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Abstract. We introduce a heuristic prediction for the distribution of the isomorphism class of
the Galois group of the maximal pro-p extension of Q unramified outside a “random” set of
primes. This is guided by reasoning similar to that governing the Cohen–Lenstra conjectures.
We conclude by describing theoretical and experimental evidence for our heuristic.
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1. Introduction

In this article we introduce a heuristic prediction for the distribution of the isomor-
phism class of GS .p/, the Galois group of the maximal pro-p extension of Q un-
ramified outside of S , where S is a “random” set of primes. That these groups
should exhibit any statistical regularity is not at all obvious; our expectations in this
direction are guided by the Cohen–Lenstra conjectures, which (among other things)
predict quite precisely how often a fixed finite group appears as the ideal class group
of a quadratic imaginary field.

The Cohen–Lenstra conjectures can be obtained in (at least) two ways. On the
one hand, the distribution on finite abelian groups suggested by the heuristics has a
good claim on being the most natural “uniform distribution” on the category of finite
abelian p-groups. On the other hand, as observed by Friedman and Washington ([8],
see also [1]) the conjectures can also be recovered via the analogy between number
fields and function fields; here one thinks of the class group as the cokernel of � � 1

�Nigel Boston partially supported by the Claude Shannon Institute, Science Foundation Ireland Grant
06/MI/006 and Stokes Professorship award, Science Foundation Ireland Grant 07/SK/I1252b. Jordan
S. Ellenberg partially supported by NSF-CAREER Grant DMS-0448750 and a Sloan research fellowship.
We thank Joann Boston for making the figure.



266 N. Boston and J. S. Ellenberg

where � is a p-adic matrix drawn randomly from a suitable subset of the Qp-points
of an algebraic group. We will show that both heuristic arguments can be generalized
to the nonabelian pro-p case, and that both lead to the same prediction, Heuristic 2.4
below.

We conclude by describing some evidence, both theoretical and experimental, that
supports (or at least is consistent with) Heuristic 2.4. We pay special attention to the
interesting case where p D 2 and S consists of two primes congruent to 5 .mod 8/.
In this case, the heuristic appears to suggest that GS .p/ is infinite 1=16 of the time.

1.1. Notation. When x and y are elements of a group, we use x � y to mean “x is
conjugate to y”. We say a pro-p group � is balanced if its generator rank equals its
relator rank.

2. Statement of the heuristic

If S is a set of primes in Q, we denote by GS .p/ the Galois group of the maximal
p-extension unramified away from S (including infinity if p D 2). Our aim in this
section is to present a heuristic answer to the question: “When S is a random set
of primes, what is the probability that GS .p/ is isomorphic to some specified finite
p-group �?”

In order to phrase the question precisely, we need a little notation.
If S D .`1; : : : ; `g/ is a g-tuple of primes congruent to 1 mod p, we denote by

Zi the closure of `Z
i in Z�

p and by Wi the group Zp=.`i � 1/Zp . Note that GS .p/ab

is isomorphic to W D Lg
iD1 Wi , a finite abelian p-group of rank g. In this paper, S

always denotes an ordered g-tuple of primes.

Definition 2.1. The type of S is the sequence of subgroups .Z1; : : : ; Zg/.

Note that when p is odd, the type of .`1; : : : ; `g/ is determined by the maximal
power of p dividing `i � 1 for each i ; in particular, the type of S carries the same
information as the sequence of groups Wi . When p D 2, the type of S determines the
Wi , but is not determined by it; for instance, primes ` which are 3 .mod 8/ and those
which are 7 .mod 8/ are of different types, but both have Z2=.` � 1/Z2 Š Z=2Z.
We write W.Z/ for the finite p-group attached to a type Z D .Z1; : : : ; Zg/ by taking
the sum of the corresponding Wi .

Let Z D .Z1; : : : ; Zg/ be a type, and � a finite p-group such that �ab Š
W.Z/ and h1.�; Fp/ D h2.�; Fp/ D g, where hi .�; Fp/ denotes the dimension
of H i .�; Fp/. Then � is balanced. We define P.Z; �; X/ to be the proportion of g-
tuples of primes S D .`1; : : : ; `g/ with type Z in ŒX; : : : ; 2X�g such that GS .p/ Š � .
Then the behavior of P.Z; �; X/ as X grows can be thought of as the probability that
a random g-tuple of primes of type Z has � as its maximal unramified Galois group.
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In order to state our heuristic estimate for this probability, we need a little more
notation.

Write � W � ! �ab for the natural projection.

Definition 2.2. Let AZ.�/ be the number of pairs ..c1; : : : ; cg/; �/ where .c1; : : : ; cg/

is a g-tuple of conjugacy classes in � and � is an involution in � (automatically trivial
when p is odd) such that

� cz
i D ci for all z 2 Zi ;

� the elements �.c1/; : : : ; �.cg/ generate �ab;
� the map W.Z/ ! �ab sending .w1; : : : ; wg/ to

P
i wi�.ci / is an isomorphism;

� if p D 2, and �i is the unique nontrivial involution in the cyclic subgroup of �ab

generated by �.ci /, we have
Pg

iD1 �i D �.�/.

Remark 2.3. When no confusion is likely (i.e., when we are restricting attention to
a particular type Z) we will write A.�/ for AZ.�/.

Heuristic 2.4. limX!1 P.Z; �; X/ exists and is equal to AZ.�/=jAut.�/j.

The value of AZ.�/=jAut.�/j is easy to compute for any particular choice of
Z and � . For example, in § 5, we discuss the case where p is an odd prime, � is
a 2-generator 2-relator group of order p3 with abelianization .Z=pZ/2, and Z1 D
Z2 D 1 C pZp . In this case, we show that AZ.�/=j Aut.�/j D 1 � p�2, and we in
fact show that Heuristic 2.4 is correct in this case.

We note that the sum over all finite � of AZ.�/=jAut.�/j need not be equal
to 1. This should correspond to the fact that there may be a positive probability that
GS .p/ is infinite. Certainly, the philosophy of the paper demands that the sum of
AZ.�/=jAut.�/j should be at most 1 (and this has held in all our computations), but
we do not at present know how to prove this inequality. Best of all would be to devise
a suitable extension of the heuristics discussed here to infinite pro-p groups � .

In the following sections, we explain two justifications for Heuristic 2.4, each one
adapted from a justification for the Cohen–Lenstra heuristics.

3. Justification 1: random p-groups with inertia data

There is no uniform distribution on a countably infinite set. Nonetheless, there is
a natural “uniform” distribution on the set of isomorphism classes of finite abelian
p-groups, following the usual principle that objects in a category should be assigned
a weight inversely proportional to the order of their automorphism group. (See
Leinster[13] for a thorough development of this idea.) The sum of jAut.�/j�1 as
� ranges over isomorphism classes of finite abelian p-groups is finite; thus, there
is a unique probability distribution on these isomorphism classes such that the mass
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assigned to � is proportional to jAut.�/j�1. The Cohen–Lenstra heuristic can be
thought of as asserting that the p-part of the class group of a random imaginary
quadratic field is a “random” abelian group, in the sense that it follows this “uniform”
distribution on finite abelian p-groups. Many of the more general conjectures of
Cohen, Lenstra, and Martinet are in the same spirit, predicting that class groups
of extensions with more complicated structure (e.g. Galois extensions with Galois
group K) are “random” objects in more general categories (e.g. the category of
finitely generated Z=pZŒK�-modules) in the analogous sense.

We now present an argument in a similar spirit that leads us to Heuristic 2.4.
One might start by trying to construct a probability distribution on finite p-groups

where the measure assigned to � is proportional to jAut.�/j�1. This, however,
is easily seen to be incorrect. The relevant difference between the Cohen–Lenstra
context and the one treated in the present paper is that, as far as we know, any finite
abelian p-group can arise as the p-part of the class group of an imaginary quadratic
field. By contrast, not every balanced p-group can be GS .p/ for some set of primes
S of a given type. For instance, take p D 3; g D 2; and Z1 D Z2 D 1 C 3Z3.
Then GS .p/ is a group with abelianization .Z=3Z/2, and the image of tame inertia at
each prime in S lies in a conjugacy class c of � satisfying c4 D c. But there exists a
group G of order 35 which is not generated by any two elements which are conjugate
to their fourth powers. Thus, GS .p/ cannot be isomorphic to � , and any reasonable
heuristic should reflect this by assigning probability 0 to � .

In order to avoid problems of this kind, we introduce the notion of a “pro-p-group
with local data of type Z.” As in Definition 2.2, we denote by � the natural projection
from a group to its abelianization.

Definition 3.1. A pro-p group with local data of type Z is a balanced pro-p group
� endowed with a g-tuple of conjugacy classes .c1; : : : ; cg/ and an involution � in �

(automatically trivial when p is odd) such that

� cz
i D ci for all z 2 Zi ;

� the projections �.c1/; : : : ; �.cg/ generate �ab;
� the map W.Z/ ! �ab sending .w1; : : : ; wg/ to

P
i wi�.ci / is an isomorphism;

� if p D 2, and �i is the unique nontrivial involution in the cyclic subgroup of �ab

generated by �.ci /, we have
Pg

iD1 �i D �.�/.

For each ` ¤ p, we fix a generator �` of the tame inertia group of GQ`
. We

also fix a complex conjugation c in GQ. When S D .`1; : : : ; `g/ is a g-tuple of
primes with type Z, the unramified Galois group GS .p/ acquires the structure of
pro-p-group with local data of type Z in a natural way; namely, ci is the conjugacy
class of the image of �`i

in GS .p/ and � is the image of c.
Finite p-groups with local data of type Z constitute the objects of a category

Cp;Z whose morphisms are just homomorphisms of groups preserving c1; : : : ; cg

and �. Just as the category of finite abelian p-groups is the “natural” home of the
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p-part of the class group of a quadratic imaginary field, a finite p-group with inertia
data is the natural home of GS .p/. Thus, the Cohen–Lenstra philosophy would
suggest that the probability that GS .p/ and .�; .c1; : : : ; cg/; �/ are isomorphic in
Cp;Z should be proportional to jAutCp;i

.�; .c1; : : : ; cg/; �/j�1. The probability that
GS .p/ is isomorphic to � as a group is then obtained by summing over all Aut.�/-
orbits of inertia data on � . This yields precisely the prediction that P.Z; �; X/ is
proportional to AZ.�/=jAut.�/j.

In particular, the fact that the group GS .p/ carries local data of type Z shows that
Heuristic 2.4 passes one easy plausibility check:

Proposition 3.2. If AZ.�/ D 0, there is no g-tuple S of type Z such that GS .p/ is
isomorphic to � .

Remark 3.3. This justification also suggests obvious refinements of Heuristic 2.4
taking local data into account; for instance, when p D 2, one can ask for what
proportion of g-tuples S there is an isomorphism GS .p/ Š � taking complex con-
jugation to a given conjugacy class of involutions in � . Furthermore, one could
speculate that wildly ramified extensions can be brought into the picture as well by
adding to .c1; : : : ; cg/; � the data of a homomorphism GQp

! � . This would bring
us closer to the heuristics suggested by Bhargava [2] and Roberts [17] for the number
of extensions of global fields with specified Galois groups and restrictions on local
behavior. On the other hand, it takes us farther away from the analogy with function
fields over finite fields that we explore in the next section.

The class group of a number field is always finite, so the probability distribution is
determined by the fact that the sum of the mass of all finite groups is 1. In the present
situation, we have no such assurance; for many choices of the type Z, GS .p/ can
be either finite or infinite, so we have no principled way of choosing one probability
distribution on finite p-groups among all those proportional to AZ.�/=jAut.�/j. We
address this problem in the next section.

4. Justification 2: random pro-p braids and the analogy with function fields

In this section we give an alternative (though certainly related) justification for Heuris-
tic 2.4, based on the analogy between Z and the ring FqŒt � (or, more generally, the
coordinate ring of an affine algebraic curve over a finite field.)

4.1. The action of Frobenius on the fundamental group of an affine curve. Let
Fq be a finite field of characteristic other than p, let C=Fq be a smooth projective
algebraic curve, let x1 be a point of C.Fq/, and let U=Fq be an open subscheme
of C not containing x1. Then the étale fundamental group �1.U / fits into an exact
sequence

1 ! �1.U NFq
/ ! �1.U / ! GFq

! 1
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in which the second map admits a section s attached to any choice of tangential base
point at x1.

Note that the p-cyclotomic character �p W �1.U / ! Z�
p factors through the pro-

jection to GFq
and sends Frobenius to q. In particular, the image of �p is procyclic.

The p-cyclotomic character of GQ is surjective on Z�
p; in particular, when p D 2, the

image is not procyclic. In order to make our analogy as precise as possible, we assume
from now on that p is odd and that q generates Z�

p . We will return in Section 4.4 to
the case p D 2.

Remark 4.1. The hypothesis that q generates Z�
p is natural when drawing an analogy

with Q; to generate conjectures about maximal pro-p extensions with restricted rami-
fication of larger number fields K would require a different hypothesis on q reflecting
the abelian extensions of Q contained in K. In particular, the presence of roots of
unity in K ought to change the statistical distribution of the Galois groups, even in the
abelian cases considered by Cohen, Lenstra, and Martinet. Such a discrepancy from
Cohen–Lenstra predictions has in fact been observed numerically by Malle [14] in the
case of number fields and Rozenhart [18] in the case of function fields. Forthcoming
work of Garton [9] will explain how one should modify the Cohen–Lenstra-Martinet
heuristics in the presence of roots of unity, based on a function-field argument like
the one we present in the present paper.

Let G1 be a decomposition group of �1.U / at x1. Write I1 for the inertia
subgroup of G1. Note that the section s W GFq

! �1.U / factors through G1.
Write GU .p/ for the quotient of �1.U / by the normal subgroup generated by G1.

This is the Galois group of the maximal étale cover of U which is totally split at x1.
(Note that, in the number field case, the maximal pro-p extension of Q unramified
outside S is indeed totally split at 1, because p is odd here.)

The geometric fundamental group �1.U NFq
/ is isomorphic to a free profinite group

on N generators, where N C 1 is the number of punctures of U NFq
. Write F for the

quotient of �1.U NFq
/ by the normal subgroup generated by I1. The group s.GFq

/

acts on �1.U NFq
/ by conjugation, and this action descends to an action on F . Since

GFq
is procyclic, we can describe this action by specifying the action on F of the

Frobenius Frobq in s.GFq
/, which is an automorphism ˛ 2 Aut.F /.

The group F is freely generated by N elements x1; : : : ; xN , each one a generator
of tame inertia at a puncture, subject to the single relation x1 : : : xN D 1. The
automorphism ˛ has the special property that it sends each xi to a conjugate of x

q
j

for some j . The automorphisms of F with this property lie in the pro-p braid group
BN � Aut.F /, which we define in the next section.

Now GU .p/ is precisely the quotient of F by relations ˛.xi / D xi ; 8i . In
particular, GU .p/ is determined by the automorphism ˛. The main idea driving the
heuristics in this paper is that ˛ should be a random element drawn from a certain
subset of the profinite group BN under Haar measure. In the following sections we
describe the consequences of this heuristic for the behavior of GU .p/.
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Remark 4.2. The Cohen–Lenstra heuristics can also be recovered from this point of
view, as was first observed by Friedman and Washington [8]; the p-part of the class
group of a random quadratic imaginary field is analogous to the Fq-rational points
in Jac.X/Œp�, where X=Fq is a hyperelliptic curve of large genus. This group, in
turn, is the cokernel of � � 1, where � 2 GSp2g.Zp/ is a matrix representing the
action of Frobenius on H1.X; Zp/. In fact, Frobenius lies in the coset GSpq

2g.Zp/ of
Sp2g.Zp/ consisting of matrices which scale the symplectic form by q. Taking � to
be a random element of GSp2g.Zp/ yields precisely the Cohen–Lenstra heuristics.

Friedman and Washington took � to be a random element of GL2g.Zp/; the ob-
servation that the correct set over which to average is GSpq

2g.Zp/ is due to Achter [1].
In fact, as in [1], these heuristic arguments can often be turned into proofs that

heuristics of Cohen–Lenstra type are true over function fields “in the large q limit.”
In this connection, see also the work of Katz and Sarnak on the relation between
random p-adic matrices and the distribution of zeroes of L-functions [11].

4.2. The pro-p braid group and random pro-p groups. Let p be an odd prime,
and let F be the pro-p group generated by elements x1; : : : ; xN subject to the single
relation x1 : : : xN D 1. We define the pure pro-p braid group PN to be the subgroup
of Aut.F / consisting of automorphisms ˛ such that ˛.xi / � xi for all i . For each
.q; 	/ 2 Z�

p � SN we denote by BN .q; 	/ the set of automorphisms ˛ of F such that

˛.xi / � x
q

�.i/

for all i and define the pure pro-p braid group PN to be BN .1; 1/. Then the pro-p
braid group BN is defined by

BN D S

q;�

BN .q; 	/

The pro-p braid group fits into an exact sequence

1 ! PN ! BN ! Z�
p � SN ! 1;

where the preimage of .q; 	/ 2 SN � Z�
p is BN .q; 	/.

Remark 4.3. The definition of the pro-p braid group is due to Ihara [10]. More
precisely, his pro-p braid group on N strands is the image of our BN in Out.F /.

Remark 4.4. The natural map BN ! Z�
p is surjective, so BN .q; 	/ is nonempty;

but we are not aware of any purely group-theoretic proof of this fact. Rather, one
observes (again following Ihara) that when F is identified with the pro-p geometric
fundamental group of an N -punctured genus 0 algebraic curve over Q, the resulting
action of GQ on F induces a map GQ ! BN whose composition with the projection
to Z�

p is the cyclotomic character.
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We are now ready to define the main object of study of the present paper: namely,
a “random pro-p group” G .q; 	/.

Definition 4.5. For N � 1 and 	 2 SN , we denote by G .q; 	/ the quotient of F by
the relations ˛.xi / D xi ; i D 1 : : : N , where ˛ is a random element of BN .q; 	/ in
Haar measure.

4.3. Statistical properties ofG.q; � /. Write k1; : : : ; kg for the lengths of the cycles
of 	 , and choose representatives i1; : : : ; ig of the cycles. Write gj for the image of

xij in G .q; 	/. Then one sees that gj � g
q

kj

j . We also note that

G .q; 	/ab D
gP

j D1

Zp=.qkg � 1/Zp:

We denote this finite abelian group by W.q; 	/.

Proposition 4.6. Let g be the number of cycles of 	 . Then G .q; 	/ is a g-generated,
g-related pro-p group.

Proof. G .q; 	/ is clearly generated by the g elements gj , and is specified by the g

relations ˛.xij /x�1
ij

. So h2.G .q; 	/; Fp/ � g; since G .q; 	/ab is finite, we also have
h2.G .q; 	/; Fp/ � g.

Let � be some finite g-generated p-group, and let c1; : : : ; cg be conjugacy classes
in � such that

� c1; : : : ; cg generate �;

� c
qki

i D ci for all i .

We denote by .�; c/ the data of a pro-p group � together with a g-tuple of
conjugacy classes as above. Given a permutation 	 together with a set i1; : : : ; ig of
cycle representatives for 	 , we write

Epi.G .q; 	/; .�; c//

for the set of surjective homomorphisms G .q; 	/ ! � which send gj to the conjugacy
class cj for each j . (The notation is slightly misleading insofar as Epi.G .q; 	/; .�; c//

depends not only on 	 but on the choice of cycle representatives, but this ambiguity
will not concern us.)

Similarly, we write Epi.F; .�; c// for the set of surjective homomorphisms F !
� which send x�m.ij / to the conjugacy class c

qm

j for each j . In particular, the pullback
of an element of Epi.G .q; 	/; .�; c// to F always lies in Epi.F; .�; c//.

The set Epi.F; .�; c// carries an action of PN � Aut.F / by composition on the
left. Our first aim is to make an educated guess about the transitivity of this action.
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Heuristic 4.7. Suppose � is balanced. Then the action of PN on Epi.F; .�; c// is
transitive when N is sufficiently large relative to g.

Remark 4.8. A transitivity theorem of this kind for the action of the full braid group
has been proven by Fried and Völklein [7], Appendix. More precisely, the orbits of
the full braid group are identified with a quotient of the Schur multiplier H2.�; Z/; in
this case, the Schur multiplier is trivial because � is balanced. See also Lemma 4.10
below.

We are now ready to present the second justification for Heuristic 2.4.

Proposition 4.9. Suppose � is a balanced finite p-group with abelianization iso-
morphic to W.q; 	/, and assume Heuristic 4.7. Then the probability that G .q; 	/ is
isomorphic to � is AZ.�/=jAut.�/j.
Proof. The set Epi.G .q; 	/; .�; c// is the set of ˛-fixed points on Epi.F; .�; c//,
where ˛ is a random element of the coset BN .q; 	/ of PN in BN . By Burnside’s
lemma, the average number of fixed points of � is the number of fixed points of
.q; 	/ 2 Z�

p � SN in its action on the PN -orbits on Epi.F; .�; c//. By Heuristic 4.7,
there is only one such orbit. We conclude that

Ej Epi.G .q; 	/; .�; c//j D 1:

Lemma 4.10. Every surjection from G .q; 	/ to � is an isomorphism.

Proof. The long exact sequence in group cohomology yields an exact sequence

0 ! H 1.�; Qp=Zp/=pH 1.�; Qp=Zp/ ! H 2.�; Z=pZ/

! H 2.�; Qp=Zp/Œp� ! 0:

The first two terms have dimension g, so the third term vanishes; hence, so does
H 2.�; Qp=Zp/.

Write K for the kernel of the map G .q; 	/ ! � . The inflation-restriction se-
quence gives

H 1.�; Qp=Zp/ ! H 1.G .q; 	/; Qp=Zp/ ! H 1.K; Qp=Zp/�

! H 2.�; Qp=Zp/ D 0:

Our hypothesis on �ab implies that the first map is an isomorphism; we conclude
that H 1.K; Qp=Zp/� D 0, which implies that K is trivial, since a nontrivial K would
have a Z=pZ-quotient on which � acts trivially.

Summing over all c of type Z, we find that the expected number of isomorphisms
from G.q; 	/ to � is exactly AZ.G/. The number of such isomorphisms is either 0

or jAut.�/j; the desired result follows.
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We now explain how Heuristic 2.4 follows from Proposition 4.9. The N punctures
of the affine curve U=Fq (excepting x1) can be thought of as g closed points; we refer
to this set of points as S and define the type S as in the first section. The hypothesis
that S is of some specified type Z can be thought of as a condition on 	 ; namely, that
W.q; 	/ Š W.Z/. So the probability that GU .p/ Š G can be heuristically estimated
as the probability that G .q; 	/ Š G, conditional on the fact that W.q; 	/ Š W.Z/.
By Proposition 4.9, This probability is AZ.�/=jAut.�/j for each such 	 .

More generally, the argument of this section suggests the following: Let � be a
p-group such that the action of the pure braid group PN on Epi.F; .�; c// is transi-
tive; then the expected number of epimorphisms from GS .p/ to � is AZ.�/. (We
emphasize that we do not presently know any examples where the action of PN is
intransitive.)

In particular, suppose � is a group of p-class k, with the property that the existence
of a surjection from a balanced group G to � implies that � is the quotient of G by
the .k C 1/-th term in its lower p-central series. (We will encounter such examples
in the data presented in the following sections.) Then the probability that the p-class
k quotient of G.q; 	/ is isomorphic to � should be AZ.�/=jAut.G/j.

4.4. The case p D 2. The geometric analogy in the case p D 2 is somewhat more
difficult to justify, since there is no choice of q making the cyclotomic character
� W GFq

! Z�
2 surjective. Our belief in Heuristic 2.4 in this case stands on three legs:

� the argument via Justification 1 that lim P.Z; �; X/ should be proportional to
AZ.�/=jAut.�/j for all p;

� the argument via Justification 2 that, in case p is odd, the constant of propor-
tionality should be 1;

� the case p D 2 is the easiest to test experimentally; as we shall see in the
following section, Heuristic 2.4 appears to agree very well with the experimental
data and with provable asymptotics when such are available.

5. Evidence

Let p be an odd prime and S a set of g primes that are all 1 .mod p/. Then the Galois
group of the maximal p-extension of Q unramified outside S is a pro-p group with
generator rank g and relator rank g. The same result holds for p D 2 if we allow
ramification at 1.

Given a pro-p group � with generator rank and relator rank both equal to g, we
consider the set of g-tuples of primes, all 1 .mod p/, such that the corresponding
Galois group is isomorphic to � . In all cases considered so far, this set appears to
have density predicted by Heuristic 2.4. In some cases this result on the density can
be proven, whereas in others we give experimental evidence.
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5.1. Groups with abelianization Z=pZ � Z=pZ (p odd). In this case, S consists
of two primes, say q, r , that are 1 .mod p/ but not 1 .mod p2/ .�/.

(i) The smallest 2-generator 2-relator p-group � is unique of order p3 (denoted
SmallGroup(p3; 4) in the MAGMA database). As shown on p. 129 of [12], the Galois
group of the maximal p-extension of Q unramified outside q, r is isomorphic to � if
and only if q is not a pth power .mod r/ or r is not a pth power .mod q/. Among
ordered pairs of primes satisfying .�/, the natural density of such pairs is then, by
Chebotarev, 1 � 1=p2.

As for the heuristic, there are p2 �1 conjugacy classes that are outside the Frattini
subgroup of � and that are closed under taking .p C 1/th powers. Working in
Z=pZ � Z=pZ, we see that p.p C 1/.p � 1/2 ordered pairs of such conjugacy
classes generate �ab and hence � . On the other hand, the automorphism group of �

has order .p � 1/p3 and so A.�/=jAut �j D 1 � 1=p2.
(ii) We focus on p D 3. The next smallest 2-generator 2-relator 3-group with

abelianization Z=3Z � Z=3Z and nonzero probability of arising is a unique group
� of order 35. There is another 2-generator 2-relator group of order 35, but it is not
generated by elements conjugate to their 4th power. For such groups our conjecture
is trivially true, since it follows that A.�/ D 0 and also that � lacks elements that
would play the role of tame inertia generators.

Suppose that q, r are primes that are 1 .mod 3/ but not 1 .mod 9/. By the method
of Boston and Leedham-Green [5], the Galois group of the maximal p-extension of Q
unramified outside q, r is isomorphic to � if and only if two of the Sylow 3-subgroups
of the ray class groups of modulus qr of its 4 cubic subextensions are isomorphic
to Z=3Z � Z=3Z � Z=3Z and two isomorphic to Z=3Z � Z=9Z. This implies in
particular that q is a cube mod r and r is a cube mod q, a condition which is satisfied
for 1=9 of all pairs .q; r/. Heuristic 2.4 asserts that 2=9 of these will have Gfq;rg.3/

isomorphic to � , since A.�/=jAut �j D 2=81:

We tested 58 pairs with q a cube mod r and r a cube mod q; a MAGMA compu-
tation shows that 13 of these pairs satisfy the condition on ray class groups of subex-
tensions equivalent to Gfq;rg.3/ Š � . The empirical density 13=58 � 1=9 D 0:0249

compares well with the predicted 2=81 D 0:0247.

5.2. Groups with abelianization Z=2Z � Z=2Z. In this case, S consists of two
primes q and r both congruent to 3 .mod 4/. Order q and r such that q is a square
mod r . Then, as shown in Theorem 2.1 of Boston–Perry [6], the Galois group
Gfq;rg.2/ is semidihedral of order 2kC1, where 2k is the largest power of 2 dividing
q2 � 1. In particular, Gfq;rg.2/ is determined by the type of .q; r/. This agrees with
the heuristic, which gives AZ.�/=jAut �j D 1 for each semidihedral group � .

5.3. Groups with abelianization Z=2Z � Z=4Z. In this case the two primes q, r

are 3 .mod 4/ and 5 .mod 8/. Let us suppose further that q is 3 .mod 8/, which
fixes the type.
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(i) The smallest such 2-relator group is the modular group of order 16. The
Galois group of the maximal 2-extension unramified outside fq; rg is isomorphic to
this group if and only if q is not a square .mod r/. This occurs with probability 1=2,
as Heuristic 2.4 predicts.

(ii) The next smallest such 2-relator group with nonzero probability of arising has
order 128 (SmallGroup(128; 87) in the MAGMA database). As shown in Boston–
Perry [6], this arises if and only if q is a 4th power .mod r/. This occurs with
probability 1=4 and agrees with Heuristic 2.4.

(iii) The next smallest such 2-relator groups with nonzero probability are the two
groups �1, �2 of order 219 found by Boston and Leedham-Green [5]. They showed
there that the Galois group of the maximal 2-extension unramified outside fq; rg is
isomorphic to �1 or �2 if and only if q is a square but not a 4th power mod r and the
Sylow 2-subgroup of the ray class group of modulus qr of Q.

p�qr/ is isomorphic
to Z=2 � Z=16. The heuristic suggests that each group should arise 1=16 of the time,
so that this case should arise 1=8 of the time.

The experimental evidence agrees – we test it by letting q D 5 and p run through
all primes < 100 000 that are 19 .mod 40/ (so that, as assumed, p is 3 .mod 8/ and
a square but not a 4th power .mod q/). In general, the Sylow 2-subgroup of the
ray class group is Z=2Z � Z=2nZ with n � 4. The cases n D 4, 5, 6, 7 appear
respectively 301, 151, 74, 42 times, which clearly suggests that half of the 1=4 of
cases remaining from (i) and (ii) above have n D 4.

5.4. Groups with abelianization Z=4Z � Z=4Z. Here the two primes q, r are 5

.mod 8/, which fixes the type.
Figure 1 gives a subtree of the O’Brien tree [16] of 2-generator 2-groups. The

vertices of his tree are isomorphism classes of 2-generator 2-groups. It has a root,
namely Z=2Z � Z=2Z, and the groups at distance n � 1 from the root are those of
2-class n. A group of 2-class n is connected to a group H of 2-class n C 1 if and only
if it is isomorphic to H=Pn.H/, where Pn.H/ is the last but one term of its lower
2-central series.

Our subtree consists of those groups G that have abelianization Z=4Z � Z=4Z,
have nonzero “mass” A.G/ (its value is given to the left of each vertex), and are 2-
class quotients of some (possibly infinite) 2-relator pro-2 group. We call such groups
viable. This last matter can be detected by checking that the 2-multiplicator rank of
G minus its nuclear rank is at most 2. If the nuclear rank of G is zero, then it is
2-relator. In that case it has no descendants and is a terminal vertex. Otherwise, if the
nuclear rank of G is r , then (except for the root) its immediate descendants all have
order 2r jGj. This is important for us since, except for the groups of 2-class 2, one
descendant of a group cannot be a quotient of another and we do indeed (assuming
transitivity of the pure braid group action) have a distribution on a rooted tree. Note
that, at least under this assumption, one might expect A.�/ to be the number of
surjections from Gfq;rg.2/ to � . The exponent of the order of a group is placed to the
right of the vertex.
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Figure 1. Subtree of the O’Brien tree.

The subtree falls into 4 parts. By Part I, we mean the isolated twig to the left.
Let �i .i D 1; 2; 3/ denote the three groups of 2-class 3 and order 256. Parts II,
III, and IV will refer to the subtrees with roots �2, �3, and �1 respectively. Two
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of the abelianizations of the index 2 subgroups of each group are isomorphic to
Z=2Z � Z=4Z � Z=4Z, whereas the third is Z=2Z � Z=4Z � Z=4Z for �1 and
Z=2Z�Z=2Z�Z=8Z for the other two groups. Ray class groups of quadratic fields
tell us that �1 arises if one of q, r is a 4th power mod the other but not vice versa,
which does occur with density 1=4, and that �2 or �3 arises otherwise, occurring with
density 1=4. These match the predicted values.

5.4.1. Part I. The smallest 2-relator group in the subtree has order 64

(SmallGroup(64, 28) in the MAGMA database) and arises if and only if q is not
a square mod r . This occurs with probability 1=2, as predicted by Heuristic 2.4.

5.4.2. Part II. The nuclear rank of �2 is 2, indicating that its descendant tree should
not be too complicated. Using MAGMA to produce its viable descendants we find
that its subtree is finite, terminating in four groups of order 227 and 2-class 12. These
have not appeared in the literature before. They each have mass 1=32 according to
the heuristic. Among the abelianizations of their index 2 subgroups is still Z=2Z �
Z=2Z � Z=8Z. On the other hand, the viable descendants of �3 all have larger
abelianizations of index 2 subgroups. It follows that if neither q nor r is a 4th power
mod the other, then the Galois group of the maximal 2-extension of Q unramified
outside fq; rg is one of these 4 groups of order 227. Moreover, the total mass they
carry, namely 1=8, agrees with our conjecture, which furthermore suggests that each
of the 4 groups should occur equally often as q, r vary.

5.4.3. Part III. The descendant tree of �3 contains groups with nuclear rank 5

and higher, which makes it prohibitive to calculate to any depth. By the process of
elimination above, it and its descendants correspond to q, r that are both 4th powers
mod the other. Since in this case the corresponding ray class groups include one
isomorphic to Z=2Z � Z=2Z � Z=2nZ for any n � 4, there will be infinitely many
possible Galois groups, but as conjectured in [3], the evidence suggests that these
groups are all finite.

That evidence came from performing the experiment of looking at millions of
pro-2 groups with presentation of the form hx; y j xa D x5; yb D y5i (as a and b

vary through words in x and y) and by saving those whose 2-class quotients appeared
to grow unboundedly and whose finite index subgroups had finite abelianization
(within reasonable computational limits). All the groups that passed these filters had
abelianizations of all index 2 subgroups isomorphic to Z=2Z � Z=4Z � Z=4Z; in
other words, it appears that whenever Gfq;rg.2/ is infinite, it is a descendant of �1.
We have established above that all descendants of �2 are finite; we conjecture that,
likewise, all descendants of �3 are finite.

5.4.4. Part IV. The first author also suggested in [3] that all viable 2-relator de-
scendants of �1 should be infinite, and that the sequence of orders of their 2-class
quotients should be a particular one (A001461 in Sloane’s database of sequences).
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Our new investigations indicate that this must be modified to say that this is true for
exactly one quarter of these cases.

What happens is that �1 has two viable descendants, each order 211 and carrying
mass 1=8. One of these has two viable descendants, each of order 214 and carrying
mass 1=16. Denote by � the first of these groups of order 214. Extensive experiments
indicate that every pro-2 group with presentation of the form hx; y j xa D x5;

yb D y5i and an element of order two outside its commutator subgroup (playing the
role of complex conjugation) and whose 2-class 5 quotient is � is infinite and has
2-class tower whose orders match the sequence A001461. Moreover, it appears that
every descendant of �1 which is not a descendant of � is finite.

The descendant tree of the second groups of order 211 and 214 can be pursued for
quite a distance. The experiment above indicates that these subtrees will eventually
terminate.

6. Conservation of mass

For a fixed prime p and positive integer g, consider O’Brien’s rooted tree whose nodes
are isomorphism classes of finite g-generator p-groups. We prune this by saving only
those groups of a particular type (which fixes their abelianization), that could arise as
a p-class quotient of a g-relator group (their p-multiplicator and nuclear ranks differ
by at most g), and that have nonzero mass.

It can happen that one such group of a given p-class is a quotient of another –
for instance, if F is the free pro-2 group on 2 generators, then F=P2.F / of order 32

has Z=4Z � Z=4Z as a quotient but both are of p-class 2. This tends however to be
rare, since if the difference between the p-multiplicator rank and nuclear rank of �

equals g, the same will be true of its immediate descendants and they will all have
the same order, namely j�jpr , where r is the nuclear rank of G [15]. This means that
(again, given some hypothesis on transitivity of pure braid group actions) we have
produced a probability distribution on the rooted tree with root � , by assigning the
mass AZ.�/=jAut �j to each vertex � .

Two interesting questions arise. Is it possible to have a point mass, i.e., an infinite
end along which the mass is bounded away from 0? Second, does the accumulated
mass of FAb groups (meaning that every open subgroup has finite abelianization) or
ones without infinite p-adic analytic quotients amount to 100%? These both have
positive answers with respect to the measure given in [4].
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