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Scale-invariant groups
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Abstract. Motivated by the renormalization method in statistical physics, Itai Benjamini
defined a finitely generated infinite group G to be scale-invariant if there is a nested sequence of
finite index subgroups G,, that are all isomorphic to G and whose intersection is a finite group.
He conjectured that every scale-invariant group has polynomial growth, hence is virtually
nilpotent. We disprove his conjecture by showing that the following groups (mostly finite-state
self-similar groups) are scale-invariant: the lamplighter groups F ¢ Z, where F is any finite
Abelian group; the solvable Baumslag—Solitar groups BS(1, m); the affine groups A x Z<, for
any A < GL(Z, d). However, the conjecture remains open with some natural stronger notions
of scale-invariance for groups and transitive graphs. We construct scale-invariant tilings of
certain Cayley graphs of the discrete Heisenberg group, whose existence is not immediate
just from the scale-invariance of the group. We also note that torsion-free non-elementary
hyperbolic groups are not scale-invariant.
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1. Introduction

Itai Benjamini introduced the following notion. A finitely generated infinite group G
is called scale-invariant if there is a nested sequence of finite index subgroups G, that
are all isomorphic to G and whose intersection is a finite group. He conjectured on his
website [Ben06] that every scale-invariant group has polynomial growth, and hence,
by [Gro81], is virtually nilpotent. (His definition was originally slightly weaker, and
that was the form in which the conjecture was popularized by Mark Sapir’s survey of
open problems [Sap(07], Problem 9.12.)

The main motivation for defining this notion comes from statistical mechanics. A
key tool in the study of percolation, the Ising model and other stochastic processes on
7.4 is renormalization, whose main geometric ingredient is that the lattice Z¢ can be
tiled by large boxes such that the resulting tiling is isomorphic to the original lattice.
See [Grim99] for background on percolation renormalization on Z4%. In the past
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decade or so, statistical mechanics on Cayley graphs other than 74 has been a lively
research area, see [BenS96], [Lyo00], [LyPOS8], but the renormalization technique
has not been generalized yet. And, at least for the case of Z¢, the existence of this
tiling seems to be tied to the scale-invariant structure of the group: we get a good
tiling by 2k+1_poxes from grouping 24 neighboring 2% _boxes, which are cosets of
the subgroup 2%7Z¢, with adjacency defined by 2¥Z¢ ~ 74, and finally, these boxes
can exhaust the lattice as k — oo because ;- 2kzd = {0},

On the other hand, there is a tempting geometric approach to prove the conjecture.
It seems we cannot lose much of the geometric content of the problem by assum-
ing that there is an injective endomorphism ¢ of G such that the nested sequence
G, := ¢°*(G) has the desired properties. Then ¢ seems to be almost an expanding
homomorphism (i.e., one that has a convolution power that increases all distances by
a uniform factor larger than 1), with [G : ¢(G)] < oco. However, such homomor-
phisms exist only in groups of polynomial volume growth, as a simple but important
theorem due in different versions to [Fra70], [Far81] and [Gel95] says. As we will
see, this argument is wrong, but we do not know which “it seems” step can be blamed
(maybe both).

In this note we disprove Benjamini’s conjecture by giving several examples of
scale-invariant groups that are not virtually nilpotent. We also introduce some stronger
notions of scale-invariance for groups and transitive graphs; for these, the polynomial
growth conjecture remains open.

Theorem 1.1. Let H be a countable scale-invariant group, with a descending se-
quence H = Hy > Hy > .- of finite index subgroups, each isomorphic to H,
with trivial intersection. Let A be a countable automorphism group of H leaving all
subgroups H, invariant. Assume that the action of A is faithful on each Hy, and that
the semidirect products A x H, are isomorphic to Ax H. Then G := Ax H is
scale-invariant; in fact, there is a required subgroup chain with (), G, = {1}.

Corollary 1.2. The following groups are scale-invariant.
(1) The lamplighter groups G = F ? Z, where F is any finite Abelian group.

(2) The solvable Baumslag-Solitar groups BS(1,m) = {(a,b | bab™' = a™) with
m > 1.

(3) The affine group GL(Z,d) x Z¢, and its subgroups A x Z% for any A <
GL(Z.d), d > 1.

The lamplighter and Baumslag—Solitar groups are solvable groups of exponential
growth, which have served as interesting (counter)examples for many questions since
their introduction [KaV83], [BauS62]. Note furthermore that the affine groups give
examples that are even non-amenable.

In proving Theorem 1.1, a key tool will be that G = A x H acts naturally on an
infinite rooted tree: the coset tree of the sequence (H,),>0. Moreover, most of our
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examples in Corollary 1.2 are actually finite-state self-similar groups, even though
this is not at all obvious from their original definitions. (See [BartGNO3], [Nek05] for
background on self-similar groups.) For the lamplighter group (for F = Z,) this was
first noticed by Grigorchuk and Zuk [GrZ01], with a simpler proof in [GrNS00], and
for general F by [SiSt05]; for the Baumslag—Solitar group by Bartholdi and Sunik
[BartS06]; for the full affine groups by Brunner and Sidki [BruSi98]. Although it
has been well-known that a self-similar group may contain a finite index subgroup
that is virtually the direct product of a few copies of itself (the typical examples are
branch groups [BartGS03], most notably Grigorchuk’s groups), it does not seem to
have been observed before that some of the not virtually nilpotent examples contain
finite index copies of themselves.

The subgroups G,, will be the vertex stabilizers along an infinite ray in the rooted
tree on which G acts, so (),~; G, will be the stabilizer of the entire ray. Each Gy,
the stabilizer of a vertex v, will be of the form ¢, (G), and if the parent of v is u, then
Yy = Qu © ¢y, Where @, , is one of a finite number of injective endomorphisms of
G that is chosen according to “which” child of u our v is. In order to get a trivial
intersection, we will need to take an “irrational ray” in some sense; in particular, we
will prove in most of our examples that the stabilizer of a “periodic ray” (where the
sequence of endomorphisms ¢, , is periodic) is always infinite. A consequence is
that the following natural version of Benjamini’s problem remains open:

Question 1.1. Suppose that a group G is strongly scale-invariant: there exists a
single injective endomorphism ¢ of G such that ()5 ¢°"(G) is finite. Must G have
polynomial growth?

There are many strongly scale-invariant nilpotent groups: e.g., the integer Heisen-
berg group

{(x,y,z) = (é :1; J%) | x,y,z € Z}, with ¢(x, y,z) = (2x,4y,22).

Even though these examples are covered by part (3) of Corollary 1.2, e.g., the Heisen-
berg group equals Z psx Z? with M = ((1, %) our general construction does not give a
strongly scale-invariant sequence for them: in that statement, whenever G = A x Z¢
is nilpotent, A must consist of unipotent matrices only (see, e.g., [DrK09]), and for
this case we will show that periodic rays give non-trivial stabilizers. This is par-
ticularly interesting (and sad, maybe) because if there was a matrix My«4 giving a
strongly scale-invariant group Z prx Z¢, then it would be easy to combine it with a
hyperbolic matrix Nyx, so that the resulting block-diagonal matrix M é& N would
yield a strongly scale-invariant group Z e Z4 T of exponential growth.

From the percolation point of view, the following geometric-combinatorial version
of scale-invariance is also very natural. Recall that a graph I' = (V, E) is called
transitive if its automorphism group acts transitively on the vertex set V.
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Question 1.2. A scale-invariant tiling of a transitive graph I is a decomposition of
its vertex set into finite sets {7; | i € I} such that (1) the subgraphs induced by these
tiles 7; are connected and all isomorphic to each other; (2) the following tiling graph
Tis isomorphic to I': the vertex setis 7, and (i, j) is an edge of [ iff there is an edge
of I' connecting 7; with T}; (3) for each n > 1, there is such a tiling graph 7+l on
[ in such a way that the resulting nested sequence of tiles 7" (x) € rn containing
any fixed vertex x of I' exhausts I'.

Furthermore, I" has a strongly scale-invariant tiling if each T" is isomorphic to
Tn+1 .

If T has a scale-invariant tiling, is it necessarily of polynomial growth?

Note that even for a strongly scale-invariant tiling, there could be several ways to
iterate the procedure and get '+ from [, For instance, on Z4, the boxes [0, 2k)d
do not exhaust the graph.

As we will explain below, the scale-invariance of a non-Abelian group does not
seem to imply alone the existence of a scale-invariant tiling of any of its Cayley graphs.
However, from certain expanding homomorphism of the real Heisenberg group we
will obtain self-similar actions of the integer Heisenberg group with nice properties
that imply the existence of a strongly scale-invariant tiling on some Cayley graph of
it. (See Theorem 5.1.) We are unable to generalize this procedure for not virtually
nilpotent groups, but, for our amenable examples, we can get a Fglner monotiling
(i.e., a sequence of tilings " = {gT, | g € G}, each with a single connected
prototile 7;, that form a Fglner sequence of I" as n — 00) with the extra property that

n =~ G. Typically, these tiling graphs [ seem to grow in some sense, instead of
being isomorphic to each other. Still, such a sequence might help in certain weaker
versions of renormalization and provide interesting results.

However, there are some further ingredients that need to be generalized from Z¢.
The main probabilistic challenge is the following, related to the conjectural uniqueness
of the giant cluster in percolation on finite transitive graphs [AIBS04]. For definitions,
see Section 4, where we will discuss the issues related to scale-invariant tilings and
percolation.

Question 1.3. Let I be an amenable transitive graph, and let Cs, be its unique
infinite percolation cluster at some p > p.(I"), with density 6(p). For a finite vertex
set W C T, let ¢; (W) denote the number of vertices in the i-th largest connected
component of W. Does there exist a connected Fglner sequence F,, /' I' such that,
for almost all percolation configurations,

im C2(Fn n C‘200) _
n—o00 ¢1(Fy N Coo) h

’

and moreover

an o0 . an (0,@]
lim alFnNCo) _ lim [0 N Coo — 0(p)?

n—>00 | Fy | oo |Fy
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Regardless of possible applications to statistical mechanics, it would be interesting
to understand the class of scale-invariant and strongly scale-invariant groups better.
More generally, given an arbitrary group G, one could study its subgroup

Go:'=({H|H<G,[G:H]<o00, G~ H}.

For what groups is this subgroup trivial or small, say, isomorphic to Z or Abelian?

Not every nilpotent group is strongly scale-invariant: maybe a bit surprisingly,
there exist torsion-free nilpotent groups that are even co-Hopfian (i.e., they have no
proper subgroups isomorphic to themselves) and hence Go, = G [Bel03].

There are many other groups that are known to be co-Hopfian [dIHOO0], Item III. 22.
Z. Sela proved that a torsion-free non-elementary hyperbolic group is co-Hopfian iff it
isnot anon-trivial free product [Sel97]. The simplest non-elementary non-co-Hopfian
hyperbolic group is the free group F, (with r > 2): it has many proper subgroups
isomorphic to itself, but none is of finite index since s — 1 = [F, : F](r — 1) if
[F; : F5] < co. Hence F, is not scale-invariant either. More generally, if there is
an Euler-Poincaré characteristic y (i.e., y(H) = x(G)[G : H]if [G : H] < o0)
that is non-zero for G, then G cannot be scale-invariant. An example of such a y is
the first £2-Betti number of the group, which is also the von Neumann dimension of
the G-invariant Hilbert space of harmonic functions with finite Dirichlet energy; see
[Pas93], [BekV97]. Thus, if G has non-constant harmonic Dirichlet functions, i.e., its
first £2-Betti number is non-zero, then it is not scale-invariant. Since non-trivial free
products have infinitely many ends, and thus their first £2-Betti number is non-zero
[SWO1], [BekV97], this discussion establishes the following proposition. It was first
suggested to us by Benjamini, but, as we have recently learnt from Sapir, it had been
proved earlier in [BriHMO7]. They also started from Sela’s theorem, but instead of
using non-constant harmonic Dirichlet functions, they concluded with a topological
argument bounding the algebraic rank (the minimal number of generators) of finite
index subgroups of non-trivial free products.

Proposition 1.3. Torsion-free non-elementary hyperbolic groups are not scale-in-
variant.

More generally, M. Sapir conjectures [Sap07] that non-elementary relatively hy-
perbolic groups are not scale-invariant, and suggests that the methods of [DrSO08]
could work to prove this. What easily follows from [DrS08], Theorem 1.14, is that
any scale-invariant non-elementary relatively hyperbolic group must be a free product
amalgamated over a virtually cyclic or parabolic subgroup.

2. The general construction

Proof of Theorem 1.1. Consider the right coset tree 7 of the subgroup sequence
(Hp)n>o: therootis H = Hy,andacoset H, 4 yisachildof H,x it H,41y C Hyx.
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The number of children of H,x is [H, : Hy41]. Foraray H = Hoxg D Hix1 D
Hyx, D --- in T we will use the shorthand notation x = (x1, x5, ... ); the set of these
rays is the boundary 07 of the tree, equipped with the usual metrizable topology. If
we have normal subgroups H, <1 H for all n, then 07 can be equipped with a group
structure: it is the profinite completion of H with respect to the series (Hy)n>0; see
e.g., [Wil98].

Since H,, is A-invariant, the semidirect product G := A x H acts on T by the
affine transformations (H,x)®" = H, a(x)h. Clearly, this action is transitive on
the levels of 7, and it extends to a continuous action on d7. The group of affine
transformations leaving H,, invariant is the semidirect product A x H,,, and for any
given vertex H,x on the n-th level of the tree, its stabilizer is

Stg(Hpx) = {(a, a(x) ' hnx) | € A, hy € Hy} ~ Ax Hy ~ Ax H. (2.1)

If Hy41y is a child of Hy,x, then Stg(Hy+1y) C Stg(Hyx) is a subgroup with
index [H, : H,4+1]. For a point in the boundary, X = (x1,...) € 97, we have
Stg(X) = (,>1 St (Hnxy,). Thus, if we prove that there exists X € 97 with a finite
(or even trivial) stabilizer, then the sequence G, := Stg (H,x,) will show that G is
scale-invariant.

Fix an element (o, n) # (1,1) of A x H. We claim it cannot stabilize every
point of an open set in d7. Otherwise, there would be an x, such that the entire
subtree below H,,x, is stabilized, which, since ();., H; = {1}, means that H,x,
is pointwise stabilized by (e, #). That is, a(h,xp)h = hpx, for all h, € H,. In
particular, a(x,)h = x5, hence a(h,) = h,, which is possible only if @ = 1 because
the action of A on H,, is supposed to be faithful. Then we immediately get & = 1,
too.

On the other hand, since (e, /1) acts continuously on 07, the set S¢y ) C 9T of
points stabilized by itis closed. Together with the previous paragraph, the complement
S (ca’ n is open and dense in d7. Since 07 is a compact metrizable space and A x H is
countable, by Baire’s category theorem we have that [\{S (Ca, n) | (a,h) € (Ax H)\
{(1,1)}} is nonempty. In other words, there is some X € 97 whose stabilizer is the
trivial {(1, 1)}, and we are done. O

We will now discuss two issues that turn out to be related to each other. Firstly, we
would like to see that the conditions of our theorem are fulfilled sometimes. Secondly,
we would like to describe our above isomorphisms G — G, a bit more explicitly,
e.g., to see if they could have a subsequence (115 ) along which they are equal to ¢°%
for some ¢, thus proving strong scale-invariance.

The next lemma describes a natural situation in which the conditions on how A
should act on each H, hold automatically. The straightforward proof is left to the
reader.
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Lemma 2.1. Consider a family of injective endomorphisms {; | i € 1} of H such
that for each i € I, for some t; € Aut(A) and allh € H and o € A, we have

vi(a(h) = () (Wi (h)). (2.2)

Let Hy, = i, o--- oYy, (H) for some iy, ..., i, € I. Then A acts faithfully on H,,
and Ax H, ~ Ax H.

In all our examples, the group H will be Abelian, and the set I in the previous
lemma will be a singleton, i.e., we will have H,, = ¥°*(H) for all n > 0. Then, as
we will see in Proposition 2.2, for the sequence (G,),>0 we have constructed above,
the isomorphisms G — G, do arise from composing a finite set of endomorphisms
J in the way described in the lemma, with J as I. This gives hope that our construc-
tion could be iterated to obtain more scale-invariant groups: we would just need a
non-trivial group A of automorphisms of G that satisfy (2.2) with this finite set J.
Unfortunately, we do not know if such an A exists for any of our examples below.

Proposition 2.2. (i) In the setting of Theorem 1.1, assume furthermore that H, =
V" (H) for some injective endomorphism . Then, for any vertex v in the (Hp)-
coset tree T, the stabilizer Stg (v) is of the form ¢,(G), and if the parent of v is u,
then ¢, = @y © @y .y, Where @y, € J, for a finite set J of injective endomorphisms
of Gwith |J| = [H : y(H)].

(ii) In particular, if there is a periodic ray X = (x1,X2,...) € 0T (that is,
(Vv 0941 n—p 18 periodic on J, where v, = (X1,...,Xn) € T) such that St (X) is
finite, then G is strongly scale-invariant.

Proof. Let y1,...,y: be a set of right coset representatives for H; = ¢ (H) in H.
Then, by (2.1), we have the isomorphism ¢; : G — Stg(H1y;),foreachi = 1,...,¢,
given by

gileh) = (@ a(v) ™ Y (h)yi). 2.3)
We will have J = {¢1,...,¢,}. Indeed, for H, = ¥°2(H), a set of right coset
representatives in H is ¥ (y;)y;, withi, j = 1,...,¢, and we have the isomorphisms

¢ij: G — Stg(Hy ¥ (y;)y:) given by

ij (o, h) = (. a(W(y)y) " W2V (y;)yi)
= @i (o, a(y;)) 'Y (h)y;) = i o @ (e, h).

Continuing by induction, we get that H,, = ¥ °*(H) has a set of right coset repre-
sentatives

Xiyip = V00 V) Vi

withip = 1,...,t foreach k = 1,...,n. Note here that the ray leading from the
root to HyX;i,. i, 18 (Xiy, ..., Xi;..i,). Denoting G(iy,...,in) := Stg(HuXi;..ip)
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and G(¥) = Stg(H) = G, the isomorphisms ¢;,.;,: G — G(i1,...,i,) then
satisfy

Qiy.ip = Qi O 0 Q. (2.4)

Note the order of composition: the isomorphism G (i1, ...,i,—1) = G(i1,...,i,)is
not @i, .

What would ensure that (5o G@i1, -, ik) = ()50 ¢°/ (G) for a single injec-
tive endomorphism ¢ ? The only reasonable answer seems to be that the infinite
sequence i = (i1,i2,...) should be periodic: if there exists some p > 1 with
Ipyp = i forall k > 1, then ¢ := ¢;,..;, would do. O

So we have arrived at the question: is there an infinite periodic ray X € T whose
G-stabilizer is trivial, or finite, at least? As we will see, the answer is negative in all
the scale-invariant cases we have analyzed. Of course, this does not prove that these
examples are not strongly scale-invariant, but we have no further ideas to attack this
problem.

3. The examples

3.1. The lamplighter groups. For simplicity, we first discuss the case F = Z,.

Let H be the additive subgroup of the group Z,[[¢]] of formal power series over
Z, consisting of finite Laurent polynomials of (1 + ¢), and consider the injective
endomorphism ¥ (F(¢)) := tF(t) for F(t) € Z,[[t]]. Since tF(t) = (1 + t)F(¢t) —
F(t), we have that ¥ (H) € H. Observe that (1 + ) — 1 € ¥ (H) forany k € Z;
this easily implies that y (H ) is exactly the subgroup of H of power series divisible
by ¢, with index [H : Hq] = 2. We then let H, := ¥°*(H ), a nested sequence of
finite index isomorphic subgroups. The boundary 07 of the coset tree is the profinite
additive group Z[[¢]], via the identification

D x1xp.. . Y xiti L (3.1

i>1

Now let A be the cyclic group Z acting on H by multiplication by (1 + ¢). Thus
the semidirect product G = A x H is the group of the following transformations of
Lo [1]):

Fyr> (1+0"F@)+ Y fk)(A+ )k (3.2)
keZ

Here m € Z and f: Z — 75 is any function with finitely many non-zero values.
This group G = (P, Z,) X Z = Z Z is the standard lamplighter group; for
each element (m, f), one can think of m € Z as the position of the lamplighter, while
f: Z — 7Z, is the configuration of the lamps. We will sometimes represent f by the
finite set supp f C Z. The usual wreath product generators are s and R, representing
“switch” and “right”; we will also use L = R~!. So, for example, Rs = (1, {1}).
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In terms of the representation (3.2), the action of s is F(t) — F(t) + 1, while the
actionof Ris F(t) — (1 +1)F(¢).

Since our ¥: H — H clearly commutes with the action of A, we can apply
Lemma 2.1, and Theorem 1.1 shows that the lamplighter group G = A x H is
scale-invariant.

The action of the lamplighter group on the infinite binary tree 7 can now be
described by the combination of (3.1) and (3.2), and it turns out to be a finite-state self-
similar action. We recall now the basic definitions, but see [GrNS00], [BartGNO03],
[Nek05] for further details and background.

Definition 3.1. The action of a group G on the b-ary tree 75 (b > 1) is called self-
similar if for any g € G, any letter x € {0,1,...,b — 1}, and any finite or infinite
word w on this alphabet, there is a letter y and & € G such that (xw)& = y(w").
If § € G generates G as a semigroup, and for any s € S and any word xw there
is a letter y and 1 € § such that (xw)* = y(w"), then S is called a self-similar
generating set. Then the group can clearly be generated by an automaton with states
S. The usual diagram of this automaton is called the Moore diagram of S. If there
is a finite such S, then G is called a finite-state self-similar group.

For a self-similar action by G, for any g € G and finite word v there is a word u
of the same length and & € G such that (vw)& = u(w") for any word w. This £ is
called the restriction h = g|,, and we get an action of G on the subtree starting at v.
The action of the full automorphism group of 7 is of course self-similar, and there
is the obvious wreath product decomposition

Aut(Tp) ~ Aut(Tp) ¢ Symy, (3.3)

corresponding to the restriction actions inside the b subtrees at the root and then
permuting them. For a general self-similar action by G < Aut(73), the isomorphism
(3.3) gives an embedding

G — G Symy,. 3.4

Coming back to the lamplighter group G, its self-similarity was first noticed and
proved by Grigorchuk and Zuk in [GrZ01], but the above representation using Z5 [[¢]]
gives a much simpler proof, found by [GrNS00]. Namely, consider the following new
generators of the lamplighter group: @ = Rs, b := R. Note thats = b~ 'a = a~h.
Then the action of these generators on the binary tree 7 can be easily checked to be

(Ow)? = 1w?, (Ow)? = ow?, 1w)? = w?, (1w)? = 1w (3.5)

for any finite or infinite {0, 1} word w. Hence {a, b} is a finite self-similar generating
set. Another usual notation for this self-similar action, using (3.4), is

a=(b,a)e, cmb = (b,a), (3.6)
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where (g, h) is the tree-automorphism acting like g on the 0-subtree and like ~ on
the 1-subtree, ¢ is switching these two subtrees, and the order of the multiplication is
dictated by having a right action on the tree. In particular, (g, h)(g’, k') = (gg’, hh')
and (g, h)e = ¢(h, g).

We note that in the literature there are a few slightly different versions of (3.6) to
describe the lamplighter group. This is partly due to the fact that interchanging the
generators a and b induces an automorphism ¢ of G, see e.g. [GrZ01].

Let us now see what the endomorphisms (2.3) are in terms of the automaton
representation.

Proposition 3.1. A suitable set J of endomorphisms in part (i) of Proposition 2.2 for
the lamplighter group, with the notation of (3.6) and the automorphism t, is given by

vo(g) = (g.1(g)) and ¢1(g) = (1(g). 8). (3.7

Proof. With the coset representatives yo = 0 and y; = 1 for H; in H, writing
(m, f)eGas(m, h(t)) viah(t) =) g f(k)(1 + 1)k, we get

@o(m. h(t)) = (m.th(t)) and @1(m. h(1)) = (m.th(t) + (1 + )" + 1).

In particular, for @ = (1,1) and b = (1,0), we get po(a) = ¢1(b) = (1,1) =
a~'ha = sRs and ¢1(a) = @o(b) = b.

To prove now (3.7), it is enough to check it for the generators a, b. For ¢;(a) =
@o(b) = b, this is trivial from (3.6). For ¢g(a) = ¢1(h) = a~'ba, we have

a 'ba = e, a V) (b,a)(b,a)e = (a  aa, b~ bb) = (a,i(a)) = (1(b), ),
and (3.7) is proved. O

The form (3.7) shows it clearly that the ¢; are isomorphisms, and inductively, that
for any finite word y = x;...x, € T, the stabilizer Stg(¥) equals ¢x, o- - 0@y, (G),
as we also showed in (2.4).

We now discuss which rays X € 97 can have a trivial stabilizer, and show in
particular that part (ii) of Proposition 2.2 cannot imply that G is strongly scale-
invariant.

Recall the map ® from (3.1). If, for some X € 07, there is a non-trivial element
g € Stg(x), then we have a finite sequence of transformations F(¢) — F(¢t) £ 1
and F(t) — (1 + t)*'F(¢) fixing the power series ®(X) € Z,[t]. This implies
that ®(x) is a rational function U(¢)/V(t) with U(¢), V(t) € Z,[t], where U(t) =
A+ +- 4+ A +0)% and V() = (1 +1)% + 1, with ¢; € Z. There are
only countably many such functions, while continuum many possible words x, so for
most words X we have Stg(X) = {1}. But can we have Stg(x) = {1} for a periodic
word X := y y...,with y = x;...x;? Note that the corresponding power series is

O(R) = (Lioy xit (U + 1k + 2k ),
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Proposition 3.2. For any periodic ray X, the stabilizer Stg(x) is infinite.

Proof. We first show that there is a non-trivial element of G that fixes ®(x). Using
our above representation of fixed points by U(¢)/ V(¢), and noticing that the finite
combinations of functions (1 4 £)% with ¢; € N are exactly all the polynomials in
Z5|t], one can immediately translate our claim into the following:

Lemma 3.3. Given any k € 77, there exist integers 0 < { < m such that
((14+ )"+ 1+ )50 + tk + 2k +...) is a polynomial in Z5[t].

Proof. The coefficient of ¢/ in ((1 + )™ + (1 + 1)) (1 + X + 12k + .. ) is

()= ()= () ()= () = ()

We want this to be zero (mod 2) for all large enough j. This is equivalent to

L2
Fi(m,i) + Fi(€,i) =0 (mod 2), where F(m.,i):= > (;/7)
=0

r

foralli = 0,...,k—1. Lucas’ theorem (1878) on the parity of binomial coefficients
says that (Z) is odd iff each binary digit a; of a is larger than the corresponding digit
b; of b, see e.g. [Gra08]. In particular, if m = 2! — 1 for some ¢ € Z*, then each
term in Fy(m, i) is odd, hence Fj(m,i) = Lmk_’J + 1 (mod 2). Therefore, if we
findm = 2" —1and £ = 2° — 1 such that m = Mk + a and { = Lk + a with
M,L,a € N, then F(m,i) + Fr({,i) = M + L (mod 2) for eachi.

Let us write k = 2¥ K with k € N and K odd, and take a = 2% — 1; then we want
two different integers M = (2' —2¥)/(2XK) = (2" *—1)/Kand L = (2" *—1)/K
such that M + L is even. If M, L given by the above formulas are integers, then they
are necessarily odd, so we just need that K|2* — 1 for two different integers u. Since
K is odd, by the Euler—Fermat theorem we have K [2°#) — 1 for any v € Z7, and
we are done. 0

Thus, any periodic ray has a non-trivial stabilizer. This easily implies that the
stabilizer is in fact infinite. If (o, h) € A x H stabilizes X € 07, then («, h)k also
does, for any k € Z. If the automorphism group A is torsion free (as is the case now),
then all elements (o, h)* are different, provided @ # 1; hence Stg(X) is infinite.
If « = 1, and H is Abelian (again, as is the case now), then (2.1) implies that the
stabilizer Stg(X) contains the entire subgroup (1, H), and we are done. O

Remark. Actually, our subgroup chains (G, ),>¢ already appear in [GrZ01], where
the self-similar action was used for studying simple random walk on G. For this, they
needed a bounded index subgroup chain with trivial intersection, and this chain was
realized as a nested sequence of vertex stabilizers, using a Baire category argument
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similar to ours. Moreover, they proved that the stabilizer of each boundary point is
either trivial or isomorphic to Z. However, the inner structure of these stabilizers
was not important for them (besides being able to continue the subgroup chain). In
particular, they did not observe the existence of the isomorphisms (3.7).

Accordingly, the key observation that started our work was “orthogonal” to
[GrZ01]: namely, that the Diestel-Leader graph DL(2,2) is the Cayley graph of
G with the generators (R, Rs) on one hand, and of the index two subgroup G; =
(Rs, sR) on the other. Our results above show that this isomorphism of the Cay-
ley graphs is due to the group isomorphism g + t(¢o(g)). See [DiLO01], [Woe05],
[PPS06], [EFWO07] for the definition of these graphs and some background.

For the general case, when F is an arbitrary finite Abelian group, one can use
its decomposition as a direct sum of cyclic groups, and then F and F[[¢]] can again
be considered as rings. This was used by [SiSt05] to describe F ¢ Z as a group of
transformations of F[[¢]], which showed that F?Z is again a group of a finite automaton.
Then everything we did above goes through in this generality.

3.2. The solvable Baumslag—Solitar groups. Let m, £ be a pair of positive integers
that are relative primes. Let H be the additive group of rational numbers of the form
a/mb witha,b € Z,and ¥ : H — H be multiplication by £, an injective endomor-
phism. Then H, := y°"(H) is the subgroup of rationals of the form £”a/m?. The
associated coset tree J is £-ary, and 07 can be identified with the profinite group
of £-adic integers Z ). Now the cyclic group Z acts on H by multiplication by m’,
t € Z, and this action commutes with ¥, hence Lemma 2.1 and Theorem 1.1 apply,
and G = 7Z x H is a scale-invariant group.

The transformations s; : u — mu + i on Z) fori = 0,1,...,m — 1 generate
the action of G on 7, and this action is self-similar,

(jw)*i = (mj +i (mod £))wSLmi+i/el,

where j is a letter and w is a finite or infinite word in {0, 1,...,£ — 1}. Taking
b := s and a := 5155 ', one can show that G is in fact the Baumslag—Solitar group
BS(1,m) = (a,b | bab™' = a™). This representation of BS(1, m) was discovered
by Bartholdi and Sunik [BartS06].

Let us show that the stabilizer of a periodic ray in 7 could never be finite; hence
Proposition 2.2 cannot show that BS(1, m) is strongly scale-invariant. Rewriting the
vertex stabilizers (2.1) for the present case, when the sequence x; of coset repre-
sentatives is periodic with some period p, we want to show that for any p € Z™,
a€{0,1,...,£7 — 1}, b € Z, there exists some non-zero ¢t € Z such that

kﬂ {(1 —m! n%(l + 4P 4 2P 4 .. 4 p=Dpy 4 Z;PZZ} £ 0.
=1

Note that 1 +£2 4 (2P 4...4(*=DP = (¢kP _1) /(£ —1), and write £ —1 = m®d
with ¢,d € N, where (m,d) = 1. By the Euler-Fermat theorem, we can choose
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t € Z* such that m’ — 1 = df with f € Z*. This way our intersection becomes

[e.¢]
—fa (pk tkryg, —f
]Dl e e VR e S it
and we are done. From the stabilizer being non-trivial, we immediately get that it is
in fact infinite, by the argument at the end of Proposition 3.2 of the lamplighter case.

3.3. The affine groups. Let H be the additive group Z¢, and H, be the subgroup
2774, The action of GL(Z, d) commutes with the multiplication endomorphisms
Z4 — 2774 Hence, by Lemma 2.1 and Theorem 1.1, G = GL(Z, d) x 79 is a
scale-invariant group. This action of G on the 24 -ary tree 7 is in fact self-similar,
and it was first discovered by Brunner and Sidki [BruSio98].

Again, the stabilizer of a periodic ray in J is never trivial. This time, the reason
is that we need that for any p € Z* and v € {0,1,...,27 — 1} there exists an
o € GL(Z,d) \ {I} such that

o0
N {( —a)v(1 +27 + 227 4 ... 4 2°=Dp)  okr7dh £ g (3.8)
=1

and this follows immediately from the next lemma.

Lemma 3.4. Let d > 2. For any v € 79 there exists « € GL(Z,d) \ {I} with
av =v.

Proof. Ford = 2, given v = (x,y)T # (0,0)7, it is easy to find the following
solution ¢ = a(x, y) € GL(Z,2) \ {1 }:

(xy +1  —x? ) (cx) _ (cx)

2 —xy+ 1)y y)
For v = (0,0)7 any « will do. Now, for v = (x1,...,x4)T # 0 € Z¢, withd > 3,
we can assume by permuting the coordinates that x; 7 0, and then just use the matrix

with @(x1, x2) inits upper right corner and 1’s along the diagonal from the third entry
downward. O

Again, we easily get that the stabilizer is infinite. For each k € Z, we have
a¥v = v forthe above o, and all the matrices ¥ are different since o = k(a—1)+1,
as is easy to check.

For G = Ax Z4 with any subgroup A < GL(Z, d), the above use of Lemma 2.1
and Theorem 1.1 goes through, hence these G are again scale-invariant. However,
Lemma 3.4 does not apply in general to show that we do not get strongly scale-
invariant subgroup chains for them since there are many subgroups A without non-
trivial elements fixing a given integer vector. Still, we expect that periodic rays will

always have infinite stabilizers. We prove this only for the case when A contains
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a non-trivial unipotent matrix; in particular, whenever G = A4 x 79 is virtually
nilpotent. For semidirect products given by hyperbolic matrices, such as the group
Sol, one reason to believe that the stabilizers will be infinite is that their geometry is
quite similar to that of the Diestel-Leader graphs, as demonstrated in [EFWO07].

The next lemma clearly implies our claim above on subgroups A containing unipo-
tent matrices:

Lemma 3.5. For any integer-valued unipotent matrix M € GL(Z,d), any p € 7+
andv € {0,1,...,27 — l}d, there exists an n € 7V such that the intersection (3.8)
is non-trivial foro. = M".

Proof. 1t is easy to show (e.g. by induction on the size of the matrix) that M can be
written as I + ST'NS, where S € GL(Z,d) and N is a strictly upper-triangular
integer-valued matrix. Hence M" = S™1(1 + N)"S. Note that (I + N )" has entries
above the diagonal which are all combinations of monomials in the entries of N with
binomial coefficients ('1’) s, (Z!) So, if n is divisible by d!(2? — 1), then all the
off-diagonal entries of (I + N)" will be divisible by 27 — 1, hence all the entries
of M" — I = S7Y((I + N)* — I)S will be divisible by 27 — 1. Therefore, with
a = M", the intersection (3.8) becomes ﬂk>1{]\7v(2pk — 1) + 27574} with some
integer matrix M . This intersections contains —v, and we are done. O

4. Percolation renormalization and scale-invariant tilings

Let us start with a rough sketch of how percolation renormalization on Z.¢ typically
works. For further background on percolation, see [Grim99], [LyPO8]. Consider
Bernoulli site percolation on Z¢ with density p € [0, 1], i.e., delete each vertex of
74 with probability 1— p, independently from each other. The connected components
of the remaining random graph are called percolation clusters. The probability that
the cluster of a given vertex is infinite is denoted by 6(p), and p.(Z?) = inf{p |
f(p) > 0}. A basic result, true for percolation on any transitive amenable graph,
is that for p > p. there is almost surely a unique infinite cluster, and its density,
measured along any Fglner exhaustion, equals 6(p). However, the following is much
harder to prove, and has been established only for VAE

Theorem 4.1 (Renormalization Lemma, [AnP96]). On Z¢, d > 2, for any p > p.
and ¢ > 0, if we take a large box with side-length n > no(p, €), then with probability
at least 1 — & the box is “good”: it has a cluster connecting all 2d faces of the
box (called the giant cluster), while all other clusters in the box have diameter at
most en.

Now take the lattice tiling by side-length n boxes, then magnify each box from
its center by a factor of 5/4, so that they will slightly overlap. Note that if there are
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two overlapping n-boxes that are both good in a given percolation configuration, then
their giant clusters must in fact be connected inside the union of the two boxes (we
only need that ¢ < 5/8). Therefore, alarge cluster of good n-boxes represents well the
structure of a large original cluster on scales larger than n. If we taken > no(p, ¢), the
density of good boxes is at least 1 — ¢, and the goodness of two boxes are independent
once they do not overlap. Most things about supercritical percolation are easy to
understand at density close enough to 1 (using the so-called Peierls method, a simple
counting argument), even in this slightly dependent case, and by the above argument
this knowledge can be transferred to any p > p.. See [Grim99] for more details.

This type of renormalization has been mainly used in showing that the supercritical
phase on 74 is well-behaved in several different senses, such as: possibly different
critical points actually coincide [GrimM90], and the large-scale geometry (e.g., length
of geodesics, isoperimetric and random walk properties) of the unique infinite cluster
is very close to that of z4 [AnP96], [Pet08]. Ideally, one would also like to gain
information about behavior at criticality; first of all, to show that critical percolation
almost surely has no infinite clusters. However, this is unknown even on 74 with
3 < d < 18; the renormalization method has been enough to show this claim only
for percolation in the half-space, and also to show that the half-space has the same
critical probability as the entire graph [BarsGN91]. Let us point out that the failure
of this method to understand criticality might be because it does not use the exact
scale-invariant structure: itis notimportant in the method that the graph of the slightly
overlapping large boxes is not exactly 74 again, neither that it is a somewhat similar
graph, only that we can understand very supercritical percolation on it.

A different approach that is related to the scale-invariance of Z< is the renor-
malization group method, which has been very useful for several statistical physics
models at criticality; see [BryO7]. We will not discuss this approach here.

For a general group G, what kind of nice sequence of tilings would we like to
produce in some Cayley graph I" of G? Ideally, the following three properties should
hold:

(1) The tiling sequence should be scale-invariant in the sense of Question 1.2.

(2) The tiles T}, themselves should be large pieces of I' that “represent well” the
infinite graph. A natural definition is the Benjamini—Schramm random local (or
random weak) convergence [BenS01], [AlLy07]: the finite graphs I';, converges
to a transitive graph I' if for any large R > 0 and small ¢ > 0, if n > n1(R, ¢),
then at least 1 — ¢ proportion of the vertices of ', have their R-neighborhood
isomorphic to the R-ball of I'. When the I',, are transitive, this is equivalent to
taking ¢ = 0, and is usually called local convergence. If I" is amenable, then
any Fglner sequence will converge to it in the random local sense.

(3) For amenable I', the tiles should be Fglner sets that have a chance to be inter-
sected by the unique infinite cluster “substantially”, or more precisely, that have
a unique giant cluster with large probability, similarly to the Z¢ case, Theo-
rem 4.1. We do not know exactly what the best general definition of “goodness”
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would be, but cluster sizes are certainly of key importance. So the tiles should
form a Fglner sequence as asked for by Question 1.3.

It is easy to see that for a non-amenable Cayley graph I', no finite subgraphs T’
can converge to it in the random local sense. (If there is some sequence of finite
approximating graphs, the group is called sofic. It is not known if there are non-sofic
groups [Pes08], [AlLy07].) Itis also unclear what the analogue of property (3) should
be. So we do not presently see how percolation renormalization should work in the
non-amenable case.

We now collect what we know which groups have tilings satisfying any of these
three properties.

First of all, how much the scale-invariance of a group G helps with property (1),
i.e., with producing a sequence of scale-invariant tilings? Unfortunately, in the case
of Z4, the nice isomorphic tiling by large boxes is due not only to the scale invariance,
but also to the commutativity of the group. In a general scale-invariant group G, with
an isomorphic subgroup H of finite index ¢, and a right Cayley graph I'(G, S) given
by a finite symmetric generating set S (i.e., g is a neighbor of gs forany s € §), we
have two options to start with.

Probably the better choice is to take a set of right coset representatives C =
{g1,...,84:} 1.e., the cosets are Hg;. Then {hC | h € H} is a disjoint covering
of G, such that the tiles 2C are all isometric to each other in the graph metric of I.
Let us presently assume that these tiles are connected subgraphs of I'. (Or maybe
even nice in the sense given above.) Now take the graph I induced by this tiling, as
defined in Question 1.2. Unfortunately, there is no reason why the natural left action
by H >~ G on the tiles should imply that this graph [ is isomorphic to I". (A simple
non-Abelian example where the tiling graph is nevertheless isomorphic to the natural
Cayley graph of the subgroup is [F(a, b) : F(a?,b,b™'ab)] = 2, free groups on 2
and 3 generators.)

The other option would be to start with a set C of left coset representatives. Then
{Ch | h € H}is a disjoint covering of T", and the tiling graph I is actually a Cayley
graph of H ~ G, isomorphic to I'. However, the tiles now are not at all isometric to
each other inside I, so even if one tile induces a connected subgraph, the vertices in
other tiles could be very far from each other. Hence this tiling does not seem to be
useful for percolation renormalization in any way.

Nevertheless, there exist non-Abelian Cayley graphs with scale-invariant tilings:
Theorem 5.1 below will give two such Cayley graphs of the discrete 3-dimensional
Heisenberg group. However, these will be Cayley graphs with rather special gen-
erating sets, and the construction will use not only the strong scale-invariance of
the Heisenberg group, but also that this strong scale-invariance comes in fact from
expanding endomorphisms.

In general, when the right coset tiling graph [ is not isomorphic to I', it could still
be useful in percolation. It is another Cayley graph of G, usually “larger” than I',
hence the value of the percolation parameter p that is already close enough to 1 to use



Scale-invariant groups 155

the Peierls method should be lower than in I', and thus passing from I to T should
actually help. But, of course, in order to be able to pass percolation information
from T" to I", we still need the tiles to satisfy properties (2) and (3); in particular,
Question 1.3 needs to be resolved positively.

For a scale-invariant, or more generally, residually finite, amenable group, there
is a simple method to construct in any of its Cayley graphs a sequence of Fplner
monotilings, i.e., the n-th tiling has a single connected prototile 7}, such that these
prototiles form a Fglner sequence exhausting the graph, thus settling property (2)
for these groups. This was explained to us by Gébor Elek, but as we learnt later,
almost the same result was proved by Benjy Weiss in [WeiOl]: any residually finite
amenable group and any solvable group has a Fglner sequence 7}, such that the group
can be tiled with each T, as a single prototile. Weiss did not make sure that the 7}, are
connected, but this needs only a small trick. We give a proof below, basically due to
Elek. An intriguing open problem in [Wei0O1] is whether every group has monotilings
with the prototiles exhausting the group.

Theorem 4.2. Let G be a residually finite amenable group, with a family of finite index
subgroups G, with ﬂnzl G, being finite. Then any finitely generated Cayley graph

I" of G has a sequence of tilings " = {gT, | g € G} such that the prototiles T,
are connected and form a Fglner exhaustion of T. In particular, for G = BS(1,m)
or F Z or Sol, we can have G,, ~ G.

Proof. First assume for simplicity that (1), G, = {1}. By taking G, = (., Gk,
we may assume that G, D G, 41 for all n. Consider the right coset tree 7~ of G with
respect to this subgroup chain. G acts on 7 from the right, the n-th level stabilizers
are isomorphic to G,, and the action is free on 07. So the Schreier graph I" on 07
with respect to some generating set S of G is in fact the Cayley graph I'(G, S), and
the n-th level Schreier graph I',, with these generators is a finite factor-graph of I'.
Clearly, these I';, converge locally to I'. Since I' — I, is a topological covering
map, there exists a 1-to-1 pre-image of the vertices of [, in I" inducing a connected
subgraph Cy,, and then {gC,, | g € G} is a tiling of I". However, it will not be true
for any choice of C,, that they converge random-locally to I

The following version of the Ornstein—Weiss quasi-tiling lemma [OrW87] is
proved in [Ele06]: for any ¢ > 0, N € N, and a Fglner exhaustion F; of an
amenable Cayley graph I', there exist § > 0, L € N, and a finite sub-collection
of Fglner sets (Fy,;);_, inside the ball By (") of radius L of I', with n; > N for
all i, such that if A is any finite graph with at least 1 — § proportion of its vertices
having an L-neighborhood isomorphic to By, (I"), then A can be e-quasi-tiled with
translates of the Fy,,. In particular, in our sequence (I';) of finite graphs converging
locally to I', for n large enough, we can remove O(g) proportion of the edges of I,
such that each resulting component will be a subgraph of By (I"). (Thus the sequence
(Ty) is hyperfinite in the sense of [Ele07].) Contract now each component into a
single vertex, and using the edges between the components choose a spanning tree
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on the resulting graph. Then, along this spanning tree, we can lift each component
from I',, to T, keeping the pre-images connected in I" using the pre-images of the
spanning tree edges. Thus we get a connected pre-image T, of I';,. The boundary
edges 0T, are all pre-images of the edges between the components of I',, and each
such edge is covered by at most two edges of d7}, since it has two endpoints in I,.
Thus the boundary-to-volume ratio of 7, in I' is at most O(e). In summary, the T,
are connected Fglner sets, hence they converge random-locally to I', as desired.

If (),, G» = F is afinite group, then the Schreier graph I'(G, 9T, §) is a factor
graph of I'(G, §), by an | F|-to-1 factor map 7. The above argument can be run for
['(G,d7,S), then the tiles T, can be lifted by 7~!: any connected pre-image will
form a Fglner sequence in I'(G, S). O

Finally, what are the Fglner sequences F;, for which Question 1.3 might have a
positive answer, thus satisfying property (3)? As pointed out e.g. in [BanSTO08], for
such questions it is important that there should exist some absolute constant £ such
that the vertex boundary of F}, is connected in the distance k& Rips complex for all n.
This is the case for any Fglner sequence when I is the Cayley graph of a finitely
presented group. On the other hand, the usual Fglner sequence of the lamplighter
group Zj ? Z is not such, but it is not very difficult to augment each F,, with some
paths such that the resulting sequence F,’ already has this property [BanSTO8].

As we mentioned in Section 3.1, a natural Cayley graph of Z, ¢ Z from the scale-
invariance point of view is the Diestel-Leader graph DL (2, 2). Although it would be
very interesting to do percolation renormalization on DL(2, 2), let us remark that the
analogue of the Z¢ half-space result is actually known already on DL(2, 2), using
different methods [PPS06]. On the other hand, it is not known on any Cayley graph I"
of Z, ? Z that the unique infinite percolation cluster inherits the transience of simple
random walk for all p > p.(I"). The sequence I of “growing” tiling graphs might
be good enough e.g. for this problem, provided the tiles satisfy Question 1.3. See
[BeLS99], [ChPP04], [Pet08] for more on the survival of random walk properties
under percolation on groups.

5. Scale-invariant tilings for the Heisenberg group

The main goal of this section is to construct a tiling sequence in the integer Heisenberg
group satisfying properties (1) and (2) of Section 4, i.e., to prove the following:

Theorem S5.1. The discrete 3-dimensional Heisenberg group has Cayley graphs with
strongly scale-invariant tilings (as defined in Question 1.2). Moreover, the growing
tiles form a Folner sequence.

We will give two explicit examples, both using the same somewhat general strat-
egy, based on especially nice self-similar actions (see Definition 3.1) of the Heisenberg
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group that come from expanding endomorphisms of it (as defined in the third para-
graph of the Introduction). For this, we have to start with several definitions and
lemmas, culminating in the proof of the general Theorem 5.5 below. Most of the
ideas are already contained in [Nek(05], but the theorem itself is not.

5.1. The general strategy. Given an expanding endomorphism ¢ of the real Heisen-
berg group ¥ with the property that ¢(G) C G for the integer Heisenberg group G,
and [G : ¢(G)] =t < oo, we can view it as a t-fold self-covering of the compact
Riemannian manifold ¥/G. The inverse of ¢ is an isomorphism ¥ : ¢(G) — G;
since ¢(G) is of finite index, V¥ is called a virtual endomorphism of G. From this
surjective virtual endomorphism, plus any transversal set of coset representatives
{go,...,g:r—1} for G/@p(G), following [Nek05], Section 2.5.5, one can get a self-
similar action of G on the ¢t-ary tree T = {0,...,t — 1}*: foranyi € {0,...,t —1},
weTUI and g € G,

(iw)¢ = ij(gjflggi), (5.1)

where j € {0,...,t — 1} is such that gj_lggi € ¢(G). Since ¢ is expanding, by
[Nek05], Theorem 6.1.3, we have that this self-similar action of G is contracting
in the following sense [Nek05], Section 2.11: there exists a finite set &' C G such
that for every g € G there is a k € N such that the restriction g|, (as defined after
Definition 3.1) is in N for all vertices v € T of depth at least k. The minimal set &
with this property is called the nucleus of the self-similar action. It is easy to see that,
because of the minimality of N, any restriction of a g € N is in the nucleus again,
hence N is a self-similar generating set of (N ).

Given any contracting action by G on the ¢-ary tree 7, one can define the limit
space ¢ as the quotient of the set of left-infinite sequences {0,...,t — 1}™N by
the following asymptotic equivalence relation: the sequences (...,x_1,Xo) and
(..., y-1, yo) are equivalent iff there exists a finite subset K C G such that for all
k € N there is some g € K with (x_g, ..., x0)%% = (y_g, ..., yo) with the action
of G on T, i.e., with x_ on the first level, (x_g, x_ 1) on the second level, etc. (In
particular, this equivalence is very different from two rays in 97 = {0,...,t — I}
being in the same G-orbit.) A similar notion is the limit solenoid Sg, the quo-
tient of {0,...,¢t — 1}Z by the equivalence relation that (..., x_1, X9, X1,...) ~
(..., y-1,Y0, V1, ...) iff there is a finite K C G such that for all k € N there exists
gr € K with (x_g,X_g+1,-..)8% = (Vy—k» V—k+1,-..) in 7. Both on gg and
Sa, the topology is the image of the product topology under the equivalence quotient
map.

We will look at the leaves of Sg, corresponding to G-orbits O C 37 : let £ be
the image of the set {x € {0,...,t — 1}Z | [X] = (x0,X1,...) € O} in Sg. Note
that if X and y are asymptotically equivalent, then, in particular, [X] and [y] are in the
same G-orbit, hence different leaves are disjoint. For the topology on a leaf we do
not take the restriction of the usual topology of the solenoid; rather, it is the image of
the topology on {0, ..., — 132 that is product topology on the left tail but discrete
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on the right. The solenoid with this topology will be denoted by S5.

For each w € 97, we define the tile Ty, C Sé associated to w, the image under
the quotient map of the set of sequences x with right tail [X] = w. For any w € a7,
the set {Tye | g € G} is a covering of the leaf £ () C S§ corresponding to the
G-orbit O(w) of w. However, the name “tile” is a bit misleading: because of the
factorization, for two different translates g, 7 € G the corresponding tiles do not have
to be disjoint at all, in general.

Lemma 5.2. For the tiles in the solenoid $§ of a contracting action G on T :
() For w € 9T, we have Tys N Tyyn # @ if and only if g~ h is in the nucleus N
(1) The tiles Ty, are connected iff the following graph is connected. The vertices
are {0,...,t — 1}, and (i, j) is an edge if there exists an element g € N such that
(iw)é = jw for all words w.
(iii) If the open set condition holds, i.e., for all g € N there exists v € T such
that the restriction g|, is the identity, then each tile is the closure of its interior, and
different tiles have disjoint interiors.

Proof. Part (i) is contained in [Nek05], Proposition 3.3.5, but let us present here a
self-contained proof to see how the definitions work, and since we will later use the
argument of the “if” part again.

For the “only if” direction, assume that %, y € {0, ..., ¢ — 1}Z are asymptotically
equivalent, with a finite set K C G in the definition. Since the action is contract-
ing, with nucleus N, for every g € K there is an £, such that g|, € N for all
v € T of depth at least {,. Taking { := max{{, | g € K} < oo, we get that
(Xt X—g11. - )% = (Y=g, y—g41.---) and (xo, x1....)" = (yo.y1....), where
h=g¢lyeNforv=(x_g,X_g+1,...,x1) € T. Thus we are done.

For the “if” part, hy := g 'h € N, hence, by the minimality of the nucleus,
thereis iy € N and x_; € {0,...,t — 1} such that hy|x_, = ho, and (x_lwg)hl =
y_jw” for some y_; € {0,...,t — 1}. Then there is i, € N and x_, such that
hz|x_, = h1, and so on. This way, we get words X = (...,x_2,x_1)w? and
7 = (...,y_2, y_1)w" such that ((x_g, ..., x_w&)"* = (y_g,...,y_1)w" for
hy € N, forall k € N. Since V is finite, this shows that X and y are asymptotically
equivalent, so they map to one element in T2 N Tyn.

Part (ii) is proved in [Nek05], Proposition 3.3.10. Note that a tile Ty, is the union
of the ¢ sub-tiles {(...,x—_3,x_5,i)w}, i =0,...,¢t— 1, so the connectedness of T,
has to do with the intersections between these sub-tiles and the sub-tiles of those, and
so on, hence part (i) is of relevance here.

Part (iii) is [NekO5], Proposition 3.3.7. O

Lemma 5.3. Points in different leaves cannot be connected in 8§, i.e., every leaf is
a union of path-connected components of the solenoid.

Proof. For wy # wy € 0T, the sets {(...,x_»,Xx_1)w;} that map to Ty, C Sé
are disjoint closed-open sets before the factorization, and, by Lemma 5.2 (i), they
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can have a common point after the factorization only if w; and w, are in the same
G-orbit. O

For a self-similar action of G on 7, the wreath product decomposition (3.4) defines
a homomorphism from each first level stabilizer Stg(i),i =0,1,...,t —1,t0 G. If
the action is transitive on the first level, then the Stg (i) are all conjugate subgroups
of G with index , so these endomorphisms Stg (i) — G are also conjugates of each
other, and they are virtual endomorphisms of G.

A self-similar action of G is called self-replicating (recurrent in [Nek05]) if it
is transitive on the first level, and the associated virtual endomorphisms of G are
onto. When the action is constructed from an expanding homomorphism ¢ of G,
then it is clear from (5.1) that the virtual endomorphisms of G associated to the self-
similar action are conjugates of the virtual endomorphism 1 = ¢!, and the action
is self-replicating.

Lemma 5.4. Assume that G has a contracting self-replicating action on T. Then
(1) the nucleus N generates G; (ii) the limit space §¢ is path-connected and locally
path-connected; (iii) the leaves £ o of the limit solenoid S§, are exactly its path-
connected components.

Proof. Part (i) is easy from the definitions of contracting and self-replicating; see
[Nek05], Proposition 2.11.3, for details. Parts (ii) and (iii) are Theorem 3.6.3 and
Proposition 5.7.9 of [NekO5], respectively, plus the fact that for locally compact
metrizable spaces connectedness plus local connectedness implies the path-connected
versions, see [Nek05], Corollary 3.5.3. Note that they should not be surprising in
light of Lemmas 5.2 (i), (ii) and 5.3 together with (N) = G. O

Summarizing: for a contracting self-replicating action satisfying the conditions
of Lemma 5.2 (connected tiles and the open set condition), on the connected leaf £ o
we obtain a tiling (in the usual geometric sense) by the connected tiles Ty, w € O.
By Lemma 5.2 (i), the adjacency graph of this tiling is the Schreier graph I'(G, O, V)
of the action of G on the orbit O C 97, with generators N . If the G-stabilizer of
w € O is trivial, then the Schreier graph is in fact the Cayley graph I'(G, N'), which
is connected since (N) = G.

Now consider the shift map s that moves the origin to the leftin {0, ..., — 1}Z ,or
deletes the last letterin {0, ..., — 1}_N (hence, itis t-to-1). In both cases, s preserves
the asymptotic equivalence relation, and thus we get the dynamical systems (Zg, S),
(8g.s) and (S5,s). When the contracting action is obtained from an expanding
endomorphism ¢, the above quoted [Nek05], Theorem 6.1.3, also says that ({g,S)
is topologically conjugate to (§/G, ¢), moreover, the iterated monodromy group
IMG (@) of the -fold self-covering ¢: §/G — §/G isexactly G = 71(§/G), with
a self-similar action that is basically (5.1). (So IMG and the limit space constructions
are inverses of each other.) Furthermore, as it will become clear in the next para-
graph, (85, s) resembles (¢, ¢) in some sense, but they are certainly not topologically
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conjugate since 8§ is highly disconnected, and we cannot restrict s to a given leaf
£ o either since a shift typically leaves the leaf. We will use the dynamical system
(85.,8), not (&, ¢) or (§/G, @), but the latter two are certainly easier to visualize, so
the Reader is encouraged to keep them in mind.

The shift map s gives a grouping of the tiles in §5: for any w € 97, we have

S(Tw) = U Tiw .
o<i<t
One hopes that this gives a scaling of tiling graphs, as in Question 1.2. However, the
points w and i w might not be in the same G-orbit, hence Ty, and T;,, could be in
different leaves. If the action is self-replicating, then itis easy to see that at least the i w
are all in the same orbit, and if also the “connected tiles” condition of Lemma 5.2 (ii)
is satisfied, together they form a connected set in the tiling graph which is just the
Schreier graph I'(G, O(0w), N). So after the grouping we have the connected new
tiles s(7,). By the minimality of N, as in Lemma 5.2 (i), given wy, w, € 97, there
existsn € N with w} = w; ifand only if there existi, j € {0,...,t—1}andm € N
such that (iw1)™ = jw,. Therefore, by Lemma 5.2 (i), the new tiles s(7y,¢) and
s(T,») are neighbors in &£ o (ow) iff Tyyz and Tn are neighbors in &£ o (). Thatis, the
new tiling graph will be isomorphic to I'(G, O(w), N). However, this graph might
be different from I'(G, O(0w), N). So we would also like that G acts freely on 97 :
this way, the Schreier graphs I'(G, O(w), V) will be isomorphic to the Cayley graph
I'G,N) forallw € 97.
We are now ready to state our general theorem.

Theorem 5.5. If G has a contracting self-replicating action on the t-ary tree T with
the “connected tiles” and “open set” conditions, and the action on 0T is free, then
G has a Cayley graph with a strongly scale-invariant tiling sequence, in which the
growing tiles form a Fglner sequence.

Proof. We have just said how one grouping of tiles is done, but how do we get a
sequence of tilings in the same Cayley graph, with tiles exhausting it? Given a ray
w = wowg --- € 3T, consider the grouping

Sn(Twnwn+]...) = U{Eo...i,1_1 W Wy - | iO’ ey in—l € {Oa o= 1}}

As discussed above, the tiles on the right hand side are all in the same leaf &£ (). So
this grouping forn = 1,2, ... gives larger and larger connected tiles in the Schreier
graph I'(G, O(w), N), and if the action of G is free on 07, then each tiling graph is
isomorphic to the Cayley graph I' (G, N'). But we still have to pick w cleverly to have
these tiles exhaust the graph T'(G, O(w), N), i.e., we want that for all w’ € O(w)
there is ng € N4 such that w), = w, foralln > ny.

Lemma 5.6. Assume that a contracting action on the t-ary tree with nucleus N
satisfies the open set condition. Consider an independent and identically distributed
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random sequence (§,)5-, with §, € {0,1,...,t — 1} chosen uniformly. Then there
are some ¢, C > 0 such that P[3g € N with gl¢, ¢, # id] < C exp(—cn) for all
ne N+.

Proof. Consider the Moore diagram of the nucleus /. The open set condition means
that id € N is accessible from each element g € N with a finite directed path in the
diagram; let the maximum length of these paths over the starting points g be £. Note
that glg, . ¢, is nothing else but the state in N after n uniform random steps in the
Moore diagram starting from g. Starting from anywhere, the probability of reaching
idin £ steps is at least ¢, hence the probability of not reaching id in n steps is at most
(1 — =4/t which is at most C exp(—cn) for some C, ¢ > 0. So the probability
that g|¢, ¢, # id for some g € N is at most |V |C exp(—cn), and we are done. [

Since every g € G is a product of finitely many elements from N, the lemma
implies that almost every random sequence w = (§,);2, is such that forall g € G
there is an ng € N4 with (w¥),, = wy, for all n > ny, as required for the tiles to
exhaust the graph I'(G, O(w), N).

The last to check is that the tiles form a Fglner sequence. The tile 8" (Tw, w,;...)
has " of the original small tiles, hence " vertices of I'(G, O(w), N). By Lem-
ma 5.2 (i), such a small tile 75, i, w,w, ... can be on the boundary of the large tile
only if thereisa g € N with gl;,...;,_, # id. By Lemma 5.6, the proportion of these
tiles among all the ¢” is at most C exp(—cn), hence the growing tiles indeed form a
Fglner sequence, with polynomially small boundary-to-volume ratio. O

Remark. Both the existence of an exhausting tile sequence and the Fglner condition
relied on Lemma 5.6. There is a general connection between these issues: given the
recursively defined tiles 7}, in a transitive graph I" forming a Fglner sequence, we can
translate the tiles to get an exhausting sequence. The trick is that for any n there is
N = N(n) such that Ty contains a copy of 7,, whose boundary edges are all inside
Ty, as soon as the edge boundary to volume ratio of T is less than 1/|T},|. So fix
x e I',atile T, > x, thenlet ng 1y = N(ng) for k € N, and translate 7, so that
it contains 7, _, in its interior. Then T,, will contain the ball By (x), hence they
exhaust I

5.2. The proof of Theorem 5.1. Starting from an expanding endomorphism ¢ en-
sures that the action (5.1) is self-replicating. So, to apply Theorem 5.5, in the specific
examples we will need that the action is free on 07 and satisfies the “open set” and
“connected tiles” conditions.

As the first example, consider the expanding Heisenberg group endomorphism

1 a b 1 2¢ —2b+2ac
: 10 1 ¢c]—|0 1 a ,
0 0 1 0 0 1
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with [G : ¢(G)] = 4. Denote

110 1 00 1 0 1
A=]0 1 0}, C=(01 1), B=]0 1 0
0 01 0 01 0 01

The inverse of ¢ is the virtual endomorphism that maps A2 to C, C to A and B to
B~!. Using (5.1), we get the following self-similar action on the 4-ary tree, using
the notation implied by (3.4):

A= (1,C,1,C)(01)(23), C = (A,CAC™1, A, A)(13).
The commutator B = [A,C] = A~'C ! AC then decomposes as
B=(C'4A7lc4, 47 'cAC™,1,1)(02)(13) = (B~',CB~IC™!,1,1)(02)(13).
It follows that

[4,B] = (1,1,BCB~'C™),
[C.B]=(1.C-B'A7'BA-C~', A7'BAB™,1),

which gives an inductive proof of the relations [4, B] = 1 and [C, B] = 1.
Furthermore, we have

CAC™ = (1,C,ACATIC™, ACAT1)(03)(12) = (1,C, B, ACA™1)(03)(12),
B = (B7',B7',1,1)(02)(13),
ACA™' = (CAC™',CAC™!, 4,CAC™1)(02).

Therefore, {1, A,C,CAC~!, B, B~V ACA™!} is a self-similar generating set, and
every element of this set has a trivial restriction, which implies that the group satisfies
the open set condition.

It is easy to see that no subgroup of G is invariant under the action of the virtual
endomorphism, hence the above action of the Heisenberg group on the tree is faithful
and free on the boundary.

The nucleus can be obtained by computer (using the GAP package [MS08] de-
veloped for this purpose): it consists of the trivial element, the elements

A, C, CA, AC, AC™', B, BA, BC, BA™', BC™', BCA™!, BAC!,

and their inverses; 25 elements in total. Note that A(Ow) = 1w, AQw) = 3w,
B(Qw) = 0w and B(3w) = 1w, which implies that the tiles are connected. There-
fore, the Cayley graph of G generated by these elements has a strongly scale-invariant
tiling with Fglner tiles.
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Our second example starts with the expanding endomorphism that Gelbrich used
in [Gel94] to obtain a periodic self-similar tiling of the real Heisenberg group:

1 a b 1 a+c 2b—ac+%
01 c]J—10 1 c—a )
0 0 1 0 0 1

again with [G : ¢(G)] = 4.
The associated self-similar action is given by
A= (1,C714,1,C714)(01)(23),
C = (C,A,C,C_IAC)(OIZZ») = (C,A,C, AB)(0123),

where we denote again B = [A,C] = A~'C 1 AC. The restrictions of A and C are
decomposed as

Cl'A= (', c7 ', BC™!,C71)(02),
AB = (1,C7 14, B,C724C)(03)(12),
BC ' =47, ¢!, 47, BC71)(0123),
B = (1,1, B, B)(02)(13),
C24C = (BCc™Y,c7 ', BC™ !, BC™H(13).
We see that the set
{1, A, B, C, AB, BC™', C7'4, C724C}*!

is self-similar and that the identity is accessible from each of these elements as a
restriction.
The nucleus consists of the trivial element, the elements

A, B, C, AB, BC, BC7', Cc7'4, C%AcC,

and their inverses (17 elements in total). The tiles are connected, since A(Ow) = 1w,
AQw) = 3w, B(0w) = 2w and B(1w) = 3w for all words w. Hence all conditions
of Theorem 5.5 are satisfied.
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