Groups Geom. Dyn. 5 (2011), 177–188 DOI 10.4171/GGD/121

(Non)-completeness of \mathbb{R} -buildings and fixed point theorems

Koen Struyve

Abstract. We prove two generalizations of results of Bruhat and Tits involving metrical completeness and \mathbb{R} -buildings. Firstly, we give a generalization of the Bruhat–Tits fixed point theorem also valid for non-complete \mathbb{R} -buildings with the added condition that the group is finitely generated.

Secondly, we generalize a criterion which reduces the problem of completeness to the wall trees of the \mathbb{R} -building. This criterion was proved by Bruhat and Tits for \mathbb{R} -buildings arising from root group data with valuation.

Mathematics Subject Classification (2010). 51E24, 20F65.

Keywords. Euclidean buildings, fixed point theorems, metric completeness.

1. Introduction

In 1986, Jacques Tits classified affine buildings of rank at least four ([13]). He also included in this classification non-discrete generalizations of affine buildings, these metric spaces are called non-discrete affine apartment systems or \mathbb{R} -buildings. Although the first definition for these \mathbb{R} -buildings only appeared in the aforementioned paper, the examples that arise from root group data with a (non-discrete) valuation were already studied in 1972 in the book [5] by Bruhat and Tits. The classification of Tits shows that an \mathbb{R} -building of rank at least four (or equivalently dimension at least three) necessarily arises from such a root group datum with valuation. For dimension two there exist various explicit and 'free' constructions (for example see [4] and [12]). The one-dimensional \mathbb{R} -buildings are also known as \mathbb{R} -trees.

As \mathbb{R} -buildings are metric spaces, one has the notion of (metrical) completeness. While affine buildings are always complete due to their discrete nature, this is rarely the case for non-discrete \mathbb{R} -buildings. Perhaps the simplest example of a field with non-discrete valuations which can be used to define complete \mathbb{R} -buildings, is coming from the Hahn–Mal'cev–Neumann series.

The current paper generalizes two results appearing in [5], both involving completeness. The first such result is the Bruhat–Tits fixed point theorem. It says that a bounded group of isometries of a complete \mathbb{R} -building (or more generally a complete CAT(0)-space) has a fixed point. Our result proves the existence of a fixed point also in the non-complete case, but with the added condition that the group is finitely generated.

The second result provides a criterion of (metric) completeness of \mathbb{R} -buildings. In [5] it is proved that an \mathbb{R} -building arising from a root group datum with valuation is complete if and only if its corresponding wall trees (which are \mathbb{R} -trees) are complete. This reduces the question to the easier one-dimensional case. We generalize this result to all \mathbb{R} -buildings, not only those arising from a root group datum with valuation, by giving a geometric proof instead of an algebraic proof.

The proofs use an embedding into an ultralimit. A similar method can be found in [2], where a fixed point theorem is proved for certain weakly contracting self-maps of buildings.

Acknowledgement. The author is supported by the Fund for Scientific Research – Flanders (FWO - Vlaanderen). The author also would like to thank Linus Kramer for helpful comments.

2. Preliminaries

2.1. R-buildings

2.1.1. Definition. Let (\overline{W}, S) be a spherical Coxeter system of rank *n*. The group \overline{W} can be realized as a finite reflection group acting on an *n*-dimensional real affine space \mathbb{A} , called the *model space*. A *wall* of \mathbb{A} is a hyperplane of it fixed by a conjugate of an involution in *S*. A *root* is a (closed) half-space of \mathbb{A} bordered by a wall. The set of all walls of \mathbb{A} defines a poset of simplicial cones in \mathbb{A} (called *sector-faces*), which forms the simplicial complex of the Coxeter system (\overline{W}, S). The maximal cones are called *sectors*, the one less than maximal the *sector-panels*. The apex of a cone formed by a sector-face in Λ is called the *base point* of that sector-face. (See [1], Chapter 1, for a detailed discussion on finite reflection groups.) Let *W* be the group acting on \mathbb{A} generated by \overline{W} and the translations of \mathbb{A} .

Consider a pair (Λ, \mathcal{F}) where Λ is the set of *points* forming a metric space together with a metric d, and \mathcal{F} a set of isometric injections (called *charts*) from the model space Λ (equipped with the Euclidean distance) into Λ . An image of the model space is called an *apartment*, an image of a root a *half-apartment* and an image of a sector (-face/panel) is called again a *sector*(*-face/panel*). The pair (Λ, \mathcal{F}) is an \mathbb{R} -*building* if the following five properties are satisfied:

- (A1) If $w \in W$ and $f \in \mathcal{F}$, then $f \circ w \in \mathcal{F}$.
- (A2) If $f, f' \in \mathcal{F}$, then $X = f^{-1}(f'(\mathbb{A}))$ is a closed and convex subset of \mathbb{A} , and $f|_X = f' \circ w|_X$ for some $w \in W$.
- (A3) Each two points of Λ lie in a common apartment.

This last axiom implies that the metric d on Λ is defined implicitly by the isometric injections \mathcal{F} .

- (A4) Any two sectors S_1 and S_2 contain subsectors $S'_1 \subset S_1$ and $S'_2 \subset S_2$ lying in a common apartment.
- (A5) If three apartments intersect pairwise in half-apartments, then the intersection of all three is non-empty.

2.1.2. Global and local structure. Two sector-faces are *parallel* if the Hausdorff distance between both is finite. This relation is an equivalence relation due to the triangle inequality. The equivalence classes (named *simplices at infinity*, or the *direction* F_{∞} of a sector-face F) form a spherical building Λ_{∞} of type (\overline{W} , S) called the *building at infinity* of the \mathbb{R} -building (Λ, \mathcal{F}). The chambers of this building are the equivalence classes of parallel sectors. Each apartment Σ of (Λ, \mathcal{F}) corresponds to an apartment Σ_{∞} of Λ_{∞} in a bijective way.

Two sector-faces are *asymptotic* if they contain a common subsector-face having the same dimension as the original two. Asymptotic sector-faces are necessarily parallel, the inverse is only true for sectors (see [10], Corollary 1.6). Asymptoticness is an equivalence relation as well.

One can also define local equivalences. Let α be a point of Λ , and F, F' two sector-faces based at α . These two sector-faces *locally coincide* if their intersection is a neighbourhood of α in both F and F'. This relation forms an equivalence relation defining *germs of sector-faces* as equivalence classes (notation $[F]_{\alpha}$). These germs form a (weak) spherical building Λ_{α} of type (\overline{W}, S) , called the *residue* at α . We say that a germ of some sector-face F based at α lies in a subset K of Λ if a neighbourhood of α in F is contained in K.

A detailed study of \mathbb{R} -buildings can be found in [10]. We list some results from that paper here for future reference.

Lemma 2.1 ([10], Proposition 1.8). Let *C* be a chamber of the building at infinity Λ_{∞} and *S* a sector based at $\alpha \in \Lambda$. Then there exists an apartment Σ containing the germ $[S]_{\alpha}$ and a sector with direction *C*.

Corollary 2.2 ([10], Corollary 1.9). Let α be a point of Λ and F_{∞} a facet of the building at infinity. Then there is a unique sector-face $F' \in F_{\infty}$ based at α .

The unique sector-face of the previous corollary will be denoted by F_{α} . We will often use the subscript to indicate the base point of a sector-face. An exception is when we use the symbol ∞ as subscript to denote the direction of the sector-face. To give an example, if one says S_{∞} , S_{α} and S_{β} ; then S_{∞} denotes some simplex at infinity and S_{α} , S_{β} are the unique parallel sector-faces based at respectively α and β with direction S_{∞} .

K. Struyve

Lemma 2.3 ([10], Proposition 1.12). If the germs $[S]_{\alpha}$ and $[S']_{\alpha}$ of two sectors S_{α} and S'_{α} form opposite chambers of the residue Λ_{α} , then there exists a unique apartment containing both sectors.

Lemma 2.4 ([10], Proposition 1.17). Let Σ be an apartment and S_{α} a sector in Σ based at some point α . There exists a retraction r of Λ on Σ such that r preserves the distance of points of Λ to α and does not increase other distances. Also each sector based at α is mapped isometrically to a sector in Σ . The only sectors based at α mapped to S_{α} are the sectors with the same germ as S_{α} .

2.1.3. Wall and panel trees. With a wall M of an \mathbb{R} -building one can associate a direction at infinity (the set of all parallel classes of sector-faces it contains). This direction M_{∞} at infinity will be a wall of the spherical building at infinity.

Let *m* (respectively π) be a wall (resp. a panel contained in the wall *m*) of the building at infinity. Let T(m) be the set of all walls *M* of the \mathbb{R} -building with $M_{\infty} = m$, and $T(\pi)$ the set of all asymptotic classes of sector-panels in the parallel class of π .

One can define charts (and so also apartments) from \mathbb{R} to T(m) (resp. $T(\pi)$). First choose M (resp. D) a wall (resp. a sector-panel contained in M) of the model space such that there exists some chart f such that $f(M)_{\infty} = m$ and $f(D) \in \pi$. One can identify the model space \mathbb{A} with the product $\mathbb{R} \times M$. For every chart $g \in \mathcal{F}$ of the \mathbb{R} -building (Λ, \mathcal{F}) such that $g(M)_{\infty} = m$ (resp. $f(D) \in \pi$), one defines a chart g' as follows: if $x \in \mathbb{R}$, then g'(x) is the wall $g(\{x\} \times M)$ (resp. the asymptotic class containing $g(\{x\} \times D)$).

These two constructions yield \mathbb{R} -buildings with a rank one building at infinity, such \mathbb{R} -buildings are better know as \mathbb{R} -*trees* (or shortly trees when no confusion can arise). The following theorem shows the connection between both constructions.

Theorem 2.5 ([13], Proposition 4). If π is a panel in some wall m at infinity, then for each asymptotic class D of sector-panels with direction π , there is a unique wall M with direction m containing an element of D. The corresponding map $D \mapsto M$ is an isometry from the \mathbb{R} -tree $T(\pi)$ to the \mathbb{R} -tree T(m).

The trees obtained from walls (resp. panels) are called *wall trees* (resp. *panel trees*).

2.2. CAT(0)-spaces. For now suppose that (X, d) is some metric space, not necessarily an \mathbb{R} -building. A *geodesic* is a subset of the metric space X isometric to a closed interval of real numbers. The metric space (X, d) is a *geodesic metric space* if each two points of X can be connected by a geodesic. From Condition (A3) it follows that \mathbb{R} -buildings are geodesic metric spaces.

Let x, y and $z \in X$ be three points in a geodesic metric space (X, d). Because of the triangle inequality we can find three points \bar{x} , \bar{y} and \bar{z} in the Euclidean plane \mathbb{R}^2 such that each pair of points has the same distance as the corresponding pair in x, y, z. The triangle formed by the three points is called a *comparison triangle* of x, y and z. Consider a point a on a geodesic between x and y (note that this geodesic is not necessarily unique). We now can find a point \bar{a} on the line through \bar{x} and \bar{y} such that the pairwise distances in \bar{x} , \bar{y} , \bar{a} are the same as in x, y, a. If the distance between z and a is not larger than the distance between \bar{z} and \bar{a} for all possible choices of x, y, z and a, we say that the geodesic metric space (X, d) is a CAT(0)-space.

A metric space is *complete* if all Cauchy sequences converge. A group of isometries acting on a metric space is *bounded* if at least one orbit (and hence all orbits) is a bounded set. Finite groups of isometries are always bounded.

The metric spaces formed by \mathbb{R} -buildings are examples of CAT(0)-spaces. For complete CAT(0)-spaces one has the following important theorem known as the Bruhat–Tits fixed point theorem.

Theorem 2.6 ([5], Proposition 3.2.4). If G is a bounded group of isometries of a complete CAT(0)-space (X, d), then G fixes some point of X.

Remark 2.7. The notion of completeness has also another meaning when used for \mathbb{R} -buildings, in the sense of 'the complete system of apartments'. However, there will be no confusion possible as we will not use this other notion.

2.3. Convex sets in spherical buildings. Consider a (weak) spherical building Δ of type (\overline{W}, S) as a chamber complex. Between two chambers of the building one can define a \overline{W} -valued function δ , called the *Weyl distance* (see [1], Section 4.8). The word length with respect to the generating set S makes this Weyl distance into an integer-valued metric on the set of chambers. A chamber subcomplex K of Δ is *convex* if each minimal gallery between two chambers of K also lies in K. An equivalent definition is if C and D are chambers of K, and E is a chamber of Δ such that $\delta(C, D) = \delta(C, E)\delta(E, D)$, then E is a chamber of K as well.

The following statement is known as the center conjecture:

Conjecture 2.8. Let Δ be a (weak) spherical building and K a convex chamber subcomplex of Δ . Then (at least) one of the following two possibilities holds.

- For each chamber C in K there is a chamber D in K opposite to C.
- The group of automorphisms of Δ (setwise) stabilizing K stabilizes a non-trivial simplex of K.

The center conjecture is most often stated in a more general way to include subcomplexes of lower rank than Δ , but we omit this as we will not need it. Although it is called a conjecture, it has been proved except for the case where one has a direct factor of type H₄. The cases A_n, B_n, C_n and D_n have been proved by Bernhard Mühlherr and Jacques Tits ([8]). The F₄ case has been announced by Chris Parker and Katrin Tent ([9]). Bernhard Leeb and Carlos Ramos-Cuevas gave an alternative proof for the F_4 case and also proved the E_6 case ([7]). Finally Carlos Ramos-Cuevas proved the E_7 and E_8 case in [11]. The reducible cases obey the conjecture if their irreducible components do. So all thick spherical buildings obey the center conjecture.

For weak spherical buildings a direct factor of type H_3 or H_4 is possible as well. The center conjecture for the first case follows from results in [3], the second is still open.

3. Main results

The first main result is a fixed point theorem also valid for \mathbb{R} -buildings which are not metrically complete.

Main Result 1. A finitely generated bounded group G of isometries of an \mathbb{R} -building Λ admits a fixed point.

The second main result characterizes metrically complete \mathbb{R} -buildings in terms of their wall trees.

Main Result 2. An \mathbb{R} -building is metrically complete if and only if all of its wall trees are metrically complete.

4. Useful lemmas

Let (Λ, \mathcal{F}) be an \mathbb{R} -building.

Lemma 4.1. Let C_{β} and C_{γ} be two sectors having the same direction C_{∞} and based at respectively β and γ . There exists a constant $k \in \mathbb{R}^+$ depending only on the type of the \mathbb{R} -building such that there exists a point δ , with $d(\beta, \delta), d(\gamma, \delta) \leq k d(\beta, \gamma)$, for which the sector C_{δ} is a subsector of both C_{β} and C_{γ} .

Proof. Embed the sector C_{β} in an apartment Σ and the sector C_{γ} in an apartment Σ' . Let δ be the point of $C_{\beta} \cap C_{\gamma}$ closest to β (possible because this intersection is a closed subset of Σ due to Condition (A2), and non-empty because parallel sectors are asymptotic, and hence contain a common subsector). The sector C_{δ} is a subsector of both C_{β} and C_{γ} .

Let F_{δ} and F_{δ}' be the minimal sector-faces based at δ lying in respectively Σ and Σ' , containing respectively β and γ . Notice that the germs of F_{δ} and F_{δ}' lie in respectively C_{β} and C_{γ} . This implies that the intersection of these sector-faces is the singleton { δ }, otherwise one could find another point which lies in both $F_{\delta} \cap F_{\delta}'$ and $C_{\beta} \cap C_{\gamma}$. Such a point would be closer to β than δ , which is a contradiction. Hence $F_{\delta} \cap F_{\delta}' = {\delta}$.

182

Choose a sector D_{δ} based at δ containing F_{δ} . Let r be the retraction on the apartment Σ centered at the germ of D_{δ} (see Lemma 2.4). This retraction maps the sector-face F'_{δ} to some sector-face F''_{δ} in Σ , only sharing its base point δ with the sector-face F_{δ} . As $r(\gamma)$ lies in $F''_{\delta} \subset \Sigma$, it follows that there exists some constant k (depending on the minimal angle of half-lines in two sector-faces in the same apartment only having their base point in common) such that $d(\beta, \delta), d(r(\gamma), \delta) \leq k d(\beta, r(\gamma))$. As the retraction preserves distances to δ , and does not increase other distances, this implies the desired result.

Corollary 4.2. There exists a constant k' depending only on the type of the \mathbb{R} building, such that for each sector C_{β} and $l \in \mathbb{R}^+$, there exists a point $\delta \in C_{\beta}$ with $d(\beta, \delta) = k'l$, such that for each point γ at distance at most l from β , the sector C_{δ} is a subsector of C_{γ} .

Proof. If γ is a point at distance at most t from β , then by the above lemma one has that the sectors C_{β} and C_{γ} contain a common subsector C_{τ} based at a point $\tau \in C_{\beta}$ with $d(\beta, \tau) \leq kt$.

All the sectors C_{ρ} with $d(\rho, \beta) < t', t' \in \mathbb{R}^+$ and $\rho \in C_{\beta}$ contain a common point τ which lies at a distance k''t' from β , where k'' is a constant depending only on the type of the \mathbb{R} -building. Combining both observations one sees that this corollary holds for the constant k' := kk''.

Corollary 4.3. Let C_{∞} and D_{∞} be two adjacent chambers at infinity. If the germs of the sectors C_{β} and D_{β} based at some point β are the same, then there exists an l > 0 such that for each point $\gamma \in \Lambda$ with $d(\beta, \gamma) < l$, the germs of the sectors C_{γ} and D_{γ} based at γ are the same.

Proof. Because the germs of the sectors C_{β} and D_{β} are the same, there is an l' > 0 such that the intersections of the closed ball with radius l' centered at β with either the sector C_{β} or D_{β} are the same. This implies that for each point δ in the intersection of C_{β} and the open ball with radius l' centered at β , the germs of the sectors C_{δ} and D_{δ} are the same. Applying Lemma 4.1 there exists an l > 0 such that for each point $\gamma \in \Lambda$ with $d(\beta, \gamma) < l$, the sectors C_{β} and C_{γ} have a point ϵ in common at distance strictly less than l' from β . If the germs of the sectors C_{γ} and D_{γ} were different, then the two sectors only share a sector-panel. This would also imply that the germs of the sectors C_{ϵ} and D_{ϵ} have to be different as well, which is a contradiction.

Lemma 4.4. The \mathbb{R} -building (Λ, \mathcal{F}) can be embedded in a metrically complete \mathbb{R} -building (Λ', \mathcal{F}') of the same type, such that the isometries of (Λ, \mathcal{F}) extend to isometries of (Λ', \mathcal{F}') .

Proof. This is a (direct) consequence of [6], Theorem 5.1.1, by taking the ω -limit with respect to the constant scaling sequence (Kleiner and Leeb assume completeness

K. Struyve

in their paper, but in this theorem it is irrelevant whether the \mathbb{R} -building you start with is complete or not). The resulting \mathbb{R} -building is metrically complete by [6], Lemma 2.4.2. The choice of the base point does not matter and the construction is functorial, so isometries extend.

From now on assume that one has an \mathbb{R} -building (Λ', \mathcal{F}') as described in the above lemma. Let $\overline{\Lambda}$ be the closure of Λ in Λ' . The metric space defined on Λ is complete if and only if $\Lambda = \overline{\Lambda}$.

Choose α to be a point in $\overline{\Lambda} \setminus \Lambda$ (which is only possible if the metric space defined on Λ is not complete). Let K be the chamber subcomplex of the residue Λ'_{α} in α consisting of the germs of sectors-faces based at α with direction a simplex of Λ_{∞} .

Corollary 4.5. Let C_{∞} be some chamber of the building at infinity Λ_{∞} . Then the interior of the sector C_{α} lies in Λ .

Proof. This follows from applying Corollary 4.2 to a sequence of points in Λ converging to α .

Lemma 4.6. Let C_{α} and C'_{α} be two sectors based at α with their directions C_{∞}, C'_{∞} in Λ_{∞} . Let w be the Weyl distance from the germ of C_{α} to C'_{α} . Then there exists a sector C''_{α} based at α with the same germ as C'_{α} such that the direction C''_{∞} is a chamber of Λ_{∞} and that the Weyl distance from C_{∞} to C''_{∞} is w.

Proof. Using Lemma 2.1 we know that there exists an apartment Σ of Λ' containing both the sector C_{α} and the germ of the sector C'_{α} . Let β be a point of Σ in the interior of C'_{α} such that the germ of C'_{β} also lies in Σ . The Weyl distance from the germ of C_{β} to the germ of C'_{β} is again w. Because both the point β and the sectors C_{β} and C'_{β} lie in Λ , one can use Lemma 2.1 again to find an apartment Σ' of Λ containing C_{β} and the germ of C'_{β} . Let C''_{β} be the sector in this apartment Σ' , based at β , with the same germ as C'_{β} . The Weyl distance between C_{∞} and C''_{∞} is w because the sectors C_{β} and C''_{β} lie in one apartment. As the germs of the sectors C'_{α} and C''_{α} are the same, we have proved the lemma.

Lemma 4.7. The chamber subcomplex K of Λ'_{α} is convex.

Proof. Let C_{α} and C'_{α} be two sectors with chambers of Λ_{∞} at infinity. Let the Weyl distance from the germ of C_{α} to the germ of C'_{α} be w. By the previous lemma, one can assume that the Weyl distance between C_{∞} and C'_{∞} also is w.

Assume we have a germ of sector D_{α} in the convex hull of the germs of the sectors C_{α} and C'_{α} . So if the Weyl distance from C_{α} to D_{α} is v, and the Weyl distance from D_{α} to C'_{α} is v' then w = vv'. These distances define D_{α} uniquely. Because the Weyl distance from C_{∞} to C'_{∞} also is w, one can find a chamber E_{∞} at infinity such that the Weyl distance from C_{∞} to E_{∞} is v and the Weyl distance from E_{∞} to C'_{∞} is v'.

The distances between the germs C_{α} , E_{α} and C'_{α} have to be smaller than or equal to these ('smaller' with respect to the word metric on \overline{W} defined by the generating set *S*), but as the distance between C_{α} and C'_{α} stays the same, they all stay the same. By uniqueness we can conclude that the germs $[D]_{\alpha}$ and $[E]_{\alpha}$ are the same and that the chamber subcomplex *K* is convex.

Corollary 4.8. No two germs of sectors in K are opposite.

Proof. Assume that the two germs of the sectors C_{α} and C'_{α} based at α are opposite with C_{∞} , C'_{∞} chambers of Λ_{∞} . Lemma 2.3 implies that there is an unique apartment Σ containing both sectors C_{α} and C'_{α} . The apartment at infinity will be the unique apartment Σ_{∞} containing the opposite chambers C_{∞} and C'_{∞} . A consequence is that Σ_{∞} is an apartment of Λ_{∞} , and so also that Σ is an apartment of Λ . This yields that α , being a point of the apartment Σ , lies in Λ , which is a contradiction.

5. Proof of the first main result

Let *G* be a finitely generated bounded group of isometries of an \mathbb{R} -building (Λ, \mathcal{F}) . Assume that the Main Result 1 does not hold, or equivalently, that *G* does not fix points in Λ (the Bruhat–Tits fixed point theorem 2.6 implies that Λ is not complete if this is the case).

Embed Λ in a complete building Λ' as described in Lemma 4.4. The closure $\overline{\Lambda}$ in Λ' is a complete CAT(0)-space, so we can apply the Bruhat–Tits fixed point theorem 2.6 and obtain a point $\alpha \in \overline{\Lambda} \subset \Lambda'$ fixed by G. Then again as in the previous section, we obtain a convex chamber subcomplex K of the residue Λ'_{α} . As α is fixed and Λ stabilized by G, this group also acts on the (weak) spherical building Λ'_{α} and stabilizes the convex chamber complex K. One can now apply the center conjecture 2.8, and as Corollary 4.8 eliminates one option, we know that G stabilizes some non-trivial simplex of K. Let A be a maximal stabilized simplex of K.

The next step is to investigate the residue (in the spherical building Λ'_{α}) of the simplex *A*, which is again a (weak) spherical building. The germs in *K* which contain *A* form a convex chamber complex of this residue, so we can again apply the center conjecture 2.8 on this new convex chamber complex. However, a stabilized non-trivial simplex in the residue is impossible due to the maximality of *A*. So there exist two chambers *C* and *D* in *K*, both containing the fixed simplex *A*, and such that the corresponding chambers in the residue of *A* are opposite.

Using Lemma 4.6, one can find two sectors S_{α} and S'_{α} lying in one apartment such that their germs equal respectively C and D. The intersection $S_{\alpha} \cap S'_{\alpha}$ is a sector-face R_{α} with germ A. The interior of both sectors lies in Λ due to Corollary 4.5. Because Λ is convex within Λ' , it follows that the points of R_{α} not lying on a non-maximal face of this sector-face lie in Λ .

Let *L* be the barycentric closed half-line (with endpoint α) of the sector-face R_{α} . From the above discussion it follows that this half-line, except for the point α , lies in Λ . Parametrize this line by a map $\phi : \mathbb{R}^+ \to L$ such that for each $l \in \mathbb{R}^+$ one has that $d(\phi(l), \alpha) = l$. Note that $\phi(0) = \alpha$. As the group *G* stabilizes the germ *A*, there exists for each element $g \in G$ a positive number $l_g > 0$ such that each point $\phi(l)$ with $l \in [0, l_g]$ is fixed by *g*. Let $\{g_1, \ldots, g_k\}$ be the chosen finite generating set of *G* and l' > 0 be the minimum of the l_{g_i} with $i \in \{1, \ldots, k\}$. The point $\phi(l')$, which lies in Λ , is fixed by a generating set of *G*, and hence by the entire group *G*. So we have proved that there does exist a point in Λ fixed by *G*.

Remark 5.1. If the Coxeter system has a direct factor of type H₄, then the center conjecture 2.8 has not been proved yet. However this does not pose a problem for our purposes. If such a case occurs one can restrict the Weyl group of both the spherical building at infinity and the residue at α (which is a retract of the building at infinity) to no longer have a direct factor of type H₄. The convex chamber complex *K* stays a chamber complex after this restriction of the Weyl group, so we can apply the center conjecture in this case (compare [11], p. 3).

6. Proof of the second main result

First assume that the metric space defined on Λ is complete, and let *m* be a wall of the spherical building at infinity. Let $(\alpha_n)_{n \in \mathbb{N}}$ be a Cauchy sequence in the wall tree T(m). The union of the apartments of the \mathbb{R} -building which at infinity contain *m* forms a subset $K \subset \Lambda$ isometric to the direct product of the metric space formed by T(m) and \mathbb{R}^{k-1} (where *k* is the dimension of the apartments).

Using this subset K, we can 'lift' the Cauchy sequence $(\alpha_n)_{n \in \mathbb{N}}$ to a Cauchy sequence $(\beta_n)_{n \in \mathbb{N}}$ in $K \subset \Lambda$. As the metric space defined on Λ is complete, this sequence converges to some point $\beta \in \Lambda$. Our goal is to prove that the point β lies in K, implying that the original sequence $(\alpha_n)_{n \in \mathbb{N}}$ converges. For this we have to prove that β lies in an apartment which at infinity contains the wall m. Let S_{∞} and S'_{∞} be two opposite sector-panels in m; if we can prove that the germs of sector-panels $[S]_{\beta}$ and $[S']_{\beta}$ in the residue at β are still opposite, we are done (because Lemma 2.3 then implies that β lies in an apartment containing m at infinity). Equivalent with this last statement is that for a shortest gallery from a chamber C_{∞} containing S_{∞} to a chamber C'_{∞} containing S'_{∞} ('shortest' meaning minimal over all choices of C_{∞} and C'_{∞}), the corresponding gallery in the residue Λ_{β} between the germs of the sectors $[C]_{\beta}$ to $[C']_{\beta}$ always is non-stammering. As this is the case for each point of K, and hence each point of the sequence $(\beta_n)_{n \in \mathbb{N}}$, Corollary 4.3 implies that this is also the case for β . So we have proved that the metric space defined by the \mathbb{R} -tree T(m) is complete.

We now prove the other direction. Assume that all the trees corresponding to walls at infinity are complete. Let $(\alpha_n)_{n \in \mathbb{N}}$ be a Cauchy sequence in the metric space

 (Λ, d) . Using Lemma 4.4, we embed (Λ, \mathcal{F}) in a complete \mathbb{R} -building (Λ', \mathcal{F}') . The Cauchy sequence $(\alpha_n)_{n \in \mathbb{N}}$ then converges to some point $\alpha \in \overline{\Lambda}$. We need to prove that α is a point of Λ , so assume this is not the case.

Choose a sector C_{α} based at α such that C_{∞} is a chamber of Λ_{∞} . The interior of this sector lies in Λ due to Corollary 4.5, and one can find a sequence of points $(\beta_n)_{n \in \mathbb{N}}$ herein which also converges to the point α .

Let P_{∞} be a panel of C_{∞} . The sequence $(P_{\beta_n})_{n \in \mathbb{N}}$ of parallel sector-panels forms a Cauchy sequence in the panel tree $T(P_{\infty})$, contained in an open half-line. Using the completeness of this tree, we can embed this open half-line into a closed half-line, and then into to an apartment (essentially using Lemma 2.1), and find a chamber C'_{∞} in Λ_{∞} containing P_{∞} such that the germs of the sectors C_{β_n} and C'_{β_n} are not the same for all $n \in \mathbb{N}$. It follows that the germs of the sectors C_{α} and C'_{α} are not the same, but adjacent, having the germ of the sector-panel P_{α} in common.

Repeating this algorithm one can obtain two sectors based at α with at infinity chambers of Λ_{∞} and opposite germs, but this is in contradiction with Corollary 4.8 and $\alpha \notin \Lambda$. This proves the second main result.

References

- P. Abramenko and K. S. Brown, *Buildings*. Graduate Texts in Math. 248, Springer, New York 2008. Zbl 05288866 MR 2439729
- [2] A. Balser, Polygons with prescribed Gauss map in Hadamard spaces and Euclidean buildings. Canad. Math. Bull. 49 (2006), 321–336. Zbl 1114.53030 MR 2252255
- [3] A. Balser and A. Lytchak, Centers of convex subsets of buildings. Ann. Global Anal. Geom. 28 (2005), 201–209. Zbl 1082.53032 MR 2180749
- [4] A. Berenstein and M. Kapovich, Affine buildings for dihedral groups. Preprint 2008. arXiv:0809.0300
- [5] F. Bruhat and J. Tits, Groupes réductifs sur un corps local. Inst. Hautes Études Sci. Publ. Math. 41 (1972), 5–251. Zbl 0254.14017 MR 0327923
- [6] B. Kleiner and B. Leeb, Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings. *Inst. Hautes Études Sci. Publ. Math.* 86 (1997), 115–197. Zbl 0910.53035 MR 1608566
- [7] B. Leeb and C. Ramos-Cuevas, The center conjecture for spherical buildings of types F_4 and E_6 . Preprint 2009. arXiv:0905.0839
- [8] B. Mühlherr and J. Tits, The center conjecture for non-exceptional buildings. J. Algebra 300 (2006), 687–706. Zbl 1101.51004 MR 2228217
- [9] C. Parker and K. Tent, Convexity in buildings. Oberwolfach Rep. 5 (2008), 151–152.
- [10] A. Parreau, Immeubles affines: construction par les normes et étude des isométries. In *Crystallographic groups and their generalizations* (Kortrijk, 1999), Contemp. Math. 262, Amer. Math. Soc., Providence, RI, 2000, 263–302. Zbl 1060.20027 MR 1796138

K. Struyve

- [11] C. Ramos-Cuevas, The center conjecture for thick spherical buildings. Preprint 2009. arXiv:0909.2761
- [12] K. Struyve and H. Van Maldeghem, Two-dimensional affine ℝ-buildings defined by generalized polygons with non-discrete valuation, *Pure Appl. Math Q.* **7** (2011), 923–968.
- [13] J. Tits, Immeubles de type affine. In *Buildings and the geometry of diagrams* (Como, 1984), Lecture Notes in Math. 1181, Springer, Berlin 1986, 159–190. Zbl 0611.20026 MR 0843391

Received August 30, 2009; revised January 12, 2010

K. Struyve, Department of Pure Mathematics and Computer Algebra, Ghent University, Krijgslaan 281 - S22, 9000 Gent, Belgium E-mail: kstruyve@cage.ugent.be