ri is the word

t�.iCn/z�1t iCnz�1t�.iCm/zt .iCm/z:

Now ri is freely equivalent to Œt iCn; z�z�1Œz; t iCm�z and thus freely equiva-
lent to Œz; t iCn��1Œz; t iCm�ŒŒz; t iCm�; z�. It thus follows that riF3 D hz; tim�n, so
G.n; m/2=G.n; m/3 is cyclic of order n �m (infinite cyclic if n �m D 0).

Now the class of diagram groups is closed under countable direct products [7],
Theorem 2.5. Also, if G D Q

j 2J G.j /, then G2=G3 Š Q
j 2J G.j /2=G.j /3. So

using the groups above we obtain our result.

3. Some universal diagram groups

In this section we will need to regard rewriting systems as directed 2-complexes with
one vertex (see [6], §1 and Theorem 4.3). Also, the material on morphisms of directed
2-complexes, [6], p. 17, and the concept of a universal directed 2-complex, [6], p. 18,
will be needed.
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In [6], Theorem 5.5, it was shown that H D hxI x D x; x2 D xi is a universal
directed 2-complex. The authors also showed that there is a non-singular map from
H into V3;2 D hyIy3 D y2i, and thus V3;2 is universal [6], Theorem 5.6. The proof
can be generalised:

Theorem 2. Vn;m D hyIyn D ymi (n > m > 1) is universal for 3n
5

< m � 5n
7

.

Proof. Consider the map

� W H ! V D Vn;m;

where the edge x is sent to the path y4.n�m/, and the two 2-cells f W x D x and
g W x2 D x are sent respectively to the 2-paths A, B in Diagram 1 in Figure 1 (where
a directed line labelled by a positive integer k is shorthand for the directed path yk ,
and where " D 0 if m is even, and " D 1 if m is odd). The proof is to check that for
any reduced diagram � over H , when we fill in each f -cell by a copy of A, and fill
in each g-cell with a copy of B , no dipole can arise.

n

n

3n − 4m 5m− 3n 3n − 4m

1
2
(4n − 5m + ) m 1

2
(4n − 5m − )

m

m 5n − 7m m

n − m

1
2
(6n − 7m + )

1
2
(7m − 4n − )

1
2
(7m − 4n − )

1
2
(7m − 4n + )

1
2
(7m − 4n + )

n − m

1
2
(6n − 7m − )""

"

" "

"

" "

Figure 1. Diagram 1

(1) The only interaction of two f 2-cells in a reduced H diagram is if the two
copies of f are both positive, or both are negative. Assuming they are both positive
(the negative case is similar), then when these cells are filled in by copies of A, the
potential pair (shaded) is not a dipole (see the diagram in Figure 2).

(2) The possible interactions of two g 2-cells in a reduced diagram over H are as
in Diagram 3 in Figure 3 (up to rotation by � around the central line; or, by reflection
in a mirror perpendicular to the central line and the arrows reversed). When these
cells are filled in by the appropriate copies of B , the only potential pairs for dipoles
(shaded in the diagram) cannot be such.

(3) Clearly, no dipole can arise from an interaction between an A diagram and a
B diagram.
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Figure 2. Diagram 2
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xx
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Figure 3. Diagram 3

Theorem3. For a fixed n there is a family of diagramgroups G.n; m/ ( 3n
5

< m � 5n
7

)
with the following properties:

(i) The groups are universal.

(ii) Their minimal presentations each have the same number of generators, and
each have the same number of defining relators.

(iii) The groups are all of type FP1, and all have the same Poincaré series.

However, no two groups in the family are isomorphic.
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Proof. By [6], Lemma 5.1 (2), the inclusion

' W Vn;m !Kn;m

is non-singular. Thus we have the induced group homomorphism

'� W D.Vn;m; y4.n�m//! D.Kn;m; y4.n�m//;

which is injective. Then, by [6], Corollary 3.6,

D.Kn;m; a/ �D.Kn;m; y4.n�m// �D.Kn;m; c/

is imbedded into D.Kn;m; ay4.n�m/c/. By [6], Corollary 3.5, D.Kn;m; ay4.n�m/c/

is isomorphic to D.Kn;m; ac/. Thus G.n; m/ D D.Kn;m; ac/ is universal.
Note that for a fixed n, the minimal presentations of the groups D.Kn;m; ac/

(1 � m < n) all have the same number of generators (namely 2) and the same
number of relators (namely n). See Theorem 1.

Also, for the minimal free resolution (see [6], Theorem 9.2)

0 Z F0  F1  F2  � � �  Fp  � � �

the basis of Fp is:

(i) .ac/ if p D 0;
(ii) .a; f; c/; .a; g; 1/ if p D 1;

(iii) .a; f; yi ; f; c/ (1 � i < n) and .a; f; yn�1; g; 1/ if p D 2;

and

(iv) for p 	 3 the basis is:

.a; f; yi1 ; f; yi2 ; : : : ; yip�1 ; f; c/; 1 � ik � n � 1; 1 � k � p � 1;

and

.a; f; yi1 ; f; yi2 ; : : : ; yip�2 ; f; yn�1; g; 1/; 1 � ik � n � 1; 1 � k � p � 2:

Thus the groups have the same Poincar Ke series, namely

P.t/ D 1C 2t C nt2.1C .n � 1/t C ..n � 1/t/2 C ..n � 1/t/3 C � � � /

D 1C 2t C nt2

1 � .n � 1/t
:

However, as shown in �2, G.n; m/2=G.n; m/3 Š Zn�m .1 � m � n/, so for a
fixed n, the groups G.n; m/ .1 � m � n/ are distinct.
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