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The Recognition Theorem for Out.Fn/
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Abstract. Our goal is to find dynamic invariants that completely determine elements of the
outer automorphism group Out.Fn/ of the free group Fn of rank n. To avoid finite order
phenomena, we do this for forward rotationless elements. This is not a serious restriction.
For example, there is Kn > 0 depending only on n such that, for all � 2 Out.Fn/, �Kn is
forward rotationless. An important part of our analysis is to show that rotationless elements
are represented by particularly nice relative train track maps.
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1. Introduction

The Thurston classification theorem for mapping class groups of surfaces inspired a
surge in research on the outer automorphism group Out.Fn/of the free group of rankn.
One direction of this research is the development and use of relative train track maps
which are the analog of the normal forms for mapping classes. Thurston’s normal
forms give rise to invariants that completely determine a mapping class, perhaps after

1This material is based upon work supported by the National Science Foundation under Grant No. DMS-
0805440.

2This material is based upon work supported by the National Science Foundation under Grant No. DMS-
0706719.



40 M. Feighn and M. Handel

passing to a finite power. In this paper we provide similar invariants for elements of
Out.Fn/ and we add an important feature to relative train track maps.

We begin by recalling the invariants associated to a mapping class. After passing
to a finite power, there is a decomposition of the surface into invariant subsurfaces
on which the action of the mapping class is either a Dehn twist in an annulus, trivial
or pseudo-Anosov; in the pseudo-Anosov case, each singular ray of the associated
measured foliations is invariant. The mapping class is completely determined by
the (isotopy classes of the) core curves of the annuli, the Dehn twist degrees, the
pseudo-Anosov measured foliations and the expansion factors on the pseudo-Anosov
measured foliations.

To see how this might generalize to Out.Fn/, consider the special case in which
the mapping class  is a composition of disjoint Dehn twists and so is determined by
the twisting circles and the degrees of twist. The dual point of view is useful here. The
complementary components of the twisting curves are maximal subsurfaces on which
 acts trivially. Viewing the mapping class group as the group of outer automorphism
of the fundamental group �1.S/ of the surface S , each complementary component
determines, up to conjugacy, a subgroup of �1.S/ of rank at least two that is the
fixed subgroup Fix.‰/ of some automorphism ‰ of �1.S/ that represents the outer
automorphism  . If‰1 and‰2 are two distinct such automorphisms, corresponding
to either the same or distinct subsurfaces, then Fix.‰1/\Fix.‰2/ is either trivial or a
maximal cyclic group hai. In the latter case ‰2 D ida ‰1 for some d ¤ 0 where ia is
the inner automorphism determined by a; moreover, the conjugacy class determined
by a represents a twisting curve for � with twisting degree ˙d .

This point of view, focusing on fixed subgroups of rank at least two and their
intersections, is sufficient [6] if one restricts to elements of Out.Fn/ that have linear
growth.1 For general � 2 Out.Fn/, we must also account for exponential and non-
linear polynomial growth. To do this, we consider the boundary of the free group.
An automorphismˆ induces a homeomorphism Ô W @Fn ! @Fn. In the general case
there are isolated points, and these contain essential information about the automor-
phism. For example, the set of attracting laminations associated to � can be recovered
from the isolated attracting points.

The idea then is to replace Fix.ˆ/ with the set FixN . Ô / of non-isolated points
and attractors in Fix. Ô /; see [12], [14], [3] and [15] where this same idea has been
used effectively. In Section 3.2, we define the set P.�/ � Aut.Fn/ of principal
automorphisms representing �. In the case of linear growth, ˆ is principal if and
only if Fix.ˆ/ has rank at least two. The invariants that determine �, after possibly
passing to a finite power, are the sets FixN . Ô / as ˆ varies over P.�/, the expansion
factors for the attracting laminations of � and twisting coordinates associated to pairs
of principal automorphisms whose fixed points sets intersect non-trivially.

1� 2 Out.Fn/ has linear growth if, for all conjugacy classes of elements a 2 Fn, the cyclically
reduced word length of the conjugacy class of �m.a/ is bounded by a linear function (depending on a)
of m.



The Recognition Theorem for Out.Fn/ 41

It is common when studying elements � 2 Out.Fn/ to ‘stabilize’� by replacing it
with a power�k . In Section 3, we specify a subset of Out.Fn/whose elements require
no stabilization. These outer automorphisms are said to be forward rotationless. In
Lemma 4.42 we prove that there is Kn > 0, depending only on n, so that �Kn is
forward rotationless for all � 2 Out.Fn/. We also define what it means for a relative
train track map f W G ! G to be rotationless and prove (Proposition 3.29) that � is
forward rotationless if and only if some (every) relative train track map representing
it is rotationless. (There is no need to add ‘forward’ to this terminology because f k

is only defined for k � 1.) It is easy to check if f W G ! G is rotationless and if not
to find the minimal k such that f k is rotationless.

We can now state our main result. Complete details and further motivation are
supplied in Section 5. In addition to being of intrinsic interest this theorem is needed
in [10]. The set of attracting laminations for � is denoted L.�/ and the expansion
factor for � on ƒ 2 L.�/ is denoted PFƒ.�/.

Theorem 5.3 (Recognition Theorem). Suppose that �; 2 Out.Fn/ are forward
rotationless and that

(1) PFƒ.�/ D PFƒ. /, for all ƒ 2 L.�/ D L. /; and

(2) there is bijection B W P.�/ ! P. / such that:

(i) (fixed sets preserved) FixN . Ô / D FixN .1B.ˆ//; and

(ii) (twist coordinates preserved) if w 2 Fix.ˆ/ and ˆ; iwˆ 2 P.�/, then
B.iwˆ/ D iwB.ˆ/.

Then � D  .

In the course of proving Theorem 5.3, we construct relative train track maps that
are better than the those constructed in [2]. We also reorganize elements of the theory
to make future modification and referencing of results easier.

The idea behind relative train track maps is that one can study the action of an
outer automorphism � on conjugacy classes in Fn or on @Fn by analyzing the action
of a homotopy equivalence f W G ! G of a marked graphG representing � on paths,
circuits and lines in G. For simplicity, suppose that � is a finite path in G, which
by convention is always assumed to be the immersed image of a compact interval.
The image f .�/ of � is homotopic rel endpoints to a path denoted f#.�/. Replacing
f .�/ with f#.�/ is called tightening and is analogous to replacing a word in a set
of generators for Fn with a reduced word in those generators. A decomposition of
� into subpaths � D �1 : : : �m is a splitting if f k

# .�/ D f k
# .�1/ : : : f

k
# .�m/ for all

k � 0; i.e. if one can tighten the image of � under any iterate of f by tightening the
images of the �i ’s. The more one can split � and the better one can understand the
subpaths �i , the more effectively one can analyze the iterates f k

# .�/.
Relative train track maps were defined and constructed in [4] with exponentially

growing strata in mind. Few restrictions were placed on the non-exponentially grow-
ing strata. This was rectified in [2] where improved relative train tracks (IRTs) are
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defined and shown to exist for a sufficiently high, but unspecified, iterate of �. For
our current application, IRTs are inadequate. In Theorem 4.28, we prove that every
forward rotationless � is represented by a relative train track map f W G ! G that has
all the essential properties of an IRT (see Section 4.3) and has the additional feature
that, for all � and all sufficiently large k, there is a canonical splitting (called the
complete splitting) of f k

# .�/ into simple, explicitly described subpaths. (Splittings
in an IRT are not canonical and the subpaths �i are understood more inductively than
explicitly.) Such f W G ! G, called CTs, are used in the proof of the Recognition
Theorem and in the classification of abelian subgroups given in [10]. It is likely
that the existence of complete splittings will be useful in other contexts as well. For
example, complete splittings are hard splittings as defined in [5].

We are grateful to Lee Mosher for many helpful suggestions and to the referee for
a very careful reading of the paper.

2. Preliminaries

Fix n � 2 and let Fn be the free group of rank n. Denote the automorphism group of
Fn by Aut.Fn/, the group of inner automorphisms of Fn by Inn.Fn/ and the group
of outer automorphisms of Fn by Out.Fn/ D Aut.Fn/= Inn.Fn/. We follow the
convention that elements of Aut.Fn/ are denoted by upper case Greek letters and that
the same Greek letter in lower case denotes the corresponding element of Out.Fn/.
Thus ˆ 2 Aut.Fn/ represents � 2 Out.Fn/.

2.1. Markedgraphsandouterautomorphisms. IdentifyFn with�1.Rn;�/where
Rn is the rose with one vertex � and n edges. A marked graphG is a graph of rank n,
all of whose vertices have valence at least two, equipped with a homotopy equivalence
m W Rn ! G called a marking. Letting b D m.�/ 2 G, the marking determines an
identification of Fn with �1.G; b/. It is often assumed that G does not have valence
two vertices, but such vertices occur naturally in relative train track theory so we
allow them.

A homotopy equivalence f W G ! G and a path � from b to f .b/ determines
an automorphism of �1.G; b/ and hence an element of Aut.Fn/. If f fixes b and
no path is specified, then we use the trivial path. This construction depends only
on the homotopy class of � and, as the homotopy class varies, the automorphism
ranges over all representatives of the associated outer automorphism �. We say that
f W G ! G represents �. We always assume that f maps vertices to vertices and
that the restriction of f to any edge is an immersion.

2.2. Paths, circuits and edge paths. Let� be the universal cover of a marked graph
G and let pr W � ! G be the covering projection. A proper map Q� W J ! � with
domain a (possibly infinite) closed interval J will be called a path in � if it is an
embedding or if J is finite and the image is a single point; in the latter case we say
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that Q� is a trivial path. If J is finite, then any map Q� W J ! � is homotopic rel
endpoints to a unique (possibly trivial) path Œ Q��; we say that Œ Q�� is obtained from Q� by
tightening. If Qf W � ! � is a lift of a homotopy equivalence f W G ! G, we denote
Œ Qf . Q�/� by Qf#. Q�/.

We will not distinguish between paths in � that differ only by an orientation
preserving change of parametrization. Thus we are interested in the oriented image
of Q� and not Q� itself. If the domain of Q� is finite, then the image of Q� has a natural
decomposition as a concatenation zE1

zE2 : : : zEk�1
zEk where zEi , 1 < i < k, is an edge

of � , zE1 is the terminal segment of an edge and zEk is the initial segment of an edge.
If the endpoints of the image of Q� are vertices, then zE1 and zEk are full edges. The
sequence zE1

zE2 : : : zEk is called the edge path associated to Q� . This notation extends
naturally to the case that the interval of domain is half-infinite or bi-infinite. In the
former case, an edge path has the form zE1

zE2 : : : or : : : zE�2
zE�1 and in the latter case

has the form : : : zE�1
zE0

zE1
zE2 : : : .

A path in G is the composition of the projection map pr with a path in � . Thus
a map � W J ! G will be called a non-trivial path if J is a (possibly infinite) closed
non-trivial interval and � is an immersion which lifts to a proper map Q� W J ! � .
A map � W J ! G will be called a trivial path if J is finite and �.J / is a single
point. If J is finite, then every map � W J ! G is homotopic rel endpoints to a
unique (possibly trivial) path Œ��; we say that Œ�� is obtained from � by tightening.
For any lift Q� W J ! � of a path � , Œ�� D prŒ Q��. We denote Œf .�/� by f#.�/. We do
not distinguish between paths in G that differ by an orientation preserving change of
parametrization. The edge path associated to a path � is the projected image of the
edge path associated to a lift Q� . Thus the edge path associated to a path with finite
domain has the form E1E2 : : : Ek�1Ek where Ei , 1 < i < k, is an edge of G, E1

is the terminal segment of an edge and Ek is the initial segment of an edge. We will
identify paths with their associated edge paths whenever it is convenient.

We reserve the word circuit for an immersion � W S1 ! G. Any homotopically
non-trivial map � W S1 ! G is homotopic to a unique circuit Œ��. As was the case
with paths, we do not distinguish between circuits that differ only by an orientation
preserving change in parametrization and we identify a circuit � with a cyclically
ordered edge path E1E2 : : : Ek .

A path or circuit crosses or contains an edge if that edge occurs in the associated
edge path. For any path � in G define N� to be ‘� with its orientation reversed’. For
notational simplicity, we sometimes refer to the inverse of Q� by Q��1.

A decomposition of a path or circuit into subpaths is a splitting for f W G ! G

and is denoted � D : : : � �1 � �2 � : : : if f k
# .�/ D : : : f k

# .�1/f
k

# .�2/ : : : for all k � 0.
In other words, a decomposition of � into subpaths �i is a splitting if one can tighten
the image of � under any iterate of f# by tightening the images of the �i ’s.

A path � is a periodic Nielsen path if � is non-trivial and f k
# .�/ D � for some

k � 1. The minimal such k is the period of � and if the period is one then � is a
Nielsen path. A (periodic) Nielsen path is indivisible if it does not decompose as a
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concatenation of non-trivial (periodic) Nielsen subpaths. A path or circuit is root-free
if it is not equal to �k for some path � and some k > 1.

2.3. Automorphisms and lifts. Section 1 of [12] and Section 2.1 of [3] are good
sources for facts that we record below without specific references. The universal cover
� of a marked graph G with marking m W Rn ! G is a simplicial tree. We always
assume that a base point Qb 2 � projecting to b D m.�/ 2 G has been chosen, thereby
defining an action of Fn on � . The set of ends E.�/ of � is naturally identified with
the boundary @Fn of Fn and we make implicit use of this identification throughout
the paper.

Each non-trivial c 2 Fn acts by a covering translation Tc W � ! � and each Tc

induces a homeomorphism OTc W @Fn ! @Fn that fixes two points, a sink TC
c and a

source T �
c . The line in � whose ends converge to T �

c and TC
c is called the axis

of Tc and is denoted Ac . The image of Ac in G is the circuit corresponding to the
conjugacy class of c.

If f W G ! G represents � 2 Out.Fn/ then a path � from b to f .b/ determines
both an automorphism representing � and a lift of f to � . This defines a bijection
between the set of lifts Qf W � ! � of f W G ! G and the set of automorphisms
ˆ W Fn ! Fn representing �. Equivalently, this bijection is defined by Qf Tc D
Tˆ.c/

Qf for all c 2 Fn. We say that Qf corresponds to ˆ or is determined by ˆ
and vice versa. Under the identification of E.�/ with @Fn, a lift Qf determines a
homeomorphism Of of @Fn. An automorphismˆ also determines a homeomorphism
Ô of @Fn and Of D Ô if and only if Qf corresponds to ˆ. In particular, Oic D OTc for
all c 2 Fn where ic.w/ D cwc�1 is the inner automorphism of Fn determined by c.
We use the notation Of and Ô interchangeably depending on the context.

We are particularly interested in the dynamics of Of D Ô . The following two
lemmas are contained in Lemmas 2.3 and 2.4 of [3] and in Proposition 1.1 of [12].

Lemma 2.1. Assume that Qf W � ! � corresponds to ˆ 2 Aut.Fn/. Then the
following are equivalent:

(i) c 2 Fix.ˆ/.
(ii) Tc commutes with Qf .

(iii) OTc commutes with Of .

(iv) Fix. OTc/ � Fix. Of / D Fix. Ô /.
(v) Fix. Of / D Fix. Ô / is OTc-invariant.

Remark 2.2. It is not hard to see that TC
c 2 Fix.ˆ/ if and only if T �

c 2 Fix.ˆ/.

A point P 2 @Fn is an attractor for Ô if it has a neighborhood U such that
Ô .U / � U and such that

T1
nD1

Ô n.U / D P . If Q is an attractor for Ô �1 then we
say that it is a repeller for Ô .
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Lemma 2.3. Assume that Qf W � ! � corresponds to ˆ 2 Aut.Fn/ and that
Fix. Ô / � @Fn contains at least three points. Denote Fix.ˆ/ by F and the cor-
responding subgroup of covering translations of � by T .ˆ/. Then

(i) @F is naturally identified with the closure of fTċ W Tc 2 T .ˆ/g in @Fn. None
of these points is isolated in Fix. Ô /.

(ii) Each point in Fix. Ô / n @F is isolated and is either an attractor or a repeller for
the action of Ô .

(iii) There are only finitely many T .ˆ/-orbits in Fix. Ô / n @F .

2.4. Lines and laminations. Suppose that � is the universal cover of a marked
graph G. An unoriented bi-infinite path in � is called a line in � . The space of
lines in � is denoted zB.�/ and is equipped with what amounts to the compact-open
topology. Namely, for any finite path Q̨0 � � (with endpoints at vertices if desired),
define N. Q̨0/ � zB.�/ to be the set of lines in � that contain Q̨0 as a subpath. The
sets N. Q̨0/ define a basis for the weak topology on zB.�/.

An unoriented bi-infinite path inG is called a line inG. The space of lines inG is
denoted B.G/. There is a natural projection map from zB.�/ to B.G/ and we equip
B.G/ with the quotient topology.

A line in � is determined by the unordered pair of its endpoints .P;Q/ and so
corresponds to a point in the space of abstract lines defined to be zB WD ..@Fn �@Fn/n
�/=Z2, where� is the diagonal and where Z2 acts on @Fn �@Fn by interchanging the
factors. The action of Fn on @Fn induces an action of Fn on zB whose quotient space
is denoted B. The ‘endpoint map’ defines a homeomorphism between zB and zB.�/
and we use this implicitly to identify zB with zB.�/ and hence zB.�/ with zB.� 0/
where � 0 is the universal cover of any other marked graph G0. There is a similar
identification of B.G/ with B and with B.G0/. We sometimes say that the line in
G or � corresponding to an abstract line is the realization of that abstract line in G
or � .

A closed set of lines in G or a closed Fn-invariant set of lines in � is called a
lamination and the lines that compose it are called leaves. If ƒ is a lamination in
G then we denote its pre-image in � by Qƒ. Conversely, if Qƒ is an Fn-invariant
lamination in � then its image in G is denoted ƒ.

Suppose that f W G ! G represents � and that Qf is a lift of f . If Q	 is a line in
� with endpoints P and Q, then there is a bounded homotopy from Qf . Q	/ to the line
Qf#.	/ with endpoints Of .P / and Of .Q/. This defines an action Qf# of Qf on lines in
� . If ˆ 2 Aut.Fn/ corresponds to Qf then ˆ# D Qf# is described on abstract lines by
.P;Q/ 7! . Ô .P /; Ô .Q//. There is an induced action �# of � on lines in G and in
particular on laminations in G.

To each � 2 Out.Fn/ is associated a finite �-invariant set of laminations L.�/

called the set of attracting laminations for �. The individual laminations need not be
�-invariant. By definition (see Definition 3.1.5 of [2]) L.�/ D L.�k/ for all k � 1

and each ƒ 2 L.�/ contains birecurrent leaves ` whose weak closure (that is, its
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closure in the weak topology) is all of ƒ; any such ` is called a generic leaf of ƒ.
A birecurrent leaf ` is a generic leaf of some ƒ 2 L.�/ if and only if it has a weak
neighborhood U , called an attracting neighborhood, such that f�pk.U / W k � 0g is
a weak neighborhood basis for ` for some p � 1. Complete details on L.�/ can be
found in Section 3 of [2].

A point P 2 @Fn determines a lamination ƒ.P /, called the accumulation set of
P , as follows. Let � be the universal cover of a marked graph G and let zR be any
ray in � converging to P . A line Q� � � belongs to Aƒ.P / if every finite subpath of
Q� is contained in some translate of zR. Suppose that zR D Q
 zR0 where Q
 is an initial
subpath of zR with finite length, sayN . Given a finite subpath Q̨2 of Q� , there is a finite
subpath Q̨ of Q� where Q̨ D Q̨1 Q̨2 and where Q̨1 has length greater than N . Since Q̨
is contained in some translate of zR, Q̨2 is contained in some translate of zR0. This
proves that Aƒ.P / is unchanged if zR is replaced by any subray. Since any two rays
converging to P have a common infinite end, Aƒ.P / is independent of the choice
of zR. The bounded cancellation lemma implies (cf. Lemma 3.1.4 of [2]) that this

definition is independent of the choice of G and � and that Ô #.Aƒ.P // D C

ƒ. Ô .P //.
In particular, if P 2 Fix. Ô / then ƒ.P / is �#-invariant.

2.5. Free factor systems. The conjugacy class of a free factor F i of Fn is denoted
ŒŒF i ��. If F 1; : : : ; F k are non-trivial free factors and if F 1 � : : : � F k is a free
factor then we say that the collection fŒŒF 1��; : : : ; ŒŒF k��g is a free factor system. For
example, if G is a marked graph and Gr � G is a subgraph with non-contractible
componentsC1; : : : ; Ck then the conjugacy class ŒŒ�1.Ci /�� of the fundamental group
of Ci is well defined and the collection of these conjugacy classes is a free factor
system denoted F .Gr/; we say that Gr realizes F .Gr/.

The image of a free factor F under an element of Aut.Fn/ is a free factor. This
induces an action of Out.Fn/ on the set of free factor systems. We sometimes say that
a free factor is �-invariant when we really mean that its conjugacy class is �-invariant.
If ŒŒF �� is �-invariant then F is ˆ-invariant for some automorphism ˆ representing
� and ˆjF determines a well defined element �jF of Out.F /.

The conjugacy class Œa� of a 2 Fn is carried by ŒŒF i �� if F i contains a repre-
sentative of Œa�. Sometimes we say that a is carried by F i when we really mean
that Œa� is carried by ŒŒF i ��. If G is a marked graph and Gr is a subgraph of G such
that ŒŒF i �� D ŒŒ�1.Gr/��, then Œa� is carried by ŒŒF i �� if and only if the circuit in G
that represents Œa� is contained in Gr . We say that an abstract line ` is carried by
ŒŒF i �� if its realization in G is contained in Gr for some, and hence any, G and Gr as
above. Equivalently, ` is the limit of periodic lines corresponding to Œci � where each
Œci � is carried by ŒŒF i ��. A collectionW of abstract lines and conjugacy classes in Fn

is carried by a free factor system F D fŒŒF 1��; : : : ; ŒŒF k��g if each element of W is
carried by some F i .

There is a partial order @ on free factor systems generated by inclusion. More
precisely, ŒŒF 1�� @ ŒŒF 2�� if F 1 is conjugate to a free factor of F 2 and F1 @ F2 if for
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each ŒŒF i �� 2 F1 there exists ŒŒF j �� 2 F2 such that ŒŒF i �� @ ŒŒF j ��.
The complexity of a free factor system is defined on page 531 of [2]. Rather than

repeat the definition, we recall the three properties of complexity that we use. The
first is that if F1 @ F2 for distinct free factor systems F1 and F2 then the complexity
of F1 is less than the complexity of F2. This is immediate from the definition. The
second is Corollary 2.6.5 of [2].

Lemma 2.4. For any collection W of abstract lines there is a unique free factor
system F .W / of minimal complexity that carries every element of W . If W is a
single element then F .W / has a single element.

The third is an immediate consequence of the uniqueness of F .W /.

Corollary 2.5. If a collection W of abstract lines and conjugacy classes in Fn is
�-invariant then F .W / is �-invariant.

Further details on free factor systems can be found in Section 2.6 of [2].

2.6. Relative train track maps. In this section we review and set notation for
relative train track maps as defined in [4].

Suppose thatG is a marked graph and that f W G ! G is a homotopy equivalence
representing � 2 Out.Fn/. A filtration of G is an increasing sequence ; D G0 �
G1 � � � � � GN D G of subgraphs, each of whose components contains at least one
edge. If f .Gi / � Gi for all i then we say that f W G ! G respects the filtration or
that the filtration is f -invariant. A path or circuit has height r if it is contained inGr

but not Gr�1. A lamination has height r if each leaf in its realization in G has height
at most r and some leaf has height r .

The r th stratumHr is defined to be the closure ofGr nGr�1. To each stratumHr

there is an associated square matrix Mr , called the transition matrix for Hr , whose
ij th entry is the number of times that the f -image of the i th edge (in some ordering of
the edges of Hr ) crosses the j th edge in either direction. By enlarging the filtration,
we may assume that eachMr is either irreducible or the zero matrix. We say thatHr

is an irreducible stratum if Mr is irreducible and is a zero stratum if Mr is the zero
matrix.

IfMr is irreducible and the Perron–Frobenius eigenvalue ofMr is 1, thenMr is a
permutation matrix and Hr is non-exponentially growing or simply NEG. After sub-
dividing and replacing the given NEG stratum with a pair of NEG strata if necessary,
the edges fE1; : : : ; Elg of Hr can be oriented and ordered so that f .Ei / D EiC1ui

where ui � Gr�1 and where indices are taken mod l . We always assume that edges
in an NEG stratum have been so oriented and ordered. If each ui is trivial then
f l.Ei / D Ei for all i and we say that Ei [Hr ] is a periodic edge [stratum] with
period l or a fixed edge [stratum] if l D 1. If each ui is a Nielsen path then the
combinatorial length of f k

# .Ei / is bounded by a linear function of k for all i and we
say that Ei [Hr ] is a linear edge [stratum].
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IfMr is irreducible and if the Perron–Frobenius eigenvalue ofMr is greater than 1
then Hr is an exponentially growing stratum or simply an EG stratum. If Hr is EG
and ˛ � Gr�1 is a non-trivial path with endpoints in Hr \ Gr�1 then we say that
˛ is a connecting path for Hr . If Hr is EG and � is a path with height r then we
sometimes say that � has EG height.

A direction d at x 2 G is the germ of an initial segment of an oriented edge
(or partial edge if x is not a vertex) based at x. There is an f -induced map Df on
directions and we say that d is a periodic direction if it is periodic under the action
ofDf ; if the period is one then d is a fixed direction. Thus, the direction determined
by an oriented edge E is fixed if and only if E is the initial edge of f .E/. Two
directions with the same basepoint belong to the same gate if they are identified by
some iterate of Df . If x is a periodic point then the number of gates based at x is
equal to the number of periodic directions based at x.

A turn is an unordered pair of directions with a common base point. The turn
is nondegenerate if is defined by distinct directions and is degenerate otherwise. If
E1E2 : : : Ek�1Ek is the edge path associated to a path � , then we say that � contains
the turns . xEi ; EiC1/ for 1 � i � k � 1. A turn is illegal with respect to f W G ! G

if its image under some iterate of Df is degenerate; a turn is legal if it is not illegal.
Equivalently, a turn is legal if and only if it is defined by directions that belong to
distinct gates. A path or circuit � � G is legal if it contains only legal turns. A
turn whose two defining directions belong to the same stratumHr is said to be a turn
in Hr . If � � Gr does not contain any illegal turns in Hr , then � is r-legal. It is
immediate from the definitions that Df maps legal turns to legal turns and that the
restriction of f to a legal path is an immersion.

We recall the definition of relative train track map from page 38 of [4].

Definition 2.6. A homotopy equivalence f W G ! G representing � is a relative
train track map if it satisfies the following conditions for every EG stratumHr of an
f -invariant filtration F .

(RTT-i) Df maps the set of directions in Hr with basepoints at vertices to itself;
in particular every turn with one direction in Hr and the other in Gr�1 is
legal.

(RTT-ii) If ˛ is a connecting path for Hr then f#.˛/ is a connecting path for Hr ;
in particular, f#.˛/ is nontrivial.

(RTT-iii) If ˛ � Gr is r-legal then f#.˛/ is r-legal.

Remark 2.7. If f W G ! G is a relative train track map, then so is f k for k > 0.

A subgraph C of G is wandering if f k.C / is contained in the closure of G n C
for all k > 0; otherwise C is non-wandering. Each edge in a wandering subgraph
is contained in a zero stratum. If C is a component of a filtration element then C is
non-wandering if and only if f i .C / � C for some i > 0.
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Remark 2.8. Suppose thatHr is an EG stratum and that f W G ! G satisfies (RTT-i)
forHr . Then f .Hr \Gr�1/ � Hr \Gr�1 and verifying (RTT-ii) forHr reduces to
showing that f#.˛/ is nontrivial for each connecting path ˛ forHr . Suppose that the
component C of Gr�1 that contains ˛ is non-wandering. In checking (RTT-ii) there
is no loss in replacing f by f i so we may assume that f .C / � C . If f permutes
the elements of the finite set Hr \ C , then f#.˛/ is nontrivial for each ˛ � C . If f
identifies two of these points then they can be connected by an arc ˛ � C such that
f#.˛/ is trivial (because f jC W C ! C is a homotopy equivalence). This proves that
if C is a non-wandering component ofGr�1 then (RTT-ii) holds for all ˛ � C if and
only if Hr \ C � Per.f /.

The most common applications of the relative train track properties are contained
in following lemma.

Lemma 2.9. Suppose that f W G ! G is a relative train track map and that Hr is
an EG stratum.

(1) Suppose that a vertex v of Hr is contained in a component C of Gr�1 that is
non-contractible or more generally satisfies f i .C / � C for some i > 0. Then
v is periodic and has at least one periodic direction inHr .

(2) If � is an r-legal circuit or path of height r with endpoints, if any, at vertices of
Hr then the decomposition of � into single edges inHr and maximal subpaths
in Gr�1 is a splitting.

Proof. The first item follows from Remark 2.8. The second item is contained in
Lemma 5.8 of [4].

Lemma 2.10. If Hr is an EG stratum of a relative train track map f W G ! G and
x 2 Hr is either a vertex or a periodic point then there is a legal turn in Gr that is
based at x. In particular, there are at least two gates in Gr that are based at x.

Proof. There exists j > 0 and a point y in the interior of an edge E of Hr so that
x D f j .y/. By (RTT-iii), x is in the interior of an r-legal path. Moreover the turn
at x determined by this path is legal by Properties (RTT-iii) and (RTT-i).

The following lemma describes indivisible periodic Nielsen paths with EG height.

Lemma 2.11. Suppose that f W G ! G is a relative train track map and thatHr is
an EG stratum.

(1) There are only finitely many indivisible periodic Nielsen paths of height r .

(2) If � is an indivisible periodic Nielsen path of height r then � D ˛ˇ where ˛
and ˇ are r-legal paths that begin and end with directions in Hr and the turn
. N̨ ; ˇ/ is illegal. Moreover, if N̨ .k/ and ˇ.k/ are the initial segments of N̨ and
ˇ that are identified by f k

# then the ˛.k/ˇ.k/’s form an increasing sequence of
subpaths whose union is the interior of � .
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(3) An indivisible periodic Nielsen path � of height r has period 1 if and only if the
initial and terminal directions of � are fixed.

Proof. In proving (2) there is no loss in replacing f by an iterate so we may assume
that � is an indivisible Nielsen path. The first part of (2) is therefore contained in
the statement of Lemma 5.11 of [4] and the moreover part of (2) is contained in the
proof of that lemma. Item (1) follows from Lemma 4.2.5 of [2]. We now turn our
attention to (3).

Suppose that � is an indivisible periodic Nielsen path of height r and period p and
that � D ˛ˇ as in (2). After subdividing at the endpoints of f j

# .�/ for 0 � j � p�1
(which clearly preserves the property of being a relative train track map) we may
assume that the endpoints of � are vertices. Since ˛ and Ň are r-legal and begin with
edges inHr , Lemma 2.9 (2) implies thatDf maps the initial directions of ˛ and Ň to
the initial direction of f#.˛/ and f#. Ň/ respectively. The only if part of (3) therefore
follows from the fact that f#.�/ is obtained from f#.˛/ and f#. Ň/ by cancelling their
maximal common terminal segment.

Assume now that the initial edges of ˛ and Ň determine fixed directions and write
f#.�/ D ˛1ˇ1 as in (2). In particular, the first edgeE of ˛ is also the first edge in ˛1.
The moreover part of (2) implies that both ˛ and ˛1 are initial segments of f Np

# .E/

for all sufficiently largeN . Thus either ˛ is an initial segment of ˛1 or ˛1 is an initial
segment of ˛. For concreteness assume the former.

We claim that ˛1 D ˛. If not then ˛1 D ˛	 for some non-trivial 	 . The
path ˛2 WD Ň	 is a subpath of f Np

# . Ň/ for large N and so is r-legal. The path
˛2ˇ1 D Œ. Ň N̨ /.˛1ˇ1/� is a non-trivial periodic Nielsen path with exactly one illegal
turn in Hr and is therefore indivisible. By construction, ˛2 and Ň, and hence ˛2 and
Ň
1, have a non-trivial common initial subpath in Hr . This implies as above that ˛2

and Ň
1 are initial subpaths of a common path ı. They cannot be equal so one is a

proper initial subpath of the other. But then the difference between the number ofHr

edges in f Np
# .˛2/ and the number of Hr edges in f Np

# . Ň
1/ grows exponentially in

N in contradiction to the fact that ˛2ˇ1 is a periodic Nielsen path. This contradiction
verifies the claim that ˛ D ˛1. The symmetric argument implies that ˇ D ˇ1 so
p D 1.

We extend Lemma 2.11 (1) as follows.

Lemma 2.12. For any relative train track map f W G ! G there are only finitely
many points that are endpoints of an indivisible periodic Nielsen path � .

Proof. After replacing f with an iterate and perhaps subdividing some NEG edges,
we may assume that each NEG stratum is a single edge whose initial direction is
fixed.

Let Sr be the set of endpoints of indivisible periodic Nielsen paths � with height
at most r . We prove that Sr is finite for all r by induction on r . Since S0 is empty
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we assume that Sr�1 is finite and prove that Sr is finite. This is obvious if Hr is a
zero stratum (because Sr D Sr�1) and follows from Lemma 2.11 (1) if Hr is EG.
We may therefore assume that Hr is single NEG edge E.

Suppose that � is an indivisible Nielsen path of height r . IfE is not periodic then
no point in its interior is periodic. If E is periodic, then no point in its interior can
be an endpoint of � because � is indivisible. We conclude that the endpoints of �
are not in the interior of E. Lemma 4.1.4 of [2] implies that � may begin with E
and/or end with xE but all other edges must be contained inGr�1. If � begins withE
and ends with xE then it is a closed path with endpoint equal to the initial endpoint of
E. It therefore suffices to consider only those � that begin with E or end with xE but
not both. By symmetry we may assume that � D Eu for some path u � Gr�1. If
� 0 D Eu0 is another such indivisible periodic Nielsen path then Œ Nuu0� is an indivisible
periodic Nielsen path with height less than r and so its endpoints are contained in
Sr�1. Thus Sr is obtained from Sr�1 by adding at most two points for each edge in
Hr . This completes the inductive step.

An irreducible matrix M is aperiodic if M k has all positive entries for some
k � 1. For example, if some diagonal element ofM is non-zero thenM is aperiodic.
If Hr is an EG stratum of a relative train track map f W G ! G and if the transition
matrix Mr is aperiodic, then Hr is said to be an aperiodic EG stratum. For each
aperiodic EG stratum there is a unique �-invariant attracting lamination ƒr 2 L.�/

of height r . If every EG stratum is aperiodic then every element of L.�/ is related to
an EG stratum in this way. See Definition 3.1.12 of [2] and the surrounding material
for details.

The following lemma produces rays and lines associated to aperiodic EG strata
of a relative train track map.

Lemma 2.13. Suppose thatHr is anEGstratumof a relative train trackmapf W G !
G, that Qf W � ! � is a lift and that Qv 2 Fix. Qf /.
(1) If E is an oriented edge in Hr and zE is a lift that determines a fixed direction

at Qv, then there is a unique r-legal ray zR � � of height r that begins with zE,
intersects Fix. Qf / only in Qv and that converges to an attractor P 2 Fix. Of /.
The accumulation set of P is the (necessarily �-invariant) elementƒr of L.�/

whose realization in G has height r .

(2) Suppose thatE 0 ¤ E is another oriented edge inHr , that zE 0 determines a fixed
direction at Qv and that zR0 is the ray associated to zE 0 as in (1). Suppose further
that the turn . xE;E 0/ is contained in the path f k

# .E
00/ for some k � 1 and some

edge E 00 ofHr . Then the line zR�1 zR0 is a generic leaf of Qƒr .

Proof. Lemma 2.9 (2) and (RTT-i) imply that Qf . zE/ D zE � Q�1 for some non-trivial
r-legal subpath Q�1 of height r that ends with an edge ofHr . Applying Lemma 2.9 (2)
again, we have Qf 2

# .
zE/ D zE � Q�1 � Q�2 for some r-legal subpath Q�2 of height r that

ends with an edge of Hr . Iterating this produces a nested increasing sequence of
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paths zE � Qf . zE/ � Qf 2
# .

zE/ � � � � whose union is a ray zR that converges to some
attractor P 2 FixN . Of /.

If zR0 is another r-legal height r ray that begins with zE and converges to some
P 0 2 Fix. Of / then zR0 has a splitting into terms that project to either edges in Hr

or maximal subpaths in Gr�1. In particular zE is a term in this splitting. Since
f#. zR0/ D zR0, the obvious induction argument implies that Qf k

# .
zE/ is an initial segment

of zR0 for all k and hence that zR0 D zR. This proves the uniqueness part of (1).
The transition matrix for Hr is aperiodic since f#.E/ contains E. Let ˇ be a

generic leaf of Qƒr . Following Definition 3.1.7 of [2], a path of the form f k
# .Ei /

where k � 0 and Ei is an edge of Hr is called a tile. By Lemma 2.9 and by
construction, every tile occurs infinitely often in zR. By Corollary 3.1.11 of [2], each
subpath ofˇ is contained in some tile and each tile occurs as a subpath ofˇ. It follows
that the accumulation set of P is equal to the weak limit of ˇ which is ƒC

r because
ˇ is generic. This proves (1).

Assuming now the notation of (2), each finite subpath of zR�1 zR0 is contained in
a tile. This implies, as in the previous case, that zR�1 zR0 is contained in ƒr and that
zR�1 zR0 is birecurrent. Lemma 3.1.15 of [2] implies that zR�1 zR0 is generic.

As noted in Section 2.4, Out.Fn/ acts on the set of laminations inG. The stabilizer
Stab.ƒ/ of a lamination ƒ is the subgroup of Out.Fn/ whose elements leave ƒ
invariant. We recall Corollary 3.3.1 of [2].

Lemma 2.14. For each ƒ 2 L.�/, there is a homomorphism PFƒ W Stab.ƒ/ ! Z
such that  2 Ker.PFƒ) if and only if ƒ 62 L. / and ƒ 62 L. �1/.

We refer to PFƒ as the expansion factor homomorphism associated toƒ. The no-
tation is chosen to remind readers that the expansion factor is realized as the logarithm
of a Perron–Frobenius eigenvalue in a natural way.

2.7. Modifying relative train track maps. To simplify certain arguments in Sec-
tion 3 and as a step toward our ultimate existence theorem (Theorem 4.28), we add
properties to the relative train track maps produced in [4]. We can not simply quote
results from [2] because, unlike in [2], here we do not allow iteration and we make
no assumptions on �.

We need some further notation. The set of periodic points of f is denoted Per.f /.
A path˛ is pre-trivial iff k

# .˛/ is trivial for somek > 0. We say that a nested sequence
C of free factor systems F 1 @ F 2 @ � � � @ F m is realized by a relative train track
map f W G ! G and filtration ; D G0 � G1 � � � � � GN D G if each F j is
realized by some Gl.j /. For any finite graph K, the core of K is the subgraph of K
consisting of edges that are crossed by some circuit in K.

The transition matrix Mr for an EG stratum Hr of a topological representative
f W G ! G of � has a Perron–Frobenius eigenvalue �r > 1. The set flog.�r/ W
Hr is EGg, listed in non-increasing order, is denoted PF.f /. (In [4] this set is denoted
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ƒ.f / but ƒ is now usually reserved for laminations.) The set fPFƒ.�/ W ƒ 2
L.�/g of expansion factors for �, listed in non-increasing order, is denoted EF.�/.
Then PF.f / � EF.�/ in the lexicographical order for all f representing � and
PF.f / D EF.�/ if f W G ! G is a relative train track map representing � by
Proposition 3.3.3 (4) of [2].

The number of indivisible Nielsen paths for f W G ! G with height r is denoted
Nr.f /.

Remark 2.15. If f W G ! G satisfies (RTT-i) and if PF.f / D EF.�/ then f W G !
G satisfies (RTT-iii) by Lemma 5.9 of [4]. Thus any topological representative that
satisfies (RTT-i), (RTT-ii) and PF.f / D EF.�/ is a relative train track map.

Lemma 2.16. Suppose that f W G ! G and f 0 W G0 ! G0 are relative train track
maps with EG strata Hr and H 0

s respectively and that p W G ! G0 is a homotopy
equivalence such that

(1) p.Gr/ D G0
s , p.Gr�1/ D G0

s�1 and p induces a bijection between the edges of
Hr and the edges ofH 0

s;

(2) p#f#.�/ D f 0
#p#.�/ for all paths � � Gr with endpoints at vertices.

Then p# induces a bijection between the indivisible periodic Nielsen paths inG with
height r and the indivisible periodic Nielsen paths in G0 with height s.

Proof. Let � � G be a height r path with endpoints at vertices and let � 0 D p#.�/ �
G0.

We first observe that no edges in H 0
s are cancelled when p.�/ is tightened to

p#.�/. Indeed, if this fails then (1) implies that � has a subpath �0 D E� xE where E
is an edge inHr and where p#.�0/ is trivial. This contradicts the assumption that p is
a homotopy equivalence and the fact that the closed path �0 determines a non-trivial
element of �1.G/. As consequence of (1) and this observation we have

(3) the number of Hr -edges in � equals the number of H 0
s-edges in � 0 D p#.�/.

Let E be an edge in Hr and let E 0 D p.E/. By (2) applied to E and by (3)
applied to f .E/, we see that the number of Hr -edges in f .E/ equals the number of
H 0

s-edges in f 0.E 0/. It follows that the number of Hr -edges in (untightened) f .�/
equals the number ofH 0

s-edges in (untightened) f 0.� 0/ for all � . In conjunction with
(3) applied to � and f#.�/ this implies that f .�/ and f#.�/ have the same number
of Hr -edges if and only if f 0.�/ and f 0

# .�/ have the same number of H 0
s-edges. In

other words, � is r-legal if and only if � 0 is s-legal. It follows that the number of
illegal turns of � in Hr equals the number of illegal turns of � 0 in H 0

s .
Assume now that � is an indivisible periodic Nielsen path with height r and

period k. Item (2) and the obvious induction argument shows that .f 0/k# .� 0/ D
.f 0/k# .p#.�// D p#f

k
# .�/ D p#.�/ D � 0 and hence that � 0 is a periodic Nielsen

path. If � is indivisible then � begins and ends inHr and has exactly one illegal turn
in Hr by Lemma 2.11. Since no edges in H 0

s are cancelled when p.�/ is tightened
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to � 0, the first and last edge of � 0 are inH 0
s . Sincep# preserves the number of maximal

height illegal turns, � 0 has exactly one illegal turn inH 0
s and so is indivisible. For the

converse note that if Ei and Ej are edges in Hr and � 0 � G0
s is a path that begins

with p.Ei / and ends with p.Ej / then there is a unique path � that begins with Ei ,
ends with Ej and that satisfies p#.�/ D � 0. If � 0 is a periodic Nielsen path of period
k then the uniqueness of � implies that � is a periodic Nielsen path of period k. As
above p# preserves indivisibility because it preserves the number of maximal height
illegal turns.

We next recall the sliding operation from [2]. Suppose that Hs is a non-periodic
NEG stratum with edges fE1; : : : ; Emg satisfying f .El/ D ElC1ul for paths ul �
Gs�1 where 1 � l � m and indices are taken mod m. Choose 1 � i � m and let �
be a path in Gs�1 from the terminal endpoint vi of Ei to some vertex wi . Roughly
speaking, we use � to continuously change the terminal endpoint ofEi from vi towi

and to mark the new graph.
More precisely, define a new graph G0 from G by replacing Ei with an edge E 0

i

that has terminal vertex wi and that has the same initial vertex as Ei . There are
homotopy equivalences p W G ! G0 and p0 W G0 ! G that are the identity on the
common edges of G and G0 and that satisfy p.Ei / D E 0

i N� and p0.E 0
i / D Ei� . Use

p to define the marking onG0 and define f 0 W G0 ! G0 on edges by tightening pfp0.
Complete details can be found in Section 5.4 of [2].

Lemma 2.17. Suppose that f W G ! G is a relative train track map and assume
notation as above.

� f 0 W G0 ! G0 is a relative train track map.
� f 0jGs�1 D f jGs�1.
� If m D 1 then f 0.E 0

1/ D E 0
1Œ N�u1f .�/�.

� Ifm ¤ 1 then f 0.Ei�1/ D E 0
i Œ N�ui�1�; f

0.E 0
i / D EiC1Œuif .�/� and f 0.Ej / D

Ejuj for j ¤ i � 1; i .
� For each EG stratumHr , p# defines a bijection between the set of the indivisible

periodic Nielsen paths in G with height r and the indivisible periodic Nielsen
paths in G0 with height r .

Proof. If m D 1 then this is contained in Lemma 5.4.1 of [2]. The argument for
m > 1 is a straightforward extension of m D 1 case and we leave the details to the
reader.

Definition 2.18. Suppose that u < r and that

(1) Hu is irreducible;
(2) Hr is EG and each component of Gr is non-contractible;
(3) for each u < i < r , Hi is a zero stratum that is a component of Gr�1 and each

vertex of Hi has valence at least two in Gr .
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We say that each Hi is enveloped by Hr and write H z
r D Sr

kDuC1Hk . It is often
convenient to treat H z

r as a single unit.

Theorem 2.19. For every� 2 Out.Fn/ there is a relative train track map f W G ! G

and filtration that represents � and satisfies the following properties.

(V) The endpoints of all indivisible periodic Nielsen paths are vertices.

(P) If a stratum Hm � Per.f / is a forest then there exists a filtration element
Gj such F .Gj / ¤ F .Gl [Hm/ for any Gl . (See also items (1) and (5) of
Lemma 2.20.)

(Z) Each zero stratumHi is enveloped by an EG stratumHr . Each vertex inHi

is contained inHr and has link contained inHi [Hr .

(NEG) The terminal endpoint of an edge in a non-periodic NEG stratum Hi is
periodic and is contained in a filtration element of height less than i that is
its own core.

(F) The core of each filtration element is a filtration element.

Moreover, if C is a nested sequence of non-trivial �-invariant free factor systems
then we may assume that f W G ! G realizes C .

Before proving Theorem 2.19 we record some useful observations.

Lemma 2.20. Suppose that f W G ! G is a relative train track map representing �
with filtration ; D G0 � G1 � � � � � GN D G.

(1) Suppose that f W G ! G satisfies (P), thatHm � Per.f / is a forest and that v
has valence one inHm. Then v 2 Gj for some j < m. If in additionf W G ! G

satisfies (F) then we may choose Gj to be its own core.

(2) If f W G ! G satisfies (F) andHr is EG then Gr is its own core.

(3) If f W G ! G satisfies (P) and (NEG) then every edge in each contractible
component of a filtration element is contained in a zero stratum.

(4) If f W G ! G satisfies (Z) and (NEG) and if Gk is a filtration element that is
its own core, then every vertex in Gk has at least two gates in Gk .

(5) If f W G ! G satisfies (P) then no component of a filtration element Gm is a
tree in Per.f /.

Proof. Suppose that f W G ! G satisfies (P) and that Hm � Per.f / is a forest.
Thus, the restriction of f toHm acts transitively on the components, and either every
component of Hm is an edge, or f acts transitively on the valence 1 vertices of Hm.
By (P) there exists j so that F .Gj / ¤ F .Gl [Hm/ for any l . If f W G ! G also
satisfies (F) then we may assume thatGj is its own core. Applying this property with
l D j we have that F .Gj [Hm/ ¤ F .Gj /. At least one vertex of some, and hence
every, edge in Hm is contained in Gj . If a vertex of some edge of Hm has valence
one in Gj [ Hm then every edge in Hm has such a vertex in contradiction to the
assumption that F .Gj [Hm/ ¤ F .Gj /. This proves (1).
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Item (5) follows from the first part of (1).
If Hr is EG then Gr is the smallest filtration element that contains the attracting

lamination associated to Hr . This proves (2).
For (3), suppose that C is a contractible component of some Gi . If C contains

an edge in an irreducible stratum then it is non-wandering and by (NEG) the lowest
stratumHj that has an edge in C is either periodic or EG. ButHj can not be periodic
by item (1) of this lemma and cannot be EG by Lemma 2.10. Thus every edge in C
is contained in a zero stratum.

The proof of (4) is by induction on k. Suppose that Gk is a filtration element that
is its own core and that v is a vertex inGk . By Lemma 2.10 and (Z), we may assume
that v is not the endpoint of an edge in either an EG or zero stratum. If no illegal
turns in Gk are based at v then the number of gates in Gk based at v is at least the
valence of v in Gk and so is at least two. We may therefore assume that there is an
illegal turn .d1; d2/ in Gk based at v. At least one of the di ’s is the terminal end of a
non-fixed NEG edge so (NEG) and the inductive hypothesis imply that v has at least
two gates in Gk .

Proof of Theorem 2.19. By Lemma 2.6.7 of [2], there is a relative train track map
f W G ! G and filtration ; D G0 � G1 � � � � � GN D G that represents � and
realizes C . (In the statement of Lemma 2.6.7, C is replaced by a single invariant free
factor system F . The more general case that we use is explicitly included in the proof
of that lemma.) Lemma 2.12 implies that (V) can be arranged via a finite subdivision.
For convenient reference we divide the rest of the proof into steps. Changes are made
to f W G ! G in these steps but we start each step by referring to the current relative
train track map as f W G ! G.

If C has not already been specified, let C be the nested sequence of free factor
systems determined by the F .Gr/’s. For possible future application we will prove
the following statement in place of (P).

(PC ) If a stratum Hm � Per.f / is a forest then there exists F j 2 C that is not
realized by Gl [Hm for any Gl .

If C is determined by the F .Gr/’s then (P) and (PC ) are the same but otherwise
the latter is stronger than the former. For example, if C is empty then (PC ) is the
statement that no filtration element is a periodic forest.

Remark 2.21. For reference in the proof of Theorem 4.28 we record the following
property of the remainder of our construction. If f W G ! G is the relative train track
map as it is now and g W G0 ! G0 is the ultimate modified relative train track map
produced by the six steps listed below, then there is a bijection Hr ! H 0

s between
the EG strata of f W G ! G and the EG strata of g W G0 ! G0 such that

(a) Hr and H 0
s have the same number of edges,

(b) Nr.f / D Ns.g/.
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The five moves used in our construction are valence two homotopies away from EG
strata, sliding (which is defined following Lemma 2.16), reordering of strata, tree
replacements (see Step 2) and collapsing forests in NEG and zero strata. Item (a) will
be obvious as will (b) for the valence two homotopies and the reordering of strata.
For the remaining three moves (b) will follow from Lemmas 2.17 and 2.16.

Step 1: A weak form of (NEG). Suppose that Hs is a non-periodic NEG stratum
with edges fE1; : : : ; Emg satisfying f .Ei / D EiC1ui for paths ui � Gs�1 where
indices are taken mod m. Our goal in this step is to arrange

(1) the endpoints of an NEG edge are periodic.

Care is taken that no vertices with valence one in G are created.
We first arrange that the terminal endpoint v1 of E1 is either periodic or has

valence at least three inG. If this is not already the case, letE be the unique oriented
edge of G, other than xE1, whose initial endpoint is v1. Since Hs is not a periodic
stratum, E � Gs�1. Lemma 2.10 implies that E does not belong to an EG stratum.
Perform a valence two homotopy as defined on page 13 of [4].

There are three steps to a valence two homotopy. The first is to postcompose f
with a homotopy supported in a small neighborhood of E to arrange that no vertex
is mapped to v1 and then tighten the map. The second is to amalgamate E1E into a
single edge namedE1 by removing v1 from the list of vertices. Before discussing the
third step we consider the effect of the first two on f#. For any path � with endpoints
at vertices (in the new simplicial structure), the new edge path for f#.�/ is obtained
from the original by removing all occurrences of E. If v is a vertex in an EG stratum
Hs then f .v/ ¤ v1. This has three useful consequences. First, the restriction ofDf
to edges incident to v is unchanged. Second, if � is a non-trivial path in Gs�1 with
endpoints inHs then the new edge path for f#.�/ is non-trivial. Third, if � originally
has height s and is s-legal then it still has height s and is s-legal. Together these show
that the relative train track properties are still valid.

There may be some edges Ej that are now mapped to points by some iterate
of f . Each such edge was a zero stratum originally and their union is a forest.
The third step in the valence two homotopy is to collapse each component of this
pre-trivial forest to a point. For any path � with endpoints at vertices (in the new
simplicial structure), the new edge path for f#.�/ is obtained from the previous one
by removing all occurrences of edges in the pre-trivial forest. No vertex in an EG
stratum is incident to this forest. Arguing as above, it follows that the new map (still
called f W G ! G) is a relative train track map. It is clear from the construction that
(V) still holds. Collapsing pre-trivial forests does not change the free factor system
determined by any filtration element so C is still realized. Note also that the valence
two homotopy does not change the number of edges in any EG stratum and does
not change the number of indivisible Nielsen paths with height corresponding to any
EG stratum. After finitely many valence two homotopies we may assume that the
terminal endpoint v1 of E1 is either periodic or has valence at least three in G.
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The component C1 of Gs�1 that contains v1 does not wander and so contains a
periodic vertexw1. Choose a path � � Gs�1 from v1 tow1 in C1 and slide to change
the terminal endpoint ofE1 tow1. Because of our previous move, v1 still has valence
at least two in G.

After repeating these operations finitely many times we have arranged (1) and not
created any valence one vertices.

Step 2: A weak form of (Z). In this step we prove most of (Z). The one missing
item is that we only show that the components of Gr are non-wandering instead of
showing that they are non-contractible as required by item (2) of Definition 2.18.

The unionNW of the non-wandering components of a filtration elementGi is f -
invariant and so is a union of strata. The unionW of the wandering components ofGi

is therefore also a union of strata. IfHj � NW andHj �1 � W then f .Hj / � Gj �2

and there is no loss in interchanging the order of Hj and Hj �1. Thus the strata, if
any, that are contained in W can be moved up the filtration to be above the strata
contained in NW . After finitely many such changes we may assume that the strata
of NW precede those of W . The edges in W all belong to zero strata. Choose an
ordering on the components of W so that Ca < Cb implies that Cb \ f k.Ca/ D ;
for all k � 0. Define a new filtration of Gi by declaring C1 to be the first stratum
above NW , C2 to be the second stratum above NW and so on. At the end of this
process we have arranged

(2) if Gi has wandering components then Hi is a wandering component of Gi .

Suppose that K is a component of the union of all zero strata, that Hi is the
highest stratum that contains an edge in K and that Hu is the highest irreducible
stratum below Hi . We prove that K \ Gu D ; by assuming that K \ Gu ¤ ;
and arguing to a contradiction. Since each component of Gu is non-wandering and
since some iterate of f maps K into Gu, there is a unique component C of Gu that
intersectsK. If each vertex v 2 K has valence at least two in C [K then each edge
of K is contained in a path in K with endpoints in C , and so by the connectivity of
C , is contained in a circuit in K [ C . This contradicts the fact that some iterate of
f maps K [C into C , and we conclude that some vertex v of K has valence one in
K [C . In particular, v is non-periodic and so is not the endpoint of an NEG edge by
(1) and is not the endpoint of an EG edge in a stratumHr aboveGi because otherwise
K [ C would be contained in a non-contractible component of Gr�1 contradicting
Remark 2.8. By construction, v is not the endpoint of an edge in a zero stratum above
Gi . But then v has valence one in G. This contradiction proves that K \ Gu D ;.
After reorganizing the edges in zero strata, we may assume that Hi D K. Note in
particular that no vertex in Hi is periodic.

Let Hr be the first irreducible stratum above Hi . The component of Gr that
containsHi is non-wandering by (2) and so must intersectHr . Since no vertex ofHi

is periodic, (1) implies that Hr is EG. Moreover, the argument used in the previous
paragraph proves that the link inG of each vertex inHi is contained inHi [Hr � Gr
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and that Hi is contained in the core of Gr .
We arrange that each vertex in Hi is contained in Hr by the following tree re-

placement move. Replace Hi with a tree H 0
i whose vertex set is exactly Hi \ Hr .

Do this for each zero stratum Hi and call the resulting graph G0. We view the union
X of the irreducible strata as a subgraph of both G and G0. The set of vertices in
X is f -invariant by (RTT-i) and (1). There is a homotopy equivalence p0 W G0 ! G

that is the identity on X and that sends an edge E 0 of H 0
i to the unique path in Hi

connecting the endpoints of E 0. The homotopy inverse p W G ! G0 is the identity
on X and sends Hi to H 0

i ; the exact definition depends on choosing p.w/ 2 H 0
i for

those vertices w 2 Hi , if any, that are not contained in X . Note that p# defines a
bijection, with inverse p0

#, between paths in G with endpoints at vertices in X and
paths inG0 with endpoints at vertices inX . The homotopy equivalence f 0 W G0 ! G0
defined on edges by f 0.E 0/ D .pfp0/#.E 0/ is independent of the choices made in
defining p and represents �. To verify (RTT-ii) for f 0 it suffices to show that if
˛0 � H 0

i is non-trivial then f 0
# .˛

0/ D p#f#.p
0
#.˛

0// is non-trivial. This follows from
(RTT-ii) for f and the fact that both p# and p0

# preserve non-triviality for paths with
endpoints in X . It is easy to see that (RTT-i) for f implies (RTT-i) for f 0 and that
PF.f / D PF.f 0/. Remark 2.8 implies that f 0 W G0 ! G0 is a relative train track
map. None of the moves in this step change the free factor systems represented by
filtration elements so f 0 W G0 ! G0 still realizes C .

Step 3: Property (PC ). If (PC ) fails then there is a stratum Hm � Per.f / that is
a forest with the property that for each F j 2 C there is a filtration element Gl.j /

such that Gl.j / [Hm realizes F j . We will construct a new relative train track map
f 0 W G0 ! G0 with one fewer NEG stratum that still realizes C and satisfies (1) and
the weak form of (Z). After repeating this finitely many times we will have achieved
(PC ).

Let Y be the set of edges in G nHm that are mapped entirely into Hm by some
iterate of f . Then each edge of Y is contained in a zero stratum and Hm [ Y is a
forest that is mapped into itself by f and into Hm by some iterate of f . We next
arrange that

(�) if ˛ is a path in a zero stratum with endpoints at vertices and if ˛ is not contained
in Y then f#.˛/ is not contained in Hm [ Y .

Suppose to the contrary that ˛ � Hk violates (�). Choose an edge Ei � Hk that
is crossed by ˛ and is not contained in Y . Perform a tree replacement move on Hk

as in Step 2, replacing Ei by an edge connecting the endpoints of ˛. The new edge
is mapped entirely into Hm by some iterate of f and we add it to Y . After finitely
many such moves .�/ is satisfied.

Let G0 be the marked graph obtained by collapsing each component of Hm [ Y

to a point and let p W G ! G0 be the corresponding quotient map. Identify the edges
of G0 with those of G n .Hm [ Y / and define f 0 W G0 ! G0 by f 0.E/ D Œpf .E/�.
As an edge path, f 0.E/ is obtained from f .E/ by removing all occurrences of edges
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in Hm [ Y . It follows that the strata Hr and p.Hr/ (if the latter is non-empty)
have the same type (zero, EG, NEG), that f 0 W G0 ! G0 has one fewer NEG stratum
than f W G ! G, that f 0 W G0 ! G0 satisfies (1) and the weak form of (Z), that
PF.f 0/ D PF.f / and that f 0 W G0 ! G0 satisfies (RTT-i). Lemma 5.9 of [4] implies
that f 0 W G0 ! G0 satisfies (RTT-iii).

To verify (RTT-ii), suppose that H 0
s D p.Hr/ is EG and that ˛0 � G0

s�1 is a
connecting path forH 0

s . If ˛0 is contained in a zero stratum then f 0
# .˛

0/ is non-trivial
by .�/. We may therefore assume that the component C 0 of G0

s�1 that contains ˛0 is
not a zero stratum and hence is non-wandering. To prove that f 0

# .˛
0/ is non-trivial, it

suffices, by Remark 2.8, to show that each v0 2 H 0
s \ C 0 is a periodic point.

Since v0 is incident to an edge inH 0
s , there is a vertex v 2 Hr such thatp.v/ D v0.

If v is periodic, we are done. We may therefore assume that v 62 Hm. If v 2 Y then
the component of Gr�1 that contains v is a zero stratum by the weak form of (Z)
contradicting the assumption that v0 is contained in a non-wandering component of
G0

s�1. It follows that v D p�1.v0/. By the same reasoning, v is contained in a non-
wandering component ofGr�1 and so is periodic by Remark 2.8. Thus v0 is periodic
and we have verified (RTT-ii) for f 0. This completes the proof that f 0 W G0 ! G0 is
a relative train track map.

There exists k > 0 so that each non-contractible component of Gl.j / [ Hm is
f k-invariant and so that f k induces a rank preserving bijection between the non-
contractible components ofGl.j / [Hm [Y and the non-contractible components of
Gl.j / [ Hm. Thus Gl.j / [ Hm [ Y and hence p.Gl.j // realizes F j , proving that
f 0 W G0 ! G0 and its filtration realize C .

Step 4: Property (Z). IfC is a non-wandering component of a filtration element then
the lowest stratum containing an edge of C is either EG or periodic. Lemma 2.10
and item (5) of Lemma 2.20 imply that C is not contractible. (Z) therefore follows
from the weak form of (Z).

Step 5: Property (NEG). Suppose thatHs is a non-periodic NEG stratum with edges
fE1; : : : ; Emg satisfying f .Ei / D EiC1ui for paths ui � Gs�1 where indices are
taken mod m. The component Ci of Gs�1 that contains the terminal endpoint vi of
Ei does not wander. The lowest stratum Ht that contains an edge in Ci is either EG
or periodic. In the former case, every vertex in Ht has at least two gates in Ht by
Lemma 2.10 and so Ht is its own core. In the latter case, the same result follows
from (PC ) and item (1) of Lemma 2.20 which imply that no vertex ofHt has valence
one in Ht .

Choose a path � � Gs�1 from vi to a periodic vertexwi inHt and slide to change
the terminal endpoint of Ei to wi . After performing this sliding operation finitely
many times, working up through the filtration, (NEG) is satisfied. The resulting
homotopy equivalence is a relative train track map by Lemma 2.17, still realizes C

and still satisfies (Z).
Sliding may have introduced valence one vertices to G. But no such vertex is the

image of a vertex with valence greater than one by (NEG), (Z) and Lemma 2.10. We
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may therefore remove all vertices of valence one and the edges that are incident to
them. After repeating this finitely many times G has no valence one vertices.

If (PC ) is no longer satisfied then return to Step 3. Since this reduces the number
of NEG strata the process stops.

Step 6: Property (F). IfHl is a zero stratum thenGl andGl�1 realize the same free
factor system. We may therefore assume thatHl is not a zero stratum and hence that
every component of Gl is non-contractible. If w is a valence one vertex of Gl then
by item (1) of Lemma 2.20, (NEG) and Lemma 2.10, w must be the initial endpoint
of a non-periodic NEG edge in some Hk with k � l and no vertex with valence at
least two in Gl maps to w. The initial endpoint of each edge in Hk has valence one
in Gl and Gl nHk is f -invariant. We may therefore reorder the strata to move Hk

aboveGl nHk . After finitely many such moves F .Gl/ is realized by a core filtration
element. Working our way up the filtration we arrange that (F) is satisfied.

We conclude this section by recalling an operation from page 46 of [4] and Defi-
nitions 5.3.2 of [2].

Suppose that Hr is an EG stratum of a relative train track map f W G ! G

that satisfies item (Z) of Theorem 2.19 and that 
 is an indivisible Nielsen path of
height r . Decompose 
 D ˛ˇ into a concatenation of maximal r-legal subpaths as
in Lemma 2.11 and let E1 � Hr and E2 � Hr be the initial edges of N̨ and ˇ
respectively. If one of the edge paths f .Ei /, i=1 or 2, is an initial subpath of the
other then we say that the fold at the illegal turn of 
 is a full fold; otherwise it is a
partial fold. There are two kinds of full folds. If f .E1/ ¤ f .E2/ then the full fold
is proper; otherwise it is improper.

Suppose that the fold at the illegal turn of 
 is proper, say that f .E1/ is a proper
initial subpath of f .E2/. Write N̨ D E1bE3 : : :where b is a (possibly trivial) subpath
of Gr�1 and E3 is an edge in Hr . The initial edge of f .E3/ and the first edge of
f .ˇ/ that is not cancelled when f .˛/f .ˇ/ is tightened to ˛ˇ belong to Hr . We
may therefore decompose E2 D E 00

2E
0
2 into subpaths such that f .E 00

2 / D f#.E1b/

and such that the first edge in f .E 0
2/ is contained in Hr . Form a new graph G0 by

identifying E 00
2 with E1b. The quotient map F W G ! G0 is called the extended fold

determined by 
r .
We think ofGnE2 as a subgraph ofG0 on whichF is the identity. By construction

F.E2/ D E1bE
0
2. The filtration on G0 is defined by H 0

i D Hi for i ¤ r and
H 0

r D .Hr n E2/ [ E 0
2. There is a map g W G0 ! G such that gF D f . We refer to

g W G0 ! G as map induced by the extended fold.
The following lemma states that the map f 0 W G0 ! G0 obtained from Fg W G0 !

G0 by tightening the images of edges is a relative train track map that satisfies item
(Z) of Theorem 2.19. We say that f 0 W G0 ! G0 is obtained from f W G ! G by
folding 
r and that 
0

r D F#.
r/ is the indivisible Nielsen path determined by 
r . If
the fold at the illegal turn of 
0

r is proper then this process can be repeated. This is
referred to as iteratively folding 
.
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Lemma 2.22. Assuming notation as above, f 0 W G0 ! G0 is a relative train track
map that satisfies item (Z) of Theorem 2.19.

Proof. By construction, f 0jGr�1 D f jGr�1. If E is an edge inHr then f .E/ does
not cross the illegal turn in 
r . If E ¤ E2 then f 0.E/ is obtained from f .E/ by
replacing each occurrence of E2 with E1bE

00
2 . Similarly, f 0.E 0

2/ is obtained from
f .E 0

2/ by replacing each occurrence of E2 with E1bE
00
2 . It follows that H 0

r satisfies
(RTT-i)–(RTT-iii).

If Hk is a zero stratum above Hr then each edge Ek in Hk is a connecting path
for some EG stratum Hs above Hk by item (Z) of Theorem 2.19. Thus f i

# .Ek/ is
non-trivial for all i � 0. Since F does not identify points that are not identified by f ,
and since F jEk is the identity, .Fg/#.Ek/ D .Ff /#.Ek/ is non-trivial. This shows
that no edges are collapsed when Fg is tightened to f 0. The same argument shows
that if � � Hk is any path with endpoints at vertices then f 0

# .�/ is non-trivial.
If Hl is NEG then H 0

l
is NEG.

Suppose that Em is an edge in an EG stratum Hm above Hr and that f .Em/ D
�11�2 : : : l�lC1 is the decomposition into subpaths �j � Hm and subpaths j �
Gm�1. Then f 0.Em/ D .Fg/#.Em/ D .Ff /#.Em/ D �1

0
1�2 : : : 

0
l
�lC1 where

0
j D F#.j / is non-trivial because f#.j / is non-trivial. This proves thatH 0

m satisfies
(RTT-i) and (RTT-iii).

To verify (RTT-ii) for Hm suppose that � 0 is a connecting path for H 0
m. If � 0 is

contained in a zero stratum H 0
k

then it is disjoint from Gr and so is identified with
a connecting path � � Hk . By our previous argument, f 0

# .�
0/ is non-trivial. If � 0

is contained in non-contractible component of G0
m�1 then there is a connecting path

� for Hm in a non-contractible component of Gm�1 such that F#.�/ D � 0. The
endpoints of � are periodic for f by Remark 2.8. It follows that the endpoints of � 0
are periodic for f 0 and another application of Remark 2.8 proves that H 0

m satisfies
(RTT-ii). This completes the proof that f 0 W G0 ! G0 is a relative train track map.

Item (Z) of Theorem 2.19 for f 0 therefore follows from item (Z) of Theorem 2.19
for f .

3. Forward rotationless outer automorphisms

To avoid issues raised by finite order phenomenon, one often replaces � 2 Out.Fn/

with an iterate �k . In this section we explain how this can be done canonically by
exhibiting the natural class of outer automorphisms that require no iteration. We also
define principal automorphisms in the context of Out.Fn/. These automorphisms
play a central role in both the definition of forward rotationless outer automorphisms
(Definition 3.13) and in the formulation of the Recognition Theorem (Theorem 5.3).

In Section 3.1, we recall how principal automorphisms occur in the context of the
mapping class group. Examples and definitions for Out.Fn/ are given in Section 3.2.
An equivalent definition is then given in terms of relative train track maps and the
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Nielsen classes of their fixed points. Finally, in Section 3.5 we record some properties
of forward rotationless outer automorphisms that justify their name; for example, we
show that a �-periodic free factor is �-invariant.

3.1. The Nielsen approach to the mapping class group. To provide historical
context and motivation for our techniques and results, we briefly recall Nielsen’s
point of view on the mapping class group. Further details and proofs can be found,
for example, in [13].

LetS be a closed orientable surface of negative Euler characteristic and leth W S !
S be a homeomorphism representing an element� 2 MCG.S/. A choice of complete
hyperbolic structure on S identifies the universal cover zS of S with the hyperbolic
plane H. Using the Poincaré disk model for H, there is an induced compactification
of zS by adding a topological circle S1.

To avoid cumbersome superscripts we use g to denote a positive iterate g WD hk

of h. Any lift Qg W zS ! zS of g extends to a homeomorphism of the compactification.
The restriction of this extension to S1, denoted Og W S1 ! S1, depends only on
k, the isotopy class of h and the choice of lift. More precisely, h induces an outer
automorphism of �1.S/ and Og D ĉQg where ˆ Qg is the automorphism of �1.S/

corresponding to Qg and ĉQg W S1 ! S1 is the homeomorphism determined by the
identification of S1 with @�1.S/ [11].

Denote the set of non-repelling fixed points of Og by FixN . Og/. If FixN . Og/ contains
at least three points then we say that Qg is a principal lift of g and thatˆ Qg is a principal
automorphism representing �k . The sets FixN . Og/ determined by the principal lifts
of iterates of h are central to Nielsen’s investigations; see for example [17] (or its
translation into English by John Stillwell which appears on pages 348–400 of [18]).

The mapping class � determined by h is rotationless as defined in the Section 1
if and only for all k, each principal lift Qg of g D hk has the form Qhk where Qh is a
principal lift of h and where FixN . Og/ D FixN . Oh/. Thus from the point of view of
principal lifts and their FixN sets, nothing changes if � is replaced by an iterate. For
the remainder of this discussion we assume that � is rotationless and that k D 1.

The intersection Q�. Qg/ of the convex hull of FixN . Og/ with zS D H is called the
principal region for Qg and its image in S is denoted �. Qg/. Thus Qg is principal if and
only if �. Qg/ has non-empty interior.

Assume that Qg is principal. If no point in FixN . Og/ is isolated then �. Qg/ is
a compact subsurface and there is a homeomorphism f W S ! S representing �
whose restriction to �. Qg/ is the identity. If FixN . Og/ is finite, or more generally, is
finite up to the action of a single covering translation that commutes with Qg, then the
interior of�. Qg/ is a component of the complement in S of one of the pseudo-Anosov
laminations ƒ associated to �. The boundary of �. Qg/ is a finite union of leaves
of ƒ and perhaps one reducing curve. These are the only cases that occur if there is
non-trivial twisting along each reducing curve in the Thurston normal form for �. In
the general case, �. Qg/ is a finite union of the two types.
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A proof of (most of) the Thurston classification theorem from this point of view
is contained in [13] and [16].

3.2. Principal automorphisms. Suppose that f W G ! G is a relative train track
map representing � 2 Out.Fn/. Recall from Section 2.3 that there is a bijection
between lifts Qf W � ! � to the universal cover and automorphisms ˆ 2 Aut.Fn/

representing �.

Definition 3.1. For ˆ 2 Aut.Fn/ representing �, let FixN . Ô / � Fix. Ô / be the set
of non-repelling fixed points of Ô . We say that ˆ is a principal automorphism and
write ˆ 2 P.�/ if either of the following hold.

� FixN . Ô / contains at least three points.
� FixN . Ô / is a two point set that is neither the set of endpoints of an axis Ac nor

the set of endpoints of a lift Q� of a generic leaf of an element of L.�/.

The corresponding lift Qf W � ! � is a principal lift.

Remark3.2. For all� 2 Out.Fn/ there exists, by Lemma 5.2 of [3] or Proposition 9.4
of [15], k � 1 such that P.�k/ ¤ ;. Moreover, if the conjugacy class of a 2 Fn is
invariant under �k , then one may choose ˆ 2 P.�k/ to fix a.

Remark 3.3. If Fix.ˆ/ has rank at least two then ˆ is a principal automorphism by
Lemma 2.3.

Remark 3.4. If ˆ1 and ˆ2 are distinct representatives of � then FixN . Ô
1/ \

FixN . Ô
2/ is contained in Fix. Ô �1

1
Ô

2/ D fTċ g for some non-trivial covering trans-
lation Tc . It follows that if ˆ1 and ˆ2 are principal then FixN . Ô

1/ ¤ FixN . Ô
2/.

Remark 3.5. The second item in our definition of principal automorphism does not
occur in the context of mapping class groups. It arises in Out.Fn/ to account for
nonlinear NEG strata. In Example 3.10 below both attracting fixed points correspond
to nonlinear NEG strata. One can also construct examples in which one attracting
fixed point corresponds to a nonlinear NEG stratum and the other to an EG stratum.

Remark 3.6. Eachƒ 2 L.�/ has infinitely many generic leaves that are invariant by
an iterate of �#. If fP;Qg is the endpoint set of a lift of such a leaf then (Lemma 4.38)
there existsˆ representing an iterate of� such thatP andQ are attracting fixed points
for Ô . Remark 3.9 and Lemma 2.3 imply that for all but finitely many such leaves,
FixN . Ô / D fP;Qg and ˆ is not principal.

Remark 3.7. If ˆ has positive index in the sense of [12], then ˆ is a principal auto-
morphism. The converse fails for the principal automorphism ˆ2 of Example 3.10.
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We say that x; y 2 Fix.f / are Nielsen equivalent or belong to the same Nielsen
class if they are the endpoints of a Nielsen path for f . Each Nielsen class is an open
subset of Fix.f / because every sufficiently short path with endpoints in Fix.f / is a
Nielsen path. In particular, there are only finitely many Nielsen classes.

If Qf W � ! � is a lift of f W G ! G, then any path Q̨ � � with endpoints in
Fix. Qf / projects to a Nielsen path ˛ � G for f . Conversely, if ˛ is a Nielsen path
for f and Qf fixes one endpoint of a lift Q̨ of ˛ then Qf also fixes the other endpoint
of Q̨ . Thus Fix. Qf / is either empty or projects onto a single Nielsen class in Fix.f /.

A pair of automorphisms ˆ1 and ˆ2 are equivalent if there exists c 2 Fn such
that ˆ2 D icˆ1i

�1
c . Translating this into the language of lifts, Qf1 is equivalent to Qf2

if Qf2 D Tc
Qf1T

�1
c . This equivalence relation is called isogredience.

Lemma 3.8. Suppose that f W G ! G represents � 2 Out.Fn/ and that Qf1 and Qf2

are lifts of f with non-empty fixed point sets. Then Qf1 and Qf2 belong to the same
isogredience class if and only if Fix. Qf1/ and Fix. Qf2/ project to the same Nielsen
class in Fix.f /.

Proof. If Qf2 D Tc
Qf1T

�1
c then Fix. Qf2/ D Tc Fix. Qf1/ and Fix. Qf2/ and Fix. Qf1/ project

to the same Nielsen class in Fix.f /. Conversely, if Fix. Qf2/ and Fix. Qf1/ have the
same non-trivial projection then there exists Qx 2 Fix. Qf2/ and a covering translation
Tc such that Tc. Qx/ 2 Fix. Qf1/ which implies that Qf2 and Tc

Qf1T
�1
c agree on a point

and hence are equal.

Remark 3.9. We show below (Corollary 3.17) that principal lifts have non-trivial
fixed point sets in � . Since there are only finitely many Nielsen classes in Fix.f /, it
follows that there are only finitely many isogredience classes of principal lifts for �.

In the following examples,G is the roseR3 with basepoint v at the unique vertex.
We use A;B and C to denote both the oriented edges of G and the corresponding
generators of F3. Our examples are all positive automorphismsˆ, meaning that they
are defined by A 7! wA, B 7! wB and C 7! wC where wA; wB and wC are words
in the letters A;B and C (and not the inverses NA; xB and xC ). These words also define
a homotopy equivalence f W G ! G. Since wA; wB and wC use only A;B and C ,
and not NA; xB and xC , the homotopy equivalence is a relative train track map for �.

The universal cover of QG is denoted � and we assume that a basepoint Qv has
been chosen. Some statements in the examples are left for the reader to verify or
follow from results we establish later in this section; none of these statements are
ever quoted.

Example 3.10. Let ˆ1 2 Aut.F3/ be determined by wA D A;wB D BA and
wC D BCB2. Then Fix.ˆ1/ D hA;BA xBi and Fix. Ô

1/ D @.Fix.ˆ1//. The lift Qf1

that fixes Qv is the principal lift corresponding to ˆ1.
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The unique fixed pointx off in the interior ofC is not Nielsen equivalent to v. Let
zC be the lift ofC whose initial endpoint is Qv and let Qf2 be the lift that fixes the unique
lift of Qx ofx in zC . Then Qf2 is principal and FixN . Of2/ is a pair of attractors which bound
the line that is the union of the increasing sequence zC � . Qf2/#. zC/ � . Qf2/

2
#.

zC/ � � � � .
If ˆ2 is the principal automorphism corresponding to Qf2 then ˆ2 D i�1

B ˆ1.

Example 3.11. Let ˆ1 2 Aut.F3/ be determined b wA D A;wB D BA and wC D
CB2. Then Fix.ˆ/ D hA;BA xBi and Fix. Ô / is the union of @.Fix.ˆ// with the
Fix.ˆ/-orbit of a single attractor P . The lift Qf that fixes Qv is the principal lift
corresponding toˆ andP is the endpoint of the ray that is the union of the increasing
sequence zC � . Qf /#. zC/ � . Qf /2#. zC/ � � � � .

Example 3.12. Let ˆ 2 Aut.F3/ be determined by wA D ACBA;wB D BA and
wC D CBA, let Qf be the lift that fixes Qv and let QA; zB; zC and QA�1 be the lifts of
the oriented edges A;B;C and NA with Qv as initial vertex. The directions determined
by the initial edges of QA; zB; zC and QA�1 are fixed by D Qf . Lemma 2.13 produces
attractors PA; PB ; PC and P NA in FixN . Of / such that lines connecting P NA to the other
three points are generic leaves of an attracting lamination. Lemma 3.21 implies that
FixN . Of / D fPA; PB ; PC ; P NAg.

We now come to the second main definition of this section. Note that if ˆ is a
principal lift of � then ˆk is a principal lift for �k and FixN . Ô / � FixN . Ô k/ for
all k � 1. The set of non-repelling periodic points in Per. Ô / is denoted PerN . Ô /.
By iterating � we might pick up more principal lifts and principal lifts might pick up
more non-repelling fixed points. If this doesn’t happen, then we say that � is forward
rotationless. Here is the precise definition.

Definition 3.13. An outer automorphism � is forward rotationless if FixN . Ô / D
PerN . Ô / for all ˆ 2 P.�/ and if for each k � 1, ˆ 7! ˆk defines a bijection (see
Remark 3.14) between P.�/ and P.�k/. Our standing assumption is that n � 2. For
notational convenience we also say that the identity element of Out.F1/ is forward
rotationless.

Remark 3.14. By Remark 3.4 there is no loss in replacing the assumption that
ˆ 7! ˆk defines a bijection with the a priori weaker assumption that ˆ 7! ˆk

defines a surjection.

3.3. Rotationless relative train track maps and principal periodic points. We
now want to characterize those relative train track maps f W G ! G that represent
forward rotationless� 2 Out.Fn/ and to determine which lifts of suchf are principal.
We precede our main definitions by showing that principal lifts have fixed points.

Suppose that f W G ! G represents � and that Qf W � ! � is a lift of f . We
say that Qz 2 � moves toward P 2 Fix. Of / under the action of Qf if the ray from
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Qf . Qz/ to P does not contain Qz. Similarly, we say that Qf moves Qy1 and Qy2 away from
each other if the path in � connecting Qf . Qy1/ to Qf . Qy2/ contains Qy1 and Qy2 and if
Qf . Qy1/ < Qy1 < Qy2 < Qf . Qy2/ in the order induced by the orientation on that path.

The following lemma relates the action of Of to the action of Qf and gives a criterion
for elements of Fix. Of / to be contained in FixN . Of /. Recall that @Fn is identified with
the set of ends of � . It therefore makes sense to say that points in � are close to
P 2 @Fn or that P is the limit of points in � .

Lemma 3.15. Suppose that P 2 Fix. Of / and that there does not exist c 2 Fn such
that Fix. Of / D fTċ g.
(1) If P is an attractor for the action of Of on @� then Qz moves toward P under the

action of Qf for all Qz 2 � that are sufficiently close to P .

(2) If P is an endpoint of an axisAc or if P is the limit of points in � that are either
fixed by Qf or that move toward P under the action of Qf , then P 2 FixN . Of /.

Proof. The lemma is an immediate consequence of Proposition 1.1 of [12] if P is
not the endpoint Tċ of an axis Ac . If P is TC

c or T �
c , then Fix. Of / contains fTċ g

and at least one other point. Lemma 2.3 implies that P is not isolated in Fix. Of / and
is therefore neither an attractor nor a repeller for the action of Of .

The next lemma is based on Lemma 2.1 of [4].

Lemma 3.16. If Qf moves Qy1 and Qy2 away from each other, then Qf fixes a point in
the interval bounded by Qy1 and Qy2.

Proof. Denote the oriented paths connecting Qy1 to Qy2 and Qf . Qy1/ to Qf . Qy2/ by Q̨0 and
Q̨1 respectively. Let r W � ! Q̨1 be retraction onto the nearest point in Q̨1 and let
g D r Qf W Q̨0 ! Q̨1. By hypothesis, Q̨0 is a proper subpath of Q̨1 and g is a surjection.
If Qy is the first point in Q̨0 such that Qg. Qy/ D Qy then Qy1 < Qy < Qy2 and Qg. Qz/ < Qg. Qy/
for y1 < z < y. It follows that Qf . Qy/ 2 Q̨1 and hence that Qy is fixed by Qf .

Corollary 3.17. If Qf is a principal lift then Fix. Qf / ¤ ;.

Proof. Suppose that there is a non-trivial covering translationTc that has its endpoints
in FixN . Of / and so commutes with Qf . Assuming without loss that Ac is fixed point
free, there is a point inAc that moves toward one of the endpoints ofAc , sayP . Since
Qf commutes withTc , there are points in� that are arbitrarily close toP and that move

toward P . The same property holds for an attractor P 2 Fix. Of / by Lemma 3.15.
One may therefore choose distinct P1; P2 2 FixN . Of / and Qx1; Qx2 2 Q� such that Qxi is
close to and moves toward Pi . It follows that Qx1 and Qx2 move away from each other.
Lemma 3.16 produces the desired fixed point.
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There are two cases in which a lift Qf corresponding to a Nielsen class in Fix.f /
is not principal. The first arises from a ‘non-singular’ leaf of an attracting lamination
as noted in Remark 3.6; in this case Fix. Qf / is a single point. In the second case,
there is a circle component of Fix.f / with no outward pointing periodic directions
and Fix. Qf / is an axis Ac . The second type could be eliminated by adding properties
to Theorem 2.19. We allow the circle components for now and defer the additional
properties until Section 4.

Periodic points for f are Nielsen equivalent if they are Nielsen equivalent as fixed
points for some iterate of f .

Definition 3.18. We say that x 2 Per.f / is principal if neither of the following
conditions are satisfied.

� x is the only element of Per.f / in its Nielsen class and there are exactly two
periodic directions at x, both of which are contained in the same EG stratum.

� x is contained in a component C of Per.f / that is topologically a circle and
each point in C has exactly two periodic directions.

Lifts to � of principal periodic points in G are said to be principal. If each principal
vertex and each periodic direction at a principal vertex has period one then we say
that f W G ! G is rotationless.

In practice, we only apply these definitions to f W G ! G that satisfy the conclu-
sions of Theorem 2.19. In particular, by item (4) of Lemma 2.20, there are at least
two periodic directions at each x 2 Per.f /.

Principal periodic points are either contained in periodic edges or are vertices.
Thus every f W G ! G has a rotationless iterate. Any endpoint of an indivisible
periodic Nielsen path is principal as is the initial endpoint of any non-periodic NEG
edge. The latter implies that each NEG stratum in a rotationless relative train track
map is a single edge.

The following lemma shows that anEG stratum has at least one principal vertex.

Lemma 3.19. Assume that f W G ! G satisfies the conclusions of Theorem 2.19.
For every EG stratum Hr there is a principal vertex whose link contains a periodic
direction inHr .

Proof. If some vertex v 2 Hr belongs to a non-contractible component of Gr�1

then v is periodic and there is at least one periodic direction in Hr by Lemma 2.9.
There is also at least one periodic direction at v determined by an edge of Gr�1 so
v is principal. If there is no such vertex, then Hr is a union of components of Gr .
Lemma 5.2 of [3] states there is a principal lift of some iterate of f jHr . In the course
of proving this lemma, it is shown that either there is a vertex with three periodic
directions or there is an indivisible periodic Nielsen path in Hr . In either case there
is a vertex that is principal for f jHr and hence also for f .
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Remark 3.20. Lemma 3.19 implies that the transition matrix Mr of an EG stratum
of a rotationless f W G ! G satisfying the conclusions of Theorem 2.19 has at least
one non-zero diagonal entry and so is aperiodic. For each ƒ 2 L.�/ there is an EG
stratumHr such thatƒ has height r and this defines a bijection (see Definition 3.1.12
of [2]) between L.�/ and the set of EG strata.

The next lemma relates an attractor in FixN . Of / to a fixed direction of D Qf .

Lemma 3.21. Suppose that Qf is a principal lift of a relative train track map
f W G ! G.

(1) For each attractorP 2 FixN . Of / there is a (not necessarily unique) Qx 2 Fix. Qf /
such that the interior of the ray zR Qx;P that starts at Qx and that converges to P is
fixed point free.

(2) If P 2 FixN . Of / is an attractor, if Qx 2 Fix. Qf / and if the interior of zR Qx;P is
fixed point free then no point in the interior of zR Qx;P is mapped by Qf to Qx; in
particular, the initial direction determined by zR Qx;P is fixed.

(3) If P andQ are distinct attractors in FixN . Of /, if Qx 2 Fix. Qf / and if the interiors
of both zR Qx;P and zR Qx;Q are fixed point free then the directions determined by
zR Qx;P and zR Qx;Q are distinct.

Proof. To find Qx 2 Fix. Qf / and zR Qx;P as in (1), start with any ray zR0 whose initial
point is in Fix. Qf / and that converges to P and let zR Qx;P be the subray of zR0 that
begins at the last point Qx of Fix. Qf / in zR0. If zR Qx;P and zR Qx;Q are as in (3) and have
the same initial edge then their ‘difference’ would be a fixed point free line whose
ends converge to attractors in contradiction to Lemma 3.15 and Lemma 3.16. This
verifies (3). By the same reasoning, no points in the interior of zR Qx;P can map to Qx,
which implies that the initial edge of zR Qx;P determines a fixed direction at Qx. This
proves (2).

Corollary 3.22. Assume that f W G ! G satisfies the conclusions of Theorem 2.19.
If Qf is a principal lift then each element of Fix. Qf / is principal.

Proof. Let ˆ be the automorphism corresponding to Qf . If Fix.ˆ/ has rank at least
two then Fix. Qf / is neither a single point nor a single axis and we are done (see
Corollary 3.17 and Lemma 2.1). If Fix.ˆ/ has rank one then Fix. Qf / is infinite and
FixN . Of / contains an attractor by the definition of principal lift and by Lemma 2.3.
Lemma 3.21 implies that some Qx 2 Fix. Qf / has a fixed direction that does not come
from a fixed edge and again we are done. In the remaining case, Fix. Of / is a finite
set of attractors and does not contain the endpoints of any axis. Obviously Fix. Qf / is
not an axis. Suppose that Fix. Qf / is a single point Qx, that there are only two periodic
directions at Qx and these two directions are determined by lifts zE1 and zE2 of oriented
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edges of the same EG stratum Hr . Lemma 3.21 and Lemma 2.13 imply that Fix. Of /
is the endpoint set of a generic leaf of an element of L.�/ in contradiction to the
assumption that Qf is principal. We conclude that Qx is principal as desired.

To prove the converse we use fixed directions of Qf to find elements of FixN . Of /.
The following lemma is from [2]; the proof is short and is repeated for the readers
convenience.

Lemma 3.23. If Fix. Qf / D ; then there is a ray zR � � converging to an element
P 2 Fix. Of / and there are points in zR arbitrarily close to P that move toward P .

Proof. For each vertex Qy of � , we say that the initial edge of the path from Qy to Qf . Qy/
is preferred by Qy. Starting with any vertex Qy0, inductively define QyiC1 to be the other
endpoint of the edge preferred by Qyi . If zE is preferred by both of its endpoints then Qf
maps a proper subinterval of zE over all of zE (reversing orientation) in contradiction
to the assumption that Fix. Qf / D ;. It follows that the Qyi ’s are contained in a ray that
converges to some P 2 Fix. Of / and that Qyi moves toward P .

We isolate the following notation and lemma for reference throughout the paper.

Notation 3.24. Suppose that f W G ! G satisfies the conclusions of Theorem 2.19,
that Hr is a single edge Er and that f .Er/ D Eru for some non-trivial path u �
Gr�1. Let zEr be a lift of Er and let Qf W � ! � be the lift of f that fixes the initial
endpoint of zEr . By (NEG), the component C of Gr�1 that contains the terminal
endpoint w of Er is not contractible. Denote the copy of the universal cover of C
that contains the terminal endpoint of zEr by �r�1 and the restriction Qf j�r�1 by
h W �r�1 ! �r�1.

The covering translations that preserve �r�1 define a free factor F.C/ of Fn

such that ŒŒF .C /�� D ŒŒ�1.C /��. The closure in @Fn of fTċ W c 2 F.C/g is
naturally identified with @F.C / and with the space of ends of �r�1. Moreover,
Oh D Of j@F.C / W @F.C / ! @F.C /.

Lemma 3.25. Assume that Qf and h are as in Notation 3.24. If Fix.h/ D ; then
there is a ray zR � �r�1 converging to an element P 2 Fix. Oh/ and there are points
in zR arbitrarily close to P that move toward P .

Proof. This follows from Lemma 3.23 applied to h W �r�1 ! �r�1.

Our next result is an extension of Lemma 2.13.

Lemma 3.26. Suppose that f W G ! G satisfies the conclusions of Theorem 2.19
and is rotationless, that Qf W � ! � is a lift of f , that Qv 2 Fix. Qf / and that D Qf
fixes the direction at Qv determined by a lift zE of an edge E � Hr . Then there exists
P 2 Fix. Of / so that the ray zR from the initial endpoint of zE to P contains zE and
satisfies the following properties.
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(1) There are points in zR arbitrarily close to P that are either fixed or move toward
P . If there does not exist c 2 Fn such that Fix. Of / D fTċ g then P 2 FixN . Of /.

(2) IfHr is EG thenP is an attractorwhose accumulation set is the unique attracting
lamination of height r , the interior of zR is fixed point free and zR projects to an
r-legal ray in Gr .

(3) IfHr is NEG and non-fixed then zR n zE projects into Gr�1.

(4) No point in the interior of zR is mapped to Qv by any iterate of Qf .

Proof. The second part of (1) follows from the first part of (1) and Lemma 3.15.
The proof is by induction on r , starting with r D 1. If G1 � Fix.f / then we

may choose P to be the endpoint of any ray zR that begins with zE and projects into
G1; the existence of such a ray follows from the fact (Theorem 2.19 (F)) that G1 is
its own core. If G1 is EG then the existence of P follows from Lemma 2.13 and
Lemma 3.21. This completes the r D 1 case so we may now assume that the lemma
holds for edges with height less than r .

If Hr is EG then the existence of P follows from Lemma 2.13 and Lemma 3.21.
We may therefore assume that Hr is NEG. Let h W �r�1 ! �r�1 be as in Nota-
tion 3.24. If Fix.h/ ¤ ;, then the initial endpoint of zE and some Qx 2 Fix.h/
cobound an indivisible Nielsen path. Thus Qx is principal, there is a fixed direction in
�r�1 at Qx and the existence of an appropriate P 2 Fix. Oh/ follows from the inductive
hypothesis. The case that Fix.h/ D ; follows from Lemma 3.25.

We now can prove the converse to Corollary 3.22 under the assumption that
f W G ! G is rotationless.

Corollary 3.27. Suppose that f W G ! G satisfies the conclusions of Theorem 2.19
and is rotationless. If some, and hence every, Qx 2 Fix. Qf / is principal then Qf is
principal.

Proof. Assume that Fix. Qf / consists of principal points. Since f W G ! G is rota-
tionless, periodic directions based in Fix. Qf / are fixed. Lemma 2.20 (4) implies that
each Qx 2 Fix. Qf / has at least two fixed directions. If some Qx 2 Fix. Qf / has at least
three fixed directions, then Lemma 3.26 produces at least three points in FixN . Of / and
we are done. We may therefore assume that there are exactly two fixed, and hence
exactly two periodic, directions at each Qx 2 Fix. Qf /. If Fix. Qf / contains an edge, then
by Definition 3.18 there must be such an edge with a valence one vertex in Fix. Qf /.
This contradicts items (1) and (4) of Lemma 2.20 and we conclude that that there are
no fixed edges. Choose an edge E � Hr and a lift zE whose initial direction is fixed
and based at some Qx 2 Fix. Qf /. Let zR be the ray that begins with zE and ends at some
P 2 Fix. Of / as in Lemma 3.26.

If Hr is EG then the accumulation set of P is an attracting lamination which
implies by Lemma 3.1.16 of [2] that P is not the endpoint of an axis. If Hr is NEG
then the accumulation set of P is contained in Gr�1 which implies that P is not the
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endpoint of an axis that contains zE. It follows that the line composed of zR and the
ray determined by the second fixed direction at Qx is not an axis. We have now shown
that Fix. Of / is not the endpoint set of an axis and hence that every point in Fix. Of /
produced by Lemma 3.26 is contained in FixN . Of /. Thus FixN . Of / contains at least
two points and is not the endpoint set of an axis.

To complete the proof we assume that FixN . Of / is the endpoint set of a lift Q̀
of a generic leaf of an attracting lamination and argue to a contradiction. Since ` is
birecurrent and containsE,Hr is EG and the second fixed direction based at Qx comes
from an edge in Hr . Lemma 3.26 (2) implies that ` � Gr is r-legal and hence does
not contain any indivisible Nielsen paths of height r . But then Qx must be the only
fixed point in Q̀. Since Fix. Qf / is principal it must contain a point other than Qx and
that point would have a fixed direction that does not come from the initial edge of a
ray converging to an endpoint of Q̀. This contradiction completes the proof.

3.4. Rotationless is rotationless. We prove in this section that rotationless relative
train track maps represent forward rotationless outer automorphisms and vice-versa.

Lemma 3.28. Suppose that f W G ! G satisfies the conclusions of Theorem 2.19
and is rotationless. Every periodicNielsen path� with principal endpoints has period
one.

Proof. There is no loss in assuming that � is either a single edge or an indivisible
periodic Nielsen path. In the former case, � is a periodic edge with a principal
endpoint and so is fixed. We may therefore assume that � is indivisible.

The proof is by induction on the height r of � with the r D 0 case being vacuously
true. Let p be the period of � and let v 2 Fix.f / be an endpoint of � . The case that
Hr is EG follows from Lemma 2.11 (3).

We may therefore assume thatHr is a single non-fixed NEG edgeEr . Lemma 4.1.4
of [2] implies that after reversing the orientation on � if necessary, � D Er� or
� D Er� xEr for some path � � Gr�1. Let zEr be a lift of Er with initial endpoint
Qv, let Qf be the lift that fixes Qv and let h W �r�1 ! �r�1 be as in Notation 3.24. By
Lemma 3.27, Qf is principal. Denote the terminal endpoint of the lift Q� that begins at
Qv by Qw.

If � D Er� then Qw 2 �r�1. If p ¤ 1 then the path Q� connecting Qw to h. Qw/
projects to a non-trivial periodic Nielsen path � � Gr�1 that is closed because Qw
projects to w 2 Fix.f /. Since Qw is principal, the inductive hypothesis implies that �
has period one and hence that the projection of the closed path Q�h. Q�/ : : : hp�1. Q�/ to
Gr�1 is homotopic to �p . This contradicts the fact that � and hence �p determines a
non-trivial conjugacy class in Fn. Thus p D 1 in the case that � D Er�.

Suppose now that � D Er� xEr . If Fix.hp/ ¤ ; then the path Q�1 connecting Qv to
Qx 2 Fix.hp/ and the path Q�2 connecting Qx to Qw are periodic Nielsen paths. By the
preceding case �1 and �2, and hence � , has period one. We may therefore assume
that Fix.hp/ D ;.
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Let Tc W � ! � be the covering translation satisfying Tc. Qv/ D Qw. Then Tc

commutes with Qf p and the axis Ac is contained in �r�1. Lemma 2.1 implies that
Tċ 2 Fix. Ohp/. Ifˆ is the principal automorphism corresponding to Qf then OTˆ.c/ D
Of OTc

Of �1, which implies that T˙
ˆ.c/

D Oh.Tċ / 2 Fix. Ohp/ and that Aˆ.c/ � �r�1. If

fTċ g is not Oh-invariant, then FixN . Ohp/ contains the four points fTċ g [ f Oh.Tċ /g
and hp is a principal lift of f jC where C is the component of Gr�1 that contains
the terminal endpoint of Er . This contradicts Corollary 3.17 and the assumption
that Fix.hp/ D ;. Thus fTċ g is Oh-invariant. If Oh interchanges Tċ then FixN . Ohp/

contains fTċ g and at least one point in Fix. Oh/ by Lemma 3.25. This contradicts
Corollary 3.17 and we conclude that Tċ 2 Fix. Oh/. It follows that Qf commutes with
Tc and hence that Qw 2 Fix. Qf /. This proves thatp D 1 and so completes the inductive
step.

Proposition3.29. Suppose thatf W G ! G represents� and satisfies the conclusions
of Theorem 2.19. Then f W G ! G is rotationless if and only if � is forward
rotationless.

Proof. Suppose that f W G ! G is rotationless, that k � 1 and that Qg W � ! � is a
principal lift of g WD f k . Corollary 3.17 and Corollary 3.22 imply that Fix. Qg/ is a
non-empty set of principal fixed points. Since f is rotationless, for each Qv 2 Fix. Qg/
there is a lift Qf W � ! � that fixes Qv and all periodic directions at Qv. To prove that �
is forward rotationless it suffices by Remark 3.14 to show that FixN . Of / D FixN . Og/
and hence (Remark 3.4) that Qf k D Qg.

The path connecting Qv to another point in Fix. Qg/ projects to a Nielsen path for g
and hence by Lemma 3.28, a Nielsen path for f . Thus Fix. Qf / D Fix. Qg/. It follows
that Qg and Qf commute with the same covering translations and Lemma 2.3 implies
that FixN . Of / and FixN . Og/ have the same non-isolated points.

Each isolated point P 2 FixN . Og/ is an attractor for Og. It suffices to show that
P 2 FixN . Of /. By Lemma 3.21 there is a ray zR that terminates at P , that intersects
Fix. Qg/ only in its initial endpoint and whose initial direction is fixed by D Qg, and
hence also by D Qf . We may assume that the height r of the initial edge zE of zR
is minimal among all choices of zR. By Lemma 3.26, zE extends to a ray zR0 that
converges to some P 0 2 Fix. Of /. It suffices to show that P 0 D P since a repeller
for Of could not be an attractor for Og. If Hr is EG this follows from Lemma 3.26 (2)
and Lemma 3.21 (3) applied to g. We may therefore assume that Hr is NEG. If
there exists Qx 2 Fix. Qg/ \ zR0 then Qx 2 zR0 n zE and the ray connecting Qx to P is
contained inGr�1 in contradiction to our choice of r . We may therefore assume that
Fix. Qg/ \ zR0 D ;. Lemma 3.26 (1) implies that there exists Qx 2 zR0 that is moved
toward P 0 by Qf and Lemma 3.16 then implies that P D P 0. This completes the
proof of the only if direction of the proposition.

For the if direction, assume that � is forward rotationless and choose k > 0 so
that g WD f k is rotationless. For each principal v 2 Fix.g/, there exist a lift Qv of v
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and a principal lift Qg of g that fixes Qv. Since � is forward rotationless, there is a lift
Qf of f such that Qf k D Qg and such that FixN . Of / D FixN . Og/. It suffices to show

that Qv 2 Fix. Qf / and that each D Qg-fixed direction Qd1 at Qv is D Qf -fixed.
The edge determined by Qd1 extends to a ray zR1 that converges to some P1 2

FixN . Og/ D FixN . Of /. DefineP2 and zR2 similarly using a secondD Qg-fixed direction
Qd2 based at Qv and denote the line connecting P1 to P2 by Q	 . Thus Qf#. Q	/ D Q	 and

the turn . Qd1; Qd2/ is legal for Qg and hence for Qf . If Qf . Qv/ 62 Q	 then there exists Qy 2 Q	
not equal to Qv such that Qf . Qy/ D Qf . Qv/. But then Qf k. Qy/ D Qf k. Qv/ D Qv which
contradicts Lemma 3.26 (4) applied to Qg. This proves that Qf . Qv/ 2 Q	 . Suppose that
Qf . Qv/ ¤ Qv. Denote Qv by Qv0 and orient Q	 so that Qv < Qf . Qv/ in the order induced from

the orientation and so that there exist Qvi 2 Q	 for 1 � i � k such that Qvi < Qvi�1 and
such that Qf . Qvi / D Qvi�1. But then Qf k. Qvk/ D Qv in contradiction to Lemma 3.26 (4).
We conclude that Qf . Qv/ D Qv. A third application of Lemma 3.26 (4) implies that the
directions Qdi are fixed by D Qf .

3.5. Properties of forward rotationless �

Lemma 3.30. The following hold for each forward rotationless � 2 Out.Fn/.

(1) Each periodic conjugacy class is fixed and each representative of that conjugacy
class is fixed by some principal automorphism representing �.

(2) Each ƒ 2 L.�/ is �-invariant.

(3) A free factor that is invariant under an iterate of � is �-invariant.

Proof. If the conjugacy class of c is fixed by �k for k � 1 then by Remark 3.2 there
exists a principal automorphism ˆk 2 P.�k/ that fixes c. By Lemma 2.1 this is
equivalent to Tċ 2 FixN . Ô

k/. Since � is forward rotationless, we may assume that
k D 1. This completes the proof of the first item.

Item (2) follows from Remark 3.20 and Lemma 3.1.14 of [2].
For the third item, suppose that the free factor F is �k-invariant for some k � 1.

If F has rank one then it is �-invariant by the first item of this lemma. We may
therefore assume that F has rank at least two. Let C be the set of bi-infinite lines
	 that are carried by F and for which there exist a principal lift ˆ of an iterate of
� and a lift Q	 of 	 whose endpoints are contained in FixN . Ô /. Since � is forward
rotationless, each 	 is �-invariant, so C is �-invariant. Obviously C is carried by F
so to prove that F is �-invariant it suffices, by Corollary 2.5, to show that no proper
�-invariant free factor system F of F carries C .

Suppose to the contrary that such an F exists. By Theorem 2.19 there is a relative
train track map g W G0 ! G0 representing �kjF in which F is represented by a proper
filtration element G0

r � G0. After replacing �kjF and g by iterates we may assume
that they are (forward) rotationless. There is an principal vertex v 2 G0 whose link
contains an edge E of G0 n G0

r that determines a fixed direction. This follows from
Lemma 3.19 if there is an EG stratum in G0 nG0

r and from the definition of principal
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otherwise. Lemma 3.26 and the fact that there are at least two periodic directions
based at v imply that there is a principal lift Qg W � 0 ! � 0 and a line Q	 whose endpoints
are contained in FixN . Og/ and whose projected image 	 crossesE and so is not carried
by G0

r . The automorphism ˆ0 2 P.�kjF / determined by Qg extends to an element
ˆ 2 P.�k/ with FixN . Ô 0/ � FixN . Ô /. Thus 	 2 C in contradiction to our choice
of F and G0

r .

Corollary 3.31. If � is forward rotationless and F is a �-invariant free factor, then
� WD �jF 2 Out.F / is forward rotationless.

Proof. Lemma 3.30 (1) handles the case that F has rank one so we may assume that
F has rank at least two. Choose a relative train track map f W G ! G and filtration
; D G0 � G1 � � � � � GN D G satisfying the conclusions of Theorem 2.19
and representing � such that the conjugacy class of F is represented by Gl for
some l . Proposition 3.29 implies that f W G ! G is rotationless. The restriction
of f W G ! G to Gl is a rotationless relative train track map representing � and
satisfying the conclusions of Theorem 2.19. A second application of Proposition 3.29
implies that � is forward rotationless.

4. Completely split relative train track maps

For every � 2 Out.Fn/ there exists k > 0 such that �k is represented by an improved
relative train track map (IRT) f W G ! G as defined in Theorem 5.1.5 of [2]. In this
section we update this theorem, replacing IRTs with CTs, by controlling the iteration
index k, adding a very useful property called complete splitting, and by making small
changes to previous definitions. Section 4.1 contains all the necessary definitions. In
Section 4.2 we show that complete splittings in a CT are hard splittings in the sense
of [5]. A detailed comparison of IRTs and CTs is given in Section 4.3. There is one
new move needed for the construction of CTs. It is defined in Section 4.4 and the
existence theorem is stated and proved in Section 4.5. A few additional properties of
CTs are presented in Section 4.6

4.1. Definitions and Notation. For a 2 Fn, we let Œa�u be the unoriented conjugacy
class determined by a. Thus, Œa�u D Œb�u if and only if b is conjugate to either a or Na.
If � is a closed path then we let Œ��u be the unoriented conjugacy class determined
by � , thought of as a circuit.

Suppose that f W G ! G is a rotationless relative train track map with filtration
; D G0 � G1 � � � � � GN D G and that f W G ! G satisfies the conclusions of
Theorem 2.19. Each NEG stratum Hi is a single edge Ei satisfying f .Ei / D Eiui

for some (necessarily closed by (NEG)) path ui � Gi�1 that is sometimes called the
suffix for Ei . If ui is a non-trivial Nielsen path, then we say that Ei is a linear edge.
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In the linear case, we define the axis for Ei to be Œwi �u where wi is root-free and
ui D w

di

i for some di ¤ 0.

Definition 4.1. IfEi andEj are linear edges and if there aremi ; mj > 0 and a closed
root-free Nielsen path w such that ui D wmi and uj D wmj then a path of the form
Eiw

p xEj with p 2 Z is called an exceptional path.

Remark 4.2. If Eiw
p xEj is an exceptional path then

f k
# .Eiw

p xEj / D Eiw
pCk.mi �mj / xEj

for all k � 0. It follows that Eiw
p xEj is a Nielsen path if and only if mi D mj , that

f# induces a height preserving bijection on the set of exceptional paths and that the
interior of Eiw

p xEj is an increasing union of pre-trivial paths.

Definition 4.3. A filtration ; D G0 � G1 � � � � � GN D G that satisfies the
following property is said to be reduced (with respect to �): if a free factor system
F 0 is �k-invariant for some k > 0 and if F .Gr�1/ @ F 0 @ F .Gr/ then either
F 0 D F .Gr�1/ or F 0 D F .Gr/.

Definition 4.4. IfE in an edge in an irreducible stratumHr and k > 0 then a maximal
subpath � of f k

# .E/ in a zero stratum Hi is said to be r-taken or just taken if r is
irrelevant. Note that ifHi is enveloped by an EG stratumHs then � has endpoints in
Hs and so is a connecting path. A non-trivial path or circuit � is completely split if
it has a splitting, called a complete splitting, into subpaths, each of which is either a
single edge in an irreducible stratum, an indivisible Nielsen path, an exceptional path
or a connecting path in a zero stratumHi that is both maximal (meaning that it is not
contained in a larger subpath of � in Hi ) and taken.

Definition 4.5. A relative train track map is completely split if

(1) f .E/ is completely split for each edge E in each irreducible stratum.
(2) If � is a taken connecting path in a zero stratum then f#.�/ is completely split.

The next lemma states that if f W G ! G is completely split then f# maps
completely split paths to completely split paths.

Lemma 4.6. If f W G ! G is completely split and � is a completely split path
or circuit then f#.�/ is completely split. Moreover if � D �1 : : : �k is a complete
splitting then f#.�/ has a complete splitting that refines f#.�/ D f#.�1/ : : : f#.�s/.

Proof. This is immediate from the definitions, the fact that f# carries indivisible
Nielsen paths to indivisible Nielsen paths and exceptional paths to exceptional paths
and the fact that each maximal subpath of f#.�/ in a zero stratum is contained in a
single f#.�i /.
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We now come to our main definition. When equivalent descriptions of a property
are available, for example in (EG Nielsen Paths), we have chosen the one that is
easiest to check.

Definition 4.7. A relative train track map f W G ! G and filtration F given by
; D G0 � G1 � � � � � GN D G is said to be a CT (for completely split improved
relative train track map) if it satisfies the following properties.

(1) (Rotationless) f W G ! G is rotationless. (See Remark 4.8.)
(2) (Completely Split) f W G ! G is completely split.
(3) (Filtration) F is reduced. The core of each filtration element is a filtration

element.
(4) (Vertices) The endpoints of all indivisible periodic (necessarily fixed) Niel-

sen paths are (necessarily principal) vertices. The terminal endpoint of each
non-fixed NEG edge is principal (and hence fixed). (See Remark 4.9 and
Lemma 4.21.)

(5) (Periodic Edges) Each periodic edge is fixed and each endpoint of a fixed edge
is principal. If the unique edgeEr in a fixed stratumHr is not a loop thenGr�1

is a core graph and both ends of Er are contained in Gr�1.
(6) (Zero Strata) If Hi is a zero stratum, then Hi is enveloped by an EG stratum

Hr , each edge in Hi is r-taken and each vertex in Hi is contained in Hr and
has link contained in Hi [Hr .

(7) (Linear Edges) For each linear Ei there is a closed root-free Nielsen path wi

such that f .Ei / D Eiw
di

i for some di ¤ 0. If Ei and Ej are distinct linear
edges with the same axes then wi D wj and di ¤ dj . (See Remark 4.10.)

(8) (NEGNielsenPaths) If the highest edges in an indivisible Nielsen path� belong
to an NEG stratum then there is a linear edge Ei with wi as in (Linear Edges)
and there exists k ¤ 0 such that � D Eiw

k
i

xEi .
(9) (EG Nielsen Paths) (See also Lemmas 4.17 and 4.18 and Corollaries 4.19

and 4.33) If Hr is EG and 
 is an indivisible Nielsen path of height r , then
f jGr D � B fr�1 B fr where:

(a) fr W Gr ! G1 is a composition of proper extended folds defined by iter-
atively folding 
;

(b) fr�1 W G1 ! G2 is a composition of folds involving edges in Gr�1;
(c) � W G2 ! Gr is a homeomorphism.

Remark 4.8. A CT satisfies the conclusions of Theorem 2.19. This is immediate
from the definitions and from Lemma 4.21.

Remark 4.9. It is an immediate consequence of (Vertices), Remark 2.8 and the
definitions that a vertex whose link contains edges in more than one irreducible
stratum is principal.
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Remark 4.10. If Ei and Ej are linear edges with the same axis then, assuming the
notation of (Linear Edges), paths of the form Eiw

p xEj where w D wi D wj and
p 2 Z are exceptional if and only if di and dj have the same sign.

4.2. Hard splittings. The first item in the following lemma establishes the unique-
ness of complete splittings; the second item (see also Corollary 4.12) shows that a
complete splitting is a hard splitting as defined in [5].

Lemma 4.11. Suppose that f W G ! G is a CT, that � is a circuit or path and that
� D �1 : : : �m is a decomposition into subpaths, each of which is either a single
edge in an irreducible stratum, an indivisible Nielsen path, an exceptional path or a
connecting path in a zero stratum that is both maximal and taken. Suppose also that
each turn . N�i ; �iC1/ is legal. Then

(1) � D �1 : : : �m is the unique complete splitting of � ;

(2) each pre-trivial subpath � of � is contained in a single �i ;

(3) a subpath of � that has the same height as � and is either a fixed edge or an
indivisible Nielsen path equals �i for some i .

Proof. Let Q� D Q�1 : : : Q�m be a lift of � and let Qf W � ! � be a lift of f W G ! G.
The main step in the proof is to establish the following property.

(4) If �i is not a taken maximal connecting path in a zero stratum then for each
k � 0 there exist non-trivial initial and terminal subpaths Q̨ i;k and Q̌

i;k of Q�i

such that Qf �k. Qf k. Qx// \ Q� D f Qxg for all Qx 2 int. Q̨ i;k/ [ int. Q̌
i;k/.

The proof of (4) is by double induction, first on k and then on m. The k D 0 case is
obvious so we may assume that (4) holds for any iterate less than k.

To establish the second base case, assume thatm D 1 or equivalently that � D �i .
If �i is exceptional then (4) is clear (cf. Lemma 4.1.4 of [2]). If �i is an indivisible
Nielsen path then (4) follows from (NEG Nielsen Paths) and Lemma 2.11 (2). The
remaining possibility is that �i is an edgeE in an irreducible stratum and in this case
we make use of the inductive hypothesis that (4) holds in general for any iterate less
than k. The first and last terms in the complete splitting of f .E/ are not connecting
paths in zero strata. By the inductive hypothesis there exist initial and terminal
subpaths Q̨ 0 and Q̌0 of Qf . zE/ such that Qf �.k�1/. Qf k�1. Qx// \ Qf . zE/ D f Qxg for all
Qx 2 int. Q̨ 0/ [ int. Q̌0/. Since Qf j zE is an embedding, we can pull Q̨ 0 and Q̌0 back to
initial and terminal subpaths Q̨ i;k and Q̌

i;k of zE that satisfy (4). This completes the
m D 1 case.

Suppose now that (4) holds for k and � if the decomposition of � given in (1)
has fewer than m � 2 terms. As a first case suppose that �1 is a taken maximal
connecting path in a zero stratum Hp . By (Zero Strata), �2 is an edge in a EG
stratum Hr with r > p. Define Q̨ i;k and Q̌

i;k using Q�2 : : : Q�m in place of Q� . Then
Qf k. Q�1/ \ int. Qf k. Q̨2;k// D ; because Qf k. Q�1/ has height < r and Qf k. Q̨2;k/ is an
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embedded path whose initial direction has height r . Since int. Qf k. Q̨2;k// separates
Qf k. Q�1/ from each Qf k. Q̌

i;k/ and from Qf k. Q̨ i;k/ for i > 2, Qf k. Q�1/ is disjoint from
each of these sets. This proves that each Q̨ i;k and Q̌

i;k satisfies (4) with respect to � .
As a second case, suppose that �2 is a taken maximal connecting path in a zero

stratumHp . By (Zero Strata), �1 and�3 (ifm � 3) are edges in an EG stratumHr with
r > p. Define Q̨1;k and Q̌

1;k using Q�1 in place of Q� . For i > 2, define Q̨ i;k and Q̌
i;k

using Q�2 : : : Q�m in place of Q� . As in the previous case, int. Qf k.ˇ1;k// \ Qf k. Q�2/ D ;
and int. Qf k.˛3;k//\ Qf k. Q�2/ D ;. Also as in the previous case, this implies that each
Q̨ i;k and Q̌

i;k satisfies (4) with respect to � .
The final case is that neither �1 nor �2 is a taken maximal connecting path in a

zero stratum. Define Q̨1;k and Q̌
1;k using Q�1 in place of Q� . For i > 2, define Q̨ i;k

and Q̌
i;k using Q�2 : : : Q�m in place of Q� . Since the turn . N�1; �2/ is legal, the interiors

of Qf k. Q̨1;k/ and Qf k. Q̌
2;k/ are disjoint. The proof now concludes as in the previous

two cases. This completes the induction step and so the proof of (4).
If � is a pre-trivial path then there exists k > 0 such that f k

# .�/ is trivial. For each
Qx 2 Q� there exists Qy ¤ Qx in Q� such that Qf k. Qx/ D Qf k. Qy/. If �i is not a taken maximal
connecting path in a zero stratum and if � intersects int.�i / then � � int.�i / by (4).
Since this applies to at least one of any pair of consecutive �i ’s we have proved (2).
It follows that � D �1 : : : �m is a splitting, and hence a complete splitting, of � .

Suppose that � D � 0
1 : : : �

0
q is also a complete splitting. If � 0

i is an exceptional
path or an indivisible Nielsen path then (by Remark 4.2 in the NEG case and by
Lemma 2.11 (2) in the EG case) the interior of � 0

i is the increasing union of pre-trivial
subpaths. Item (2) implies that � 0

i is contained in some �j . Since �j is not a single
edge and is not contained in a zero stratum, it must be an indivisible Nielsen path
or an exceptional path. By symmetry, � 0

i D �j . The terms that are taken maximal
connecting paths in zero strata are then characterized as the maximal subpaths, in the
complement of the indivisible Nielsen paths and exceptional paths, that are contained
in zero strata. All remaining edges are terms in the complete splitting. This proves
that complete splittings are unique and so completes the proof of (1).

A fixed edge of maximal height in� is not contained in a taken maximal connecting
path of a zero stratum, an indivisible Nielsen path or an exceptional path in � and so
must be a term in the complete splitting of � . An indivisible Nielsen path in � must
be contained in a single �i by (2). If it has maximal height then, by inspection of the
four possibilities for �i it must be all of �i . This proves (3).

Corollary 4.12. Assume that f W G ! G is a CT and that � D �1 : : : �s is the
complete splitting of a path � � G. If � is an initial segment of � with terminal
endpoint in �j then � D �1 : : : �j �1 ��j is a splitting where �j is the initial segment
of �j that is contained in � . In particular if � is a non-trivial Nielsen path then �i is
a Nielsen path for all i � j and if �j is not a single fixed edge then �j D �j .
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Proof. The main statement follows immediately from Lemma 4.11 (2). The statement
about Nielsen paths then follows from the fact that no proper non-trivial initial segment
of a non-fixed term in a complete splitting of any path is a Nielsen path.

4.3. CT versus IRT. Theorem 5.1.5 of [2] is both the definition of, and the existence
theorem for, an improved relative train track map. There are eight bulleted items in the
statement of the theorem, the last seven of which should be considered the definition.
For notational convenience, we refer to these as (IRT-1) through (IRT-7). In this
section we discuss the extent to which a CT f W G ! G satisfies these seven items.
By the end of this section we will have verified that CTs satisfy all of the important
properties of IRTs.

(IRT-1) is that F is reduced, which is part of (Filtration). The following lemma
states that every CT satisfies (IRT-2).

Lemma 4.13. If f W G ! G is a CT then every periodic Nielsen path has period
one.

Proof. Each periodic Nielsen path is a concatenation of periodic edges and indivisible
periodic Nielsen paths. The former have period one by (Periodic Edges) and the latter
have period one by (Vertices) and Lemma 3.28.

The next lemma shows that a CT satisfies most of (IRT-3). The exception is that
there may be some vertices v for which f .v/ is not fixed.

Lemma 4.14. If f W G ! G is a CT then every vertex v 2 G has at least two gates.
If the link of v is not contained in H z

r for some EG stratum Hr then v is principal
and hence fixed.

Proof. If .d1; d2/ is an illegal turn then either one of the di ’s is the terminal end of
a non-fixed NEG edge or both d1 and d2 belong to H z

r for some EG stratum Hr .
(Vertices), (Zero Strata) and Lemma 2.10 imply that the vertex in both of these cases
has two gates. At any other vertex the number of gates equals the valence. This
proves the first statement of the lemma.

It follows from (Periodic Edges) and the definition of principal vertex that if v is
periodic and the link of v is not contained in a single EG stratum then v is principal.
If v is not periodic then its link is contained in some H z

r by (Vertices), Remark 4.9
and (Zero Strata).

The difference between (IRT-4) and the conclusion of the next lemma is that a
zero stratum in a IRT can be the union of contractible components.

Lemma 4.15. Assume thatf W G ! G is aCT.ThenGi has a contractible component
if and only ifHi is a zero stratum.
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Proof. The if direction follows from (Zero Strata). For the only if direction we
assume that Hi is not a zero stratum and prove, by induction up the filtration, that
every component ofGi is non-contractible. For the base case,H1 D G1 is either EG
or periodic and so is connected and not contractible, by Lemma 2.10 in the former
case and (Periodic Edges) in the latter. We now consider the inductive step. If some
component of Gi�1 is contractible then Hi�1 is a zero stratum and (Zero Strata)
implies that every component ofGi is non-contractible. If every component ofGi�1

is non-contractible then (Periodic Edges) and Lemma 2.10 complete the proof.

There are two differences between (IRT-5) and (Zero Strata). The first is that an
IRT can have a vertex whose link is contained in a zero stratum but a CT cannot.
The second is that the restriction of an IRT to a zero stratum is always an immersion
but this need not be true for a CT. We have replaced the immersion condition with
Definition 4.5 (2) and the assumption that every edge in a zero stratum is r-taken. The
primary motivation for removing the immersion condition is that it lacks robustness.
For example, it need not hold for f 2j� . Also, since the main application of relative
train track maps is in analyzing the action of the induced map f# on paths with
endpoints at vertices, it makes sense to make definitions that focus on f# and not
on f .

Corollary 4.19 below implies that a CT satisfies (IRT-7). In the definition of a CT,
we have replaced a list of properties satisfied by indivisible Nielsen paths correspond-
ing to EG strata (see the statement of Corollary 4.19) with the underlying property
(EG Nielsen Paths) from which these properties were derived. One advantage of this
is that it is easier to deduce additional properties as in Lemma 4.24.

Lemma 4.16. Suppose that Hr is an aperiodic EG stratum of a relative train track
map f W G ! G, that 
 is an indivisible Nielsen path of height r and that 
 and
Hr satisfy the conclusions of (EG Nielsen Paths). Then the fold at the illegal turn at
each indivisible Nielsen path obtained by iteratively folding 
 is proper.

Proof. We assume without loss that G D Gr .
Define the data set S for f and 
 to be the ordered sequences of Hr -edges in 


and in f .E/ for each edge E of Hr . Then S determines the type (partial, proper,
improper) of the fold at the illegal turn of 
. Furthermore, assuming that the fold
is proper so that the extended fold is defined, S also determines the data set for the
relative train track map and indivisible Nielsen path obtained by folding 
. Let Sk

be the data set for the relative train track map and indivisible Nielsen path obtained
by iteratively folding 
 k times, assuming that such folds are defined.

Assume the notation of (EG Nielsen Paths). In particular, fr W G ! G1 is a
composition of a finite number, sayK, of proper extended folds defined by iteratively
folding 
. Thus SK is defined. Since f jGr D � B fr�1 B fr , the homeomorphism �

defines a bijection between the edges in the top stratum of G1 and the edges of Hr

that conjugates SK to S0. In other words, up to relabeling, SK D S0. It follows that,



82 M. Feighn and M. Handel

up to relabeling, the sequence of Sk’s is periodic with period K and hence that the
fold at the illegal turn of 
.k/ is proper for all k.

Lemma 4.17. Theorem 5.15 of [4] remains true if the hypothesis that f W G ! G is
stable is replaced by the hypothesis that for each EG stratumHr there is an indivisible
Nielsen path 
 of height r such that 
 andHr satisfy the conclusions of (EG Nielsen
Paths).

Proof. The proof of Theorem 5.15 has two parts. The first is a reduction to the case
that the illegal turn at each indivisible Nielsen path obtained by iteratively folding 

is proper. The second is the observation that in this case the proof for the special case
that f W G ! G is irreducible given in Lemma 3.9 of [4] applies to the general case
as well. This lemma therefore follows from Lemma 4.16.

Lemma 4.18. Proposition 5.3.1 of [2] remains true if the hypothesis f W G ! G

is F -Nielsen minimized is replaced by the hypothesis that Hr satisfies (EG Nielsen
Paths).

Proof. The proof of Proposition 5.3.1 of [2] makes use of Lemmas 5.3.6, 5.3.7, 5.3.9
and Corollary 5.3.8 of that paper. Lemma 5.3.6 states that if f W G ! G is F -Nielsen
minimized and if 
r crosses every edge of Hr exactly twice then Hr satisfies (EG
Nielsen Paths). The remaining three lemmas use (EG Nielsen Paths) but do not refer
directly to being F -Nielsen minimized.

The next corollary refers to geometric strata; complete details can be found in
Definition 5.1.4 of [2].

Corollary 4.19. Suppose that f W G ! G is a relative train track map and that
(EG Nielsen Paths) holds for the EG stratum Hr . Then the following properties are
satisfied.

eg-(i) There is at most one indivisible Nielsen path 
r � Gr that intersects Hr

non-trivially. The initial edges of 
r and N
r are distinct edges inHr .

eg-(ii) If 
r � Gr is an indivisible Nielsen path that intersectsHr non-trivially and
ifHr is not geometric, then there is an edge E ofHr that 
r crosses exactly
once.

eg-(iii) If Hr is geometric then there is an indivisible Nielsen path 
r � Gr that
intersects Hr non-trivially and satisfies the following properties: (i) 
r is a
closed path with basepoint not contained inGr�1; (ii) the circuit determined
by 
r corresponds to the unattached peripheral curve 
� of S ; and (iii) the
surface S is connected.

In particular,Hr satisfies the EG properties of an improved relative train track.
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Proof. Theorem 5.15 of [4], which applies here by Lemma 4.17, implies that there
is at most one indivisible Nielsen path 
r � Gi that intersects Hr non-trivially and
if such a 
r exists then it either crosses every edge in Hr exactly twice or crosses
some edge of Hr exactly once. Lemma 5.1.7 of [2] implies that if 
r crosses some
edge of Hr exactly once then 
r is not a closed path; in particular eg-(i) holds. The
rest of eg-(i) and the remaining two items follow from Proposition 5.3.1 of [2] which
applies here by Lemma 4.18.

Remark 4.20. Item eg-(ii) of Corollary 4.19 and Lemma 5.1.7 in [2] imply that if
Hr is an EG stratum of a CT that is not geometric and if 
 is an indivisible Nielsen
path of height r then 
 has distinct endpoints.

The remaining item (IRT-6) concerns NEG strata and has three parts. The first two
statements of the next lemma shows that a CT satisfies the first two parts of (IRT-6).
Corollary 4.23 shows that a CT satisfies the third part of (IRT-6).

Lemma 4.21. If f W G ! G is a CT andHi is NEG thenHi is a single edge Ei . If
Ei is not contained in Fix.f / then there is a non-trivial closed path ui � Gi�1 such
that f .Ei / D Ei � ui . Moreover ui forms a circuit and the turn .ui ; Nui / is legal.

Proof. IfHi consists of periodic edges then the lemma follows from (Periodic Edges).
Otherwise (Rotationless), (Completely Split) and (Vertices) imply thatHi is a single
edge Ei and that there is a non-trivial closed path ui such that f .Ei / D Eiui is
completely split. To prove that f .Ei / D Ei � ui we must show that the first term �1

in the complete splitting of Eiui is the single edge Ei . It is obviously not contained
in a zero stratum and is not a Nielsen path by (NEG Nielsen Paths). It remains to
show that �1 is not an exceptional path and for this there is no loss in assuming that
Ei is linear. In the notation of (Linear Edges), f .Ei / D Eiw

di

i , no initial segment
of which is an exceptional path by Remark 4.10. This completes the proof that
f .Ei / D Ei � ui .

The turn .Df k�1. Nui /;Df
k.ui // is the Df k image of the legal turn . xEi ; ui / and

is therefore legal for all k � 1. Since f is rotationless and since the terminal endpoint
v of Ei is principal by (Vertices), Df k.d/ is independent of k for all directions d
based at v and all sufficiently large k. It follows that .Df k. Nui /;Df

k.ui // is legal
for all sufficiently large k and hence that .ui ; Nui / is legal. In particular, .ui ; Nui / is
non-degenerate which implies that ui forms a circuit.

Lemma 4.22. Suppose thatEi is the unique edge of height i in a rotationless relative
train track map f W G ! G, that f .Ei / D Ei � ui for some non-trivial closed path
ui � Gi�1 and that every periodic Nielsen path with height less than i has period
one. Suppose further that either there are no Nielsen paths of height i orEi is a linear
edge and all Nielsen paths of height i have the form � D Eiw

k
i

xEi where k ¤ 0 and

where wi is root-free and ui D w
di

i for some di ¤ 0. Let h W �i�1 ! �i�1 be the
lift of f jGi�1 as in Notation 3.24. Then
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� Fix.h/ D ;;
� Ei is a linear edge if and only if there is a covering translation T W �i�1 ! �i�1

that commutes with h and whose axis covers ui .

Proof. Let Qf W � ! � and zEi be as in Notation 3.24. Thus Qf . zEi / D zEi � Qui where
Qui � �i�1 is a lift of ui and h maps the initial endpoint Qx1 of Qui to the terminal
endpoint Qx2 of Qui . If Qv 2 Fix.h/ and Q	 is the path from Qx1 to Qv then zEi Q	 is a Nielsen
path for Qf . But then Ei	 is a Nielsen path of height i for f that is not of the form
Eiw

k
i

xEi . This contradiction verifies the first item.
If ui is a Nielsen path and T W �i�1 ! �i�1 is the covering translation that maps

Qx1 to Qx2, then T h. Qx1/ D hT . Qx1/ is the terminal endpoint of the lift of ui that begins
at Qx2. Thus T commutes with h. For the converse suppose that h commutes with
some covering translation T W �i�1 ! �i�1. Corollary 3.17 implies that h is not a
principal lift of f jGi�1 and hence that the endpoints of the axis of T are the only
fixed points in @�i�1. On the other hand, the ray Qui �h#. Qui / �h2

#. Qui / : : : converges to
a fixed point in @�i�1. The end of this ray is therefore contained in the axis of T . It
follows that ui is a periodic Nielsen path and hence a Nielsen path and that the axis
of T covers ui .

Recall (Definition 4.1.3 of [2]) that if Hi is an NEG strata with unique edge Ei

then paths of the formEi	 xEi ; Ei	 or 	 xEi where 	 � Gi�1 are called basic paths of
height i .

Corollary 4.23. Suppose that f W G ! G is a CT and that Hi is an NEG strata
with unique edge Ei . If � � Gi is a basic path of height i that does not split as a
concatenation of two basic paths of height i or as a concatenation of a basic path of
height i with a path contained inGi�1, then either (i) some f k

# .�/ splits into pieces,
one of which equals Ei or xEi , or (ii) ui is a Nielsen path and some f k

# .�/ is an
exceptional path of height i .

Proof. Lemma 4.22 and Corollary 4.12 imply that f W G ! G satisfies the hy-
potheses and hence the conclusions of Proposition 5.4.3 of [2]. In conjunction with
Corollary 4.19, Lemma 4.21 and Lemma 3.28 we see that f W G ! G satisfies the
hypotheses of Lemma 5.5.1 of [2], from which the corollary follows.

We conclude this subsection with two additional properties of CTs.

Lemma 4.24. Suppose that f W G ! G is a rotationless relative train track map,
that Hr is an EG stratum satisfying (EG Nielsen Paths), and that 
 is an indivisible
Nielsen path of height r . Then

(1) H z
r D Hr ;

(2) if 
 D a1b1 : : : blalC1 is the decomposition into subpaths ai of height r and
maximal subpaths bi of height less than r then each bi is a Nielsen path;
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(3) if E is an edge ofHr then each maximal subpath of f .E/ in Gr�1 is one of the
bi ’s from (2). In particular f .E/ splits into edges in Hr and Nielsen paths in
Gr�1.

Proof. The maps fr ; fr�1 and � induce bijections on the set of components in the
filtration element of height r � 1. It follows that f D �fr�1fr induces a bijection
on the set of components of Gr�1 and hence that each component of Gr�1 is non-
wandering. This proves (1).

For (2), let .fr/#.
/ D a0
1b

0
1 : : : a

0
mb

0
ma

0
mC1 be the decomposition into subpaths

a0
j of height r and maximal subpaths b0

j of height less than r . It is an immediate
consequence (see the proof of Lemma 5.3.3 of [2]) of the definition of an extended
fold that the set of distinct b0

j ’s is contained in the set of distinct bi ’s. Now let
.�fr�1/#.a

0
1b

0
1 : : : a

0
mb

0
mC1/ D c1d1 : : : cpdpcpC1 be the decomposition into sub-

paths ck of height r and maximal subpaths dk of height less than r . Then for each
k there exists j such that dk D .�fr�1/#.b

0
j /. Combining this with the fact that

a1b1 : : : blalC1 D c1d1 : : : cpdpcpC1, we conclude that f# permutes the bi ’s. Since
f is rotationless, each bi is a Nielsen path.

If E is an edge of Hr then, by construction, each maximal subpath of fr.E/ in
Gr�1 is a bi . By (2), each bi is a Nielsen path for f and hence for �fr�1. This
completes the proof of (3).

Lemma 4.25. If f W G ! G is a CT and � � Gr is a path with endpoints at vertices
then f k

# .�/ is completely split for all sufficiently large k.

Proof. The proof is by induction on the height of � . The height zero case is vacuously
true so suppose that � has height j � 1 and that the lemma holds for all paths of
height less than j . By Lemmas 4.6, 4.11 and the inductive hypothesis, it suffices to
show that some f k.�/ has a splitting into subpaths that are either completely split or
contained inGj �1. This is immediate ifHj is a zero stratum or ifHj is a single fixed
edge. If Hj is NEG then � has a splitting into basic paths of height j and subpaths
in Gj �1 by Lemma 4.1.4 of [2]. The desired splitting of � therefore follows from
Lemma 4.23. IfHj is EG, then Lemmas 4.2.6 and 4.2.5 of [2] imply that some f k.�/

splits into pieces, each of which is either j -legal or a Nielsen path and Lemma 4.2.1
of [2] implies that the j -legal paths in Gj split into single edges in Hj and subpaths
in Gj �1.

4.4. A new move. We make use of a move that plays the same role for zero and EG
strata that sliding (Section 5.4 of [2]) does for NEG strata. See item (7) of Lemma 4.27
below for its main application.

Definition 4.26. Suppose that f W G ! G is a rotationless relative train track map
satisfying the conclusions of Theorem 2.19 with respect to the filtration ; D G0 �
G1 � � � � � GN D G, that 1 � j � N , that every component of Gj is non-
contractible and that f fixes every vertex in Gj whose link is not contained in Gj .
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Define a homotopy equivalence g W G ! G by gjGj D f jGj and gj.G n Gj / D
identity.

Define G0 from G by changing the marking via g. More precisely, if X is the
underlying graph ofG and � W Rn ! X is the marking that definesG, theng� W Rn !
X is the marking that defines G0. Since G and G0 have the same underlying graph,
there is a natural identification of G with G0 and we use this when discussing edges
and strata.

Define f 0 W G0 ! G0 by f 0jG0
j D f jGj and f 0.E/ D .gf /#.E/ for all edges E

in Hi with i > j .
We say that f 0 W G0 ! G0 is obtained from f W G ! G by changing the marking

on Gj via f .

The following lemma is the analog of Lemma 5.4.1 of [2].

Lemma 4.27. Suppose that f 0 W G0 ! G0 is obtained from f W G ! G by changing
the marking on Gj via f . Then:

(1) f 0jGj D f jGj ;

(2) for every path� � G with endpoints at vertices and for everyk > 0, g#f
k

# .�/ D
.f 0/k#g#.�/;

(3) f 0 W G0 ! G0 is a homotopy equivalence that determines the same element of
Out.Fn/ as f W G ! G;

(4) there is a one-to-one correspondence between Nielsen paths for f and Nielsen
paths for f 0;

(5) f 0 W G0 ! G0 is a rotationless relative train track map satisfying the conclusions
of Theorem 2.19 with respect to ; D G0 � G1 � � � � � GN D G.

Proof. Item (1) is immediate from the definitions as is the fact that f 0 preserves the
filtration ; D G0 � G1 � � � � � GN D G. Also immediate are:

(6) If f .x/ ¤ f 0.x/ then x 62 Gj and f .x/; f 0.x/ 2 Gj . In particular, Fix.f / D
Fix.f 0/ � Fix.g/, Per.f / D Per.f 0/ � Per.g/ and Df and Df 0 have the
same fixed and periodic directions.

(7) Suppose thatE is an edge inHi for i > j and that f .E/ D �11�2 : : : k�1�k

where the l ’s are the maximal subpaths in Gj and where �1 and �k may be
trivial. Then f 0.E/ D �1f#.1/�2 : : : f#.k�1/�k and all the f#.l/’s are
non-trivial. (The non-triviality follows from the fact that f fixes the endpoints
of each l .)

This implies:

(8) Each stratum Hi has the same type (EG, NEG, zero) for f as for f 0.
To verify (2), it suffices to assume that k D 1 and that � is a single edge E.

If E � Gj then g#f#.E/ D f#.f#.E// D f 0
#g#.E/. If E � Gi for i > j then

g#f#.E/ D f 0
# .E/ D f 0

#g#.E/. This completes the proof of (2) which implies (3).
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If 
0 � G0 is a path in G with endpoints P1; P2 2 Fix.f 0/ D Fix.f /, then there
is a unique path 
 � G with endpoints P1 and P2 such that g#.
/ D 
0. Condition
(2) implies that 
0 is fixed by .f 0/# if and only if 
 is fixed by f#. This proves (4).

To show that f 0 W G0 ! G0 is a relative train track map it suffices by (1), (6)
and (7) to prove that if Hi is an EG stratum with i > j and if � � Gi�1 is a
connecting path for Hi then .f 0/#.�/ is non-trivial. If � is contained in a non-
contractible component of Gi�1 then its endpoints are f -fixed, and hence f 0-fixed,
by Remark 2.8. Non-triviality of .f 0/#.�/ therefore follows from the fact that f 0 is a
homotopy equivalence. If � is contained in a contractible component of Gi�1 then it
is contained in a zero stratum that has height greater than j (because it is contained in
H z

i ) and so .f 0/#.�/ D g#f#.�/. If the connecting path f#.�/ is contained in a non-
contractible component of Gi�1 then g#f#.�/ is non-trivial by the same argument
used in the previous case. Otherwise, g#f#.�/ D f#.�/ and again we are done. This
completes the proof that f 0 W G0 ! G0 is a relative train track map.

Item (5) follows from (4) and (6).

4.5. Existence theorem

Theorem 4.28. Suppose that � 2 Out.Fn/ is forward rotationless and that C is a
nested sequence of �-invariant free factor systems. Then � is represented by a CT
f W G ! G and filtration F that realizes C .

Proof. We assume without loss C is maximal with respect to @. Thus any filtration
that realizes C is reduced. By Theorem 2.19 and item (3) of Lemma 2.20 we may
choose a relative train track map f W G ! G that represent � and realizes C and
such that each contractible component of a filtration element is a union of zero strata
and the endpoints of all indivisible Nielsen paths of EG height are vertices. For
the remainder of the proof all relative train track maps are assumed to satisfy these
properties.

Step 1: (EG Nielsen Paths). Let N.f / be the number of indivisible Nielsen paths
of EG height. In the construction of an IRT in [2] it is assumed (see Definition 5.2.1
of [2]) that N.f / is as small as possible. The EG properties of an IRT are then
established by contradiction: the failure of these properties allows one to reduce
N.f / which is impossible. In order to make our constructions more algorithmic,
we drop the assumption that N.f / is minimal and argue inductively: the failure of
(EG Nielsen Paths) allows one to reduceN.f / and sinceN.f / is finite, this process
eventually terminates in an f W G ! G satisfying (EG Nielsen Paths). As we are no
longer assuming thatN.f / is minimal we cannot quote statements of results from [2]
but must instead refer to their proofs.

Lemma 4.29. Suppose thatHr is anEGstratumof a relative train trackmapf W G !
G and that 
 is an indivisible Nielsen path of height r . If the fold at the illegal turn
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of 
 is partial then there is a relative train track map f 0 W G0 ! G0 satisfying
N.f 0/ < N.f /.

Proof. This follows from the proofs of Lemmas 5.2.3 and 5.2.4 of [2]. The lat-
ter constructs a topological representative f 00 W G00 ! G00 with N.f 00/ < N.f /.
The former constructs a relative train track map f 0 W G0 ! G0 representing � with
N.f 0/ D N.f 00/.

Lemma4.30. Suppose thatHr is anEGstratumof a relative train trackmapf W G !
G, that 
 is an indivisible Nielsen path of height r and that the fold at the illegal turn
of 
 is proper. Let f 0 W G0 ! G0 be the relative train track map obtained from
f W G ! G by folding 
. Then N.f 0/ D N.f / and there is a bijection Hs ! H 0

s

between the EG strata of f and the EG strata of f 0 such that H 0
s and Hs have the

same number of edges for all s.

Proof. This follows from the definition off 0 W G0 ! G0 and the proof of Lemma 5.3.3
of [2].

Lemma4.31. Suppose thatHr is anEGstratumof a relative train trackmapf W G !
G and that 
 is an indivisible Nielsen path of height r . If the fold at the illegal turn
of 
 is improper then there is a relative train track map f 0 W G0 ! G0 and a bijection
Hs ! H 0

s between the EG strata of f and the EG strata of f 0 with the following
properties.

(1) N.f 0/ D N.f /.

(2) H 0
r has fewer edges thanHr .

(3) If s > r thenH 0
s andHs have the same number of edges.

Proof. This follows from Definition 5.3.4 and the proof of Lemma 5.3.5 of [2].

Lemma 4.32. IfHr is an EG stratum of f W G ! G and 
 is an indivisible Nielsen
path of height r such that the fold at the illegal turn at each indivisible Nielsen path
obtained by iteratively folding 
 is proper thenHr satisfies (EG Nielsen Paths).

Proof. The conclusion of Lemma 5.3.6 of [2] is thatHr satisfies (EG Nielsen Paths).
The proof of that lemma uses only standard folding arguments, the hypotheses of our
lemma and uniqueness of the illegal turn of height r , which follows from Lemma 4.17.

Corollary 4.33. Suppose that Hr is an EG stratum of a relative train track map
f W G ! G and that 
 is an indivisible Nielsen path of height r . Then the fold at
the illegal turn at each indivisible Nielsen path obtained by iteratively folding 
 is
proper if and only ifHr satisfies (EG Nielsen Paths).
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Proof. This is an immediate corollary of Lemmas 4.16 and 4.32.

Our algorithm for modifying a given f W G ! G so that it satisfies (EG Nielsen
Paths) is as follows. If some EG stratum does not satisfy (EG Nielsen Paths), let Hr

be the highest such stratum. By Lemma 4.32, there is a (possibly empty) sequence
of proper folds leading to a relative train track map and an indivisible Nielsen path
with either a partial fold or an improper fold. Apply Lemma 4.29 or Lemma 4.31
respectively. If the resulting relative train track map does not satisfy (EG Nielsen
Paths) go back to the beginning and start again.

Remark 4.34. Iteratively folding any 
 inHr either determines fr as in (EG Nielsen
Paths) or leads to a partial or improper fold in a predictable number of steps.

Suppose that the algorithm does not terminate. Denote the relative train track
maps that are produced by f D f0; f1; f2 : : : . Since N.fi / is non-decreasing and
is strictly decreasing when a partial fold occurs, there are only finitely many such
occurrences and we may assume without loss that all the folds are full. We make
use of the bijection Hs.i/ ! Hs.j / between EG strata for fi and EG strata of
fj given by Lemmas 4.30 and 4.31. Let Hr be the highest stratum for which (EG
Nielsen Paths) is not satisfied by fk for all sufficiently large k. Then the number of
edges of height r is a non-increasing function of k that strictly decreases when an
improper fold of height r occurs. These folds do not therefore occur for sufficiently
large k. But this contradicts Lemma 4.32 and the choice of r . This proves that the
algorithm terminates at a relative train track map (still called) f W G ! G satisfying
(EG Nielsen Paths).

In the steps that follow the number of edges in each EG strata and the number of
indivisible Nielsen paths of EG height are not increased. If after some modification,
(EG Nielsen Paths) fails then we can return to Step 1 and start again. By the above
argument this terminates after finitely many repetitions. (In fact, it is never necessary
to return to Step 1 but this requires an additional argument.)

Step 2: (Theorem 2.19). Apply Steps 1 through 6 of the proof of Theorem 2.19
to produce a new f W G ! G satisfying the conclusions of that theorem. By Re-
mark 2.21, the number of edges in each EG strata and the number of indivisible
Nielsen paths of EG height is unchanged. As noted in the preceding paragraph, we
may assume that (EG Nielsen Paths) is still satisfied.

Step 3: ((Rotationless), (Filtration) and (Zero Strata)). Items (Rotationless) and
(Filtration) follow from Proposition 3.29 and Theorem 2.19 (F). To achieve (Zero
Strata) it suffices, by item (Z) of Theorem 2.19, to arrange that every edge in a zero
stratumHi is r-taken. Each edgeE inHi is contained in an r-taken path � � Hi . If
E is not r-taken, replace E by a path that has the same endpoints as � and is marked
by � . After finitely many such tree replacements, (Zero Strata) is satisfied.
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Step 4: (Periodic Edges). Suppose at first that no component C of Per.f / is
topologically a circle with each point in C having exactly two periodic directions.
Then the endpoints of any periodic edge are principal, each periodic edge is fixed
and each periodic stratum Hr has a single edge Er . If Gr�1 is not a core graph
that contains both endpoints of Er then one could collapse Er without changing
the free factor systems realized by the filtration elements, in violation of item (P) of
Theorem 2.19). Thus (Periodic Edges) is satisfied.

For the general case, it suffices to assume that some component C of Per.f / is
topologically a circle with each point inC having exactly two periodic directions and
modify f W G ! G to reduce the number of such components.

Lemma 3.30 (1) implies that C is f -invariant and that g D f jC is orientation
preserving. By (Zero Strata) and the fact that there are no periodic directions based
in C and pointing out of C , every edge Ej not in C that has an endpoint in C is
non-periodic, NEG and intersects C in exactly its terminal endpoint. Since all non-
periodic vertices are contained in EG strata, no vertex in the complement of C maps
into C . Also, C is a component of some Gl by item (NEG) of Theorem 2.19. Let
Em be the first non-periodic NEG edge Ej that has terminal endpoint in C and note
that f .Em/ D EmC

d . We modify f W G ! G near C in two steps as follows.
In the first step we make C � Fix.f /. Extend the rotation g�1 W C ! C to a

map h W G ! G that has support on a small neighborhood of C , that is homotopic
to the identity and such that h.Ej / � Ej [ C for each non-periodic NEG edge Ej

that has terminal endpoint in C . Redefine f on each edge E to be h#f#.E/. The
filtration is unchanged. Edges in C are now fixed. If f .Ej / D Ejuj then the new
uj and the old uj agree with the possible exception of initial and terminal segments
in C . The f -image of all other edges is unchanged. In fact, f#.�/ is unchanged
for any path � with the property that endpoints of f .�/ are not in the support of h.
It is straightforward to check that f W G ! G is a relative train track map and that
all of the properties that we have established to date are preserved with the possible
exception of item (P) of Theorem 2.19, which fails if one or more of the Ej ’s is
now a fixed edge that should be collapsed. If there is no such edge then proceed to
the next paragraph. If there is such an edge, collapse it as in Step 3 of the proof of
Theorem 2.19. That step is described very explicitly and we leave it to the reader,
here and later in the proof, to check that this operation does not undo previously
established properties. After finitely many such collapses, we have C � Fix.f / and
all previously established properties are preserved. If C now has outward pointing
periodic directions we have finished our modifications of C . Otherwise proceed to
the next paragraph.

Recall that ifEm is the first non-periodic NEG edgeEj that has terminal endpoint
in C , thenf .Em/ D EmC

d for some d 2 Z. In this second step we arrange that
d D 0. Choose h0 W G ! G that is the identity on C , that satisfies h0.Ej / D EjC

�d

for allEj and that has support in a small neighborhood ofC . This map is homotopic to
the identity since we can simply unwind the twisting onC . Redefinef on each edgeE
to beh#f#.E/ and note thatC[Em � Fix.f / so the component of Fix.f / containing
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C is no longer a topological circle. The filtration is unchanged. If necessary, collapse
fixed edges with an endpoint in C and repeat this second step.

Step 5: (Induction: the NEG case). It remains to establish (Completely Split) and
the items related to non-fixed NEG edges. We do this by induction up the filtration
making use of sliding and the new move described in Section 4.4.

Let NI be the number of irreducible strata in the filtration and for each0 � m � NI,
letGi.m/ be the smallest filtration element containing the firstm irreducible strata. We
will prove by induction on m that for all 0 � m � NI, one can modify f to arrange
that f jGm (or more precisely the restriction of f to each component ofGm) is a CT.
Them D 0 case is vacuously true so we assume that f jGr is a CT for r D i.m/ and
make modifications to arrange that f jGs is a CT for s D i.mC 1/. In this step we
assume that Hs is NEG and is hence a single edge Es satisfying f .Es/ D Esus for
some path us � Gs�1.

By (Zero Strata), r D s � 1. The sliding operation described in Section 2.7
(complete details in Section 5.4 of [2]) allows us to modify Es and us by choosing a
path � � Gs�1 with initial endpoint equal to the terminal vertex of Es and ‘sliding’
the terminal end ofEs to the terminal vertex of � . As noted in Step 2, we may assume
that sliding preserves (EG Nielsen Paths).

As a first case suppose that after sliding along � we haveEs � Fix.f /. For future
reference note that by Lemma 2.17 this is equivalent to Œ N�usf#.�/� being trivial and
hence equivalent to f#.Es�/ D EsŒusf#.�/� D Es� ; i.e., to Es� being a Nielsen
path.

If both endpoints of Es are contained in Gs�1 then (Periodic Edges) is satisfied
as are all of the conclusions of Theorem 2.19 and the three properties established in
Step 3. The remaining properties of a CT follow from the inductive hypothesis.

If either endpoint of Es is not contained in Gs�1 then collapse Es to a point
as in Step 4. None of the previously achieved properties are lost and the remaining
properties of a CT follow from the inductive hypothesis. This completes the inductive
step in the case that Es � Fix.f / is trivial after sliding.

We assume now that there is no choice of � such that Es� is a Nielsen path. The
following proposition is a combination of Proposition 5.4.3 and Lemma 5.5.1 of [2].

Proposition 4.35. Suppose that

(i) f W G ! G is a relative train track map that satisfies (EG Nielsen Paths),
(ii) f jGs�1 is a CT,

(iii) Hs is an NEG stratum with single edgeEs for which there does not exists a path
� � Gs�1 such that Es� is a Nielsen path.

Then there exists a path � � Gs�1 with initial endpoint equal to the terminal endpoint
of Es such that after performing the slide associated to � the following conditions
are satisfied.

(1) f .Es/ D Es � us is a non-trivial splitting.
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(2) If � is a circuit or path with endpoints at vertices and if � has height s then there
exists k � 0 such that f k

# .�/ splits into subpaths of the following type.

(a) Es or xEs ,

(b) an exceptional path of height s,

(c) a subpath of Gs�1.

(3) us is completely split and its initial vertex is principal.

(4) f jGs satisfies (Linear Edges).

Proof. The construction of a path � along which to slide is carried out in the proof of
Proposition 5.4.3 of [2]. We assume that � has been chosen to satisfy the conclusions
of that proposition. In particular, f .Es/ D Es � us is a splitting that is non-trivial
by (iii). Thus (1) is satisfied. (The statement of Proposition 5.4.3 of [2] allows the
possibility that G is subdivided at a periodic point and that the terminal endpoint of
Es is one of the new periodic vertices. By the end of the construction, we will have
shown that the terminal endpoint of Es is principal and hence fixed. At that point we
can undo the subdivision.)

For (3) we must make use of facts that are explicitly stated and used in the proof
of Proposition 5.4.3 of [2] but are not contained in its statement. The first is that by a
further slide one can replace us with f k

# .us/ for any k � 1. Since f jGs�1 satisfies
(Completely Split) we may assume by Lemma 4.25 that us is completely split. The
second is that if us D ˛ � ˇ is a coarsening of the complete splitting of us , then by a
further slide we may assume that the terminal endpoint of (the new)Es is the terminal
endpoint of ˛. Thus to complete the proof of (3) we need only show that the endpoint
of some term in the complete splitting of us is principal. The only way that this could
fail would be if us has height r 0 where Hr 0 is EG and if each height r 0 term in the
complete splitting of us is a single edge. After replacing us with a sufficiently high
iterate, we may assume that us has such a long r 0-legal segment that every edge in
Hr 0 occurs as a term in the complete splitting of us . Lemma 3.19 then completes the
proof of (3).

If Es is a linear edge, choose a root-free Nielsen path ws and ds ¤ 0 so that
us D w

ds
s . If Et � Gs�1 is a linear edge with the same axis as Es then after

reversing the orientation on ws we may assume that wt and ws agree as oriented
loops. After a further slide as in the proof of (3) we may assume that ws D wt . Item
(iii) implies that Es

xEt is not a Nielsen path and hence that ds ¤ dt . This completes
the proof of item (4).

Lemma 4.1.4 of [2] states that if � is a height s circuit or path with endpoints
at vertices then � splits into subpaths that are either contained in Gs�1 or are ba-
sic paths of height s meaning that they and their inverses have the form Es	 or
Es	 xEs for some 	 � Gs�1. It therefore suffices, in proving (2), to assume that �
is a basic path of height s. Lemma 4.22 and Corollary 4.12 imply that f W G !
G satisfies the conclusions of Proposition 5.4.3 of [2]. Corollary 4.19 therefore
implies that f W G ! G satisfies the hypotheses, and hence the conclusions, of



The Recognition Theorem for Out.Fn/ 93

Lemma 5.5.1 of [2]. These conclusions address both types of basic paths of height s
and verify (2).

We assume now that we have performed the slide move of Proposition 4.35. Since
us is non-trivial, f jGs satisfies (Periodic Edges) and all of the properties achieved in
the first four steps of our construction. Items (Completely Split), (Vertices), (NEG
Strata), (Linear Edges) and (Nielsen Paths) for f jGs follows from Proposition 4.35
and these properties for f jGs�1. This completes the proof of the inductive step in
the case that Hs is NEG.

Step 6: (Induction: the EG case). Suppose now that Hs is EG. Items (Vertices),
(NEG Strata), (Linear Edges) and (Nielsen Paths) for f jGs follow from these prop-
erties for f jGs�1.

For each edgeE � Hs , there is a decomposition f .E/ D �1 �1 ��2 : : : m�1 ��m

where the l ’s are the maximal subpaths in Gr . Let flg be the collection of all such
paths that occur as E varies over the edges ofHs . By (RTT-ii), f k

# .l/ is non-trivial
for each k and l . By Lemma 4.25 we may choose k so large that each f k

# .l/ is
completely split. We may also assume that the endpoints of f k

# .l/ are periodic and
hence principal. There are finitely many connecting paths � contained in the strata (if
any) betweenGr andHs . Each f .�/ is either a connecting path or a non-trivial path
in Gr with fixed endpoints. We may therefore assume that f k

# .�/ is completely split
for each such � . After k applications of Lemma 4.27 with j D r (see in particular
item (7) of that lemma) we have that f jGs is completely split. This completes the
induction step and so also the proof of the theorem.

4.6. Further properties of a CT. The next lemma is an extension of Lemma 3.26.

Lemma 4.36. Assume that f W G ! G is a CT. The following properties hold for
every principal lift Qf W � ! � .

(1) If Qv 2 Fix. Qf / and a non-fixed edge zE determines a fixed direction at Qv, then
zE � Qf#. zE/ � Qf 2

# .
zE/ � � � � is an increasing sequence of paths whose union is

a ray zR that converges to some P 2 FixN . Of / and whose interior is fixed point
free.

(2) For every isolated P 2 FixN . Of / there exists zE and zR as in (1) that converges
to P . The edge E is non-linear.

Proof. For zE as in (1) and for each m > 0, Lemma 4.6 implies that zE � Qf#. zE/ �
Qf 2
# .

zE/ � � � � is a nested sequence of completely split paths. This increasing sequence
of paths defines a ray zR0 that converges to some non-repelling fixed point P 2
FixN . Of / and that, by Corollary 4.12, intersects Fix. Qf / only in its initial endpoint.
This completes the proof of (1).

If P 2 FixN . Of / is isolated then Qf moves points that are sufficiently close to P
toward P by Lemma 2.3. We may therefore choose a ray zR that converges to P and
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that intersects Fix. Qf / only in its initial endpoint. Moreover, the initial edge zE of zR
determines a fixed direction by Lemma 3.16 and so extends to a fixed point free ray zR
converging to some Q 2 FixN . Of / by (1). Lemma 3.16 implies that P D Q. Since
P is isolated, Lemma 2.1 and Lemma 2.3 (i) imply that P is not an endpoint of the
axis of a covering translation; in particular, E is not a linear edge.

Notation 4.37. If zE and P are as in Lemma 4.36 (1) then we say that zE iterates to
P and that P is associated to zE.

The following lemma is used in Section 5 and also in [10]. It is related to the fact
(Proposition 3.3.3 (3) of [2]) that if ƒ is an attracting lamination for some element
of Out.Fn/ then ƒ 2 L. / if and only if PFƒ. / > 0.

Lemma 4.38. Suppose that  2 Out.Fn/ is forward rotationless and that P 2
FixN . O‰/ for some ‰ 2 P. /. Suppose further that ƒ is an attracting lamination
for some element of Out.Fn/, that ƒ is  -invariant and that ƒ is contained in the
accumulation set of P . Then PFƒ. / � 0 and PFƒ. / > 0 if and only if P is
isolated in FixN . O‰/.
Proof. Let g W G ! G be a CT representing  , let Qg W � ! � be the lift correspond-
ing to‰ and let zR � � be a ray converging toP . Choose a generic leaf 	 � G of the
realization ofƒ inG. Then every finite subpath of 	 lifts to a subpath of every subray
of zR. If P is not isolated in FixN . O‰/ then Lemma 2.3 implies that there are points
in Fix. Qg/ whose nearest points in zR converge to P . It follows that there is a subray
of zR each of whose finite paths is contained in a Nielsen path for Qg. In particular,
every finite subpath of 	 extends to a Nielsen path for g. By (NEG Nielsen Paths),
(EG Nielsen Paths) and Corollary 4.19, this extension can be done with a uniformly
bounded number of edges. It is an immediate consequence of the definition of the
expansion factor (Definition 3.3.2 of [2]) that PFƒ. / D 0.

Assume now that P is isolated in FixN . O‰/ and let † be the set of finite paths
� � G with endpoints at vertices and with the property that every finite subpath of
	 is contained in gm

# .�/ for some m > 0. Lemma 4.36 and the assumption that ƒ is
contained in the accumulation set of P imply that † contains a path that is a single
edge and in particular is non-empty.

Let � 2 † be an element of minimal height, say k. Then � decomposes as a
concatenation of edges �i � Hk and subpaths i � Gk�1 and we let K be the
number of elements in this decomposition. Choose a nested sequence of subpaths 	j

of 	 whose union equals 	 . Since the i ’s are not in †, there exists J > 0 so that
	j is not contained in any gm

# .i / for j > J . Since 	 is generic, it is birecurrent.
Choose j0 > J and j > j0 so that 	j contains at least 3K disjoint copies of 	j0

.
There exists m > 0 such that 	j � gm

# .�/. It follows that 	j0
� gm

# .�i / for some i .
There is a choice of i that works for all choices of j0 and this proves that �i 2 †.

Let E be the single edge in �i . We assume that E is NEG and argue to a
contradiction. There is a path u � Gk�1 such that gm

# .E/ D E � u : : : gm�1
# .u/ for
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all m > 0. Lemma 3.1.16 of [2] states that 	 is not a circuit. It follows that u is
not a Nielsen path and hence that the length of gl

#.u/ goes to infinity with l . The
birecurrence of 	 and the fact that E 2 † imply that for every 	j there exits p > 0

such that 	j � g
p�1
# .u/g

p
# .u/ D g

p�1
# .ug#.u// in contradiction to the assumption

that no element of † has height less than k.
We now know thatHk is EG. SinceE 2 †, 	 is a leaf in the attracting lamination

ƒk associated to Hk . There is a splitting of g.E/ into subpaths in Hk and subpaths
in Gk�1. If 	 were contained in Gk�1 then one of the subpaths in Gk�1 would be
contained in † in contradiction to our choice of k. Thus 	 is not entirely contained
in Gk�1 and Lemma 3.1.15 of [2] implies that 	 is a generic leaf of ƒk . In other
words, ƒ D ƒk . It follows that PFƒ. / > 0 which completes the proof.

Assume that � is forward rotationless and that f W G ! G is a CT representing �.
Following the notation of [3] we say that an unoriented conjugacy class � of a root-
free element of Fn is an axis for � if for some (and hence any) representative c 2 Fn

of � there exist distinct ˆ1; ˆ2 2 P.�/ satisfying ˆ1.c/ D ˆ2.c/ D c, which by
Remark 3.4 is equivalent to FixN . Ô

1/ \ FixN . Ô
2/ D @Ac . It is a consequence of

Lemma 4.40 below that an unoriented conjugacy class � is an axis for � if and only
if it is an axis for a linear edge in some (every) CT representing �.

Remark 4.39. In the context of the mapping class group, a conjugacy class is an axis
if and only if it is represented by a reducing curve in the minimal Thurston normal
form.

Lemma 3.30 implies that the oriented conjugacy class of c is �-invariant. By
Lemmas 4.1.4 and 4.2.6 of [2], the circuit 	 representing c splits into a concatenation
of subpaths ˛i , each of which is either a fixed edge or an indivisible Nielsen path.
(NEG Nielsen Paths) and Corollary 4.19 imply that each turn . N̨ i ; ˛iC1/ is legal.
Item 1 of Lemma 4.11 therefore implies that this splitting is the complete splitting
of 	 .

There is an induced complete splitting ofAc into subpaths Q̨ i that project to either
fixed edges or indivisible Nielsen paths. The lift Qf0 W � ! � that fixes the endpoints
of each Q̨ i is a principal lift by Corollary 3.27 and commutes with Tc . We say that Qf0

and the corresponding ˆ0 2 P.�/ are the base lift and base principal automorphism
associated to � and the choices of Tc and f W G ! G. (If � is not represented by
a basis element then ˆ0 is independent of the choice of f W G ! G. To see this,
let F be the smallest free factor that carries � and note that there can not be a linear
edge with axis � in any CT representing �jF . Lemma 4.40 below implies that �
is not an axis for �jF and so there is a unique principal automorphism ˆjF that
fixes c. The automorphism ˆ0 is the unique (because F has rank greater than one)
extension of ˆjF . It is not hard to show that if � is represented by a basis element
then ˆ0 is not independent of the choice of f W G ! G; see, for example, the proof
of Proposition 8.9 of [10].) Item 2 of Lemma 4.11 implies that, for each Q̨ i and for
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each Qx 2 Q̨ i , the nearest point to Qf0. Qx/ in Ac is contained in Q̨ i . It follows that
Fix.T j

c
Qf0/ D ; for all j ¤ 0 and hence that Qf0 is the only lift that commutes with

Tc and has fixed points in Ac .

Lemma 4.40. Suppose that � is forward rotationless and that the unoriented con-
jugacy class � is an axis for �. Assume notation as above. There is a bijection
between the set of principal lifts [principal automorphisms] Qfj ¤ Qf0 [respectively

ĵ ¤ ˆ0 2 P.�/] that commute with Tc [fix c] and the set of linear edges fEj g with

axis equal to �. Moreover, if f .Ej / D Ejw
dj

j then Qfj D T
dj
c

Qf0 [ ĵ D i
dj
c ˆ0].

Proof. The wj ’s in question are equal by (Linear Edges) and we label this path w.
There is a lift Qw that is a fundamental domain of Ac and that is a Nielsen path for Qf0.
Let zEj be the lift of Ej that terminates at the initial endpoint Qv of Qw and let Qfj be
the lift that fixes the initial endpoint of zEj . Then Qfj is a principal lift that commutes

with Tc and satisfies Qfj . Qv/ D T
dj
c . Qv/ D T

dj
c . Qf0 Qv/ which implies that Qfj D T

dj
c

Qf0.

Conversely, if Qf ¤ Qf0 is a principal lift that commutes with Tc then Qf D T d
c

Qf0

for some d ¤ 0. In particular, Ac is disjoint from Fix. Qf / and there is a ray zR1 that
intersects Fix. Qf / in exactly its initial endpoint and that terminates at the endpoint P
of Ac that is the limit of the forward Qf orbit of Qv. Let zE be the initial edge of zR1.
Lemma 3.16 implies that zE determines a fixed direction and also that zR1 must be
the ray constructed from the initial edge zE of zR1 by Lemma 4.36. If Qf . zE/ D zE � Qu
then zR1 D E � Qu � Qf#. Qu/ � Qf 2

# . Qu/ : : : . Since zR1 has a common infinite end with Ac ,
it follows that f k

# .u/ is a periodic, hence fixed, Nielsen path for sufficiently large k
and for u equal to the projected image of Qu. In particular, u and f#.u/ have the same
f k

# -image, and since they have the same endpoints, they must be equal. In other
words, u is a Nielsen path. This proves that zE is the lift of a linear edge E whose
associated axis is �. By (Linear Edges), E D Ej and d D dj for some j and, after
translating zE by some iterate of Tc if necessary, Qv is the terminal endpoint of zE.

Remark 4.41. Suppose that f W G ! G is a CT, that C is a component of some
filtration element Gs , that C has no valence one vertices and that �jF .C / is the
trivial outer automorphism. Then f jC is the identity. To see this, let Hr be the
first non-fixed stratum in C . It can not be EG because the identity element has no
attracting laminations. If it were NEG it would have to be linear because f jGr�1 is
the identity and it cannot be linear because the identity element has no axes.

We conclude this section by showing that every element of Out.Fn/ has a uni-
formly bounded iterate that is forward rotationless.

Lemma 4.42. For all n � 1 there exists Kn > 1 so that �Kn is forward rotationless
for all � 2 Out.Fn/.
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Proof. Given � 2 Out.Fn/, let f W G ! G be a CT representing some forward
rotationless iterate  D �N of �. By Corollary 3.17 and Lemma 3.8, the number
of isogredience classes of principal lifts of  is less than or equal to the number
of Nielsen classes for f W G ! G. If x is a principal vertex that has valence two
and that is isolated in Fix.f / then x is either the initial endpoint of a non-fixed
NEG edge or an endpoint of an indivisible Nielsen path of EG height. By (Vertices)
and Corollary 4.19, there is a uniform (i.e. depending only on n) upper bound to
the number of isolated fixed principal vertices. By (Periodic Edges) there is also a
uniform upper bound to the number of components of Fix.f / that contain at least
one edge. It follows that there is a uniform upper bound to the number of Nielsen
classes for f W G ! G and to the number of edges based at principal vertices. From
the former we conclude that the number of isogredience classes of principal lifts
Qf W � ! � of f is uniformly bounded.

Since � commutes with  , it acts on the set of isogredience classes of principal
automorphisms representing  . After replacing � with a uniformly bounded iterate,
we may assume that � fixes each isogredience class. Thus, if ‰ is a principal auto-
morphism representing  then there exists an automorphism ˆ representing � such
thatˆ commutes with‰. In particular, F WD Fix.‰/ isˆ-invariant. By construction,
the outer automorphism determined by ˆjF has finite order and so is represented by
a homeomorphism of a graph with no valence one or valence two vertices. Since the
rank of F is uniformly bounded, the period of the outer automorphism determined
by ˆjF is uniformly bounded. After replacing � with a further uniformly bounded
iterate, we may assume that F � Fix.ˆ/. Thus Fix. Ô / contains each non-isolated
point of Fix. O‰/ by Lemma 2.3.

By Lemma 4.36 (2), the number of isolated points in Fix. O‰/, up to the action of
F , is bounded above by the number of edges based at principal fixed points for f
and so is uniformly bounded. We may therefore assume that if P is an isolated point
in Fix. O‰/ then Ô .P / D OTa.P / for some a D aP 2 F , from which it follows that
Ô N .P / D OT N

a .P /.

The proof now divides into cases. If F is trivial then Fix. O‰/ � Fix. Ô /. If F has
rank at least two then ˆN D ‰. It follows that Ta is trivial and again Fix. O‰/ �
Fix. Ô /. The final case is that F has rank one. After replacing ˆ with T �1

a ˆ we
may assume that P 2 Fix. Ô /. Since Fix. Ô / and Fix. O‰/ have at least three points in
common, ˆN D ‰. As in the higher rank case, it follows that Fix. O‰/ � Fix. Ô / in
this case as well. As this holds for each principal automorphism representing  , � is
forward rotationless.

5. Recognition Theorem

In this section we specify invariants that uniquely determine a forward rotationless �.
As a warm-up to the general theorem, we consider the special case, essentially proved



98 M. Feighn and M. Handel

in [1], that � is irreducible, meaning that there are no non-trivial proper �-invariant
free factor systems. It follows that a CT f W G ! G representing � has a single
stratum and that the stratum is EG. In particular, � has infinite order and L.�/ has
exactly one element. Lemma 3.30 (3) implies that all iterates of � are irreducible.

Lemma 5.1. If � 2 Out.Fn/ is irreducible and forward rotationless, then � has infi-
nite order and is determined by its unique attracting laminationƒ and the expansion
factor PFƒ.�/. More precisely, if � and  are forward rotationless and irreducible
and if they have the same unique attracting lamination and the same expansion factor
then � D  .

Proof. As noted above, � and  have infinite order and all iterates of � and  are
irreducible. Theorem 2.14 of [1] implies that �1� has finite order and that k D �k

for some k � 1. By Lemma 3.19 and Lemma 2.13 there exists ˆ 2 P.�/ such that
FixN .ˆ/ contains at least three points P1; P2 and P3, each of whose accumulation
set equals ƒ. The FixN -preserving bijections between P.�/ and P.�k/ and between
P. / and P. k/ induce a FixN -preserving bijection between P.�/ and P. /. Thus
there exists ‰ 2 P. / such that FixN . O‰/ D FixN . Ô /.

Choose a finite order homeomorphism f W G ! G of a marked graph G rep-
resenting  �1�, let Qf W � ! � be the lift corresponding to ‰�1ˆ and note that
P1; P2; P3 2 Fix. Of /. The line with endpoints P1 and P2 and the line with endpoints
P1 and P3 are Qf#-invariant and since Qf is a homeomorphism they are Qf -invariant.
The intersection of these lines is an Qf - invariant, and hence Qf -fixed, ray zR that ter-
minates at P1. The lamination ƒ is carried by the subgraph G0 � Fix.f / that is the
image of zR. Example 2.5(1) of [1] implies that G0 D G; thus f is the identity and
 D �.

If ˆ1; ˆ2 2 P.�/ and if there exists a non-trivial indivisible a 2 Fix.ˆ1/ \
Fix.ˆ2/, then ˆ2ˆ

�1
1 D ida for some d ¤ 0. We think of d as a twist coefficient

for the ordered pair .ˆ1; ˆ2/ relative to a. In our next example we show that an
elementary linear outer automorphism is determined by the fixed subgroups of its
principal automorphisms and by a twist coefficient.

Example 5.2. Let x1; x2; : : : ; xn be a basis for Fn and let Fn�1 D hx1; : : : ; xn�1i.
Defineˆ1 byˆ1jFn�1 D identity andˆ1.xn/ D xna

d for some non-trivial root-free
a 2 Fn�1 and some d > 0. Define

ˆ2 D i�1
xn
ˆ1ixn

D i Nxnˆ1.xn/ˆ1 D ida ˆ1:

Then Fix.ˆ1/ D hx1; : : : ; xn�1; xna Nxni, Fix.ˆ2/ D i Nxn
Fix.ˆ1/ and Fix.ˆ1/ \

Fix.ˆ2/ D hai. Since Fix.ˆ1/ and Fix.ˆ2/ have rank greater than one, ˆ1; ˆ2 2
P.�/.

We claim that for any  2 Out.Fn/, if there exist ‰1; ‰2 2 P. / such that
‰2 D ida ‰1 and such that Fix.‰i / D Fix.ˆi / for i D 1; 2, then  D �. It is
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obvious that ‰1jFn�1 D identity. Moreover,

Fix.iad‰1/ D Fix.iadˆ1/ D Fix.i�1
xn
ˆ1ixn

/ D i Nxn
Fix.ˆ1/

D i Nxn
Fix.‰1/ D Fix.i�1

xn
‰1ixn

/ D Fix.i Nxn‰1.xn/‰1/:

Since iad‰1 and i Nxn‰1.xn/‰1 represent the same outer automorphism and have a com-
mon fixed subgroup of rank greater than one, they are equal. Thus ad D Nxn‰1.xn/

or equivalently ‰1.xn/ D xna
d . This proves that ‰1 D ˆ1 and � D  .

We now turn to the general case.

Theorem 5.3 (Recognition Theorem). Suppose that �; 2 Out.Fn/ are forward
rotationless and that

(1) PFƒ.�/ D PFƒ. /, for all ƒ 2 L.�/ D L. /.

(2) there is bijection B W P.�/ ! P. / such that:

(i) (fixed sets preserved) FixN . Ô / D FixN .1B.ˆ//

(ii) (twist coordinates preserved) If w 2 Fix.ˆ/ and ˆ; iwˆ 2 P.�/, then
B.iwˆ/ D iwB.ˆ/.

Then � D  .

Remark5.4. The bijectionB is necessarily equivariant in the sense thatB.icˆi�1
c / D

icB.ˆ/i
�1
c for all c 2 Fn. This follows from the fact that Fix.icˆi�1

c / D ic.Fix.ˆ1//

and from Remark 3.4. Thus B is determined by its value on one representative from
each of the finitely many isogredience classes in P.�/ and 2 (i) can be verified by
checking finitely many cases. Similarly, 2 (ii) can be verified by checking finitely
many cases. The w’s to which 2 (ii) apply have the form w D ad where a represents
a common axis of � and  . The values of d can be read off from relative train track
maps as in Lemma 4.40.

Remark 5.5. The assumption in (1) that L.�/ D L. / is redundant. It follows from
Lemma 3.26 and 2 (i). We include it in the statement of the theorem for clarity.

Proof. The proof is by induction on n. By convention, all forward rotationless outer
automorphisms are the identity when n D 1 so we may assume that the theorem holds
for all ranks less than n and prove it for n.

The case that both � and  are irreducible is proved in Lemma 5.1 so we may
assume that at least one of these, say �, is reducible and so admits a proper non-
trivial invariant free factor system. Since this free factor system is realized by a
filtration element in a relative train track map representing �, some proper free factor
carries either an attracting lamination ƒ for � or a �-periodic conjugacy class Œc�.
Lemma 3.30 implies that the elements of L.�/ D L. / are invariant by both � and
 , that � and have the same periodic conjugacy classes and that all these conjugacy
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classes are fixed. The smallest free factor that carries ƒ or Œc� is both �-invariant
and -invariant by Corollary 2.5. This proves the existence of non-trivial proper free
factors that are that both �-invariant and  -invariant.

Among all proper free factor systems, each of whose elements is both �-invariant
and  -invariant, choose one F D fŒŒF 1��; : : : ; ŒŒF k��g that is maximal with respect
to inclusion. We claim that �jF i D  jF i for each i . If F i has rank one then
this follows from Lemma 3.30. If F i has rank at least two then principal automor-
phisms representing �jF i and  jF i extend uniquely to principal automorphisms
representing � and  . Thus �jF i and  jF i , which are forward rotationless by
Corollary 3.31, satisfy the hypothesis of Theorem 5.3 and the inductive hypothesis
implies that �jF i D  jF i . This verifies the claim. Let f W G ! G be a CT repre-
senting � with Œ�1.Gr/� D F for some filtration elementGr , which we may assume
without loss has no valence one vertices. Then f jGr represents both �jF and  jF .
The proof now divides into two cases. The arguments are sufficiently elaborate that
we treat the cases in separate subsections.

5.1. The NEG case. In this subsection we complete the proof of Theorem 5.3 in
the case that there exists s > r such that Gs is not homotopy equivalent to Gr and
such that Hi is NEG for all r < i � s. After reordering the Hi ’s if necessary,
we may assume by Lemma 4.21 that Gs is obtained from Gr as a topological space
by either adding a disjoint circle or by attaching an arc E with both endpoints in
Gr . In the former case, Œ�1.Gs/� is both �-invariant and  -invariant in contradiction
to the assumption that F is maximal and the fact that Gs is disconnected. Thus
Gs D Gr [ E where f .E/ D Nu1Eu2 for some closed paths u1; u2 � Gr . If E is a
single edge of G then s D r C 1 and at least one of u1 or u2 is trivial. Otherwise E
is made up of two edges and s D r C 2.

Let � be the universal cover of G. Choose lifts zE; Qu1; Qu2 � � and Qf W � ! �

such that Qf . zE/ D Qu�1
1

zE Qu2. Denote the component of Gr that contains ui by C i

and the copy of the universal cover of C i that contains Qui by � i
r . If u1 or u2 is trivial

then (Remark 4.9) at least one of the endpoints of zE is a principal vertex that is fixed
by Qf . Otherwise zE subdivides into two NEG edges whose common initial vertex is
principal and is fixed by Qf . Corollary 3.27 therefore implies that Qf is a principal lift.
Lemma 3.26 implies that there is a line Q	 � � that crosses zE and has endpoints in
FixN . Of /. The projection 	 of Q	 is �-invariant and by (2) (i) is  -invariant as well.
The smallest free factor system that carries Œ�1.Gr/� and 	 is both �-invariant and
 -invariant. Since F is maximal, G D Gs .

Corollary 3.2.2 of [2] implies that  is represented by g W G ! G such that
gjGr D f jGr and such that g.E/ D Nw1Ew2 for some closed paths w1; w2 � Gr .
It suffices to prove that ui D wi . The cases are symmetric so we show that u1 D w1.

Suppose at first that C 1 has rank one and hence is a topological circle that is
contained in Fix.f /. By (Periodic Edges), the vertices in C 1 are principal. Thus at
least one of E or xE determines a direction based in C 1 that is fixed by Df . If u1 is
non-trivial then it must be that xE determines a fixed direction based in C 1. In this
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case C 1 [E is a component ofG and hence equal toG. We conclude that n D 2 and
that there is a basis fx1; x2g for F2 and d ¤ 0 such that x1 7! x1 and x2 7! x2x

d
1

defines an automorphism representing �. This is a special case of Example 5.2 and
so u1 D w1 in this case. We may therefore assume that u1 is trivial. The symmetric
argument with g replacing f reduces us to the case that u1 and w1 are both trivial
and so equal. We may now assume that C 1 has rank at least two.

The principal lift Qg W � ! � that corresponds to Qf under the bijection B satisfies
FixN . Og/ D FixN . Of /. Since Og fixes the endpoints of Q	 and zE is the only edge in Q	
that does not project into Gr , it follows that Qg. zE/ D Qw1

zE Qw2. Let Qv 2 �1
r be the

initial endpoint of zE. Then Qu1 and Qw1 are the paths in �1
r connecting Qv to Qf . Qv/ and

Qv to Qg. Qv/ respectively. It therefore suffices to show that Qf j�1
r D Qgj�1

r .
We know that Qf j�1

r and Qgj�1
r are both lifts of f jC 1 and that Of j@�1

r and Ogj@�1
r

have a common fixed point P . If P is not an endpoint of the axis of some covering
translation Tc of �1

r , then there is at most one lift of f jC 1 that fixes P and we are
done. Suppose then that P 2 fTċ g. By Remark 3.2, there exists a principal lift of
f jC 1 that commutes with Tc . This lift extends over � to principal lifts Qf 0 and Qg0
of f and g respectively. Since FixN .bf 0j@�1

r / � FixN .bf 0/ \ FixN .bg0/ contains at
least three points, Qg0 D B. Qf 0/. Condition 2 (ii) therefore implies that Qg D T d

c Qg0 and
Qf D T d

c
Qf 0 for some d 2 Z. We conclude that Qf j�1

r D Qgj�1
r as desired.

5.2. The EG case. In this subsection we prove Theorem 5.3 assuming that there
exists s > r where Hs is exponentially growing and where the union of the non-
contractible components of Gs�1 is homotopy equivalent to Gr . In light of sub-
Section 5.1 and (Zero Strata) this completes the proof of Theorem 5.3. Since Gs�1

and Gr carry the same elements of L.�/, all irreducible strata between Gr and Gs

are NEG. Since F is maximal, Œ�1.Gs/� is the smallest free factor system carrying
Œ�1.Gr/� and ƒs . By (1), ƒs , and hence Œ�1.Gs/�, is  -invariant. It follows that
Gs D G.

Denote  �1� by � . We must show that � is trivial. By construction, � jŒŒF l ��

is trivial for each ŒŒF l �� 2 F and the attracting lamination ƒ associated to Hs is
� -invariant with expansion factor one. Moreover, for any principal lift ˆ of � there
is a unique lift ‚ of � such that Fix. O‚/ 	 FixN . Ô /.

Each F l corresponds to a non-contractible component Dl of Gs�1. Let zDl be
the component of the full pre-image of Dl whose accumulation set in @Fn is @F l .
Suppose that v 2 Hs \ Dl and that Qv 2 zDl is a lift of v. Then Qv is principal by
Remark 4.9 and the lift QfQv of f that fixes Qv is principal by Lemma 3.27. The link of Qv
contains edges that project toHs and determine fixed directions for QfQv . Lemma 3.26
implies that any such edge extends to a ray whose interior is fixed point free and that
terminates at a point P 2 FixN . OfQv/ whose accumulation set is ƒ. Let Pl be the
union of such P for all v 2 Hs \Dl and all lifts Qv 2 zDl .

Lemma 5.6. For each l there is a lift ‚ of � such that @F l [ Pl � Fix. O‚/.
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Proof. Assume at first that F l has rank at least two. Let ‚ be the unique lift of �
such that @F l � Fix. O‚/. If P 2 Pl corresponds to Qv as above and if ˆ1 2 P.�/
corresponds to QfQv then FixN . Ô

1/ contains P and intersects @F l non-trivially. There
exists‚1 such that Fix. O‚1/ 	 FixN . Ô

1/. If there does not exist a covering translation
Tc such that Fix. Ô

1/ \ @F l D fTċ g then ‚1 D ‚ and we are done. Suppose
then that Tc with this property exists. By Remark 3.2 there is a principal lift ˆ2

such that Fix.ˆ2/ contains Tċ and such that ˆ2jFl is a principal lift of �jFl . In
particular, ˆ2 D idc ˆ1 for some d ¤ 0. By hypothesis, there are principal lifts
‰1 and ‰2 such that FixN . O‰i / D FixN . Ô

i / and such that ‰2 D idc ‰1. Thus
‚ D ‰�1

2 ˆ2 D ‰�1
1 ˆ1 D ‚1 where the first equality comes from the fact that

Fix. O‰�1
2

Ô
2/ contains at least three points in @F l .

It remains to consider the case that F l has rank one. For each P 2 Pl , there
exist ˆP and ‰P such that FixN . Ô

P / D FixN . O‰P / contains P [ @F l . Define
‚P D ‰�1

P ˆP . For any Q 2 Pl there exists w 2 F l such that ˆP D iwˆQ and
‰P D iw‰Q. It follows that ‚P D ‰�1

P ˆP D ‰�1
Q ˆQ D ‚Q as desired.

Corollary 5.7. If � has finite order then � is trivial.

Proof. If � has finite order then [8] there is a marked graph X , a subgraph X0 such
that F .X0/ D F and a homeomorphism h W X ! X that represents � and is the
identity onX0. By Lemma 5.6 there is an h#-invariant rayRwhose initial endpoint is
inX0 and whose accumulation set containsƒ. No proper free factor system carries F

andƒ, soR crosses every edge inX nX0. Since h is a homeomorphismR � Fix.h/
and we conclude that h is the identity.

We now assume that � has infinite order and argue to a contradiction. There is no
loss in replacing � by an iterate, so we may assume that both � and ��1 are forward
rotationless. There is a CT h W G0 ! G0 representing � and there exists r 0 < s0
such that G0

s0 D G0, such that F .G0
r 0/ D F and such that hjG0

r 0 D identity (see
Remark 4.41).

Lemma 5.8. Suppose that Pl and‚ are as in Lemma 5.6 and that P 2 Pl . Then P
is not isolated in Fix. O‚/.

Proof. Suppose at first thatP is an attractor for O‚. Let Qh be the lift of h corresponding
to‚. By Lemma 4.36 there is an edge zE that iterates toP ; let zR be the ray connecting
zE to P . If E belongs to an EG stratum, then ƒ, which is the accumulation set of
P , is an attracting lamination for � by Lemma 4.38. This contradicts the fact that �
acts on ƒ with expansion factor one. If E is NEG, then ƒ is carried by G0 n E in
contradiction to the fact that no proper free factor can carry F and ƒ. This proves
that P is not an attractor for O‚.

The symmetric argument using a relative train track map for ��1 proves that P
is not a repeller so Lemma 2.3 completes the proof.
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Corollary 5.9. If 	 0 � G0 is a finite subpath of either:

(1) a leaf of the realization of ƒ in G0 or

(2) the projection of the line in the universal cover � 0 of G0 connecting a pair of
points P1; P2 2 Pl

then 	 0 extends to a Nielsen path for h.

Proof. Let ‚ be as in Lemma 5.6 and let Qh W � 0 ! � 0 be the lift corresponding to
‚. For case (1), let zR0 � � 0 be a ray converging to P 2 Pl . There are lifts Q	 0 � zR0
of 	 0 that are arbitrarily close to P . Lemma 5.8 and Lemma 2.3 therefore imply that
Q	 0 extends to a Nielsen path for Qh. In case (2), P1; P2 2 Fix. Oh/. Lemma 5.8 and
Lemma 2.3 imply that any finite subpath of the line connecting P1 to P2 extends to
a Nielsen path for Qh.

It is well known that if � acts trivially on conjugacy classes in Fn then � is
the trivial element. This can be proved by induction up the strata of f W G ! G

representing � or directly as in Lemma 3.3 of [9]. The following lemma therefore
completes the proof of Theorem 5.3.

Lemma 5.10. � fixes each conjugacy class Œc� in Fn.

Proof. If v is a vertex inG whose link lk.v/ is contained inHs , then the local stable
Whitehead graph SWv is defined to be the graph with one vertex for each oriented
edge based at v whose initial direction is fixed by Df and an edge connecting the
vertices corresponding toE1 andE2 if there is an edgeE ofHs and k � 1 so that the
path f k

# .E/ contains xE1E2 or xE2E1 as a subpath. By Lemma 2.13 this is equivalent
to xE1E2 or xE2E1 being a subpath of a generic leaf of ƒ. If SWv is not connected
then one can blow up v to an edge E as in Proposition 5.4 of [4] to obtain a proper
free factor that carries F and ƒ. Since this is impossible, SWv is connected.

Choose a positive integerM such thatDf M maps every direction inHs to a fixed
direction inHs . At one point in the proof we need a way to choose partial edges and
for this we subdivide the edges ofHs at the full f M -pre-image of the set of vertices.
Edges in this subdivision will be called edgelets. Thus an edgelet maps by f M to an
edge.

Let g W G ! G0 be a homotopy equivalence that respects the marking and that
satisfies g.Gr/ D G0

r 0 . We show below that there is a positive integer N so that for
all circuits � � G the conjugacy class in Fn determined by g#f

MN
# .�/ � G0 is fixed

by � . Since every conjugacy class in Fn is realized in this manner by some � , this
completes the proof of the lemma.

Since � acts by the identity on F .G0
r 0/we may assume without loss that � crosses

at least one edge inHs . The proof involves choosing a closed curve that is homotopic
to f MN

# .�/ and a covering of that curve by subpaths with large overlap.
To begin, choose a cyclic ordering of them edges ofHs in � . Define �1 to be first

edge of Hs in � , �3 to be second edge of Hs in � and �2 to be the subpath of � that
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begins with the last edgelet in �1 and ends with the first edgelet in �3. Define �5 to be
third edge of Hs in � and �4 to be the subpath of � that begins with the last edgelet
in �3 and ends with the first edgelet in the �5. Continue in this manner stopping with
�2m that begins with the last edgelet in �2m�1 and ends with the first edgelet in �1.

Let 
 D f M
# .�/ and let 
i D f M

# .�i /. Then each 
i is an edge path in G whose
initial and terminal edges are inHs and whose initial and terminal directions are fixed
by Df . Suppose that 
2j D xEE 0 where the link of the common initial endpoint v
of E and E 0 is entirely contained in Hs . Since SWv is connected, there are edges
E D E1; E2; : : : ; El D E 0 in lk.v/ with initial directions fixed by Df such that
each xEpEpC1 is a subpath of a generic leaf of ƒ. Replace 
2j by the concatenation
. xE1E2/ � . xE2E3/ � � � � � . xEl�1El/.

After adjusting the indices, we have produced paths 
1; : : : ; 
t with the following
properties:

(a) The initial edge E1
i of 
i and the terminal edge E2

i of 
i are contained in Hs

and E2
i equals E1

iC1 up to a possible change of orientation.

(b) For all k � 0, f k
# .
i / is a finite subpath of either

(1) a generic leaf of the realization of ƒ in G, or
(2) the projection of the line in � connecting a pair of points P1; P2 2 Pl for

some l .

Suppose that each E1
i as been decomposed into proper subpaths E1

i D aibi . The
equality E2

i D E1
iC1 or xE1

iC1 determines a corresponding decomposition of E2
i .

Define �i from 
i by deleting the initial ai segment ofE1
i and by deleting the terminal

segment of E2
i determined from (a) as follows. If E2

i D E1
iC1 then remove the

terminal biC1 ; if E2
i D xE1

iC1 then remove the terminal aiC1.

(c) For any faig as above, 
 is homotopic to the loop determined by the concatenation
of the �i ’s.

Choose K greater than the number of edges with height s0 in any indivisible
Nielsen path for h. By [7] there is a positive constant C so that if ˇ1 � ˇ2 are
finite subpaths in G then g#.ˇ2/ � G0 contains the subpath of g#.ˇ1/ obtained by
removing the initial and terminal segments of edge length C . Since generic leaves
of ƒ are birecurrent and since the realization of ƒ in G0 can not be contained in
G0

r 0 , there is a subpath 	 0 of a generic leaf of the realization of ƒ in G0 that contains
2K C 3C edges of H 0

s0 . Choose a subpath 	 of a generic leaf of the realization of
ƒ in G whose g# image contains 	 0. There exists N > 0 so that f N

# .E/ contains 	
as a subpath for each edge E of Hs . It follows that the path g#.f

N
# .E// contains at

least 2K C C edges of H 0
s0 for each edge E of Hs .

The subpath 0
i of g#.f

N
# .
i // defined by removing initial and terminal segments

with exactly C edges ofH 0
s0 is contained in either the realization of a leaf ofƒ in G0

or the projection of a line in� 0 connecting a pair of pointsP1; P2 2 Pl . Corollary 5.9
implies that 0

i extends to a Nielsen path �0
i for h. Let �0

i D �0
i;1 � �0

i;2 : : : �
0
i;mi

be
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the complete splitting of �0
i . There is no loss in assuming that �0

i;2 � 0
i . There are

at most K C C edges of H 0
s0 in g#.f

N
# .
i // that precede �0

i;2. Without changing
this estimate we may assume that �0

i;2 has height s0. Note that �0
i;2 � g#.f

N
# .E1

i //

and hence that �0
iC1;2 � g#.f

N
# .E2

i //. Let ai be an initial segment of E1
i such that

g#f
N

# .ai / is the initial segment of g#.f
N

# .
i // that precedes �0
i;2. Define the �i ’s as

in (c).
Lemma 4.11 (3) implies that there exists l � mi such that �0

i;l
D �0

iC1;2 up

to a change of orientation. Thus g#f
N .�i / D �0

i;2 : : : �
0
i;l

is a Nielsen path for h.

Property (c) implies that the conjugacy class determined by g#f
N

# .
/ D g#f
MN .�/

is � -invariant as desired.

Corollary 5.11. If � and  are forward rotationless and if �m D  m for some
m > 0 then � D  .

Proof. Since � and  are forward rotationless there are FixN -preserving bijections
between P.�m/ and P.�/ and between P. m/ and P. /. By assumption, P.�m/ D
P. m/ so there is a FixN -preserving bijection between P.�/ and P. /. The lemma
now follows from the Recognition theorem and the fact that expansion factors and
twist coefficients for �m are m times those of � and similarly for  .
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