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(Non)-completeness of R-buildings and fixed point theorems

Koen Struyve

Abstract. We prove two generalizations of results of Bruhat and Tits involving metrical
completeness and R-buildings. Firstly, we give a generalization of the Bruhat–Tits fixed point
theorem also valid for non-complete R-buildings with the added condition that the group is
finitely generated.

Secondly, we generalize a criterion which reduces the problem of completeness to the wall
trees of the R-building. This criterion was proved by Bruhat and Tits for R-buildings arising
from root group data with valuation.
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1. Introduction

In 1986, Jacques Tits classified affine buildings of rank at least four ([13]). He also
included in this classification non-discrete generalizations of affine buildings, these
metric spaces are called non-discrete affine apartment systems or R-buildings. Al-
though the first definition for these R-buildings only appeared in the aforementioned
paper, the examples that arise from root group data with a (non-discrete) valuation
were already studied in 1972 in the book [5] by Bruhat and Tits. The classification of
Tits shows that an R-building of rank at least four (or equivalently dimension at least
three) necessarily arises from such a root group datum with valuation. For dimension
two there exist various explicit and ‘free’constructions (for example see [4] and [12]).
The one-dimensional R-buildings are also known as R-trees.

As R-buildings are metric spaces, one has the notion of (metrical) completeness.
While affine buildings are always complete due to their discrete nature, this is rarely
the case for non-discrete R-buildings. Perhaps the simplest example of a field with
non-discrete valuations which can be used to define complete R-buildings, is coming
from the Hahn–Mal’cev–Neumann series.

The current paper generalizes two results appearing in [5], both involving com-
pleteness. The first such result is the Bruhat–Tits fixed point theorem. It says that a
bounded group of isometries of a complete R-building (or more generally a complete
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CAT.0/-space) has a fixed point. Our result proves the existence of a fixed point
also in the non-complete case, but with the added condition that the group is finitely
generated.

The second result provides a criterion of (metric) completeness of R-buildings.
In [5] it is proved that an R-building arising from a root group datum with valuation is
complete if and only if its corresponding wall trees (which are R-trees) are complete.
This reduces the question to the easier one-dimensional case. We generalize this result
to all R-buildings, not only those arising from a root group datum with valuation, by
giving a geometric proof instead of an algebraic proof.

The proofs use an embedding into an ultralimit. A similar method can be found in
[2], where a fixed point theorem is proved for certain weakly contracting self-maps
of buildings.

Acknowledgement. The author is supported by the Fund for Scientific Research –
Flanders (FWO - Vlaanderen). The author also would like to thank Linus Kramer for
helpful comments.

2. Preliminaries

2.1. R-buildings

2.1.1. Definition. Let . SW ; S/ be a spherical Coxeter system of rank n. The group
SW can be realized as a finite reflection group acting on an n-dimensional real affine
space A, called the model space. A wall of A is a hyperplane of it fixed by a conjugate
of an involution in S . A root is a (closed) half-space of A bordered by a wall. The
set of all walls of A defines a poset of simplicial cones in A (called sector-faces),
which forms the simplicial complex of the Coxeter system . SW ; S/. The maximal
cones are called sectors, the one less than maximal the sector-panels. The apex of a
cone formed by a sector-face in ƒ is called the base point of that sector-face. (See
[1], Chapter 1, for a detailed discussion on finite reflection groups.) Let W be the
group acting on A generated by SW and the translations of A.

Consider a pair .ƒ; F / where ƒ is the set of points forming a metric space together
with a metric d, and F a set of isometric injections (called charts) from the model
space A (equipped with the Euclidean distance) into ƒ. An image of the model space
is called an apartment, an image of a root a half-apartment and an image of a sector
(-face/panel) is called again a sector(-face/panel). The pair .ƒ; F / is an R-building
if the following five properties are satisfied:

(A1) If w 2 W and f 2 F , then f B w 2 F .

(A2) If f; f 0 2 F , then X D f �1.f 0.A// is a closed and convex subset of A, and
f jX D f 0 B wjX for some w 2 W .

(A3) Each two points of ƒ lie in a common apartment.
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This last axiom implies that the metric d on ƒ is defined implicitly by the isometric
injections F .

(A4) Any two sectors S1 and S2 contain subsectors S 0
1 � S1 and S 0

2 � S2 lying in
a common apartment.

(A5) If three apartments intersect pairwise in half-apartments, then the intersection
of all three is non-empty.

2.1.2. Global and local structure. Two sector-faces are parallel if the Hausdorff
distance between both is finite. This relation is an equivalence relation due to the
triangle inequality. The equivalence classes (named simplices at infinity, or the di-
rection F1 of a sector-face F ) form a spherical building ƒ1 of type . SW ; S/ called
the building at infinity of the R-building .ƒ; F /. The chambers of this building are
the equivalence classes of parallel sectors. Each apartment † of .ƒ; F / corresponds
to an apartment †1 of ƒ1 in a bijective way.

Two sector-faces are asymptotic if they contain a common subsector-face having
the same dimension as the original two. Asymptotic sector-faces are necessarily
parallel, the inverse is only true for sectors (see [10], Corollary 1.6). Asymptoticness
is an equivalence relation as well.

One can also define local equivalences. Let ˛ be a point of ƒ, and F; F 0 two
sector-faces based at ˛. These two sector-faces locally coincide if their intersection
is a neighbourhood of ˛ in both F and F 0. This relation forms an equivalence relation
defining germs of sector-faces as equivalence classes (notation ŒF �˛). These germs
form a (weak) spherical building ƒ˛ of type . SW ; S/, called the residue at ˛. We say
that a germ of some sector-face F based at ˛ lies in a subset K of ƒ if a neighbourhood
of ˛ in F is contained in K.

A detailed study of R-buildings can be found in [10]. We list some results from
that paper here for future reference.

Lemma 2.1 ([10], Proposition 1.8). Let C be a chamber of the building at infinity
ƒ1 and S a sector based at ˛ 2 ƒ. Then there exists an apartment † containing
the germ ŒS�˛ and a sector with direction C .

Corollary 2.2 ([10], Corollary 1.9). Let ˛ be a point of ƒ and F1 a facet of the
building at infinity. Then there is a unique sector-face F 0 2 F1 based at ˛.

The unique sector-face of the previous corollary will be denoted by F˛ . We will
often use the subscript to indicate the base point of a sector-face. An exception is
when we use the symbol 1 as subscript to denote the direction of the sector-face.
To give an example, if one says S1, S˛ and Sˇ ; then S1 denotes some simplex at
infinity and S˛ , Sˇ are the unique parallel sector-faces based at respectively ˛ and ˇ

with direction S1.
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Lemma 2.3 ([10], Proposition 1.12). If the germs ŒS�˛ and ŒS 0�˛ of two sectors S˛ and
S 0̨ form opposite chambers of the residue ƒ˛ , then there exists a unique apartment
containing both sectors.

Lemma 2.4 ([10], Proposition 1.17). Let † be an apartment and S˛ a sector in †

based at some point ˛. There exists a retraction r of ƒ on † such that r preserves
the distance of points of ƒ to ˛ and does not increase other distances. Also each
sector based at ˛ is mapped isometrically to a sector in †. The only sectors based
at ˛ mapped to S˛ are the sectors with the same germ as S˛ .

2.1.3. Wall and panel trees. With a wall M of an R-building one can associate a
direction at infinity (the set of all parallel classes of sector-faces it contains). This
direction M1 at infinity will be a wall of the spherical building at infinity.

Let m (respectively �) be a wall (resp. a panel contained in the wall m) of the
building at infinity. Let T .m/ be the set of all walls M of the R-building with
M1 D m, and T .�/ the set of all asymptotic classes of sector-panels in the parallel
class of � .

One can define charts (and so also apartments) from R to T .m/ (resp. T .�/).
First choose M (resp. D) a wall (resp. a sector-panel contained in M ) of the model
space such that there exists some chart f such that f .M/1 D m and f .D/ 2 � .
One can identify the model space A with the product R � M . For every chart g 2 F

of the R-building .ƒ; F / such that g.M/1 D m (resp. f .D/ 2 �), one defines a
chart g0 as follows: if x 2 R, then g0.x/ is the wall g.fxg�M/ (resp. the asymptotic
class containing g.fxg � D/).

These two constructions yield R-buildings with a rank one building at infinity,
such R-buildings are better know as R-trees (or shortly trees when no confusion can
arise). The following theorem shows the connection between both constructions.

Theorem 2.5 ([13], Proposition 4). If � is a panel in some wall m at infinity, then
for each asymptotic class D of sector-panels with direction � , there is a unique wall
M with direction m containing an element of D. The corresponding map D 7! M

is an isometry from the R-tree T .�/ to the R-tree T .m/.

The trees obtained from walls (resp. panels) are called wall trees (resp. panel
trees).

2.2. CAT.0/-spaces. For now suppose that .X; d/ is some metric space, not nec-
essarily an R-building. A geodesic is a subset of the metric space X isometric to a
closed interval of real numbers. The metric space .X; d/ is a geodesic metric space
if each two points of X can be connected by a geodesic. From Condition (A3) it
follows that R-buildings are geodesic metric spaces.

Let x, y and z 2 X be three points in a geodesic metric space .X; d/. Because
of the triangle inequality we can find three points Nx, Ny and Nz in the Euclidean plane
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R2 such that each pair of points has the same distance as the corresponding pair in x,
y, z. The triangle formed by the three points is called a comparison triangle of x, y

and z. Consider a point a on a geodesic between x and y (note that this geodesic is
not necessarily unique). We now can find a point Na on the line through Nx and Ny such
that the pairwise distances in Nx, Ny, Na are the same as in x, y, a. If the distance between
z and a is not larger than the distance between Nz and Na for all possible choices of x,
y, z and a, we say that the geodesic metric space .X; d/ is a CAT.0/-space.

A metric space is complete if all Cauchy sequences converge. A group of isome-
tries acting on a metric space is bounded if at least one orbit (and hence all orbits) is
a bounded set. Finite groups of isometries are always bounded.

The metric spaces formed by R-buildings are examples of CAT.0/-spaces. For
complete CAT.0/-spaces one has the following important theorem known as the
Bruhat–Tits fixed point theorem.

Theorem 2.6 ([5], Proposition 3.2.4). If G is a bounded group of isometries of a
complete CAT.0/-space .X; d/, then G fixes some point of X .

Remark 2.7. The notion of completeness has also another meaning when used for
R-buildings, in the sense of ‘the complete system of apartments’. However, there
will be no confusion possible as we will not use this other notion.

2.3. Convex sets in spherical buildings. Consider a (weak) spherical building �

of type . SW ; S/ as a chamber complex. Between two chambers of the building one
can define a SW -valued function ı, called the Weyl distance (see [1], Section 4.8).
The word length with respect to the generating set S makes this Weyl distance into
an integer-valued metric on the set of chambers. A chamber subcomplex K of �

is convex if each minimal gallery between two chambers of K also lies in K. An
equivalent definition is if C and D are chambers of K, and E is a chamber of � such
that ı.C; D/ D ı.C; E/ı.E; D/, then E is a chamber of K as well.

The following statement is known as the center conjecture:

Conjecture 2.8. Let � be a (weak) spherical building and K a convex chamber
subcomplex of �. Then (at least) one of the following two possibilities holds.

� For each chamber C in K there is a chamber D in K opposite to C .
� The group of automorphisms of � (setwise) stabilizing K stabilizes a non-trivial

simplex of K.

The center conjecture is most often stated in a more general way to include sub-
complexes of lower rank than �, but we omit this as we will not need it. Although it is
called a conjecture, it has been proved except for the case where one has a direct factor
of type H4. The cases An, Bn, Cn and Dn have been proved by Bernhard Mühlherr
and Jacques Tits ([8]). The F4 case has been announced by Chris Parker and Katrin
Tent ([9]). Bernhard Leeb and Carlos Ramos-Cuevas gave an alternative proof for the
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F4 case and also proved the E6 case ([7]). Finally Carlos Ramos-Cuevas proved the
E7 and E8 case in [11]. The reducible cases obey the conjecture if their irreducible
components do. So all thick spherical buildings obey the center conjecture.

For weak spherical buildings a direct factor of type H3 or H4 is possible as well.
The center conjecture for the first case follows from results in [3], the second is still
open.

3. Main results

The first main result is a fixed point theorem also valid for R-buildings which are not
metrically complete.

Main Result 1. A finitely generated bounded group G of isometries of an R-building
ƒ admits a fixed point.

The second main result characterizes metrically complete R-buildings in terms of
their wall trees.

Main Result 2. An R-building is metrically complete if and only if all of its wall
trees are metrically complete.

4. Useful lemmas

Let .ƒ; F / be an R-building.

Lemma 4.1. Let Cˇ and C� be two sectors having the same direction C1 and based
at respectively ˇ and � . There exists a constant k 2 RC depending only on the type
of the R-building such that there exists a point ı, with d.ˇ; ı/; d.�; ı/ � kd.ˇ; �/,
for which the sector Cı is a subsector of both Cˇ and C� .

Proof. Embed the sector Cˇ in an apartment † and the sector C� in an apartment
†0. Let ı be the point of Cˇ \ C� closest to ˇ (possible because this intersection is
a closed subset of † due to Condition (A2), and non-empty because parallel sectors
are asymptotic, and hence contain a common subsector). The sector Cı is a subsector
of both Cˇ and C� .

Let Fı and F 0
ı

be the minimal sector-faces based at ı lying in respectively †

and †0, containing respectively ˇ and � . Notice that the germs of Fı and F 0
ı

lie in
respectively Cˇ and C� . This implies that the intersection of these sector-faces is the
singleton fıg, otherwise one could find another point which lies in both Fı \ F 0

ı
and

Cˇ \ C� . Such a point would be closer to ˇ than ı, which is a contradiction. Hence
Fı \ F 0

ı
D fıg.
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Choose a sector Dı based at ı containing Fı . Let r be the retraction on the
apartment † centered at the germ of Dı (see Lemma 2.4). This retraction maps the
sector-face F 0

ı
to some sector-face F 00

ı
in †, only sharing its base point ı with the

sector-face Fı . As r.�/ lies in F 00
ı

� †, it follows that there exists some constant
k (depending on the minimal angle of half-lines in two sector-faces in the same
apartment only having their base point in common) such that d.ˇ; ı/; d.r.�/; ı/ �
kd.ˇ; r.�//. As the retraction preserves distances to ı, and does not increase other
distances, this implies the desired result.

Corollary 4.2. There exists a constant k0 depending only on the type of the R-
building, such that for each sector Cˇ and l 2 RC, there exists a point ı 2 Cˇ with
d.ˇ; ı/ D k0l , such that for each point � at distance at most l from ˇ, the sector Cı

is a subsector of C� .

Proof. If � is a point at distance at most t from ˇ, then by the above lemma one has
that the sectors Cˇ and C� contain a common subsector C� based at a point � 2 Cˇ

with d.ˇ; �/ � kt .
All the sectors C� with d.�; ˇ/ < t 0, t 0 2 RC and � 2 Cˇ contain a common

point � which lies at a distance k00t 0 from ˇ, where k00 is a constant depending only on
the type of the R-building. Combining both observations one sees that this corollary
holds for the constant k0 WD kk00.

Corollary 4.3. Let C1 and D1 be two adjacent chambers at infinity. If the germs
of the sectors Cˇ and Dˇ based at some point ˇ are the same, then there exists an
l > 0 such that for each point � 2 ƒ with d.ˇ; �/ < l , the germs of the sectors C�

and D� based at � are the same.

Proof. Because the germs of the sectors Cˇ and Dˇ are the same, there is an l 0 > 0

such that the intersections of the closed ball with radius l 0 centered at ˇ with either
the sector Cˇ or Dˇ are the same. This implies that for each point ı in the intersection
of Cˇ and the open ball with radius l 0 centered at ˇ, the germs of the sectors Cı and
Dı are the same. Applying Lemma 4.1 there exists an l > 0 such that for each point
� 2 ƒ with d.ˇ; �/ < l , the sectors Cˇ and C� have a point � in common at distance
strictly less than l 0 from ˇ. If the germs of the sectors C� and D� were different,
then the two sectors only share a sector-panel. This would also imply that the germs
of the sectors C� and D� have to be different as well, which is a contradiction.

Lemma 4.4. The R-building .ƒ; F / can be embedded in a metrically complete R-
building .ƒ0; F 0/ of the same type, such that the isometries of .ƒ; F / extend to
isometries of .ƒ0; F 0/.

Proof. This is a (direct) consequence of [6], Theorem 5.1.1, by taking the !-limit
with respect to the constant scaling sequence (Kleiner and Leeb assume completeness
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in their paper, but in this theorem it is irrelevant whether the R-building you start
with is complete or not). The resulting R-building is metrically complete by [6],
Lemma 2.4.2. The choice of the base point does not matter and the construction is
functorial, so isometries extend.

From now on assume that one has an R-building .ƒ0; F 0/ as described in the
above lemma. Let xƒ be the closure of ƒ in ƒ0. The metric space defined on ƒ is
complete if and only if ƒ D xƒ.

Choose ˛ to be a point in xƒnƒ (which is only possible if the metric space defined
on ƒ is not complete). Let K be the chamber subcomplex of the residue ƒ0̨ in ˛

consisting of the germs of sectors-faces based at ˛ with direction a simplex of ƒ1.

Corollary 4.5. Let C1 be some chamber of the building at infinity ƒ1. Then the
interior of the sector C˛ lies in ƒ.

Proof. This follows from applying Corollary 4.2 to a sequence of points in ƒ con-
verging to ˛.

Lemma 4.6. Let C˛ and C 0̨ be two sectors based at ˛ with their directions C1; C 01
in ƒ1. Let w be the Weyl distance from the germ of C˛ to C 0̨ . Then there exists
a sector C 00̨ based at ˛ with the same germ as C 0̨ such that the direction C 001 is a
chamber of ƒ1 and that the Weyl distance from C1 to C 001 is w.

Proof. Using Lemma 2.1 we know that there exists an apartment † of ƒ0 containing
both the sector C˛ and the germ of the sector C 0̨ . Let ˇ be a point of † in the interior
of C 0̨ such that the germ of C 0

ˇ
also lies in †. The Weyl distance from the germ of

Cˇ to the germ of C 0
ˇ

is again w. Because both the point ˇ and the sectors Cˇ and C 0
ˇ

lie in ƒ, one can use Lemma 2.1 again to find an apartment †0 of ƒ containing Cˇ

and the germ of C 0
ˇ

. Let C 00
ˇ

be the sector in this apartment †0, based at ˇ, with the
same germ as C 0

ˇ
. The Weyl distance between C1 and C 001 is w because the sectors

Cˇ and C 00
ˇ

lie in one apartment. As the germs of the sectors C 0̨ and C 00̨ are the same,
we have proved the lemma.

Lemma 4.7. The chamber subcomplex K of ƒ0̨ is convex.

Proof. Let C˛ and C 0̨ be two sectors with chambers of ƒ1 at infinity. Let the Weyl
distance from the germ of C˛ to the germ of C 0̨ be w. By the previous lemma, one
can assume that the Weyl distance between C1 and C 01 also is w.

Assume we have a germ of sector D˛ in the convex hull of the germs of the sectors
C˛ and C 0̨ . So if the Weyl distance from C˛ to D˛ is v, and the Weyl distance from
D˛ to C 0̨ is v0 then w D vv0. These distances define D˛ uniquely. Because the Weyl
distance from C1 to C 01 also is w, one can find a chamber E1 at infinity such that
the Weyl distance from C1 to E1 is v and the Weyl distance from E1 to C 01 is v0.
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The distances between the germs C˛ , E˛ and C 0̨ have to be smaller than or equal
to these (‘smaller’ with respect to the word metric on SW defined by the generating
set S ), but as the distance between C˛ and C 0̨ stays the same, they all stay the same.
By uniqueness we can conclude that the germs ŒD�˛ and ŒE�˛ are the same and that
the chamber subcomplex K is convex.

Corollary 4.8. No two germs of sectors in K are opposite.

Proof. Assume that the two germs of the sectors C˛ and C 0̨ based at ˛ are opposite
with C1; C 01 chambers of ƒ1. Lemma 2.3 implies that there is an unique apartment
† containing both sectors C˛ and C 0̨ . The apartment at infinity will be the unique
apartment †1 containing the opposite chambers C1 and C 01. A consequence is that
†1 is an apartment of ƒ1, and so also that † is an apartment of ƒ. This yields that
˛, being a point of the apartment †, lies in ƒ, which is a contradiction.

5. Proof of the first main result

Let G be a finitely generated bounded group of isometries of an R-building .ƒ; F /.
Assume that the Main Result 1 does not hold, or equivalently, that G does not fix
points in ƒ (the Bruhat–Tits fixed point theorem 2.6 implies that ƒ is not complete
if this is the case).

Embed ƒ in a complete building ƒ0 as described in Lemma 4.4. The closure
xƒ in ƒ0 is a complete CAT.0/-space, so we can apply the Bruhat–Tits fixed point
theorem 2.6 and obtain a point ˛ 2 xƒ � ƒ0 fixed by G. Then again as in the previous
section, we obtain a convex chamber subcomplex K of the residue ƒ0̨ . As ˛ is
fixed and ƒ stabilized by G, this group also acts on the (weak) spherical building
ƒ0̨ and stabilizes the convex chamber complex K. One can now apply the center
conjecture 2.8, and as Corollary 4.8 eliminates one option, we know that G stabilizes
some non-trivial simplex of K. Let A be a maximal stabilized simplex of K.

The next step is to investigate the residue (in the spherical building ƒ0̨ ) of the
simplex A, which is again a (weak) spherical building. The germs in K which contain
A form a convex chamber complex of this residue, so we can again apply the center
conjecture 2.8 on this new convex chamber complex. However, a stabilized non-
trivial simplex in the residue is impossible due to the maximality of A. So there exist
two chambers C and D in K, both containing the fixed simplex A, and such that the
corresponding chambers in the residue of A are opposite.

Using Lemma 4.6, one can find two sectors S˛ and S 0̨ lying in one apartment such
that their germs equal respectively C and D. The intersection S˛ \S 0̨ is a sector-face
R˛ with germ A. The interior of both sectors lies in ƒ due to Corollary 4.5. Because
ƒ is convex within ƒ0, it follows that the points of R˛ not lying on a non-maximal
face of this sector-face lie in ƒ.
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Let L be the barycentric closed half-line (with endpoint ˛) of the sector-face R˛ .
From the above discussion it follows that this half-line, except for the point ˛, lies
in ƒ. Parametrize this line by a map 	 W RC ! L such that for each l 2 RC one
has that d.	.l/; ˛/ D l . Note that 	.0/ D ˛. As the group G stabilizes the germ A,
there exists for each element g 2 G a positive number lg > 0 such that each point
	.l/ with l 2 Œ0; lg � is fixed by g. Let fg1; : : : ; gkg be the chosen finite generating
set of G and l 0 > 0 be the minimum of the lgi

with i 2 f1; : : : ; kg. The point 	.l 0/,
which lies in ƒ, is fixed by a generating set of G, and hence by the entire group G.
So we have proved that there does exist a point in ƒ fixed by G.

Remark 5.1. If the Coxeter system has a direct factor of type H4, then the center
conjecture 2.8 has not been proved yet. However this does not pose a problem for our
purposes. If such a case occurs one can restrict the Weyl group of both the spherical
building at infinity and the residue at ˛ (which is a retract of the building at infinity)
to no longer have a direct factor of type H4. The convex chamber complex K stays a
chamber complex after this restriction of the Weyl group, so we can apply the center
conjecture in this case (compare [11], p. 3).

6. Proof of the second main result

First assume that the metric space defined on ƒ is complete, and let m be a wall of
the spherical building at infinity. Let .˛n/n2N be a Cauchy sequence in the wall tree
T .m/. The union of the apartments of the R-building which at infinity contain m

forms a subset K � ƒ isometric to the direct product of the metric space formed by
T .m/ and Rk�1 (where k is the dimension of the apartments).

Using this subset K, we can ‘lift’ the Cauchy sequence .˛n/n2N to a Cauchy
sequence .ˇn/n2N in K � ƒ. As the metric space defined on ƒ is complete, this
sequence converges to some point ˇ 2 ƒ. Our goal is to prove that the point ˇ lies in
K, implying that the original sequence .˛n/n2N converges. For this we have to prove
that ˇ lies in an apartment which at infinity contains the wall m. Let S1 and S 01 be
two opposite sector-panels in m; if we can prove that the germs of sector-panels ŒS�ˇ
and ŒS 0�ˇ in the residue at ˇ are still opposite, we are done (because Lemma 2.3 then
implies that ˇ lies in an apartment containing m at infinity). Equivalent with this
last statement is that for a shortest gallery from a chamber C1 containing S1 to a
chamber C 01 containing S 01 (‘shortest’ meaning minimal over all choices of C1 and
C 01), the corresponding gallery in the residue ƒˇ between the germs of the sectors
ŒC �ˇ to ŒC 0�ˇ always is non-stammering. As this is the case for each point of K, and
hence each point of the sequence .ˇn/n2N , Corollary 4.3 implies that this is also the
case for ˇ. So we have proved that the metric space defined by the R-tree T .m/ is
complete.

We now prove the other direction. Assume that all the trees corresponding to
walls at infinity are complete. Let .˛n/n2N be a Cauchy sequence in the metric space



(Non)-completeness of R-buildings and fixed point theorems 187

.ƒ; d/. Using Lemma 4.4, we embed .ƒ; F / in a complete R-building .ƒ0; F 0/. The
Cauchy sequence .˛n/n2N then converges to some point ˛ 2 xƒ. We need to prove
that ˛ is a point of ƒ, so assume this is not the case.

Choose a sector C˛ based at ˛ such that C1 is a chamber of ƒ1. The interior
of this sector lies in ƒ due to Corollary 4.5, and one can find a sequence of points
.ˇn/n2N herein which also converges to the point ˛.

Let P1 be a panel of C1. The sequence .Pˇn
/n2N of parallel sector-panels forms

a Cauchy sequence in the panel tree T .P1/, contained in an open half-line. Using
the completeness of this tree, we can embed this open half-line into a closed half-line,
and then into to an apartment (essentially using Lemma 2.1), and find a chamber C 01
in ƒ1 containing P1 such that the germs of the sectors Cˇn

and C 0
ˇn

are not the
same for all n 2 N. It follows that the germs of the sectors C˛ and C 0̨ are not the
same, but adjacent, having the germ of the sector-panel P˛ in common.

Repeating this algorithm one can obtain two sectors based at ˛ with at infinity
chambers of ƒ1 and opposite germs, but this is in contradiction with Corollary 4.8
and ˛ … ƒ. This proves the second main result.
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