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Abstract. This paper investigates the asymptotic behaviour of the minimal number of gener-
ators of finite index subgroups in residually finite groups. We analyze three natural classes of
groups: amenable groups, groups possessing an infinite soluble normal subgroup and virtually
free groups. As a tool for the amenable case we generalize Lackenby’s trichotomy theorem on
finitely presented groups.
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1. Introduction

Let � be a finitely generated group. A chain in � is a decreasing infinite sequence
� D �0 > �1 > � � � of subgroups of finite index in � . The chain is normal if all �n

are normal in � .
For a group � let d.�/ denote the minimal number of generators (or rank) of � .

For a subgroup H � � of finite index let

r.�; H/ D .d.H/ � 1/=j� W H j;
and let the rank gradient of � with respect to the chain .�n/ be defined as

RG.�; .�n// D lim
n!1 r.�; �n/:

This notion has been introduced by Lackenby [6].
In a previous paper [1] the first and third authors investigated the rank gradient

using analytic tools, namely, the theory of cost. This tool is applicable only if the
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chain .�n/ is normal or more generally satisfies the Farber condition (that is, if the
action of the group on the boundary of the associated coset tree is essentially free). A
central problem discussed there is whether the rank gradient depends on the choice
of normal chain, assuming that it approximates the group. This is still unknown.

The aim of this paper is to present some results on rank gradient that can be proved
by elementary methods; that is, using just group theory and combinatorics.

Our first three results do not assume that the chain is normal. For non-normal
chains they are new and stronger than what we can show using cost.

Theorem 1. Let � be a finitely presented infinite amenable group and let .�n/ be an
arbitrary chain in � . Then RG.�; .�n// D 0.

This has been proved by Lackenby [6] for normal chains. The extension to arbi-
trary chains relies on a mild generalization of Lackenby’s method plus a new ingre-
dient, the concept of strong ergodicity for group actions discussed in Section 2. Note
that the finite presentation assumption is necessary in Theorem 1, even for normal
chains. Indeed, let � D C2 o Z be the lamplighter group and let �n be the normal
subgroup such that �=�n Š C2n . Then it is easy to see that �n has a quotient equal to
C 2n

2 and so RG.�; .�n// � 1. However, we do not know the answer to the following.

Question 2. Let � be a finitely generated infinite amenable group and let .�n/ be a
chain in � with trivial intersection. Is RG.�; .�n// D 0?

In Theorem 4 we answer this question affirmatively for groups containing an
infinite soluble normal subgroup.

Theorem 1 is a corollary of the following generalization of Lackenby’s theorem
([6], Theorem 1.1).

Theorem 3. Let � be a finitely presented group and let .�n/ be an arbitrary chain
in � . Then at least one of the following holds:

1) the boundary action of � with respect to .�n/ is strongly ergodic;

2) RG.�; .�n// D 0;

3) there exists n such that �n is a non-trivial amalgamated product.

A group � is a nontrivial amalgamated product A1 �A3
A2 if the subgroup A3 D

A1 \ A2 is not equal to neither of A1 or A2 and has index at least 3 in one of them.
Compared to Lackenby’s original theorem there are two new components in Theo-

rem 3. First, part 3) of Lackenby’s theorem allows the possibility that �n is an HNN
extension – we can exclude that case.

Second, and more important, the strong ergodicity condition replaces property (� ).
This is what allows us to prove Theorem 1 for non-normal chains. Strong ergodicity
is weaker requirement in general than property (� ), it is known that for normal chains
the two conditions are equivalent by work of the first author and Elek [2].
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From now on we will concentrate on the case when the chain has trivial intersec-
tion.

Theorem 4. Assume that � has an infinite soluble normal subgroup. Then � has
rank gradient zero with respect to any chain with trivial intersection.

Using cost, it is proved in [1] that if � has an infinite normal amenable subgroup,
then the rank gradient vanishes for normal chains with trivial intersection. However
note that when the chain is not normal Theorem 4 does not follow from the results
of [1] since the connection between cost and rank gradient established there cannot
be applied.

In the second half of the paper we concentrate on the case when the chain is
normal, in which case stronger results are obtained. Many of the results here were
known previously, however our methods are more elementary and in particular we
do not use any analytic tools.

Theorem 5. Finitely generated infinite amenable groups have rank gradient zero
with respect to any normal chain with trivial intersection.

Theorem 5 follows from the following result of B. Weiss [15]. Recall that if N

is a subgroup of a group � then a (left) transversal of N in � is a complete set of
representatives of cosets fgN W g 2 �g.

Theorem 6. Let � be an amenable group generated by a finite set S and let .�n/ be
a normal chain in � with trivial intersection. Then for each " > 0 there exists k 2 N
and a transversal T of �k in � such that

jTS n T j < " jT j .
We will provide a short proof for this result of Weiss. His original proof is a

version of the Orenstein–Weiss quasitiling lemma; ours is more algebraic and may
be interesting for further applications.

Now we look at the behaviour of r.�; �n/ over chains. It turns out that virtually
free groups can be characterized as those � for which r.�; �n/ stabilizes on normal
chains .�n/.

Theorem 7. Let � be a finitely generated residually finite group.

i) If � is virtually free and .�n/ is a normal chain in � with trivial intersection,
then there exists k such that r.�; �i / D r.�; �k/ (for all i � k).

ii) If .�n/ is a chain of (not necessarily normal) subgroups of � with trivial
intersection such that the sequence r.�; �n/ stabilizes, then � is virtually free.

Next, we investigate the rank gradient of free products with amalgamation. For
free products, we obtain the following equality.
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Proposition 8. Let G1 and G2 be finitely generated, residually finite groups. Let
.Ni / be a normal chain in G1 ? G2 and put N1;i D Ni \ G1; N2;i D Ni \ G2. Then

RG.G1 ? G2; .Ni // D RG.G1; .N1;i // C RG.G2; .N2;i // C 1:

The second theorem is very general, but it only gives an inequality.

Proposition 9. Let � be a residually finite group generated by two finitely generated
subgroups G1 and G2 such that their intersection is infinite. Then

RG.�; .�n// � RG.G1; .G1 \ �n// C RG.G2; .G2 \ �n//

for any normal chain .�n/ in � . In particular, if G1 and G2 have vanishing rank
gradient with respect to any normal chain then so does � .

Besides cost, the rank gradient is related to another important group invariant of
� , the first L2 Betti number ˇ

.2/
1 .�/. We have

RG.�; .�n// � cost.�/ � 1 � ˇ
.2/
1 .�/:

for any normal chain .�n/ in � with trivial intersection. In all the known cases so far
these three numbers coincide.

There are important cases where the vanishing of the first L2 Betti number is
known but not the cost or the rank gradient. For instance, groups with Kazhdan
property (T) have first L2 Betti number equal to 0 (see [3]).

Conjecture 10. If � has property (T) and is infinite then RG.�; .�n// D 0 for any
normal chain .�n/ in � with trivial intersection.

A group � is said to be boundedly generated if it can be written as the product of
finitely many of its cyclic subgroups � D hg1i�hg2i : : : hgt i. Examples of boundedly
generated groups are arithmetic groups with the congruence subgroup property, like
SL.d; Z/ (d > 2) see [14]. For many of these it follows from the results in [12]
that they have vanishing rank gradient for any normal chain. We conjecture that in
general the rank gradient of boundedly generated residually finite groups is zero. In
this direction we can show the following.

Proposition 11. If � is an infinite finitely presented residually finite boundedly gen-
erated group then the first L2 Betti number of � is zero.

The organization of the paper is as follows. In Section 2 we recall the Reide-
meister–Schreier theorem and define coset trees and strong ergodicity. Theorems 3
and 1 are proved in Section 3. Section 4 contains the proof of Theorems 5 and 6.
Theorem 4 is proved in Section 5 and Theorem 7, Proposition 8 and 9 are proved
in Section 6. Finally in Section 7 we give a short proof of Lück’s approximation
theorem for amenable groups over arbitrary fields and prove Proposition 11.
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2. Preliminaries

First we recall the notion of Schreier graphs and the Reidemester–Schreier theorem.
Let � be a group generated by a finite set S and H a subgroup of finite index. Then the
Schreier graph � D �.�; H; S/ for � relative to H with respect to S is an oriented
graph defined as follows:

1. The vertices of � are the left cosets of H in � , that is V.�/ D fgH j g 2 �g.

2. The set of edges E.�/ is f.gH; sgH/ j g 2 �; s 2 Sg.

For a subset A of V.�/ we denote by @A the set of edges that connects A and its
complement Ac in V.�/. It is clear that any path in the Schreier graph corresponds
to a word in � which is a product of some si , where si 2 S [ S�1.

Let T be a left transversal for H in G. If g 2 G, define by Qg the unique t 2 T

such that gH D tH . If e D .gH; sgH/, s 2 S , is an edge of the Schreier graph
� D �.�; H; S/, then we put T .e/ D .esg/�1s Qg and T . Ne/ D Qg�1s�1 esg D T .e/�1.
It is known that fT .e/g generate H .

In this paper we will work mostly with so called Schreier transversals with respect
to S for H in � . To define them, fix a maximal tree T embedded in �. Then for
any g 2 � there exists a unique path from H to gH . Let T be the set of all words
corresponding to these paths. It is clear that T is a left transversal for H in � . We
call this transversal, the Schreier transversal with respect to S corresponding to T .
Note that T .e/ D 1 if e 2 E.T /.

Now, let us assume that F is a finitely generated free group and S is a set of its free
generators. Let H be a subgroup of F of finite index and put � D �.F; H; S/. Let
N be a normal subgroup of F contained in H and generated (as a normal subgroup)
by a finite set R. Thus, F=N Š hS j Ri. Let T be a right Schreier transversal for H

in F corresponding to a maximal subtree T of �. We want to write a presentation
of H=N using the generators T .e/. Take a relation of F=N , r D sl : : : s1 2 R,
where si 2 S [ S�1 and let t 2 T . Then rt D t�1rt is an element of H and
we can rewrite rt as a product of l elements T .e/: rt D T .el/ : : : T .e1/, where
e1 D .tH; s1tH/; : : : ; el D .sl�1 : : : s1tH; tH/. Recall that T .e/ D 1 if e 2
E.T /, whence we can rewrite rt as product of at most l elements T .e/˙1 with
e 2 E.�/ n E.T /. It is a known fact that H=N has the following presentation:

H=N Š ˝fT .e/ge2E.�/nE.T / j frtgr2R;t2T

˛
: (1)

Now we define boundary actions with respect to a chain. Let .�n/ be a chain in � .
Then the coset tree T D T .�; .�n// of � with respect to .�n/ is defined as follows.
The vertex set of T equals

T D fg�n j n � 0; g 2 �g
and the edge set is defined by inclusion, that is,

.g�n; h�m/ is an edge in T if m D n C 1 and g�n � h�m:
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Then T is a tree rooted at � and every vertex of level n has the same number of
children, equal to the index j�n W �nC1j. The left actions of � on the coset spaces
�=�n respect the tree structure and so � acts on T by automorphisms.

The boundary @T of T is defined as the set of infinite rays starting from the root.
The boundary is naturally endowed with the product topology and product measure
coming from the tree. More precisely, for t D g�n 2 T let us define Sh.t/ � @T ,
the shadow of t as

Sh.t/ D fx 2 @T j t 2 xg
the set of rays going through t . Set the base of topology on @T to be the set of
shadows and set the measure of a shadow to be

�.Sh.t// D 1= j� W �nj :

This turns @T into a totally disconnected compact space with a Borel probability
measure �. The group � acts ergodically on @T by measure-preserving homeomor-
phisms; we call this action the boundary action of � with respect to .�n/. See [4]
where these actions were first investigated in a measure theoretic sense.

Let � act on a probability space .X; �/ by measure preserving maps. A sequence
of subsets An � X is almost invariant, if

lim
n!1 �.AnnAn�/ D 0 for all � 2 �:

The sequence is trivial, if limn!1 �.An/.1 � �.An// D 0. We say that the action is
strongly ergodic, if every almost invariant sequence is trivial.

In general, spectral gap implies strong ergodicity, but not the other way round.
For a chain of subgroups .�n/ in � , spectral gap is equivalent to Lubotzky’s property
(� ), while strong ergodicity means that large subsets of �=�n expand, but we do not
know what happens to small subsets.

In this paper, we will use the following two results on strongly ergodic actions
and amenability. The first is by Schmidt ([10], Theorem 2.4).

Theorem 12. Let � be a countable amenable group acting on a standard Borel prob-
ability space by measure preserving maps. Then the action is not strongly ergodic.

The second result is from the first author and Elek [2].

Lemma 13. Let � be a group generated by a finite symmetric set S and let .�n/ be
a chain in � such that the boundary action of � with respect to .�n/ is not strongly
ergodic. Then for all " > 0 and ˛ > ", for all sufficiently large n there exists a subset
A � �=�n such thatˇ̌̌

ˇ jAj
j� W �nj � ˛

ˇ̌̌
ˇ < " and jAS n Aj < " jAj .
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3. Finitely presented amenable groups

First we explain the general strategy that we use to represent a finitely presented group
as an amalgamated free product. Let H D hSH j RH i be a finite presentation of
a group H . We assume that any generator from SH appears at least once in some
relation from RH . Suppose RH is presented as a union of two subsets R1 and R2.
Denote by Si (i D 1; 2) the generators from S which appears in the words from Ri .
Put S3 D S1 \ S2 and R3 D R1 \ R2. Denote by Ti (i D 1; 2; 3) the group with
the following presentation hSi j Ri i and let Hi (i D 1; 2; 3) be the subgroup of H

generated by Si . It is clear that Hi is a quotient of Ti .
There are two natural homomorphisms �1 W T3 ! T1 and �2 W T3 ! T2 which

need not be injective. Then H is isomorphic to the pushout of the following diagram:

T3
�1 ��

�2

��

T1

T2

By the universal property of pushouts, H1 �H3
H2 is a homomorphic image of H .

Hence we have the isomorphism H Š H1 �H3
H2. Of course, in most situations this

method gives us a trivial amalgamated free product (i.e. H3 D H1 or H3 D H2).
Now we give a variation of the previous construction. Suppose that � D hS j Ri

and H is a subgroup of finite index � . Let � D �.�; H; S/, T a maximal tree in
� and T the Schreier transversal for H in � corresponding to T . Then H has the
following presentation (see (1)).

H Š ˝fT .e/ge2E.�/nE.T / j fr Qggr2R; Qg2T

˛
:

We want to use the construction described in the previous paragraph. For this we
have to represent the set RH D fr Qggr2R; Qg2T as a union of two subsets.

Let A be a subset of V.�/ and define RH .A/ be the set of relations r Qg D
T .e1/˙1 : : : T .el/

˙1 such that for some 1 � i � l one of the end points of ei lies in
A. Then it is clear that RH D R1 [ R2 where R1 D RH .A/ and R2 D RH .Ac/. If
all generators from SH D fT .e/ge2E.�/nE.�/ appears at least once in some relation
from RH , then using the construction from the previous paragraph we obtain the
decomposition H Š H1 �H3

H2. If a generator T .e/ does not appear in any relation
then we add it to S1 if e connects two elements from A, to S2 if e connects two
elements from Ac and to S1 and S2 if e is contained in @A. In this case we obtain
again H Š H1 �H3

H2.
There is an easy description of the generating sets Si of Hi (i D 1; 2; 3). Let X1

consists of elements T .e/ such that the both end points of e are in A, X2 consists of
elements T .e/ such that the both end points of e are in Ac and X3 consist of elements
T .e/ such that either e 2 @A or there exists a relation r Qg D T .e1/˙1 : : : T .el/

˙1 for
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which some ei 2 @A and some ej is equal to e. Then we obtain that S1 D X1 [ X3,
S2 D X2 [ X3 and S3 D X3.

We are ready to prove the modified trichotomy result of Lackenby.

Proof of Theorem 3. We assume that � does not satisfy 1) and 2) and will show that
then 3) holds. Since for i � j we have

d.�j / � 1 � d.�i / � 1

j�j W �i j
the sequence .d.�i / � 1/= j� W �i j is non-increasing. Thus, using RG.�; .�n// > 0

and changing (if needed) � by �j we may assume that

d.�i / � 1 � 3j� W �i jd.�/

4

for all i .
Fix a finite presentation � D hS j Ri such that jS j D d.�/. Let L be the sum of

the lengths of elements from R. Since the boundary action of � with respect to .�n/

is not strongly ergodic, using Lemma 13 there exist i and A 2 V.�.�; �i ; S// such
that

1. j�W�i j
4

< jAj < j�W�i j
2

, and

2. j@Aj < 1
2.1CL2/

jAj:
Put H D �i and � D �.�; H; S/. Fix a maximal tree T in � and let T be the

right Schreier transversal corresponding to this tree.
Now we apply the construction described at the beginning of this section. We

obtain that H is isomorphic to an amalgamated free product of H1 �H3
H2. We will

prove that H3 has index at least 4 in both H1 and H2. We use the previous notation,
so H1 is generated by S1 D X1 [ X3, H2 is generated by S2 D X2 [ X3 and H3 is
generated by S3 D X3.

Suppose that H1 has index at most 3 in H3. Then H is generated by H2 and at
most one other element and so d.H/ � d.H2/ C 1. It is easy to see that

jX2j � jS jjAcj � jAcj C 1 D .d.�/ � 1/jAcj C 1 <
3.d.�/ � 1/jV.�/j

4
C 1:

Let r D sl : : : s1 be a relation of � of length l . Note that there are at most l j@Aj
different lifts r Qg D T .e1/˙1 : : : T .el/

˙1 of r for which some ei 2 @A. And also for
each such relation of H we have at most l generators T .e/ of H which are getting
into X3. Thus, if flig is the set of the lengths of the relations of � (so L D P

li /),
then we have that

jS3j D jX3j � j@Aj.1 C
X

l2
i / � j@Aj.1 C L2/ � jV.�/j

2
:
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Thus, we obtain that

3d.�/jV.�/j
4

C1 � d.H/ � jX2jCjX3jC1 <
3.d.�/ � 1/jV.�/j

4
C2C jV.�/j

2
:

This is a contradiction when jV.�/j > 8 and therefore jH1 W H3j > 3. In the
same way we obtain that jH2 W H3j > 3.

Proof of Theorem 1. Using Theorem 13, the boundary action of � with respect to
.�n/ is not strongly ergodic. Since � is amenable, it is not virtually a nontrivial
amalgamated product. Using Theorem 3 now, we get that 2) must hold, that is,
RG.�; .�n// D 0.

4. Normal chains in amenable groups

In this section it will be sometimes convenient to work with multisets instead of sets.
If S is a multiset then jS j denotes the total number of elements of S counted with
repetitions.

Let � be a group generated by a finite multiset S and A a finite multisubset of � .
The boundary of A with respect to S is the multiset

@S .A/ D f.a; sa/ j a 2 A; s 2 S; sa 62 Ag:
We say that A is "-invariant (with respect to S ) if j@S .A/j � "jS jjAj. Recall that
� is amenable if for each n there exists a sequence fAng of finite subsets of � such
that An is an-invariant and limn!1 an D 0. We say that fAng is a Følner sequence.
It is easy to see that the definitions of the amenability and a Følner sequence do not
depend on the generating multiset S .

Next we proceed with a general lemma on coverings.

Lemma 14. Let G be a compact topological group with normalised Haar measure
� and let A � G be a measurable subset of positive measure. For a natural number
k let

cov.A; k/ D max
X�G
jX jDk

�.AX/

where
AX D fax j a 2 A; x 2 Xg :

Then
cov.A; k/ � 1 � .1 � �.A//k :

In particular, for k D d1=�.A/e we have

cov.A; k/ > 1 � 1

e
:
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Proof. First, the definition makes sense, since the maximum is always achieved by
compactness. We prove the statement using induction on k. For k D 1 the statement
is trivial.

Assume the lemma holds for k � 1; this implies that there exists a subset X � G

of size k � 1 such that �.AX/ � 1 � .1 � �.A//k�1. Let B D AX and let us define
the subset

U D f.a; g/ 2 G 	 G j a 2 A; ag 2 Bg :

Now U is measurable in G 	 G and using Fubini’s theorem we have

�2.U / D
Z

a2A

�.a�1B/ D �.A/�.B/

where �2 denotes the product measure on G 	 G. Now using Fubini’s theorem from
the other side gives

�2.U / D
Z

g2G

�.Ag \ B/:

If for all g 2 G we have �.Ag \ B/ > �.A/�.B/ then

�.A/�.B/ D
Z

g2G

�.Ag \ B/ > �.A/�.B/;

a contradiction (we used �.G/ D 1). So there exists g 2 G such that

�.Ag \ B/ � �.A/�.B/

which implies �.AgnB/ � �.A/ � �.A/�.B/. Now let X 0 D X [ fgg. For this X 0
we have

�.AX 0/ D �.B/ C �.AgnB/ � �.B/.1 � �.A// C �.A/ � 1 � .1 � �.A//k

using �.B/ � 1 � .1 � �.A//k�1. So the statement of the lemma holds.
Finally setting k D d1=�.A/e we have

cov.A; k/ � 1 � .1 � �.A//k � 1 � .1 � �.A//1=�.A/ > 1 � 1

e

using 0 < �.A/ � 1.

Note that for finite groups one can get a slightly better estimate using that the
intersection has integer size. What we really need here is an absolute constant greater
than 1

2
.

Proof of Theorem 6. The proof consist of two steps. First we will show that there
exists a c-invariant transversal for some c < 1, and then iterating the first step k times
we will obtain ck-invariant transversal.
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Step 1. Let ı D 0:1
1:1�e and let A be a ı-invariant set with respect to S . Since the

intersection of �i is trivial there exists j 2 N such that the projections Na D a�j

of the elements a 2 A in x� D �=�j are all different and jx�j
jAj > 10. Now applying

Lemma 14, we obtain that there exists a subset X of � of size d jx�j
jAje (in particular,

jx�j � jAjjX j � jx�j C jAj � 1:1jx�j) such that the size of the set AX is at least
.1� 1

e /jx�j. Let B be a subset of the set AX such that xB D AX . So jBj � .1� 1
e /jx�j

and jAX j � jBj � jAjjX j � .1 � 1
e /jx�j: Thus we obtain that

j@S .B/j � j@S .AX/j C jS j.jAX j � jBj/ � jS jjAjjX j.ı C 1/ � .1 � 1
e /jx�j

� jS jjx�j.1:1 � ı C 0:1 C 1
e / � jS j jBj

1 � 1
e

.1:1 � ı C 0:1 C 1
e /

� 1:4
e�1

jS jjBj:

We may add some jx�j � jBj elements to B and obtain a transversal T for �j in � .
Then

j@S .T /j � j@S .B/j C jS j.jT j � jBj/ � jS jjBj. 1:4
e�1

� 1/ C jS jjT j
� jS jjT j.1 � .1 � 1:4

e�1
/.1 � 1

e // D 2:4
e jS jjT j:

Thus, if we put c D 2:4
e we obtain that T is a c-invariant.

Step 2. Now suppose that for some � there is k 2 N and a � -invariant transversal
T1 of �k in � . Using the previous step we will show that there exists l � k and a
c� -transversal T for �l in � .

If g 2 � denote by Qg the unique element from T1 such that g�k D Qg�k . Denote
by S1 the multiset f. zst/�1st j .t; st/ 2 @S .T1/g. Then S1 is a generating multiset of
�k . By the previous step, there is l � k and a transversal T2 for �k in �l which is
c-invariant with respect to S1. Put T D T1T2. Let s 2 S , t1 2 T1 and t2 2 T2. Then
for the pair .t1t2; st1t2/ to be in @S .T / it is necessary that .t1; st1/ 2 @S .T1/ holds
together with .t2; . �st1/�1st1t2/ 2 @S1

.T2/.
Hence

j@S .T /j D j@S1
.T2/j � cjS1jjT2j � c� jS jjT1jjT2j D c� jS jjT j:

Iterating this process we find for any k 2 N a transversal T to some �j which is
ck-invariant with respect to S and Theorem 6 is proved.

Now Theorem 5 follows from Theorem 6 trivially by noting that the Schreier set
f. zst/�1st j .t; st/ 2 @S .T /g for the transversal T from Theorem 6 is a generating set
for �k of size j@S .T /j � "j� W �kjjS j.
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5. Groups with a soluble normal subgroup

In this section we prove Theorem 4. We start with two preliminary results.

Proposition 15. Let � be a group which has a sequence of finite normal subgroups
Ai such that jAi j ! 1. Then RG.�; .�j // D 0 for any chain .�j / in � with trivial
intersection.

Proof. Let d D d.�/. Suppose jAi j D ai and let H D �j be a member of the
chain .�i / of � , such that Ai \ �j D 1. If j� W AiH j D a then j� W H j D aai and
AiH can be generated by .d � 1/a C 1 � da elements. Therefore same holds for
its homomorphic image H , and so r.�; �j / � d

ai
. Since ai ! 1 as i increases we

get RG.�; .�i // D 0.

Lemma 16. Let � be a d -generated group and N a Z�-module generated by t

elements as a module over Z� . Suppose that N0 � N is a Z�-submodule of index b.
Then N0 can be generated by at most t C .2d C 1/ log b elements as a Z�-module.

We postpone the proof to the end of this section and move to

Proof of Theorem 4. Suppose .�i / is a chain with trivial intersection in a group �

which has an infinite soluble normal subgroup, call it S . Consider the last infinite term
A of the derived series of S . Then A0 is finite and it is easy to see that RG.�; �i / D 0

if and only if RG.�; .�i // D 0 where �i D �iA
0=A0 and � D �=A0.

Hence by considering �=A0 in place of � we may assume that A0 D 1 and � has
an infinite abelian normal subgroup A.

Case 1. Suppose that the normal closure of every element of A is finite. Then we can
find a sequence Ai of finite subgroups Ai of A, all normal in � , such that jAi j ! 1.
By Proposition 15 we are done.

Case 2. Suppose that A has an element whose normal closure in � is infinite. Without
loss of generality we may assume that A is a principal, i.e., 1-generated �-module.
For each j 2 N put Mj D A \ �j and x�j D A�j . Suppose that j� W x�j j D aj and
jA W Mj j D bj , so that j� W �j j D aj bj . Let d D d.�/. It follows that d.x�j / < aj d

and therefore the same is true for x�j ' �j =Mj . Let �j D hh1; : : : ; hpiMj with
p < aj d .

Since A is a principal �-module it is aj -generated as a �j -module. Now Mj is a
�j invariant subgroup of A of index bj . By Lemma 16 Mj is generated by at most

aj C .2d.x�j / C 1/ log bj elements as a module over x�j . Let Mj D hn1; : : : ; nqix�j

with q � aj C .2daj C 1/ log bj .
We claim that hh1; : : : ; hp; n1; : : : ; nqi D �j . Indeed, A acts trivially by con-

jugation on Mj and hh1; : : : ; hpiA D �j . Therefore Mj D hn1; : : : ; nqix�j D
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hn1; : : : ; nqihh1;:::;hpi, while �j D hh1; : : : ; hpiMj . It follows that d.�j / � p C q

and hence
d.�j / � 1

j� W �j j � p C q

aj bj

<
d

bj

C 1 C .2d C 1/ log bj

bj

:

Since
T

j �j D f1g the index bj D jA W A \ �j j ! 1 with j and so the right hand
side tends to 0.

This completes Case 2 and the proof of Theorem 4.

Proof of Lemma 16. First we shall prove the lemma in the special case when t D 1,
i.e. N is a principal Z� module. Without loss of generality we can assume that
N D Z� . Let hg1; : : : ; gd i D � .

Pick f1; : : : ; fs 2 N whose images in N=N0 generate it as an abelian group and
such that s � log b. Let K D hf1; : : : ; fsi � N and let K0 D K \ N0. It follows
that the abelian group K0 can be generated by at most s elements, say c1; : : : ; cs 2 N .
Since N D K C N0 there exists e 2 K such that 1 � e 2 N0. Moreover, for each
pair of indices .i; j / with 1 � i � d , 1 � j � s and each 	 2 f˙1g there exists
ei;j;� 2 K such that

fj � g�
i � ei;j;� 2 N0: (2)

Let M be the Z�-submodule of N generated by the 1C.2d C1/s elements 1�e,
fckg, and ffj � g�

i � ei;j;�g. We claim that M D N0.
It is clear that M � N0. For the opposite direction we first show that N D KCM .

It is enough to prove that each g 2 � 
 Z� D N is in K C M . When g D 1 we
have 1 D e C .1 � e/ with e 2 K and 1 � e 2 M . Observe that the elements (2) of
M give K � g�

i � K C M . Now g D 1 � g � e � g mod M and use induction on the
length of the shortest expression of g as a product of g˙1

i .
Hence N D K C M and so N0 D K0 C M . But K0 D hc1; : : : ; csi � M , hence

K0 � M and N0 D M as claimed. This proves case t D 1 of Lemma 16.
Now we can prove the general case by induction on t . Take a submodule K < M

which is t � 1 generated and M=K is a principal Z�-module. Let b1 be index of
N0 \ K in K and b2 be the index of N0K in N . Then b1b2 D b and we may assume
that K \ N0 is t � 1 C .1 C 2d/ log b1 generated and N0=N0 \ K ' N0K=K is
1 C .1 C 2d/ log b2 generated as Z� modules. Now since N0 is an extension of
N0 \ K by N=.N0 \ K/ it is generated by at most

t � 1 C .1 C 2d/ log b1 C 1 C .1 C 2d/ log b2 D t C .1 C 2d/ log b

elements. Lemma 16 follows.

6. Virtually free groups and free products with amalgamation

We start by analyzing when r.�; �i / stabilizes.
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Proof of Theorem 7. Let ri D r.�; �i /.
i). Assume that � is virtually free. Then by Bass–Serre theory � has only

finitely many conjugacy classes of finite subgroups. As the groups �i are normal
and

T
i �i D f1g there is n 2 N such that �n is torsion free. Now by the Stallings

theorem [13] every torsion free virtually free group is free, hence �n is free and then
obviously ri D rn for i � n.

ii). Now assume that ri D rn for all i � n. By considering �n in place of � we
may assume that n D 0 and ri D d.�/ � 1 for all i � 0. We show that � is free.

Let d D d.�/ and let � D hSi, where S D fs1; : : : ; sd g. Consider the free
group F on d free generators x1; : : : ; xd and the epimorphism f W F ! � given
by f .xi / D si . We claim that f is an isomorphism. Assume not. Let w D
x

�k

ik
x

�k�1

ik�1
: : : x

�1

i1
be the shortest nontrivial word in ker f .

Consider the segments wj D x
�j

ij
x

�j �1

ij �1
: : : x

�1

i1
for 1 � j � k. The choice of w

gives that the k elements f .wj /, j D 1; : : : ; k of � are all different and therefore
there exists an integer m such that f .wj /�1f .wi / 62 �m for all 1 � i 6D j � m. Put
H D �m, and let � D �.�; H; S/. Fix the left Schreier transversal T of H in �

corresponding to a maximal tree T . Then by the choice of �m we may write f .w/

as a product of elements from fT .e/, e 2 E.�/g, f .w/ D T .eik /�k : : : T .ei1/�1 , in
such way that all eij are different. There exist j such that eij is not in E.T /, whence
we obtain that T .eij / may be expressed in terms of other generators fT .e/; e 2
E.�/nE.T /g of H . It follows that d.�m/ < .d �1/ j� W �mjC1 and so rm < d �1,
a contradiction. Hence � is free.

Now we discuss the rank gradient of free products with amalgamation.

Proof of Proposition 8. Let N be a normal subgroup of index n in � D G1 ? G2 and
denote Nj D N \ Gj . Suppose that jGj W Nj j D jGj N W N j D kj . The Bass–Serre
theory gives us the structure of N : it is a free product of n=k1 copies of N1 with
n=k2 copies of N2 and a free group of rank n � n

k1
� n

k2
C 1. (See the proof of

Proposition 9 below where a similar computation is given in the case of an amalgam.)
By the Grushko–Neumann theorem (see Proposition 3.7 in [8]) we have

d.N / D n

k1

d.N1/ C n

k2

d.N2/ C n � n

k1

� n

k2

C 1:

Hence
d.N / � 1

j� W N j D d.N1/ � 1

jG1 W N1j C d.N2/ � 1

jG2 W N2j C 1:

Taking the group N to range over the normal chain .�i / Proposition 8 follows.

Proof of Proposition 9. Denote by A the intersection of G1 and G2. Let z� D G1 ?A

G2 and let 
 be the natural projection 
 W z� ! � . By a slight abuse of notation we
shall identify the groups G1; G2 and A with their preimages under 
 .
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Let N be a normal subgroup of index n in � and take zN D 
�1.N /. Then
zN \ Gj � z� is isomorphic to N \ Gj � � under 
 . Moreover d.N / � d. zN / and
j� W N j D jz� W zN j so it is enough to obtain an upper bound for .d. zN / � 1/=jz� W zN j.

We use the techniques of Bass–Serre theory, (as explained in [11] for example).
The group z� acts on a tree T with fundamental domain an edge E 
 T with vertices
X1 and X2 such that Gj D Stab�.Xj / and A D Stab�.E/.

Let a D Œ zN A W zN � D jA W .N \ A/j and kj D Œ zN Gj W zN � D ŒGj W .Gj \ zN /�

for j D 1; 2. Then zN is the fundamental group of the graph of groups G D zN nT .
The graph G has Œz� W Gj

zN � D n=kj vertices of type Xj for j D 1; 2, and it has
n=a D Œz� W A zN � number of edges. The stabilizers of vertices of type Xj in G

are isomorphic to zN \ Gj ' N \ Gj (j D 1; 2), and all the edge stabilizers are
isomorphic to zN \ A ' N \ A.

Now by the presentation of the fundamental group of a graph of groups in b),
page 42 of [11], it follows that zN is generated by the stabilizers of the vertices of G

together with elements ty for each edge of G which lies outside some chosen maximal
spanning tree of G . The total number of vertices of G is n=k1 Cn=k2 and the number
of edges is n=a. It follows that

d. zN / � n

k1

d. zN \ G1/ C n

k2

d. zN \ G2/ C n

a
� n

k1

� n

k2

C 1;

and hence

d.N / � 1

Œ� W N �
� d. zN / � 1

Œz� W zN �
� d.N .1// � 1

Œ�1 W N .1/�
C d.N .2// � 1

Œ�2 W N .2/�
C 1

a
:

where for j D 1; 2 we denote N .j / D N \ �j ' zN \ �j .

Now take the subgroup N to range over the normal chain .�i / of � . Then .�
.1/
i /

and .�
.2/
i / are normal chains in G1 and G2, respectively, and the numbers a D jA W

.A \ �i /j tend to infinity with i . The proposition follows.

7. Lück approximation and boundedly generated groups

Lück approximation gives a fast proof for Proposition 11.

Proof of Proposition 11. Let � D hg1i � hg2i : : : hgt i and let .�i / be a normal chain
in � with trivial intersection. Let Ki D � 0

i�
2
i , let Gi D �=�i and let Hi D �=Ki

(i � 0). Since � is infinite, jGi j tends to infinity with i .
Now �i=Ki is an elementary abelian 2-group of rank ri and the exponent exp.Hi /

of Hi is at most 2 jGi j. Hence

jGi j 2ri D jHi j � exp.Hi /
t � .2 jGi j/t
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and so ri � t C .t � 1/ log2 jGi j. Let di denote the first Betti number of �i . Then,
using a theorem of Lück [7], we have

ˇ2
1.�/ D lim

n!1
dn

jGnj � lim
n!1

rn

jGnj � lim
n!1

t C .t � 1/ log2 jGnj
jGnj D 0:

The proposition holds.

We finish the paper by providing a simple proof of a result of Gabor Elek on Lück
approximation over arbitrary field for amenable groups.

Theorem 17. Let K be a field and � a finitely generated amenable group and let
.�i / be a normal chain with trivial intersection in � . Suppose A 2 Mn�m.KŒ��/ is a
matrix over the group algebra KŒ�� and let Ai be the image of A in Mn�m.KŒ�=�i �/

under the quotient map 
i W � ! �=�i . Then

lim
i!1

dimK ker Ai

j� W �i j
exists and does not depend on the choice of the chain .�i /.

It is an important question whether one can omit the amenability assumption in
this result for K D Fp . The proof of the theorem uses the Ornstein–Weiss lemma
proved in [9]. Our exposition of this result is based on a paper of Gromov (see [5],
p. 336).

Lemma 18 (Ornstein–Weiss). Let � be a finitely generated amenable group. Let
h.�/ be a positive function defined on finite subsets � of � such that

1. h is subadditive, i.e.

h.�1 [ �2/ � h.�1/ C h.�2/

for all pairs of finite subsets �1and �2 in �;

2. h is right �-invariant under � ,

h.��/ D h.�/; for all � 2 �:

Then the limit

lim
i!1 h.�i /=j�i j

exists for every Følner sequence �i 
 � . Moreover, this limit does not depend on
the choice of the Følner sequence .�i /.
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Proof of Theorem 17. For any c D P
�2� c�� 2 KŒ�� let supp.�/ be the set f� W

c� ¤ 0g. Let � be a finite subset of � . By b 2 KŒ��m we denote the column vector
.b1; : : : ; bm/T with entries bi 2 KŒ��. We denote the function h as follows

h.�/ D dimKfAb 2 .KŒ��/n W supp.bi / 
 �g:
It is clear that h is subadditive and right invariant. Thus, by the Ornstein–Weiss

lemma, there exists H D limi!1 h.�i /=j�i j for every Følner sequences �i 
 � .
We will see now that the limit from Theorem 17 is equal to m � H .

Since dimK ker Ai= j� W �i j is bounded, in order to prove that the sequence
dimK ker Ai= j� W �i j tends to m � H , it is enough to show the limit of any Cauchy
subsequence of dimK ker Ai= j� W �i j is m � H . Thus, without loss of generality we
may assume that limi!1 dimK ker Ai= j� W �i j exists and we want to show that it is
equal to m � H .

Let S be a generating set of � containing the supports of all the entries of the
matrix A. By Theorem 6, for any " > 0 there exist j and a transversal Tj of �j in �

such that j@STj j � "jTj j. Hence

h.Tj / � dimK ImAj � dimKfa D Ab j supp.bi /; supp.ai / 
 Tj g � h.Tj / � "jTj j
where a D .a1; : : : ; am/T is a column vector in KŒ��m. This implies that

lim
i!1 dimK ker Ai= j� W �i j D m � H:
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