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Abstract. We prove that if a finite group G acts freely on a product of two curves C1 � C2

so that the quotient S D C1 � C2=G is a Beauville surface then C1 and C2 are both non
hyperelliptic curves of genus � 6; the lowest bound being achieved when C1 D C2 is the
Fermat curve of genus 6 and G D .Z=5Z/2. We also determine the possible values of the
genera of C1 and C2 when G equals S5, PSL2.F7/ or any abelian group. Finally, we produce
examples of Beauville surfaces in which G is a p-group with p D 2; 3.
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1. Introduction and statement of results

A complex algebraic curve C will be termed triangle curve if it admits a finite group
of automorphisms G < Aut.C / so that C=G Š P 1 and the natural projection
C ! C=G ramifies over three values, say 0; 1; 1. If the branching orders at these
points are p; q and r we will say that C=G is an orbifold of type (or signature)
.p; q; r/ or, more simply, that C=G is of type .p; q; r/. Triangle curves are also
known as arithmetic curves or regular Belyi (Riemann) surfaces. This is because of
the following theorem

Belyi’s Theorem. A complex algebraic curve C can be defined over a number field
if and only if there is a (Belyi) function f W C ! P 1 ramified over three values.

For complex surfaces S an analogous criterion in which Belyi functions are re-
placed by Lefschetz functions is given in [6]. Among the complex surfaces defined
over a number field an important class is that of Beauville surfaces defined as follows

Definition ([3]). A Beauville surface is a compact complex surface S satisfying the
following properties:

1) It is isogenous to a higher product, that is S Š C1 �C2=G, where Ci .i D 1; 2/

are curves of genera gi � 2 and G is a finite group acting freely on C1 � C2 by
holomorphic transformations.
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2) If Go < G denotes the subgroup consisting of the elements which preserve
each of the factors, then Go acts effectively on each curve Ci so that Ci=Go Š P 1

and Ci ! Ci=Go ramifies over three points.

It is easy to see ( [5]) that an automorphism of the product of two curves as above
f W C1 �C2 ! C1 �C2 either preserves each factor or interchanges them. Clearly, if
two such automorphisms f1; f2 interchange the factors, which can only occur when
C1 Š C2, then f1 B f2 will preserve them, hence Go has at most index 2 in G . A
Beauville surface C1 � C2=G is said to be of mixed or unmixed type according to
whether ŒG W Go� D 2 or G D Go. Accordingly the group G is said to admit a mixed
or unmixed Beauville structure.

It is clear that any Beauville surface of mixed type S D C1 �C2=G automatically
gives rise to a Beauville surface of unmixed type So D C1 � C2=Go. This is the
reason why for the purpose of this article Beauville surfaces of mixed type will play
no role.

Beauville surfaces were introduced by F. Catanese in [5] generalizing the follow-
ing construction of A. Beauville which appears as exercise number 4 on page 159
of [4].

Beauville’s example. Let C1 D C2 be the Fermat curve x5
0 C x5

1 C x5
2 D 0 and G

the group .Z=5Z/2 acting on C1 � C2 by the rule

.a; b/ � .Œx0 W x1 W x2�; Œy0 W y1 W y2�/

D �
Œ�ax0 W �bx1 W x2�; Œ�aC3by0 W �2aC4by1 W y2�

�

where � D e
2�i

5 . Then S D C1 � C2=G is a Beauville surface with g1 D g2 D 6,
Go D G and Ci=G of type .5; 5; 5/.

In fact, Bauer and Catanese [1] have shown that when one considers all possible
actions of G on C1�C2 one gets exactly two isomorphic classes of Beauville surfaces.

The relevance of Beauville surfaces lies mainly on the fact that they are the rigid
ones among surfaces isogenous to a product. We recall that an algebraic variety is
called rigid when it does not admit any non trivial deformation.

Most, if not all, of what is known about them is due to work done by Catanese on
his own ([5]) or jointly with Bauer and Grunewald ([3], [2]).

As noted in [3] there are many interesting open problems regarding Beauville
surfaces. The most obvious ones are questions such as which finite groups can occur,
which curves Ci , which genera gi , which curves or genera for a given group G, etc.

The following (necessarily) partial answers are known.

Theorem ([3]). 1) A finite abelian group G admits an unmixed Beauville structure
iff G D .Z=nZ/2, .n; 6/ D 1.

2) The following groups admit unmixed Beauville structures:
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a) An for large n.

b) Sn for n 2 N with n � 7.

c) SL.2; Fp/, PSL.2; Fp/ for p ¤ 2; 3; 5.

In this paper we prove the following results
1) If S D C1 � C2=G is a Beauville surface, then neither C1 nor C2 can be a

hyperelliptic curve (Theorem 3).
2) The minimum genera (in the lexicographic order) that can occur in the con-

struction of a Beauville surface is .g1; g2/ D .6; 6/; in other words, although in the
definition of Beauville surface it is only required gi � 2, one, in fact, has gi � 6.
The minimum being achieved by Beauville’s seminal example described above (The-
orem 9).

3) S5 and S6, hence Sn for all n � 5, admit a Beauville structure ( Corollary 15).
4) We determine which pair of genera g1; g2 occur when G is S5, PSL2.F7/ or

an abelian group (Theorem 12, Theorem 13, Theorem 16).
5) Finally, we produce examples of Beauville surfaces in which G is a p-group

with p D 2; 3. These appear to be the first known examples of 2 and 3-groups
admitting Beauville structure (see [2], p. 38).

2. A criterion for G to admit Beauville structures

As shown in [2] and [3] there is a purely algebraic criterion to detect when a finite
group G admits a Beauville structure.

Definition 1. Let G be a finite group and a, b, c three generators of order p, q, r

respectively. We shall say that .a; b; c/ is a hyperbolic triple of generators if the
following conditions hold:

(1) abc D 1,
(2) 1

p
C 1

q
C 1

r
< 1.

Now, set

†.a; b/ WD
[
g2G

1[
iD1

fgaig�1; gbig�1; gcig�1g

Criterion ([2], [3]). G admits an unmixed Beauville structure if and only if it has two
hyperbolic triples of generators (ai ; bi ; ci ) of order (pi ; qi ; ri ), i D 1; 2, satisfying
the following compatibility condition:

†.a1; b1/ \ †.a2; b2/ D 1:
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The curves Ci on which G acts to produce the required Beauville surface S D
C1 � C2=G arise as follows:

The triangle group

�.pi ;qi ;ri / D hx; y; z W xpi D yqi D zri D xyz D 1i
acts on the upper half-plane H as a discrete group of isometries (i.e. as a Fuchsian
group) and Ci D H=Ki where Ki is the kernel of the epimorphism �i W �.pi ;qi ;ri / !
G which sends x ! ai , y ! bi and z ! ci . It is well known that Ki is a torsion free
group that acts freely on H and that, according to the Riemann–Hurwitz formula, the
genus gi of the curve Ci is given by

2gi � 2 D jGj
�

1 �
�

1

pi

C 1

qi

C 1

ri

��
:

We see that gi � 2 precisely because .pi ; qi ; ri / is of hyperbolic type.
This is a useful criterion. It permits to check through a computer program whether

or not a group (of not very large order) admits Beauville structures. For instance, one
has

Proposition 2. The only non abelian group of order � 120 which admits a Beauville
structure is S5.

This result has been obtained in [2] with the help of MAGMA. Incidentally, we
note that S5 is missing in the printed version of the article.

3. Some restrictions on the product C1 � C2

Theorem 3. Let S D C1 � C2=G be a Beauville surface, then neither C1 nor C2 is
a hyperelliptic curve.

Proof. Let us suppose that one of them, let us say C1, is a hyperelliptic curve. Then,
the group generated by any automorphism � of order bigger than 2 must fix points
on C1 because otherwise the obvious quotient map C1 ! C1=h�i would provide an
unramified cyclic covering of degree bigger than 2 between two hyperelliptic curves.
According to Maclachlan [12] this is impossible. Therefore, as G acts on C1 � C2

fixed point freely, only the elements of order 2 can fix points on C2. Hence C2=G

would have to have type .2; 2; 2/ which is not a hyperbolic type.

Corollary 4. If S D C1�C2=G is a Beauville surface neither C1 nor C2 has genus 2.

Proposition 5. If S D C1 � C2=G is a Beauville surface neither C1 nor C2 has
genus 3.
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Proof. Assume that the genus of C1 is g1 D 3. The list of triangle curves of genus 3

and their corresponding groups is well known (see e.g. [10] or [15]). In view of
Proposition 2, the only group of this list which could admit a Beauville structure is
PSL2.F7/, the simple group with 168 elements.

Now, the Beauville structures of this group are analyzed in Theorem 13 below. It
is there found that the genera gi of Ci have to satisfy gi � 8.

Proposition 6. If S D C1 � C2=G is a Beauville surface neither C1 nor C2 has
genus 4.

Proof. Assume C1 has genus 4. The list of triangle curves of genus 4 and their
corresponding groups is also well known ([11], [15], see also [14]). Matching this
list with Proposition 2, as we did before, we are left again with only one possibility,
namely G D S5. But S5 can only produce a Beauville surface if the genera of C1

and C2 are 19 and 21 (see Theorem 12 below).

The proof of the fact that none of the curves C1 and C2 can have genus 5 is based
on the following group theoretical result.

Proposition 7. Let p be an odd prime and G a group of order 2kp. Assume that G

maps onto a cyclic group of order p or onto a dihedral group of order 2p. Then G

does not admit a Beauville structure.

Proof. Note that if x, y are generators of a dihedral group of order 2p, then x, y or
xy are of order p. Hence if G is generated by a and b, then the order of a, b or ab

is divisible by p and so a Sylow p-subgroup of G is contained in hai [ hbi [ habi.
Since two Sylow p-subgroups of G are conjugated, G can not admit a Beauville
structure.

Corollary 8. If S D C1�C2=G is a Beauville surface neither C1 nor C2 has genus 5.

Proof. Kuribayashi and Kimura [9] have also obtained the list of all possible groups
than can occur as groups of automorphisms of a genus 5 Riemann surface. Comparing
again this list with Proposition 2 we are left with only two groups, a group G1 of
order 160 D 25 � 5 and a group G2 of order 192 D 26 � 3. From the description of
these two groups given in [9] it is obvious that the first group maps onto a dihedral
group of order 10 and the second one onto a dihedral group of order 6. Now the result
follows from Proposition 7.

Assembling together the results in this section, we obtain the following

Theorem 9. Let C1, C2 be curves of genera g1, g2 and G a finite group acting
on C1 � C2 so that S D C1 � C2=G is a Beauville surface. Then g1; g2 � 6.
Furthermore, the minimum .g1; g2/ D .6; 6/ is achieved by Beauville’s own example.
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We record in passing a collateral implication of Proposition 7

Corollary 10. Let p be an odd prime and G a group of order 2kp. If .p � 1/=2 is
odd, then G does not admit a Beauville structure.

Proof. Let N D O2.G/ be the maximal normal 2-subgroup of G. Since G=N is
soluble, its order is equal to 2lp and O2.G=N / D 1, G=N has only one minimal
normal subgroup and this subgroup is of order p. Now, using that .p � 1/=2 is odd,
we obtain that G=N is a cyclic group of order p or a dihedral group of order 2p.
Thus, we may apply Proposition 7.

4. The Beauville genus spectrum of a group

Definition 11. Let G be a finite group. By the Beauville genus spectrum of G we
mean the set Spec.G/ of pairs of integers .g1; g2/ such that g1 � g2 and there
are curves C1, C2 of genera g1 and g2 with an action of G on C1 � C2 such that
S D C1 � C2=G is a Beauville surface.

We observe that Spec.G/ is always a finite set, for by the Riemann–Hurwitz
formula gi is bounded by 1 C jGj

2
. In fact for many groups Spec.G/ D ;. For

instance, the only abelian groups G for which Spec.G/ ¤ ; are G D .Z=nZ/2 with
.n; 6/ D 1 ([3]).

We also observe that knowledge of Spec.G/ provides knowledge of the possible
numerical invariants of the Beauville surfaces S D C1 � C2=G. Indeed, as the irreg-
ularity of a Beauville surface is always q D 0 the geometric genus pg is obtainable
from the identity 1 C pg.X/ � q.X/ D 1

4
�top.S/ D .g1�1/.g2�1/

jGj (see [5]).

In this section we compute the spectrum of a few groups.

Theorem 12. Spec.S5/ D f.19; 21/g.

Proof. A Beauville surface S D C1 � C2=S5 with curves C1 of genus g1 D 19 and
C2 of genus g2 D 21 is provided by the following two triples of generators of S5:

a1 D .125/; b1 D .13/.254/; c1 D .123/.45/

and

a2 D .2345/; b2 D .1234/; c2 D .14253/:

Let now .ai ; bi ; ci / .i D 1; 2/ be two compatible triples of generators of hyperbolic
type .pi ; qi ; ri /. We have to show that .p1; q1; r1/ D .3; 6; 6/ and .p2; q2; r2/ D
.4; 4; 5/.
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We first note that the identity aibici D 1 implies that each of the triples .ai ; bi ; ci /

consists of one even permutation and two odd permutations. With this observation
at our disposal the rest of the proof consists of a case by case analysis of all possible
types .pi ; qi ; ri /. To simplify the task we assume that pi � qi � ri . This can be
done because if instead of ai ; bi ; ci we choose e.g. the generators aibia

�1
i , ai , ci

then the type becomes .qi ; pi ; ri /.
We shall only consider the types with p1 D 2, the remaining cases being similar.
Since the types of the form .2; 2; r/, .2; 3; r/ and .2; 4; 4/ are not hyperbolic types

we are left with only four possible types:
• .2; 4; 5/. Clearly a1 has to be a transposition and b2

1 a product of two disjoint
transpositions. On the other hand, if c2 has order 6, then c3

2 is conjugate to a1. Thus, a
compatible triple .a2; b2; c2/ could only have type .3; 3; 3/ which is not a hyperbolic
type.

• .2; 4; 6/. In this case b2
1 (resp. c3

1 ) would be an even (resp. odd) order two
permutation. Thus, the only candidate left for the type of .a2; b2; c2/ is .5; 5; 5/

which is ruled out by our observation above.
• .2; 5; 6/. In this case a1 would have to be odd, hence the only possible type left

for .a2; b2; c2/ would be .4; 4; 4/ which also contradicts the main observation above.
• .2; 6; 6/. In this case a1 would have to be even. Now, since b2

1 is a permutation
of order 3 and b3

1 is conjugate to a transposition, the only candidate for .p2; q2; r2/

is .5; 5; 5/ which, again by the observation above, is forbidden.

Theorem 13. Spec.PSL2.F7// D f.8; 49/; .15; 49/; .17; 22/; .22; 33/; .22; 49/g.

Proof. The pairs of genera above correspond to the following pairs of hyperbolic
type:

(i) .3; 3; 4/, .7; 7; 7/,
(ii) .3; 4; 4/, .7; 7; 7/,

(iii) .3; 3; 7/, .4; 4; 4/,
(iv) .4; 4; 4/, .3; 7; 7/,
(v) .4; 4; 4/, .7; 7; 7/.

Obviously, any pair of triples of generators (ai ; bi ; ci / realizing any of these five pairs
of types will be necessarily compatible. Thus, we have to show that such generating
triples exist and that no other pair of hyperbolic types can be realized by a pair of
compatible generating triples.

Consider the following elements of PSL2.F7/:

˛ D
��1 �1

1 0

�
; ˇ D

�
1 1

0 1

�
; � D

�
1 �3

�3 3

�
; ı D

�
2 0

1 �3

�
:

Next we exhibit a generating triple .a; b; c D .ab/�1/ for each of the six types
involved.



114 Y. Fuertes, G. González-Diez and A. Jaikin-Zapirain

• .3; 3; 7/: a D ˛; b D ˇ˛ˇ�1,
• .7; 7; 7/: a D ˇ4; b D ˛ˇ˛�1,
• .3; 3; 4/: a D ˇ˛2ˇ�1; b D ˛,
• .4; 4; 4/: a D �; b D ˇ�3˛,
• .3; 7; 7/: a D ˛; b D ˛ˇ�1˛�1,
• .3; 4; 4/: a D ˛2ı˛�2; b D ˛2ı.

Now, if one bears in mind that in PSL2.F7/ there is exactly one conjugacy class
of elements of order 1, 2, 3, 4 and two of order 7 ([8], p. 289), it is easy to show that
no other pair of types .pi ; qi ; ri / is possible.

While the spectrum of S6 can be found by computer means (in fact, Spec.S6/ D
f.49; 91/; .91; 121/; .91; 169/; .121; 169/; .151; 169/g), a theoretical explanation of
this fact similar to the one given for the groups S5 and PSL2.F7/ will take too long to
be included here and so we content ourselves with showing that Spec.S6/ ¤ ; since
this is all we need to state Corollary 13.

Proposition 14. Spec.S6/ ¤ ;

Proof. The following triples of generators produce a Beauville structure with group
S6:

a1 D .12/; b1 D .123456/; c1 D .26543/

a2 D .1526/; b2 D .1234/; c2 D .16/.2543/: �

Corollary 15. Spec.Sn/ admits a Beauville structure if and only if n � 5

By part 1 of the theorem in [3] quoted in the introduction we know that Spec.G/ D
; for all abelian groups except for the groups .Z=nZ/2, with .n; 6/ D 1. For these
exceptional groups we have

Theorem 16. For .n; 6/ D 1,

Spec..Z=nZ/2/ D
²�

.n � 1/.n � 2/

2
;
.n � 1/.n � 2/

2

�³
:

Moreover, the corresponding curves C1, C2 are both isomorphic to the Fermat curve
xn

0 C xn
1 C xn

2 D 0.

Proof. Let us denote by Fn the Fermat curve of equation xn
0 C xn

1 C xn
2 D 0 and by

Hn the subgroup of Aut.Fn/ generated by the automorphisms

�1.Œx0 W x1 W x2�/ D Œ�nx0 W x1 W x2�; �2.Œx0 W x1 W x2� D Œx0 W �nx1 W x2�

where �n D e
2�i

n .
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It is clear that Hn Š .Z=nZ/2, and it is easy to see that Fn=Hn is an orbifold of
type .n; n; n/ [7].

Obviously, the proof will be a consequence of the following two statements.

1) If .Z=nZ/2 is generated by two elements a; b 2 .Z=nZ/2, then order.a/ D
order.b/ D order.ab/ D n.

2) For any curve C which, like Fn, admits a group of automorphisms H Š
.Z=nZ/2 such that C=H is an orbifold of hyperbolic type .n; n; n/ there is an iso-
morphism ˛ W C ! Fn such that ˛H˛�1 D Hn.

1) To prove the first statement set order.a/ D k, order.b/ D m and consider the
homomorphism

' W Z=.k/ � Z=.m/ ! .Z=nZ/2;

.1; 0/ 7! a;

.0; 1/ 7! b:

As ' is an epimorphism we have km � n2, and since, by definition, k and m are
divisors of n we infer that k D m D n and that ' is in fact an isomorphism.

2) For the proof of the second statement we translate matters into the language
of section 2 and so we write C D H=K, C=H D H=�n and H D �n=K, where
�n D �.n;n;n/ and K is a torsion free subgroup K C �n. Moreover, since H is
abelian, we must also have Œ�n; �n� C K. We then have obvious epimorphisms

�n=Œ�n; �n� ! �n=K D H

and

H Š .Z=nZ/2 ! �n=Œ�n; �n�;

.1; 0/ 7! N̨ ;

.0; 1/ 7! Ň

where ˛; ˇ 2 �n is any pair of elements of order n generating �n.
It follows that

j�n=Œ�n; �n�j � j�n=Kj � j�n=Œ�n; �n�j :

Therefore C Š H=Œ�n; �n� and H D �n=Œ�n; �n�. The conclusion is that a pair
such as .C; H/ is unique, hence isomorphic to the Fermat pair .Fn; Hn/.

5. Beauville structures on finite p-groups

While for p ¤ 2; 3 the groups .Z=pZ/2 provide examples of p-groups admitting
a Beauville structure, it seems that no such examples exist in the literature when
p D 2; 3. The goal of this section is to construct such groups. We want to stress that
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it is very plausible that most 2-generated finite p-groups of sufficiently large order
have this property. Our examples have orders 212 and 312. It is very likely that they
are not of the smallest possible order.

We will use the following notation. If G is a group and g; h are two elements of
G we denote by gh the element h�1gh and by Œg; h� the commutator g�1h�1gh. If
H1 and H2 are two subgroups of G, then ŒH1; H2� will denote the subgroup of G,
generated by fŒg; h� j g 2 H1; h 2 H2g. We will write Œa; b; c� for ŒŒa; b�; c�. If n is a
natural number, we denote by Gn the subgroup of G generated by all the nth powers
of the elements of G. We also set ˆn.G/ D GnŒG; G�.

Our examples will be presented as quotients of a free group. We will use the
following well-known proposition.

Proposition 17. Let F be a free group of rank d , p a prime and H a subgroup of
index n. Then jH W H pŒH; H�j D p.d�1/nC1.

Proof. This follows from the Nielsen–Schreier formula for the minimal number of
generators of H and the fact that H is a free group.

Most of our calculations will be based on the following well-known proposition.

Proposition 18. Let F be a free group with free generators x; y1; : : : ; ys . Let N be
a normal subgroup of F such that all the yi lie in N and F=N is a cyclic group of
order n generated by xN . Then

xn; y1; yx
1 ; : : : ; yxn�1

1 ; : : : ; yx
s ; : : : ; yxn�1

s

are free generators of N .

Proof. This set of generators is easily obtained by applying the Reidemeister–Schreier
rewriting process (see [13] for full details)

In the following lemma we will show how this proposition may be applied.

Lemma 19. Let F be a free group on free generators x and y. Then

(i) Œx; y2� 62 .F 2/2,

(ii) Œy; x; y; y�Œy; x2; y; y� 62 ˆ3.ˆ3.F //.

Proof. (i) By Proposition 18, y2; x; xy are free generators of hx; F 2i. Applying
again Proposition 18, we see that

x2; y2; .y2/x; : : :

are free generators of F 2. Hence, Œx; y2� D ..y2/x/�1y2 62 .F 2/2.
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(ii) Using Proposition 18 we obtain that x3; y; yx; yx2
are free generators of

hy; ˆ3.F /i. Hence, x3; y; Œy; x�; Œy; x2� are also free generators of hy; ˆ3.F /i. Ap-
plying again Proposition 18 we see that

y3; Œy; x�; Œy; x�y ; Œy; x�y
2

; Œy; x2�; Œy; x2�y ; Œy; x2�y
2

; x3; : : :

are free generators of ˆ3.F /. Note that Œy; x; y; y� 2 H1 D hŒy; x�; Œy; x�y ; Œy; x�y
2i

and Œy; x; y; y� 62 ˆ3.ˆ3.F //. Also Œy; x2; y; y� 2 H2 D hŒy; x�; Œy; x�y ; Œy; x�y
2i

and Œy; x2; y; y� 62 ˆ3.ˆ3.F //. Thus, Œy; x; y; y�Œy; x2; y; y� 62 ˆ3.ˆ3.F //.

Theorem 20. There is a 2-group G of order 212 which admits a Beauville structure.

Proof. Let F be a free group of rank 2 generated by x and y. Denote by H the
normal subgroup generated (as a normal subgroup of F ) by fx2; y2; .xy/4g. Then H

has index 8 in F (note that F=H is isomorphic to the dihedral group of order 8). Put
N D H 2 D H 2ŒH; H� and G D F=N . Then, by Proposition 17, G has order 212.

Put a D xN , b D yN , a1 D ab2 and b1 D b.ab/4. We want to show that
†.a; b/ and †.a1; b1/ have a trivial intersection. Since the order of all elements
from †.a; b/ and †.a1; b1/ is a power of 2 and these two sets are closed by taking
powers, it is enough to compare only elements of order 2. The elements of order 2
in †.a; b/ are the conjugacy classes of a2; b2; .ab/4 and the elements of order 2 in
†.a1; b1/ are the conjugacy classes of a2

1; b2
1 ; .a1b1/4.

Let K D H=N and L D ŒK; G�. Note that a2L is not conjugate to b2
1L D b2L

and .a1b1/4L D .ab/4L in G=L, because these three elements are central in G=L

and they are different. Using the same argument, we conclude that b2 is not conjugate
to a2

1 and .a1b1/4 and .ab/4 is not conjugate to a2
1 and b2

1 .
Thus, we only have to check that a2 is not conjugate to a2

1, b2 is not conjugate to
b2

1 and .ab/4 is not conjugate to .a1b1/4.
Since the centralizer CG.a2/ of a2 in G is ha; Ki, the conjugacy class of a2

consists of four elements:

.a2/G D fa2; .a2/b; .a2/Œb;a�; .a2/bag:
Note that CG.a2

1/ D ha1; Ki D CG.a2/ D CG.a2/Œa;b�, CG.a2
1/ ¤ CG.a2/b and

CG.a2
1/ ¤ CG.a2/ba. Hence, a2

1 ¤ .a2/b and a2
1 ¤ .a2/ba.

Observe, now, that a2 � .a2/Œb;a� .mod .G2/2/ and from part (i) of Lemma 19
it follows that a2

1 D .ab2/2 D a2Œa; b2� 6� a2 .mod .G2/2/. Thus, a2
1 62 .a2/G .

We have that .b1/2 D .b.ab/4/2 D b2Œb; .ab/4�. Note that Œb; .ab/4� commutes
with ab and is different from 1. On the other hand, the conjugacy class of b2 consists
of four elements:

.b2/G D fb2Œb2; .ab/i � j i D 0; 1; 2; 3g
and Œb2; .ab/i � commutes with ab if and only if i � 0 .mod 4/. Thus, b2

1 62 .b2/G .
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Finally, we have that

..ab/4/G D f.ab/4; ..ab/4/a D .ba/4g
and

.a1b1/4 D .ab2b.ab/4/4 D ..ab/5b2/4

D .ab/4Œb2; .ab/5; .ab/5; .ab/5� D .ab�1/4:

Note that xy; yx; xy�1 form a free set of generators of hxy; F 2i and so

.xy/4; .yx/4; .xy�1/4

are a part of a free set of generators of H . Thus, .ab/4; .ba/4; .ab�1/4 are different,
whence .a1b1/4 62 ..ab/4/G .

Theorem 21. There is a 3-group G of order 312 which admits a Beauville structure.

Proof. Let F be a free group of rank 2 generated by x and y and N D ˆ3.ˆ3.F //.
We put G D F=N . Then, by Proposition 17, G has order 312.

Put a D xN , b D yN , a1 D ab3 and b1 D bŒa; b�. We want to show that
†.a; b/ and †.a1; b1/ have a trivial intersection. Arguing as in the proof of the
previous theorem, we see that it is enough to show that a3 is not conjugate to a3

1, b3

is not conjugate to b3
1 and .ab/3 is not conjugate to .a1b1/3.

For example, let us see that b3 is not conjugate to b3
1 . First note that

b3
1 D .bŒa; b�/3 D b3Œa; b; b; b�:

On the other hand

.b3/G D fb3; .b3/a D b3Œb; a; b; b�; .b3/a2 D Œb; a2; b; b�g:
Note that Œa; b��1 D Œb; a�. Since Œa; b; b; b� ¤ 1,

Œa; b; b; b� D Œb; a; b; b��1 ¤ Œb; a; b; b�;

and so b3
1 ¤ .b3/a.

We can now use part (ii) of Lemma 19 to obtain that b3
1 ¤ .b3/a2

. Thus, we
conclude that b3

1 62 .b3/G . The other cases are proved in a similar way.

Corollary 22. For every prime number p there is a p-group G which admits a
Beauville structure.
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