Groups Geom. Dyn. 5 (2011), 251-264 Groups, Geometry, and Dynamics
DOI 10.4171/GGD/126 © European Mathematical Society

Lattices with and lattices without spectral gap
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Abstract. Let G = G (k) be the k-rational points of a simple algebraic group G over a
local field k and let I be a lattice in G. We show that the regular representation pr\g of
G on L?(T'\G) has a spectral gap, that is, the restriction of pr\g to the orthogonal of the
constants in LZ(I"\G) has no almost invariant vectors. On the other hand, we give examples
of locally compact simple groups G and lattices T' for which L?(I"\G) has no spectral gap.
This answers in the negative a question asked by Margulis. In fact, G can be taken to be the
group of orientation preserving automorphisms of a k-regular tree for k > 2.
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1. Introduction

Let G be a locally compact group. Recall that a unitary representation 7 of G on a
Hilbert space # has almost invariant vectors if, for every compact subset Q of G and
every ¢ > 0, there exists a unit vector § € J¢ such that sup,c¢ [|7(x)§ — & <e. If
this holds, we also say that the trivial representation 1 is weakly contained in 7.

Recall that a lattice I" in G is a discrete subgroup such that there exists a finite
G-invariant regular Borel measure © on I'\G. Denote by pr\ the unitary rep-
resentation of G given by right translation on the Hilbert space L?(I'\G, u) of the
square integrable measurable functions on I"'\ G. The subspace C 11\ of the constant
functions on '\ G is G-invariant as well as its orthogonal complement

L3T\G) = {§ € LAM\G) | [, ; EC)dpu(x) = 0.

Denote by ,oIQ\G the restriction of pr\g to L3(I'\G, ). We say that pr\g (or
L?(T'\G, w))has aspectral gap if p%\ ¢ has no almost invariant vectors. (In [Marg91],
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Chapter I11, 1.8, T is then called weakly cocompact.) It is well-known that L2(I'\G)
has a spectral gap when I' is cocompact in G (see [Marg91], Chapter III, 1.10).
Margulis (op.cit., 1.12) asks whether this result holds more generally when I is a
subgroup of finite covolume.

The goal of this note is to prove the following results:

Theorem 1. Let G be a simple algebraic group over a local field k and G = G (k),
the group of k-rational points in G. Let I be a lattice in G. Then the unitary
representation pr\g on L>(U\G) has a spectral gap.

Theorem 2. For an integer k > 2, let X be the k-regular tree and G = Aut(X).
Then G contains a lattice T' for which the unitary representation pr\g on L*>(T'\G)
has no spectral gap.

So Theorem 2 answers in the negative Margulis’ question mentioned above.

Theorem 1 is known in case k = R ([Bekk98]). It holds, more generally, when G
is a real Lie group ([BeCo008]). Observe also that when k — rank(G) > 2, the group
G has Kazhdan’s Property (T) (see [BHV]) and Theorem 1 is clear in this case. When
k is non-archimedean with characteristic 0, every lattice I" in G (k) is uniform (see
[Serr], p. 84) and hence the result holds as mentioned above. By way of contrast, G
has many non uniform lattices when the characteristic of k is non zero (see [Serr] and
[Lubo91]). So, in order to prove Theorem 1, it suffices to consider the case where
the characteristic of k is non-zero and where k — rank(G) = 1.

Recall that when k is non-archimedean and k — rank(G) = 1, the group G (k)
acts by automorphisms on the associated Bruhat-Tits tree X (see [Serr]). This tree
is either the k-regular tree X (in which every vertex has constant degree k) or is the
bi-partite bi-regular tree Xj x, (Where every vertex has either degree ko or degree
k1 and where all neighbours of a vertex of degree k; have degree k1—; ). The proof
of Theorem 1 will use the special structure of a fundamental domain for the action of
I on X as described in [Lubo91] (see also [Ragh89] and [Baum03]).

Theorems 1 and 2 provide a further illustration of the different behaviour of
general tree lattices as compared to lattices in rank one simple Lie groups over local
fields; for more on this topic, see [Lubo95].

The proofs of Theorems 1 and 2 will be given in Sections 3 and 4; they rely
in a crucial way on Proposition 6 from Section 2, which relates the existence of a
spectral gap with expander diagrams. In turn, Proposition 6 is based, much in the
spirit of [Broo81], on analogues for diagrams proved in [Mokh03] and [Morg94] of the
inequalities of Cheeger and Buser between the isoperimeric constant and the bottom of
the spectrum of the Laplace operator on a Riemannian manifold (see Proposition 5).
This connection between the combinatorial expanding property and representation
theory is by now a very popular theme; see [Lubo94] and the references therein. While
most applications in this monograph are from representation theory to combinatorics,
we use in the current paper this connection in the opposite direction: the existence or
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absence of a spectral gap is deduced from the existence of an expanding diagram or
of a non-expanding diagram, respectively.

2. Spectral gap and expander diagrams

We first show how the existence of a spectral gap for groups acting on trees is related
with the bottom of the spectrum of the Laplacian for an associated diagram.

A graph X consists of a set of vertices VX, a set of oriented edges EX, a fix-point
free involution ~: EX — EX, and end point mappings d; : EX — VX fori = 0,1
such that d;(e) = d1—;(e) for all e € EX. Assume that X is locally finite, that is, for
every x € VX, the degree deg(x) of x is finite, where deg(x) is the cardinality of the
set

95 (x) = {e € EX | dg(e) = x}.

The group Aut(X) of automorphisms of the graph X is a locally compact group in
the topology of pointwise convergence on X, for which the stabilizers of vertices are
compact open subgroups.

We will consider infinite graphs called diagrams of finite volume. An edge-
indexed graph (D,i) is a graph D equipped with a function i : ED — R7™ (see
[BaLuO1], Chapter 2). A measure u for an edge-indexed graph (D, i) is a function
w: VD U ED — RY with the following properties (see [Mokh03] and [BaLu01],
2.6):

* i(e)u(doe) = ule),
e wu(e) = u(e) forall e € VD, and

* D revp H(X) < 0.

Following [Morg94], we will say that D = (D, i, u) is a diagram of finite volume.
The in-degree indeg(x) of a vertex x € VD is defined by

indeg(x) = Z i(e) = Z Zg;))

eeaal(x) eeaal(x)

The diagram D is k-regular if indeg(x) = k for all x € VD.

Let D = (D, i, ) be a connected diagram of finite volume. Observe that j is
determined, up to a multiplicative constant, by the weight function i. Indeed, fix
Xo € VD and set A(e) = i(e)/i(e) for e € ED. Then

pe) _ ple) _
ife) ie)
for every e € ED. Therefore u(x) = A(e1)A(ez) ... Aen)u(xo) for every path
(e1,ez,...,e,) from xg to x € VD.

n(die) = u(doe) Ale)
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Let D = (D, i, i) be a diagram of finite volume. An inner product is defined for
functions on VD by

g) =Y fx)gx)ux).

x€VD

The Laplace operator A on functions f on VD is defined by

p(e)
mdeg(x) ) nestAGICl

e€dy ! (x)

Af(x) = f(x) -

The operator A is a self-adjoint positive operator on L?(VD). Let
L3(VD) = {f € L*(VD) | {f.1vp) =0}

and set

A(D) = igf(Af, )
where f runs over the unit sphere in L3(VD). Observe that
A(D) =inf{A | A € a(A) \ {0}},

where o (A) is the spectrum of A.

Let now X be a locally finite tree, and let G be a closed subgroup of Aut(X).
Assume that G acts with finitely many orbits on X. Let I" be a discrete subgroup
of G acting without inversion on X. Then the quotient graph I'\ X is well-defined.
Since I' is discrete, for every vertex x and every edge e, the stabilizers I'y and I, are
finite. Moreover, I' is a lattice in G if and only if I" is a lattice in Aut(X) and this

happens if and only if
1
> <o
xeD | * |

where D is a fundamental domain of I" in X (see [Serr]). The quotient graph '\ X =
D is endowed with the structure of an edge-indexed graph given by the weight function
i: ED — R™T where i(e) is the index of ', in 'y for x = dg(e). A measure
w: VDU ED — R™ is defined by

1 1
I and pu(e) T
for x € VD and e € ED. Observe that u(VD) = ) ..p 1/|Tx] < c0. So, D =
(D, i, ) is a diagram of finite volume.
Let G be a group acting on a tree X. As in [BuMo00], 0.2, we say that the action
of G on X is locally oo-transitive if, for every x € VX and every n > 1, the stabilizer
G of x acts transitively on the sphere {y € X | d(x, y) = n}.
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Proposition 3. Let X be either the k-regular tree Xy, or the bi-partite bi-regular tree
Xkoky fork > 3 orko > 3 and ki > 3. Let G be a closed subgroup of Aut(X).
Assume that the following conditions are both satisfied:

e G acts transitively on VX in the case X = Xy and G acts transitively on the set
of vertices of degree ko as well as on the set of vertices of degree ky in the case
X = Xko ks

* the action of G on X is locally oo-transitive.

Let T be a lattice in G and let D = T\ X be the corresponding diagram of finite
volume. The following properties are equivalent:

(i) the unitary representation pr\g on L*(I'\G) has a spectral gap;
(i) A(D) > 0.

For the proof of this proposition, we will need a few general facts. Let G be
a second countable locally compact group and U a compact subgroup of G. Let
C.(U\G/U) be the space of continuous functions f: G — C which have compact
support and which are constant on the double cosets UgU for g € G.

Fix a left Haar measure y on G. Recall that L!(G, ) is a Banach algebra under

the convolution product, the L!-norm and the involution f*(g) = f(g~!); observe
that C.(U\G/U) is a *-subalgebra of L!(G, j). Let 7 be a (strongly continuous)
unitary representation of G on a Hilbert space #. A continuous *-representation of
L'(G), still denoted by 7, is defined on # by

n(f)§ = /G fOr)Edu(x),  feLY(G), & e X.

Assume that the closed subspace #UY of U-invariant vectors in J is non-zero.
Then 7w (f)HY c HY forall f € C.(U\G/U). In this way, a continuous *-
representation gy of C.(U\G/U) is defined on #Y .

Proposition 4. With the previous notation, let f € C.(U\G/U) be a function with
the following properties: f(x) > 0 forall x € G, [; fdu = 1, and the subgroup
generated by the support of f is dense in G. The following conditions are equivalent:

(1) the trivial representation 1g is weakly contained in 7;
(ii) 1 belongs to the spectrum of the operator iy ( f).

Proof. Assume that 1g is weakly contained in 7. There exists a sequence of unit
vectors &, € J such that

h]gn ||7T(x)‘i:n - En” =0,

uniformly over compact subsets of G. Let

I = /U 7 (0)End,
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where du denotes the normalized Haar measure on U. It is easily checked that
N, € #Y and that

li’Iln ”7[(f)77n - nnH =0.
Since

1 — Eall < /U 17 )6 — Enlldu,

we have ||n,|| > 1/2 for sufficiently large n. This shows that 1 belongs to the
spectrum of the operator 7y ( f).

For the converse, assume that 1 belongs to the spectrum of 7y (f). Hence, 1
belongs to the spectrum of 7 (f), since wy(f) is the restriction of 7 (f) to the
invariant subspace #U. As the subgroup generated by the support of f is dense in
G, this implies that 1g is weakly contained in 7 (see [BHV], Proposition G.4.2).

O

Proof of Proposition 3. We give the proof only in the case where X is the bi-regular
tree Xg, k,- The case where X is the regular tree X is similar and even simpler.

Let X and X be the subsets of X consisting of the vertices of degree k¢ and k1,
respectively. Fix two points xg € X and x; € X; with d(xo, x1) = 1. So, X is the
set of vertices x for which d(xg, x) is even and X is the set of vertices x for which
d(xg,x) is odd. Let Uy and U; be the stabilizers of x¢ and x; in G. Since G acts
transitively on X and on X7, we have G/ Uy = Xo and G/ U; =~ X;.

We can view the normed *-algebra C.(Up\ G/ Uy) as a space of finitely supported
functions on Xy. Since Uy acts transitively on every sphere around xy, it is well-
known that the pair (G, Up) is a Gelfand pair, that is, the algebra C.(Up\G/Uyp) is
commutative (see for instance [BLRW09], Lemma 2.1). Observe that C.(Up\G/ Uy)
is the linear span of the characteristic functions 8,(,0) (lifted to G) of spheres of even

radius n around xo. Moreover, C.(Uy\G/Uy) is generated by SS)); indeed, this
follows from the formulas (see [BLRW09], Theorem 3.3)

59 = 5 % 8 — ko (ks — 1)8S” — (ky — 2)55”,
55?1)+2 = 5§0) * 55?;) — (ko — D (k1 — 1)533,)_2 — (k1 — 2)5&?1) forn > 2.

1
et fo = 850). We claim that fj has all the properties listed in Proposition 4.

185”1

Indeed, fjis anon-negative and Uyp-bi-invariant function on G with f ¢ Jo(x)dx =
1. Moreover, let H be the closure of the subgroup generated by the support of
fo. Assume, by contradiction, that H # G. Then there exists a function in
C.(Up\G/Uy) whose support is disjoint from H. This is a contradiction, as the
algebra C.(Up\ G/ Up) is generated by fy. This shows that H = G.

Let 7 be the unitary representation of G on L2 (I'\G) defined by right translations.
Observe that the space of 7 (Up)-invariant vectors is L3(I'\ Xo). So, we have a *-
representation 7y, of C.(Uo\G/Up) on L*(I'\ X, i), where u is the measure on
the diagram D = T"\ X, as defined above.
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Similar facts are also true for the algebra C.(U;\G/U,): this is a commutative
normed *-algebra, it is generated by the characteristic function SS) of the sphere
of radius 2 around xi, and the representation 7 of G on L3(I'\G) induces a *-
representation 7y, of C.(U1\G/Ui) on L3(I'\ X1, pt). Likewise, the function f; =

has all the properties listed in Proposition 4.

Let Ax be the adjacency operator defined on £2(X) by

A = s Z f@1(e), [ eX).
ecdy ! (x)

Since Ax commutes with automorphisms of X, it induces an operator Ap on
L?(VD, i) given by

uie)

mdeg(x) BZI( 1)

Ap f(x) =

f@i(e)).  f € L*(VD, ).

where D is the diagram obtained from the quotient graph '\ X. So, A = I — Ap,
where A is the Laplace operator on D.

Let Bp denote the restriction of Ap to the space L3(VD, p). It follows that
A(A) > 0if and only if 1 does not belong to the spectrum of Bp.

Proposition 3 will be proved, once we have shown the following

Claim. 1 belongs to the spectrum of Bp if and only if 1¢ is weakly contained in .

For this, we consider the squares of the operators Ay and Ap and compute

A f(x) =

deg(x)f(x)+— Yo SO felX)

d(x,y) 2

The subspaces {?(X,) and £2(X1) of €2 (X ) are invariant under A% and the restrictions
of A% to £?(Xo) and £*(X) are given by right convolution with the functions

1
-5
fok, e T ( kokl)fo’
1 1
g1=—5e+(1— )f1,

where &, is the Dirac function at the group unit e of G.

It follows that the restrictions of Bé to the subspaces L%(F\X 0, M) and
L3(T'\ X1, p) coincide with the operators 7y, (o) and 7y, (g1), respectively.

Fori = 0, 1, the spectrum o (7, (g;)) of my, (gi) is the set

o (v, (81)) = {gory + (1= o)A | A € o (mry; (/)]
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Thus, 1 belongs to the spectrum of gy, ( f;) if and only if 1 belongs to the spectrum
of my, (gi)-

To prove the claim above, assume that 1 belongs to the spectrum of Bp. Then 1
belongs to the spectrum of Bé. Hence 1 belongs to the spectrum of either 7y, (go)
or 7y, (g1) and therefore 1 belongs to the spectrum of either g, ( fo) or my, (f1). It
follows from Proposition 4 that 15 is weakly contained in 7.

Conversely, suppose that 1 is weakly contained in . Then, again by Proposi-
tion 4, 1 belongs to the spectra of 7y, (fo) and my, (f1). Hence, 1 belongs to the
spectra of 7y, (go) and my, (g1). We claim that 1 belongs to the spectrum of Bp.

Indeed, assume by contradiction that 1 does not belong to the spectrum of Bp,
thatis, Bp — I has a bounded inverse on L%(VD, ). Since 1 belongs to the spectrum
of the self-adjoint operator 7y, (go), there exists a sequence of unit vectors E,(lo) in
L3(T'\ Xo, i) with

lim [}y (g0)6,” — £, 1| = 0.

As the restriction of Bg to L3(I'\ Xo, i) coincides with 7y, (go), we have

0o (g0)E” — £ = [1(BF — DEP||
= |(Bp — I)(Bp + DE|

1
>— (B NEO
= g ey 1Be + DEC

Thus, lim, ||Bp 5,(,0) + é,(,o) I = 0. On the other hand, observe that Bp maps
L3(I'\ X, i) to the subspace L?(I'\ X1, 1) and that these subspaces are orthogonal
to each other. Hence,

IBpE® + 69112 = | Bp®|? + 92

This is a contradiction since ||§,SO) || = 1 for all n. The proof of Proposition 3 is now
complete. O

Next we rephrase Proposition 3 in terms of expander diagrams. Let (D, i, w) be
a diagram with finite volume. For a subset S of VD, set

E(S,S5°) ={ec€ED|dy(e) €S, 01(e) ¢ S}.
We say that D is an expander diagram if there exists ¢ > 0 such that
H(E(S.5%) _
—— 2 >
n(S)

forall S C VD with u(S) < u(D)/2. The motivation for this definition comes from
expander graphs (see [Lubo94]).

We quote from [Mokh03] and [Morg94] the following result which is standard in
the case of finite graphs.



Lattices with and lattices without spectral gap 259

Proposition 5 ([Mokh03], [Morg94]). Let (D, i, w) be a diagram with finite volume.
Assume that Sup,cgp i(€)/i(e) < oo and that sup,.¢yp indeg(x) < oco. The following
conditions are equivalent:

(i) D is an expander diagram;

(i) A(D) > 0.

As an immediate consequence of Propositions 3 and 5, we obtain the following
result which relates the existence of a spectral gap to an expanding property of the
corresponding diagram.

Proposition 6. Let X be either the k-regular tree Xy or the bi-partite bi-regular
tree Xiox, for k > 3 or ko > 3 and ky > 3. Let G be a closed subgroup of
Aut(X) satisfying both conditions from Proposition 3. Let I be a lattice in G and let
D = T'\X be the corresponding diagram of finite volume. The following properties
are equivalent:

(i) the unitary representation pr\g on L?*(I'\G) has a spectral gap;
(i) D is an expander diagram.

3. Proof of Theorem 1

Let G = G (k) be the k-rational points of a simple algebraic group G over a local
field k and let I be a lattice in G. As explained in the Introduction, we may assume
that k is non-archimedean and that k — rank(G) = 1. By the Bruhat-Tits theory, G
acts on a regular or bi-partite bi-regular tree X with one or two orbits. Moreover, the
action of G on X is locally oco-transitive (see [Chou94], p. 33).

Passing to the subgroup G+ of index at most two consisting of orientation preserv-
ing automorphisms, we can assume that G acts without inversion. Indeed, assume
that L2(I' N GT\G™) has a spectral gap. If T is contained in G, then L2(I'\G)
has a spectral gap since G has finite index (see [BeCo08], Proposition 6). If I'
is not contained in GT, then I' N G\ G ™ may be identified as a G -space with
I\I'GT™ = I'\G. Hence, 15+ is not weakly contained in the G *-representation
defined on L3(I'\G).

Let X be the Bruhat-Tits tree associated to G. It is shown in [Lubo91], Theo-
rem 6.1 (see also [BaumO3]) that I has fundamental domain D in X of the following
form: there exists a finite set ' C D such that D \ F is a union of finitely many

disjoint rays ry, ..., rs. (Recall that a ray in X is an infinite path beginning at some
vertex and without backtracking.) Moreover, for every ray r; = {x(j) , x{ , xé ,...}in

D \ F, the stabilizer Fx_/ of xij is contained in the stabilizer Fx ; ofx/,  foralli.

i+ i+l
To prove Theorem 1, we apply Proposition 6. So, we have to prove that D is an
expander diagram.
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Choose i € {0, 1,...} such that, with

N
Dy=FU U{x(]),...,xij},
j=1
we have w(Dy) > u(D)/2.
Let S be a subset of D with u(S) < w(D)/2. Then Dy € S. Two cases can
occur.
e First case: S N D1 = @. Thus, S is contained in

N
J J
U{xi+1’xi+2""}'
=1

Fix j € {1,...,s}. Leti(j) € {0, 1,... }beminimalwiththepropertythatxl.j(j)H €

e () J . — J .
S. Then e := (xl.(j)H,xi(j)) € E(S, S¢). Observe that |l"xl,+l| = deg(x; )|Fxl,|
forall / > 0. Let k be the minimal degree for vertices in X (so, kK = min{ko, k1 } if
X = Xky.k,)-Then '“(xl]+1) < /L(xl])/k for all / and

1 k

€j) = = = ku(x? ).
:LL( j) |Fej| == |ij | M( z(]))
i(j)
Therefore, we have
B(E(S, 59)) _ o1 nle))

Zj’:l /’L(xij(j))
Z;:l Z?io ,u(xl.](j)H)
Z;=1 /L(xij(j))
Yo 1) i k!
s J
i) =k—1.
# Zj’:l M(xij(j)) 1—k—T
e Second case: S N Dy # @. Then there exist x € SN Dy and y € Dy \ S. Since
D1 is a connected subgraph, there exists a path (eq, ez, ..., e,) in ED; from x to y.
Let! € {1,...,n} be minimal with the property do(e;) € S and d;1(e;) ¢ S. Then
e; € E(S, S¢). Hence, with C = min{u(e) | e € ED;} > 0, we have
M(E(S,S9) €
w(s)  ~ wd)

This completes the proof of Theorem 1.

_ —
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4. Proof of Theorem 2

Let (D, i, ) be a k-regular diagram. By the “inverse Bass—Serre theory” of groups
acting on trees, there exists a lattice I' in G = Aut(Xy) for which D = '\ X;.
Indeed, we can find a finite grouping of (D, i), that is, a graph of finite groups

= (D, D) such that i (e) is the index of D, in Dj,, for all e € ED. Fix an origin
xo. LetI' = w1 (D), x¢) be the fundamental group of (D, x¢). The universal covering
of (D, xo) is the k-regular tree X and the diagram D can identified with the diagram
associated to I'\ X. For all this, see (2.5), (2.6) and (4.13) in [BaLuO1].

In view of Proposition 6, Theorem 2 will be proved once we present examples of
k-regular diagrams with finite volume which are not expanders. An example of such
a diagram appears in [Mokh03], Example 3.4. For the convenience of the reader, we
review the construction.

Fix k > 3 and let ¢ = k — 1. For every integer n > 1, let D, be the finite graph
with 2n + 1 vertices

O — O —O0—¢¢eeO0— O — o
(n) (n) (n) (n)
X1 x2 *on *on+1

Let D be the following infinite ray:

o—o—Dy—0o—0—-—Dy—0—0—+-t—— o — o —D,—o0—o0---
X0 X1 X2 X3 X2n—2 X2n—1

We first define a weight function i, on ED,, as follows:
e iyle)=1ife = (x(”),x(n)) ore = (xg'),xln))

.« inle) =qife = (x, ,(:J)rl) for m even;

e in(e) =life = (x, ,(:4),1) for m odd,;

* in(e) =qife = (x,(:j)Ll,xm)) for m even;

e iyle)=1ife = (x,(:il,xm)) for m odd.

Observe that i,(e)/i,(e) = 1 for all e € ED,. Define now a weight function i on
ED as follows:

e i(e) =q+ life = (xg,x1);

e i(e) =qife = (x1,x0);

e i(e) =1ife = (X, Xm+1) form > 1;
e i(e) =qife = (xpy1,Xm) form > 1;

* i(e) =iy(e)ife € EDy.
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One readily checks that, for every vertex x € D,

Y. ile)=gq+1=k

eeaal(x)

that is, (D, i) is k-regular. The measure p: VD — R™ corresponding to i (see the
remark at the beginning of Section 2) is given by

* pulxo) =1/(¢ + 1),
o w(xam—2) = 1/g™ 1 form > 2,
o wu(xom—1) =1/¢g™ form > 1,
e u(x)=1/q"if x € D,,.
One checks that, if we define w(e) = i(e)u(dge) for all e € ED, we have u(e) =
u(e). Moreover,
pDw) = 2+ 1)

and hence
w(D) = —+ Z—+Zu(0n> < oo,
n>0 n>1

We have also
E(Dp, Dy) = {(x2n-1, X2n—2), (X2, X2n41)}

so that
p(E(Dn, Dg)) = qqin + qin = qunl'
Hence
p(EDwDY) G g+
p(Dn) @n+1gy 2n+1
and

lim ——
n (Dn)
Observe that, since lim, u(D,) = 0, we have u(D,) < w(D)/2 for sufficiently
large n. This completes the proof of Theorem 2.

=0.
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