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Stable orbit equivalence of Bernoulli shifts over free groups�

Lewis Bowen

Abstract. Previous work showed that every pair of nontrivial Bernoulli shifts over a fixed free
group are orbit equivalent. In this paper, we prove that if G1, G2 are nonabelian free groups
of finite rank then every nontrivial Bernoulli shift over G1 is stably orbit equivalent to every
nontrivial Bernoulli shift over G2. This answers a question of S. Popa.
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1. Introduction

Let G be a countable group and .X; �/ a standard probability space. A probabil-
ity measure-preserving (p.m.p.) action of G on .X; �/ is a collection fTggg2G of
measure-preserving transformations Tg W X ! X such that Tg1

Tg2
D Tg1g2

for all
g1; g2 2 G. We denote this by G ÕT .X; �/.

Suppose G1ÕT .X1; �1/ and G2ÕS .X2; �2/ are two p.m.p. actions. A measur-
able map � W X 0

1 ! X 0
2 (where X 0

i � Xi is conull) is an orbit equivalence if the
push-forward measure ���1 equals �2 and for every x 2 X 0

1, fTgx W g 2 G1g D
fSg�.x/ W g 2 G2g. If there exists such a map, then the actions T and S are said to
be orbit equivalent (OE).

If, in addition, there is a group isomorphism ‰ W G1 ! G2 such that �.Tgx/ D
S‰.g/�.x/ for every x 2 X 0

1 and g 2 G1 then the actions T and S are said to be
measurably-conjugate.

If A � X is a set of positive �-measure then let �.�jA/ denote the probability
measure on A defined by �.EjA/ D �.E\A/

�.A/
. Two p.m.p. actions G1ÕT .X1; �1/

and G2ÕS .X2; �2/ are stably orbit equivalent (SOE) if there exist positive measure
sets Ai � Xi and a map � W A1 ! A2 inducing a measure-space isomorphism
between .A1; �1.�jA1// and .A2; �2.�jA2// such that for a.e. x 2 A1, fTgx W g 2
G1g \ A1 D fSg�.x/ W g 2 G2g \ A2.
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The initial motivation for orbit equivalence comes from the study of von Neumann
algebras. It is known that two p.m.p. actions are orbit equivalent if and only if their
associated crossed product von Neumann algebras are isomorphic by an isomorphism
that preserves the Cartan subalgebras [Si55]. H. Dye [Dy59], [Dy63] proved the
pioneering result that any two ergodic p.m.p. actions of the group of integers on
the unit interval are OE. This was extended to amenable groups in [OW80] [OW80]
and [CFW81]. By contrast, it is now known that every nonamenable group admits
a continuum of non-orbit equivalent ergodic p.m.p. actions [Ep09]. This followed
a series of earlier results that dealt with various important classes of non-amenable
groups ([GP05], [Hj05], [Ioxx], [Ki08], [MS06], [Po06]).

In the last decade, a number of striking OE rigidity results have been proven (for
surveys, see [Fu09], [Po07] and [Sh05]). These imply that, under special conditions,
OE implies measure-conjugacy. By contrast, the main theorem of this paper could be
called an OE “flexibility” result. There are relatively few such results in the literature
in the non-amenable setting (e.g., [Bo10b], [Ga05]).

The new result concerns a special class of dynamical systems called Bernoulli
shifts. To define them, let .K; �/ be a standard probability space. If G is a countable
discrete group, then KG is the set of all of functions x W G ! K with the product
Borel structure. For each g 2 G, let Sg W KG ! KG be the shift-map defined by
Sgx.h/ WD x.g�1h/ for any h 2 G and x 2 KG . This map preserves the product
measure �G . The action GÕS .KG ; �G/ is called the Bernoulli shift over G with
base-space .K; �/. To avoid trivialities, we will assume that � is not supported on a
single point.

If � is supported on a finite or countable set K 0 � K then the entropy of .K; �/ is
defined by

H.K; �/ WD �
X

k2K0

�.fkg/ log.�.fkg//:

If � is not supported on any countable set then H.K; �/ WD C1.
A. N. Kolmogorov proved that if two Bernoulli shifts ZÕ.KZ; �Z/ and

ZÕ.LZ; �Z/ are measurably-conjugate then the base-space entropies H.K; �/ and
H.L; �/ are equal [Ko58], [Ko59]. This answered a question of von Neumann which
had been posed at least 20 years prior. The converse to Kolmogorov’s theorem was
famously proven by D. Ornstein [Or70a], [Or70a]. Both results were extended to
countably infinite amenable groups in [OW87].

A group G is said to be Ornstein if whenever .K; �/, .L; �/ are standard prob-
ability spaces with H.K; �/ D H.L; �/ then the corresponding Bernoulli shifts
GÕ.KG ; �G/ and GÕ.LG ; �G/ are measurable conjugate. A. M. Stepin proved
that if G contains an Ornstein subgroup, then G is Ornstein [St75]. Therefore, any
group G that contains an infinite amenable subgroup is Ornstein. It is not known
whether every countably infinite group is Ornstein.

By [Bo10a] every sofic group satisfies a Kolmogorov-type theorem. Precisely, if G

is sofic, .K; �/; .L; �/ are standard probability spaces with H.K; �/CH.L; �/ < 1
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and the associated Bernoulli shifts GÕ.KG ; �G/, GÕ.LG ; �G/ are measurably-
conjugate then H.K; �/ D H.L; �/. If G is also Ornstein then the finiteness con-
dition on the entropies can be removed. Sofic groups were defined implicitly by
M. Gromov [Gro99] and explicitly by B. Weiss [We00]. For example, every count-
ably infinite linear group is sofic and Ornstein. It is not known whether or not all
countable groups are sofic.

In summary, it is known that for a large class of groups (e.g., all countable linear
groups), Bernoulli shifts are completely classified up to measure-conjugacy by base-
space entropy. Let us now turn to the question of orbit equivalence.

By aforementioned results of [OW80] and [CFW81], it follows that if G1 and
G2 are any two infinite amenable groups then any two nontrivial Bernoulli shifts
G1Õ.KG1 ; �G1/, G2Õ.LG2 ; �G2/ are orbit equivalent. By contrast, it was shown
in [Bo10a] that the main result of [Bo10a] combined with rigidity results of S. Popa
[Po06], [Po08] and Y. Kida [Ki08] proves that for many nonamenable groups G,
Bernoulli shifts are classified up to orbit equivalence and even stable orbit equivalence
by base-space entropy. For example, this includes PSLn.Z/ for n > 2, mapping class
groups of surfaces (with a few exceptions) and any nonamenable sofic Ornstein group
of the form G D H � N with both H and N countably infinite that has no nontrivial
finite normal subgroups.

In [Bo10b] it was shown that if Fr denotes the free group of rank r then every pair
of nontrivial Bernoulli shifts over Fr are OE. By [Ga00], the cost of a Bernoulli shift
action of Fr equals r . Since cost is invariant under OE, it follows that no Bernoulli
shift over Fr can be OE to a Bernoulli shift over Fs if r ¤ s. Moreover, since SOE
preserves cost 1 and cost 1, it follows that no Bernoulli shift over F1 D Z can be
SOE to a Bernoulli shift over Fr for r > 1 and no Bernoulli shift over F1 can be
SOE to a Bernoulli shift over Fr for finite r . The main result of this paper is:

Theorem 1.1. If 1 < r; s < 1 then all Bernoulli shift actions over Fr and Fs are
stably orbit equivalent.

Corollary 1.2. Let A1; : : : ; Ar and A0
1; : : : ; A0

s be countably infinite amenable groups
with 1 < s; r < 1. Let �1 D A1 � � � � � Ar and �2 D A0

1 � � � � � A0
s . Then every

Bernoulli shift over �1 is stably orbit equivalent to every Bernoulli shift over �2.

Proof. From the main result of [Bo10b] it follows that every Bernoulli shift over �1
is OE to every Bernoulli shift over Fr . Similarly, every Bernoulli shift over �2 is OE
to every Bernoulli shift over Fs . The result now follows from the theorem above.

1.1. Large-scale structure of the proof. Theorem 1.1 follows from the two the-
orems below which will be proven in subsequent sections. To explain them, we
need some notation. Let K be a finite or countable set. Then the rank 2 free group
F2 D ha; bi acts on .K � K/F2 in the usual way: .g � x/.f / WD x.g�1f / for any
g; f 2 F2 and x 2 .K � K/F2 . We call this the shift-action. Let hbi be the cyclic
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subgroup of F2 generated by the element b. Define ˆ W KF2=hbi �KF2 ! .K �K/F2

by

ˆ.x; y/.g/ D .x.ghbi/; y.g// for all x 2 KF2=hbi; y 2 KF2 ; g 2 F2:

Observe that ˆ is an injection. So, by abuse of notation, we will identify KF2=hbi�KF2

with its image ˆ.KF2=hbi � KF2/. If � is a probability measure on K then let
�F2=hbi ��F2 be the product Borel probability measure on KF2=hbi �KF2 . We extend
this measure to all of .K � K/F2 by setting

�F2=hbi � �F2..K � K/F2 � KF2=hbi � KF2/ D 0:

Theorem 1.3. With notation as above, the Bernoulli shift-action F2Õ.KF2 ; �F2/ is
orbit equivalent to the shift-action F2Õ..K � K/F2 ; �F2=hbi � �F2/.

Theorem1.4. Let K be a finite set withmore than one element and let � be the uniform
probability measure on K. Then the shift-action F2Õ..K � K/F2 ; �F2=hbi � �F2/ is
SOE to a Bernoulli shift-action of the rank .jKj C 1/-free group.

The two theorems above imply that for any s � 3, there is some Bernoulli shift
over F2 that is SOE to a Bernoulli shift over Fs . By [Bo10b], we know that all
Bernoulli shifts over Fr are OE for any fixed r . So this proves every Bernoulli shift
over F2 is SOE to every Bernoulli shift over Fs . Since SOE is an equivalence relation
this proves Theorem 1.1. Both theorems above are proven by explicit constructions.

1.2. Themain ideas. In this section we give incomplete non-rigorous proof sketches
of the theorems below which serve to illustrate the main ideas of the paper. Let
K D Z=2Z and let � be the uniform probability measure on K.

Theorem 1.5. The Bernoulli shift-action F2Õ.KF2 ; �F2/ is orbit equivalent to the
shift-action F2Õ..K � K/F2 ; �F2=hbi � �F2/.

Theorem 1.6. The shift-action F2Õ.KF2=hbi; �F2=hbi/ defined by g � x.C / D
x.g�1C / for g 2 F2, x 2 KF2=hbi and C 2 F2=hbi is SOE to a nontrivial Bernoulli
shift over F3.

Theorem 1.5 follows from Theorem 1.3. Theorem 1.6 follows from the proof of
Theorem 1.4.

1.2.1. Proof sketch for Theorem 1.5. In Figure 1, there is a diagram of a point
x 2 .K � K/F2 that is typical with respect to the measure �F2=hbi � �F2 . The
underlying graph is the Cayley graph of F2 (only part of which is shown in the figure).
The circled dot represents the identity element in F2. For every g 2 F2 there are
directed edges .g; ga/ and .g; gb/. Edges of the form .g; ga/ are drawn horizontally
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(1,0)
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(1,1)

Figure 1. A diagram for a point x in the support of �F2=hbi � �F2 .

while those of the form .g; gb/ are drawn vertically. Some of the vertices are labeled
with an ordered pair which is written to the lower right of the vertex. The ordered
pair represents the value of x at the corresponding group element. For example, the
diagram indicates that x.e/ D .1; 1/, x.a/ D .1; 0/, x.a2/ D .0; 0/, x.b/ D .1; 0/

and x.ba/ D .1; 0/. We assume that x is in the support of �F2=hbi � �F2 . So if
x.g/ D .i; j / for some g 2 F2 and i; j 2 K then x.gb/ D .i; k/ for some k 2 K.

To form the orbit equivalence, we will switch certain pairs of b-labeled edges.
Each switching pair will have their tail vertices on the same coset of F2=hai. After
this is done, and after “forgetting” the first coordinates of the labels we will have a
diagram of a typical point in .KF2 ; �F2/.

In order to determine which b-labeled edges to switch, we place a left square
bracket below every vertex labeled .0; 1/. We place a right square bracket below
every vertex labeled .1; 0/. For example, Figure 2 shows part of the Cayley graph
with brackets indicated.

(1,1) (1,0) (0,0) (1,0)(0,1)(0,1)(0,0)
] [

(1,0) (0,1) (1,0)
][ [ ]]

Figure 2

The purpose of the brackets is that they give a natural way to pair vertices labeled
.0; 1/ with vertices labeled .1; 0/. For example, the diagram shows that a�1 is to
be paired with a. Also a�2 is paired with a3 and a4 is paired with a5. We should
emphasize that this occurs all over the group, not just the subgroup hai. For example,
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if g 2 F2 is such that x.g/ D .0; 1/ and x.ga/ D .1; 0/ then g is paired with ga.
This pairing of vertices induces a pairing of b-labeled edges: two b-labeled edges

are paired if their source vertices are paired. For example, the diagram tells us that
.a�1; a�1b/ is paired with .a; ab/, .a�2; a�2b/ is paired with .a3; a3b/ and so on.
The next step is to switch the heads of the paired edges. This is shown in Figure 3.

(1,1) (1,0) (0,0) (1,0)(0,1)(0,1)(0,0) (0,1) (1,0)(1,0)

(1,1) (0,1) (0,1) (0,0) (1,0) (1,1) (0,1) (1,1) (0,0) (1,0)

Figure 3

After this switching is done, we have a diagram of a point �x 2 .K � K/F2 . For
example, �x.an/ D x.an/ for all n. According to Figure 3, our example satisfies
�x.ab/ D .0; 0/ whereas x.ab/ D .1; 1/. Notice that if g 2 F2 and �x.g/ D .i; j /

for some i; j 2 K then �x.gb/ D .j; k/ for some k 2 K. This is because x is in
the support of �F2=hbi � �F2 . Therefore if for i D 1; 2, �

F2
i W .K � K/F2 ! KF2 are

the projection maps defined by y.g/ D .�
F2
1 y.g/; �

F2
2 y.g// for any y 2 .K � K/F2

and g 2 F2, then �x is completely determined by �
F2
2 �x.

We claim that the map �
F2
2 � W .K�K/F2 ! KF2 is the required orbit-equivalence.

To see this, first observe that � is an involution. Therefore, the map �
F2
2 � restricted

to the support of �F2=hbi � �F2 is invertible. Because � is defined without men-
tion of the origin, it follows that it takes orbits to orbits. It might not be obvious but
.�

F2
2 �/�.�F2=hbi��F2/ D �F2 . This implies that � is the required orbit-equivalence.

The proof of Theorem 1.3 is, in spirit, very much like this sketch.

1.2.2. Proof sketch for Theorem 1.6. Let ˆ W KF2=hbi ! KF2 be the map defined
by ˆ.x/.g/ D x.ghbi/. This map is equivariant and injective. So we will identify
KF2=hbi with its image under ˆ. We extend the product measure �F2=hbi to a measure
on KF2 by setting �F2=hbi.KF2 � KF2=hbi/ D 0.

In Figure 4, there is a diagram for a point x 2 KF2 that is typical with respect
to �F2=hbi. Each vertex is labeled with a number in K which represents the value
of x at the corresponding group element. For example, the diagram indicates that
x.e/ D 0 D x.a/, x.a2/ D 1, x.b/ D 0 and x.ba/ D 1. We assume that x is in the
support of �F2=hbi. So x.g/ D x.gb/ for all g 2 F2.

Let us obtain a different diagram for x as follows. Instead of labels on the vertices,
we draw the vertical arrows differently: a vertical arrow with both endpoints labeled
1 is now drawn as a dashed arrow (which is green in the color version of this paper).
Vertical arrows with both endpoints labeled 0 are drawn as before: as solid arrows
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1

1

1

1

1

1

1

11

1

1

1

0

0

0

1 1

01

0

0

0

0

0

Figure 4. A diagram for a point x in the support of �F2=hbi.

(which are red in the color version). We also introduce new vertex labels. If x.g/ D 0

then we label the vertex corresponding to g with the smallest positive number n such
that x.gan/ D 0. We call these distance labels. The result is shown in Figure 5.

2

1

4

12

1

4

2

3

2

Figure 5. A new diagram for a point x in the support of �F2=hbi.

From this diagram for x we will construct a diagram for a point �x 2 NF3 such
that the map x 7! �x defines the stable orbit-equivalence. The domain of � will be
the set A0 WD fy 2 KF2 W y.e/ D 0g.

We begin by making small changes to the diagram in Figure 5. First, as in the
previous sketch, we place a left bracket next to every vertex that is incident to a solid
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vertical arrow and a right bracket next to every vertex incident to a dashed vertical
arrow. This is shown in Figure 6. To simplify the picture, we have not written in the
distance labels.

[ ] [] ][ ][ [ [

Figure 6

The brackets give a natural way to pair vertices g with x.g/ D 0 with vertices h

such that x.h/ D 1. For example, the diagram shows that a�3 is paired with a�2 and
a�4 is paired with a�1. We should emphasize that this occurs all over the group, not
just the subgroup hai. For example, if g 2 F2 is such that x.g/ D 0 and x.ga/ D 1

then g is paired with ga.
Next, if a vertex g is paired with gan for some n > 0 then we slide the tail of

the outgoing dashed vertical arrow incident to gan over to g. Similarly, we slide the
head of the incoming dashed vertical arrow incident to gan over to g. Figure 7 shows
part of the result of this operation. Note that the heads of the dashed vertical arrows
have been moved but for the sake of not complicating the drawing the vertices that
they are incident to are not drawn.

Figure 7

Next, we remove all vertices g with x.g/ D 1. Each one of these vertices is
incident to a horizontal arrow coming in and one going out. So when we remove
such a vertex, we concatenate these arrows into one. The result is shown in Figure 8,
which also includes the distance labels.

1 3 1 2 2 4

Figure 8
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The new diagram is a diagram for a point �x in NF3 . Here we write F3 D ha; b; ci.
a-edges correspond to horizontal edges, b-edges to solid vertical edges and c-edges
to dashed diagonal edges. For example, the figure above indicates that �x.e/ D 1,
�x.a/ D �x.a2/ D 2 and �x.a3/ D 4.

Now let �� be the probability measure on N D f0; 1; 2; 3; : : :g defined by
��.f0g/ D 0 and ��.fng/ D 2�n for n � 1. It may not be obvious, but � de-
fines a stable orbit equivalence between .KF2 ; �F2=hbi/ and .NF3 ; �

F3� /. The proof
of Theorem 1.4 is based on a very similar construction.

1.3. Organization. In the next section, we discuss rooted networks; how to obtain
them from group actions and conversely. In § 3 and § 4 we prove Theorems 1.3
and 1.4 respectively.

Acknowledgements. I would like to thank Sorin Popa for asking whether the full
2-shift over F2 is SOE to a Bernoulli shift over F3. My investigations into this question
led to this work and the paper [Bo10b].

2. Rooted networks and orbit equivalence

The purpose of this section is to introduce rooted networks and discuss their rela-
tionships with dynamical systems. They are used as a primary tool in subsequent
constructions.

2.1. Rooted networks

Definition 1. A rooted network is a quintuple N D .V; E; L; G ; 	/ where

(1) .V; E/ is a connected and directed graph (so E � V � V ),
(2) 	 2 V is a distinguished vertex called the root,
(3) L W V ! rng.L/ is a map.
(4) G W E ! rng.G / is a map.

L and G are called the vertex and edge labels respectively. Throughout this paper,
rng.L/ and rng.G / are finite or countable discrete sets. rng.G / will typically be a set
of generators for a free group.

There is a natural Borel structure on the space of all rooted networks [AL07]. To
define it, we need the following.

Definition 2. Two rooted networks are isomorphic if there an isomorphism of the
underlying directed graphs that takes the root of the source network to the root of the
target network and preserves both vertex and edge labels.
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For n � 0, let Bn.N / be the ball of radius n centered at the root of � (with
respect to the path metric on the graph in which each edge has length 1). It is itself
a rooted network with the restricted vertex and edge labels. Define the distance
between two rooted networks N1; N2 to be 1

nC1 where n � 0 is the largest number
such that Bn.N1/ is isomorphic to Bn.N2/ as rooted networks. This makes the space
of all isomorphism classes of rooted networks with vertex degrees bounded by some
number d > 0 into a compact metric space. We will only use the Borel structure that
this induces. See [AL07] for more background on rooted networks (but be warned:
the definition here differs somewhat from the definition in [AL07]).

2.2. Rooted networks from group actions. Let G be a discrete countable group
and let x 2 KG where K is a countable or finite set. Suppose � D fs1; : : : ; srg � G

generates G as a group. The rooted network Nx D .Vx; Ex; Lx; Gx; 	x/ induced by
x and � is defined by: Vx D G, Ex D f.g; gs/ W g 2 G; s 2 �g, Lx W G ! K

satisfies Lx.g/ D x.g/ and Gx W E ! � satisfies Gx.g; gs/ D s. The root 	x is the
identity element in G.

Recall that G acts on KG by .g � x/.f / D x.g�1f / for g; f 2 F and x 2 KG .

Lemma 2.1. Let x 2 KG and Nx D .Vx; Ex; Lx; Gx; 	x/. For any g 2 G and
x 2 KG , Ng �x is isomorphic to .Vx; Ex; Lx; Gx; g�1/.

Proof. This is an easy exercise left to the reader.

2.3. Group actions from rooted networks

Definition 3. Let N D .V; E; L; G ; 	/ be a rooted network. Let � D rng.G / be the
set of edge labels of N . We will say that N is actionable if for each v 2 V and each
s 2 � there is a unique edge e 2 E such that v is the source of e and G .e/ D s. We
also require the existence of a unique edge Le 2 E such that v is the range of Le and
G . Le/ D s.

If N is actionable then we define an action of F� , the free group with generating
set � , on V by v � s D w where w is the range of the edge e (as defined above). Also
v � s�1 D u where u is the source of the edge Le. Observe that this is a right-action of
F� on V . For any g 2 F� and v 2 V , let A.N W v; g/ D v � g.

2.4. Orbit morphisms from rooted networks

Definition4. Let G1ÕT .X1; �1/ and G2ÕS .X2; �2/ be two dynamical systems. An
orbit morphism from the first system to the second is a measurable map � W X 0

1 ! X2
such that for all g 2 G1 and x 2 X 0

1 there exists an h 2 G2 such that �.Tgx/ D
Sh�.x/. Here X 0

1 � X1 is a conull set.



Stable orbit equivalence of Bernoulli shifts over free groups 27

Let � be a set, F D F� the free group on � and let � be a shift-invariant Borel
probability measure on KF . Let X � KF be a shift-invariant Borel set with �.X/ D
1. Suppose that for each x 2 X there is a map �x W Ex ! V � V (where Nx D
.Vx; Ex; Lx; Gx; 	x/ is the rooted network induced by x and �). We may identify Vx
with F and Ex with a subset of F � F . Thus �x can be thought of as a point in the
space of all maps from f.g; gs/ W g 2 F ; s 2 �g to F � F which we endow with the
topology of uniform convergence on finite subsets. Suppose that the following hold.

(1) The map x 7! �x is Borel.
(2) .Vx; �x.Ex// is connected.
(3) For any x 2 X and g 2 F , �g �x.v; w/ D g�1�x.gv; gw/.

(4) �x is injective and if G
�
x W �x.E/ ! � is defined by G

�
x .�x.e// D Gx.e/ then

the network N
�
x WD .Vx; �x.Ex/; Lx; G

�
x ; 	x/ is actionable.

Then define � W X ! KF by �x.g/ D x.A.N
�
x W 	x; g// where we consider

A.N
�
x W 	x; g/ to be an element in F through the identification of Vx with F .

Lemma 2.2. For any x 2 X , the rooted network N�x induced by �x and � is
isomorphic to N

�
x . Moreover, � is an orbit morphism.

Proof. The first statement is an easy exercise left to the reader. The third item above
implies that for any g 2 F , N�.g �x/ is isomorphic to .Vx; �x.Ex/; Lx; G

�
x ; g�1/. By

the previous lemma, the latter is isomorphic to Nh��x for some h 2 F . This implies
�.g � x/ D h � �x. So � is an orbit morphism.

3. Theorem 1.3

3.1. The pairing. To begin the proof of Theorem 1.3, we define a map that will play
the role of the brackets of the sketch in § 1.2.1. Without loss of generality we may
assume K D N. For x 2 .N � N/F2 and g 2 F2 D ha; bi define P.x; g/ 2 F2 as
follows.

� If x.g/ D .i; i/ for some i 2 N then P.x; g/ D g.
� If x.g/ D .i; j / for some i < j then let P.x; g/ D gan where n > 0 is the

smallest positive integer such that

(1) x.gan/ D .j; i/,
(2) jfm 2 Z \ Œ0; n
 W x.gam/ D .i; j /gj D jfm 2 Z \ Œ0; n
 W x.gam/ D

.j; i/gj.
� If x.g/ D .j; i/ for some i < j then let P.x; g/ D ga�n where n > 0 is the

smallest positive integer such that

(1) x.ga�n/ D .i; j /,
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(2) jfm 2 Z\ Œ0; n
 W x.ga�m/ D .i; j /gj D jfm 2 Z\ Œ0; n
 W x.ga�m/ D
.j; i/gj.

A-priori, P.x; g/ may not be well defined since there might not exist a number n

satisfying the above conditions. However, we have:

Lemma 3.1. Let X be the set of all x 2 .N � N/F2 such that for all g 2 F2, P.x; g/

is well defined. Then �F2=hbi � �F2.X/ D 1. Moreover, P.x; P.x; g// D g for all
x 2 X; g 2 F2.

Proof. This is an easy exercise left to the reader. Indeed, if � is any ergodic shift-
invariant Borel probability measure on .N�N/F2 such that �.fx W x.e/ D .i; j /g/ D
�.fx W x.e/ D .j; i/g/ for all i; j 2 N then �.X/ D 1.

3.2. An orbit equivalence. In this section, we define a map that plays the role of
the switching in the sketch of § 1.2.1.

Recall that F2 D ha; bi. Let x 2 X . Let Nx D .Vx; Ex; Lx; Gx; 	x/ be the
rooted network induced by x and � D fa; bg. For each edge e 2 E define �x.e/ by:

(1) if e D .g; ga/ for some g 2 F2 D Vx then �x.e/ WD e,
(2) if e D .g; gb/ for some g 2 F2 D Vx then �x.e/ WD .g; P.x; g/b/.

Lemma 3.2. The map x 7! �x is Borel and for any x 2 X the following hold.

(1) .Vx; �x.Ex// is connected.

(2) For any x 2 X and g 2 F2, �g �x D g�1�xg.

(3) �x is injective and if G
�
x W �x.E/ ! � is defined by G

�
x .�x.e// D Gx.e/ then

the network N
�
x WD .Vx; �x.E/; Lx; G

�
x ; 	x/ is actionable.

Proof. This is an easy exercise left to the reader.

Define � W X ! .N � N/F2 as in § 2.4. I.e., �x.g/ WD x.A.N
�
x W 	x; g// for

all g 2 F2.

Lemma 3.3. �.X/ � X . Moreover, �.�x/ D x for any x 2 X . Thus � is an orbit-
equivalence from the shift-action F2Õ..N � N/F2 ; �F2=hbi � �F2/ to the shift-action
F2Õ..N � N/F2 ; �/ where � D ��.�F2=hbi � �F2/.

Proof. � is an orbit morphism by Lemma 2.2. That �.�x/ D x follows from the
fact that P.x; P.x; g// D g for any x 2 X and g 2 F2.

3.3. A measure space isomorphism. In this section, we prove F2Õ..N �N/F2 ; �/

is measurably conjugate to F2Õ.NF2 ; �F2/. We will need the next lemma.
For x 2 X , define N

�
x D .Vx; �x.Ex/; Lx; G

�
x ; 	x/ as above. For g 2 F2, define

˛x.g/ WD A.N
�
x W 	x; g/. So �x.g/ D x.˛x.g//.
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Lemma 3.4. For x 2 X , g 2 F2 and n 2 Z,

˛x.gan/ D ˛x.g/an;

˛x.gb/ D P.x; ˛x.g//b;

˛x.gb�1/ D P.x; ˛x.g/b�1/:

Proof. This is an easy exercise in understanding the definitions.

Definition 5. Let K be a set. For x 2 .K � K/F2 define x1; x2 2 KF2 by

x.g/ WD .x1.g/; x2.g// for all g 2 F2:

Also for i D 1; 2, define �
F2
i W .K � K/F2 ! KF2 by �

F2
i .x/ D xi .

Lemma 3.5. Let x 2 X be in the support of �F2=hbi � �F2 . Then for any g 2 F2,
.�x/1.gb/ D .�x/2.g/.

Proof. Since x is in the support of �F2=hbi � �F2 , for any g 2 F2, x1.g/ D x1.gb/.
Now fix g 2 F2 and let f 2 F2 be such that A.N

�
x W 	x; g/ D f 2 F2. By the

previous lemma, A.N
�
x W 	x; gb/ D ˛x.gb/ D P.x; f /b. Thus �x.g/ D x.f /

and �x.gb/ D x.P.x; f /b/.
If x.f / D .i; j / then by definition of P , x.P.x; f // D .j; i/. Since x is in

the support of �F2=hbi � �F2 , x.P.x; f /b/ D .j; k/ for some k. So .�x/2.g/ D
x2.f / D j D x1.P.x; f /b/ D .�x/1.gb/. This proves the lemma.

Definition 6. The right-Cayley graph � of F2 is the graph with vertex set F2 and
edges f.g; gs/ W s 2 �g. If W � F2 then the induced subgraph of W is the largest
subgraph of � with vertex set W . If this subgraph is connected then we say that W

is right-connected.

Given a measurable function f W X ! Y , the � -algebra that it induces on X ,
denoted †.f /, is the pullback f �1.†Y / where †Y is the � -algebra on Y . We will
say that a function f1 is determined by a function f2 if the sigma algebra induced
by f1 is contained in the sigma algebra induced by f2 up to sets of �F2=hbi � �F2

measure zero.
Often it will be that we have to consider a function f .x; i/ that depends on two

arguments x and i . This can be considered as a function of x with range a function
of i . Thus we will write x 7! Œf .x; i/
i2I to mean x 7! .i 2 I 7! f .x; i//. We will
also write this as x 7! Œf .x; i/ W i 2 I 
.

Lemma 3.6. Suppose that W � F2 is a right-connected set such that Wa D W

and e 2 W . Then for any v 2 W , the function x 7! ˛x.v/ is determined by
the function x 7! .�x.w//w2W . Similarly, x 7! P.x; ˛x.v// is determined by
x 7! ..�x/.w//w2W .
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Proof. By definition of P , for any g 2 F2, x 7! ˛x.g/�1P.x; ˛x.g// is determined
by the function x 7! Œx.˛x.g/an/
n2Z D Œ�x.gan/
n2Z. Thus the second statement
follows from the first.

Since, for any fixed n 2 Z, ˛x.an/ D an and x 7! P.x; an/ is determined by
x 7! fx.am/ W m 2 Zg, the lemma is true if W D fan W n 2 Zg. Suppose, for
induction, that the lemma is true for a given set right-connected set W with e 2 W

and Wa D W . Let g 2 W . It suffices to prove that the lemma is true for W [ gbhai
and W [ gb�1hai.

By Lemma 3.4, ˛x.gban/ D P.x; ˛x.g//ban (for any x 2 X; n 2 Z). By
induction, x 7! P.x; ˛x.g// is determined by x 7! Œ.�x/.w/
w2W . So for any n,
x 7! ˛x.gban/ is determined x 7! Œ.�x/.w/
w2W . This proves that the lemma is
true for W [ gbhai.

Again by Lemma 3.4, ˛x.gb�1/ D P.x; ˛x.g/b�1/ (for any x 2 X ). Since
P.x; P.x; f // D f for any f , P.x; ˛x.gb�1// D ˛x.g/b�1. So,

Œ˛x.g/b�1
�1P.x; ˛x.g/b�1/ D Œ˛x.gb�1/�1P.x; ˛x.gb�1//
�1:

Since
x 7! ˛x.gb�1/�1P.x; ˛x.gb�1//

is determined by

x 7! Œx.˛x.gb�1/an/
n2Z D Œ�x.gb�1an/
n2Z;

it follows that
x 7! Œ˛x.g/b�1
�1P.x; ˛x.g/b�1/

is determined by
x 7! Œ.�x/.gb�1an/ W n 2 Z
:

The induction hypothesis implies that

x 7! ˛x.g/

is determined by
x 7! Œ.�x/.w/
w2W

from which it now follows that x 7! P.x; ˛x.g/b�1/ D ˛x.gb�1/ is determined
by x 7! Œ.�x/.w/ W w 2 W [ gb�1hai
. Since ˛x.gb�1an/ D ˛x.gb�1/an, the
lemma is true for W [ gb�1hai. This completes the induction step and hence the
lemma.

Proposition 3.7. .�
F2
2 �/�.�F2=hbi � �F2/ D �F2 .

Proof. Let x 2 X be a random variable with law �F2=hbi � �F2 . By shift-invariance,
it suffices to show that f.�x/2.g/gg2F2 is a collection of independent identically
distributed (i.i.d.) random variables.
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Since �x.an/ D x.an/ for any n 2 Z, the variables f.�x/2.a
n/gn2Z are i.i.d.

each with law �. Suppose, for induction, that W � F2 is a right-connected set such
that Wa D W , e 2 W and f.�x/2.w/gw2W is an i.i.d. collection. We will show that
for any g 2 W :

(1) if V D W [ gbhai then f.�x/2.v/gv2V is an i.i.d. collection;
(2) if V D W [ gb�1hai then f.�x/2.v/gv2V is an i.i.d. collection.

By induction, this will prove the proposition. It may be helpful to keep in mind that
˛x.W / D W . This follows directly from the definitions.

Recall that two measurable functions f1; f2 with domain X are independent if for
every pair of sets A1; A2 such that Ai is in the sigma algebra induced by fi (i D 1; 2),

.�F2=hbi � �F2/.A1 \ A2/ D .�F2=hbi � �F2/.A1/.�
F2=hbi � �F2/.A2/:

To prove item (1.), we may assume that gb … W since otherwise W D V and
item (1.) is trivial. By the previous lemma, x 7! ˛x.g/ and x 7! P.x; ˛x.g// are
determined by x 7! Œ.�x/.w/
w2W . The function

x 7! Œx2.P.x; ˛x.g//ban/
n2Z D Œ.�x/2.gban/
n2Z

is independent of Œ.�x/.w/
w2W because the set fP.x; ˛x.g//ban W n 2 Zg is
disjoint from the set f˛x.w/ W w 2 W g and x 7! P.x; ˛x.g// is determined by
x 7! Œx.˛x.w//
w2W . The induction hypothesis now implies item (1.).

To prove item (2.), we may assume that gb�1 … W since otherwise W D V and
item (2.) is trivial. Note

P.x; ˛x.g/b�1/ D ˛x.g/b�1Œ˛x.g/b�1
�1P.x; ˛x.g/b�1/:
By the previous lemma, x 7! ˛x.g/ is determined by x 7! Œ.�x/.w/
w2W . By
definition of P ,

Œ˛x.g/b�1
�1P.x; ˛x.g/b�1/
is determined by the function x 7! Œx.˛x.g/b�1an/
n2Z which is independent of
x 7! Œ.�x/2.w/
w2W since f˛x.g/b�1an W n 2 Zg is disjoint from f˛x.w/ W w 2
W g. Therefore the function

x 7! x2ŒP.x; ˛x.g/b�1/an
n2Z D Œ.�x/2.gb�1an/
n2Z

is independent of x 7! Œ.�x/.w/
w2W , again by the fact that fP.x; ˛x.g/b�1/an W
n 2 Zg is disjoint from the set f˛x.w/ W w 2 W g. The induction hypothesis now
implies item (2.).

We can now prove Theorem 1.3.

Proof of Theorem 1.3. The map �
F2
2 W supp.���F2=hbi � �F2/ ! NF2 is invertible

by Lemma 3.5. It follows from the previous proposition that this map is a measure-
conjugacy from the shift-action F2Õ..N � N/F2 ; ��.�F2=hbi � �F2// to the shift-
action F2Õ.NF2 ; �F2/. By Lemma 3.3, � is an OE from F2Õ..N �N/F2 ; �F2=hbi �
�F2/ to F2Õ..N � N/F2 ; ��.�F2=hbi � �F2//.
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4. Theorem 1.4

As in the statement of Theorem 1.4, let K be a finite set with jKj � 2. We will
assume that there are two elements 0; 1 such that 1 2 K but 0 … K. These elements
will later be related to the generators fa; bg of F2.

4.1. The pairings. To begin the proof of Theorem 1.4, we define a set of maps that
will play the role of the brackets of the sketch in § 1.2.2. For x 2 .K � K/F2 , define
x1 2 KF2 and x2 2 KF2 as in the previous section. So, x.g/ D .x1.g/; x2.g// for
any g 2 F2. For g 2 F2 and k 2 K define Pk.x; g/ 2 F2 as follows.

� If k D 1, then Pk.x; g/ WD g.
� If x1.g/ … f1; kg then Pk.x; g/ WD g.
� If k ¤ 1 and x1.g/ D 1 then let Pk.x; g/ D gan where n > 0 is the smallest

positive integer such that

(1) x1.gan/ D k,
(2) jfm 2 Z \ Œ0; n
 W x1.gam/ D 1gj D jfm 2 Z \ Œ0; n
 W x1.gam/ D kgj.

� If k ¤ 1 and x1.g/ D k then let Pk.x; g/ D ga�n where n > 0 is the smallest
positive integer such that

(1) x1.ga�n/ D 1,
(2) jfm 2 Z\Œ0; n
 W x1.ga�m/ D 1gj D jfm 2 Z\Œ0; n
 W x1.ga�m/ D kgj.

A-priori, Pk.x; g/ may not be well defined since there might not exist a number n

satisfying the above conditions. However, we have:

Lemma 4.1. Let X be the set of all x 2 .K � K/F2 such that for all g 2 F2

and all k 2 K Pk.x; g/ is well defined. Then �F2=hbi � �F2.X/ D 1. Moreover,
Pk.x; Pk.x; g// D g for any x 2 X and g 2 F2.

Proof. This is an easy exercise left to the reader.

In this section, X will denote the set defined above. It is not the same as the set
X defined in the previous section of which we will have no further use.

4.2. A stable orbit morphism. Let Y D fx 2 X W x1.e/ D 1g. For y 2 Y , let
Ny WD .Vy ; Ey ; Ly ; Gy ; 	y/ be the rooted network induced by y and � D fa; bg as
in § 2.2. Define N

�
y D .V

�
y ; E

�
y ; L

�
y ; G

�
y ; 	y/ by

� V
�
y D fg 2 Vy D F2 W y1.g/ D 1g.

� L
�
y .g/ D ..i0; j0/; : : : ; .in; jn// where for 0 � m � n, y.gam/ D .im; jm/

and n � 0 is the smallest number such that y1.ganC1/ D 1.
� G

�
y maps E

�
y into K t f0g.



Stable orbit equivalence of Bernoulli shifts over free groups 33

� E
�
y contains all edges of the form .g; gan/ 2 V

�
y � V

�
y where g 2 F2 is

any element with y1.g/ D 1 and n > 0 is the smallest number such that
y1.gan/ D 1. For any such edge define G

�
y .g; gan/ WD 0.

� E
�
y contains all edges of the form .Pk.y; g/; Pk.y; gb// 2 V

�
y � V

�
y where

g 2 F2 is any element with y1.g/ D k. For any such edge define

G �y ..Pk.y; g/; Pk.y; gb/// D k:

For use later, define �y.g; gb/ WD .Pk.y; g/; Pk.y; gb//.
� The root 	y is the identity element in F2.

Warning: do not get N
�
y confused with N

�
x as defined in § 3. They are completely

different. We will not need the latter in this section.

Lemma 4.2. For any y 2 Y , .V
�
y ; E

�
y / is a tree.

Proof. Let g1; g2; : : : be an arbitrary ordering of the group F2. For each n � 0 let
�n D .V; En/ be the graph with vertex set V D F2 and edge set En defined by

En WD .E [ f�y.gi ; gib/ W i � ng/ � f.gj ; gj b/ W j � ng
where E is the edge set of the Cayley graph of F2.

Claim 1. �n is a tree for all n.
Note that �0 D .V; E/ is the Cayley graph of F2. So it is a tree. For induction,

assume that �n is a tree for some n � 0. So, the graph � 0
n obtained from �n by

removing the edge .gnC1; gnC1b/ has two components, each of which is a tree. The
vertices gnC1 and gnC1b are in different components of � 0

n. Let k D y1.gnC1/.
Since Pk.y; gnC1/ D gnC1am for some m 2 Z, it follows that Pk.y; gnC1/ and
gnC1 lie in the same component of � 0

n. Similarly, Pk.y; gnC1b/ and gnC1b lie in the
same component of � 0

n. Thus, �nC1, which is obtained from � 0
n by adding the edge

.Pk.y; gnC1/; Pk.y; gnC1b// is a tree. This proves claim 1.
Let �1 D .V; E1/ be the graph with vertex set V D F2 and edge set E1

equal to the edge set E minus the edges f.g; gb/ W g 2 F2g union the edges
f�y.g; gb/ W g 2 F2g. It follows from claim 1 that �1 is a tree. Observe that
if g 2 F2 is such that y1.g/ ¤ 1 then g has degree 2 inside �1. So .V

�
y ; E

�
y / is

obtained from �1 by removing all vertices of degree 2 and gluing together the edges
connecting such vertices. That is to say, if y1.g/ D 1 and n > 0 is the smallest
number such that y1.gan/ D 1 then we remove all the vertices of the form gai for
0 < i < n and all edges incident to such vertices and add in the edge .g; gan/.
Clearly, this operation preserves simple connectivity. This proves the lemma.

Lemma 4.3. For any y 2 Y , the rooted network N
�
y is actionable.

Proof. This is an easy exercise left to the reader.
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Let T D K t f0g and let FT be the free group generated by T . Let K� be
the set of all finite nonempty ordered lists of elements in K � K. In other words,
K� D S1

nD1.K � K/n. Define � W Y ! K
FT� by �y.g/ WD L

�
y .A.N

�
y W 	y ; g//.

The definition of � ensures that for any y 2 Y the network N�y induced by �y and
T is isomorphic to N

�
y . Warning: this map is completely different from the map �

defined in § 3. We will not need the latter in this section. We will show that � is a
stable orbit equivalence onto a Bernoulli shift over FT .

Lemma 4.4. For any y 2 Y ,

f�.g � y/ W g 2 F2 such that g � y 2 Y g D ff � .�y/ W f 2 FT g:

Proof. Let y 2 Y and let Ny WD .Vy ; Ey ; Ly ; Gy ; 	y/ be the rooted network induced
by y and � D fa; bg. For g 2 F2 such that g � y 2 Y , the rooted network Ng �y is
isomorphic to .Vy ; Ey ; Ly ; Gy ; g�1/. This follows from Lemma 2.1.

Let N
�
y D .V

�
y ; E

�
y ; L

�
y ; G

�
y ; 	y/. As mentioned previously, N

�
y is isomorphic to

N�y . By construction, it follows that N�.g �y/ is isomorphic to .V
�
y ;E

�
y ; L

�
y ; G

�
y ; g�1/.

Let f 2 FT be the unique element such that A.N
�
y W 	y ; f �1/ D g�1. We know

that such an element exists and is unique because .V
�
y ; E

�
y / is a tree. Again, by

Lemma 2.1, .V
�
y ; E

�
y ; L

�
y ; G

�
y ; g�1/ is isomorphic to Nf ��.y/. This proves that

�.g � y/ D f � �.y/. Thus f�.g � y/ W g 2 F2; g � y 2 Y g � ff � .�y/ W f 2 FT g:
The reverse inclusion is similar.

4.3. The inverse. In this section, we construct the inverse to �.

4.3.1. Pairings. Given an element � D ..i0; j0/; : : : ; .in; jn// 2 K�, let len.�/ WD
n. In this paper N D f0; 1; 2; : : :g. For z 2 K

FT� , define

FzT WD f.g; i/ 2 FT � N W lenŒz.g/
 � ig:
Define a partial ordering on FzT by .g; i/ < .h; j / if either

(1) there exists n > 0 such that gan D h, or
(2) g D h and i < j .

If there does not exist an n such that gan D h then .g; i/ and .h; j / are not comparable.
For .g; m/ 2 FzT , define z.g; m/ WD .im; jm/ where z.g/ D ..i0; j0/; : : : ; .in; jn//.

Define z1.g; m/ WD im and z2.g; m/ WD jm.
For z 2 K

FT� , g 2 FT and k 2 K define Qk.z; g/ 2 FzT as follows.

� If k D 1, then Qk.z; g/ WD .g; 0/.
� If k ¤ 1 then let Qk.z; g/ be the smallest element of FzT such that

(1) .g; 0/ < Qk.z; g/,
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(2) z1.Qk.z; g// D k and

jf.h; i/ 2 FzT W z1.h; i/ D 1; .g; 0/ � .h; i/ � Qk.z; g/gj
D jf.h; i/ 2 FzT W z1.h; i/ D k; .g; 0/ � .h; i/ � Qk.z; g/gj:

A-priori, Qk.z; g/ may not be well defined. However, we have:

Lemma 4.5. Let Z be the set of all z 2 K
FT� such that

� for all g 2 FT and all k 2 K, Qk.z; g/ is well defined;
� Qk.z; �/ maps FT bijectively onto the set f.g; i/ 2 FzT W z1.g; i/ D kg.

Then �.Y / � Z.

Proof. This is an easy exercise left to the reader.

4.3.2. The rooted network of the inverse. Recall that T D K t f0g. For ease of
notation, we will write sk for the element of FT corresponding to k 2 T . For z 2 Z,
let N

 
z WD .FzT ; E

 
z ; L

 
z ; G

 
z ; 	z/ where

� L
 
z .g; i/ D z.g; i/ for any .g; i/ 2 FzT .

� G
 
z maps E

 
z into fa; bg.

� E
 
z contains all edges of the form e D ..g; i/; .g; i C 1// for all .g; i/,

.g; i C 1/ 2 FzT . It also contains all edges of the form e D ..g; n/; .ga; 0//

where n D len.z; g/. For any such edge define G
 
z .e/ WD a.

� E
 
z contains all edges of the form e D .Qk.z; f /; Qk.z; f sk// where f 2 FT

is any element with Qk.z; f / D .g; i/ for some .g; i/ 2 FzT with z1.g; i/ D k.

For each such edge define G
 
z .e/ D b.

� The root 	z D .e; 0/ where e is the identity element in FT .

Lemma 4.6. For any z 2 Z, the rooted network N
 
z is actionable. If ‚ W Z !

.K � K/F2 is defined by ‚z.g/ D L
 
z .A.N

 
z W 	z; g// then ‚ is the inverse to �.

That is �‚.z/ D z and ‚�.y/ D y for all z 2 Z and all y 2 Y .

Proof. This is an easy exercise left to the reader.

Let � be the probability measure on Y defined by

�.E/ D �F2=hbi � �F2.E/

�F2=hbi � �F2.Y /

for any Borel E � Y .

Corollary 4.7. The map � is a stable orbit-equivalence between the shift-action
F2Õ..K � K/F2 ; �F2=hbi � �F2// and the shift-action FTÕ.K

FT� ; ���/.

Proof. This follows from the lemma above and Lemma 4.4.
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4.4. A measure space isomorphism

Proposition 4.8. ��� D �
FT� for some probability measure �� on K�.

Proof. For y 2 Y , let Ny D .Vy ; Ey ; Ly ; Gy ; 	y/ be the rooted network induced by
y and � D fa; bg. Define N

�
y D .V

�
y ; E

�
y ; L

�
V ; G

�
y ; 	y/ as in § 4.2. For g 2 FT ,

define ˛y.g/ by ˛y.g/ WD A.N
 
y W 	y ; g/. So

�y.g/ D .y.˛y.g//; : : : ; y.˛y.g/an//

where n � 0 is the smallest number such that y1.˛y.g/anC1/ D 1. It suffices to
show that if y 2 Y denotes a random variable with law � then f.�y/.g/gg2FT

is a
collection of independent identically distributed (i.i.d.) random variables indexed by
FT .

Fix k 2 K and let W C
k

D fg 2 FT W js�1
k

gj D jgj � 1g where j � j denotes the
word metric.

Let 
.y/ 2 .K � K/F2 be the function 
.y/.g/ WD y.Pk.y; e/bg/. By construc-
tion, y 7! Œ�y.w/


w2WC
k

is determined by y 7! Œ
.y/.u/
u2U where U WD fg 2
F2 W jbgj D jgj C 1g.

We claim that y 7! Œ
.y/.u/
u2U is independent of y 7! Œy.an/ W n 2 Z
. To
see this, observe that y 7! Pk.y; e/ is determined by Œy.an/ W n 2 Z
. The sets
fan W n 2 Zg and fPk.y; e/bu W u 2 U g are disjoint. There is a single coset
Pk.y; e/hbi in the intersection of fanhbi W n 2 Zg and fPk.y; e/buhbi W u 2 U g.
These facts imply that the law of y 7! Œ
.y/.u/
u2U conditioned on any arbitrary
event E in the � -algebra induced by y 7! Œy.an/ W n 2 Z
 is the same as the law of
x 7! Œx.u/
u2U where x 2 .K � K/F2 is a random variable with law �F2=hbi � �F2

conditioned on x1.e/ D k. In particular, y 7! Œ
.y/.u/
u2U is independent of
y 7! Œy.an/ W n 2 Z
 as claimed.

Since y 7! Œ�y.w/

w2WC

k

is determined by y 7! Œ
.y/.u/
u2U and y 7!
Œ�y.sn0 /
n2Z is determined by y 7! Œy.an/ W n 2 Z
, it follows that y 7!
Œ�y.w/


w2WC
k

is independent of y 7! Œ�y.sn0 /
n2Z. Let W �
k

D fg 2 FT W jskgj D
jgj�1g. In a similar manner, it can be shown that y 7! Œ�y.w/
w2W�

k
is independent

of y 7! Œ�y.sn0 /
n2Z.
It is an easy exercise to show that the variables f�y.sn0 /gn2Z are i.i.d.. Suppose,

for induction, that F � FT is a right-connected set (as defined in § 3.3) such that
F s0 D F and f�y.f /gf 2F is an i.i.d. collection. We claim that for any g 2 F , any
k 2 K and any � 2 f�1; C1g, if G D F [ gs�

k
hs0i then f�y.g/gg2G is an i.i.d.

collection. By induction, this will prove the proposition.
To prove this claim, we may assume that gs�

k
… F since otherwise F D G and

the claim is trivial. So e … .gs�
k
/�1F . Since g 2 F , s��

k
2 .gs�

k
/�1F . Since F is

right-connected, this implies .gs�
k
/�1F � W ��

k
. We have already shown that y 7!

Œ�y.w/ W w 2 W ��
k


 is independent of y 7! Œ�y.sn0 /
n2Z. As ��.�F2=hbi � �F2/
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is shift-invariant this implies y 7! Œ�y.f / W f 2 F 
 is independent of y 7!
Œ�y.gs�

k
sn0 /
n2Z. Since both collection of random variables are i.i.d. (by the induction

hypothesis), this implies the claim and finishes the proposition.

Theorem 1.4 follows immediately from the above and Corollary 4.7.
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