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Abstract. We show that pairs of generators for the family Sz.q/ of Suzuki groups may be
selected so that the corresponding Cayley graphs are expanders. By combining this with
several deep works of Kassabov, Lubotzky and Nikolov, this establishes that the family of all
non-abelian finite simple groups can be made into expanders in a uniform fashion.
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1. Introduction

Let X be a graph and let " > 0 be a real number. We say that X is an "-expander if,
for all setsA consisting of at most half the vertices ofX , we have j@Aj > "jAj. Here,
@A refers to the boundary of A, that is to say those vertices that are joined to a vertex
in A but do not themselves lie in A. There is a huge literature on expander graphs,
and we refer the reader to [15] for a comprehensive discussion. Much attention has
been devoted to the particular case of Cayley graphs Cay.G; S/. Given a finite group
G and a symmetric generating set S , one defines Cay.G; S/ to be the graph with
vertex set G in which x and y are joined to an edge if and only if x D ys for some
s 2 S . Note that if jS j D k then the Cayley graph is k-regular.

The following remarkable result was announced in [18], based on several earlier
works of subsets of the authors of that paper.

Theorem 1.1 (Every* non-abelian finite simple group is an expander). There exist
k 2 N and " > 0 such that, for every* non-abelian finite simple group G, one may
select a symmetric set S of k generators for which Cay.G; S/ is an "-expander.

The asterisk means that this is true with the possible exception of a single family
of simple groups, the Suzuki groups Sz.q/. We will recall the definition of these in
Section 3.
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Our main aim in this paper is to remove the lacuna in Theorem 1.1.

Theorem 1.2 (Suzuki groups are expanders). There exists " > 0 such that, for every
Suzuki groupG D Sz.q/, one may select a generating pair a, b inG such that, setting
S ´ fa˙1; b˙1g, the Cayley graph Cay.G; S/ is an "-expander. Thus Theorem 1.1
is true without any exception.

Remarks. The main reason why the techniques in [18] do not extend to the Suzuki
case is that those methods rely onG containing an embedded copy of SL2.q

0/ for some
large q0; however this is not so for Suzuki groups since j SL2.q

0/j is always divisible
by 3, whereas jSz.q/j is not. Interestingly, our method in some sense depends on
this very fact: as stated formally in Lemma 3.2 below, Sz.q/ does not have a rich
subgroup structure. In fact the method extends to finite simple groups of Lie type all
of whose subgroups are either solvable, bounded or subfield subgroups (see §5 for
more details). In this sense our methods precisely complement those of [18].

Our method is probabilistic and thus does not provide an explicit generating set.
In fact, we shall prove that a random pair of elements a, b will generate G and have
the above expansion property with probability going to 1 as q ! 1.

It is remarked in [18] that careful computation ought to yield k D 1000 and
" D 10�10 as acceptable values in Theorem 1.1. As it stands our method, though it
gives the rather superior value k D 4, does not give any explicit value of ". However
one could in principle replace all of the quantitative algebraic geometry arguments
in Appendix A of [6] by effective arguments, rather than using ultrafilters as we did
there. Furthermore, this would only need to be done in the caseG D Sp4 of the main
theorem in [6].

In a subsequent paper in collaboration with R. Guralnick [5], we will extend
Theorem 1.2 to all finite simple groups of Lie type of fixed rank by proving that a
random pair of elements gives makes its associated Cayley graph into a "-expander,
where " depends only on the rank of the group.

Finally, let us note that the tendency to define group expansion in terms of graphs
is a matter of custom, designed to draw attention to the much wider world of graph
expanders. However, for our purposes a completely equivalent definition involving
only the group is as follows: G is an expander with generating set S if and only if
jA4AS j > "jAj for all sets A � G with jAj 6 jGj=2. Perhaps even more naturally,
G is an expander with generating set S if and only if jAS 0j > .1C "/jAj for all sets
A with jAj 6 jGj=2, where S 0 ´ S [ fidGg.

Notation. We use the asymptotic notation X D O.Y /, X � Y , or Y � X to
denote the estimate jX j 6 CY for some absolute constant C . If we need C to
depend on additional parameters then we will indicate this by subscripts; thus for
instanceX �l Y denotes the estimate jX j 6 ClY for some Cl depending only on l .
We use oq!1.1/ to denote a quantity that is bounded in magnitude by c.q/ for some
quantity c.q/ depending on q that goes to zero as q ! 1. If A is a non-empty finite
set, we use Ex2A as shorthand for 1

jAj
P

x2A, where jAj denotes the cardinality of A.
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2. An overview of the argument

The basic scheme of the argument is the same as that used by Bourgain and Gamburd
[2] to show that Zariski-dense (or random) pairs of generators give expanders in
SL2.Fp/. The argument requires three main ingredients. The first is a Helfgott-type
result or product theorem, that is to say a statement about the structure of approximate
subgroups of G, of a type first obtained in [14]. An approximate subgroup of an
ambient groupG is a finite symmetric set A whose product set A2 can be covered by
at mostK cosets of the setA itself. The definition and basic properties of approximate
groups are discussed in some detail in the introduction of [6], to which we refer the
reader for further information on these topics. In our setting, this product theorem
takes the following form.

Theorem 2.1. Suppose that A � Sz.q/ is a K-approximate group that generates
Sz.q/. Then either jAj or jSz.q/j=jAj has size at most KO.1/.

Proof. This follows immediately from [23], Theorem 4, since Sz.q/ is a simple group
of Lie type. It may also be deduced from [6], using the fact that Sz.q/ is a “sufficiently
Zariski-dense” subgroup of the Chevalley group Sp4.F2/ of 4�4 symplectic matrices
over F2, that is to say the smallest degree of any nontrivial polynomial on Sp4.F2/

that vanishes on Sz.q/ tends to infinity with q. That this is so follows from the work
of Jones [17], reproduced as Lemma 3.3 in the present paper; it was used in a related
context by Larsen [21].

The next ingredient is an assertion that Suzuki groups are highly quasirandom in
the sense of Gowers [11].

Theorem 2.2 (Quasirandomness). The smallest dimension of an irreducible repre-
sentation of Sz.q/ is bounded below by cq3=2 for some absolute constant c > 0.

Proof. This follows from the paper of Landazuri and Seitz [20]. The exponent 3=2
is not essential for our purposes; any lower bound which was polynomial in q would
suffice.
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The third ingredient is not in the previous literature and is therefore the beef of
our paper: it asserts that random walks on the Suzuki group do not concentrate in a
subgroup.

Theorem 2.3 (Non-concentration estimate). For some choice of a; b 2 Sz.q/ and
for some constants C and ı > 0, we have

sup
H<G

�
.n/

a;b
.H/ < q�ı (2.1)

for all n > C log q, where the supremum ranges over all proper subgroupsH of G,
and where �a;b is the probability measure assigning weight 1=4 to each of the four

points a, a�1, b, b�1, and �.n/

a;b
is the n-fold convolution.

In fact we will prove that this statement holds for a proportion 1 � oq!1.1/ of
all pairs .a; b/ in Sz.q/ � Sz.q/.

The Bourgain–Gamburd argument from [2] yields Theorem 1.2 as a consequence
of Theorems 2.1, 2.2 and 2.3. Their approach derives expansion, i.e., a lower bound
on the first eigenvalue of the discrete laplacian on the Cayley graph of G, from
the `2 decay of the return probability of the simple random walk on G via the so-
called “trace method”. This translation requires Theorem 2.2 and was inspired by
the multiplicity argument of Sarnak and Xue [24]. The product theorem and the
non-concentration result are key ingredients in the proof that this return probability
indeed decays: if there was no decay then some level set of the probability distribution
of the random walk would be close to being an approximate group, contradicting
the product theorem. We shall not give further details of the Bourgain–Gamburd
argument here and we refer the reader to [12] or our forthcoming paper [5] for further
discussion. Instead we will concentrate on the only remaining task, which is to
establish Theorem 2.3.

There are several steps necessary to do this, but we take advantage of the fact
that maximal proper subgroups of Sz.q/ are either 3-step solvable or else conjugates
of Sz.q0/ for some q0 D q1=r , r 2 N, r > 3 (note that q D 22nC1, so we could
not have r D 2; this point will be helpful later on); see Lemma 3.2. The solvability
is particularly helpful and allows us to avoid the theory of random matrix products,
important in more recent applications of the Bourgain–Gamburd method (such as in
[3], [4]), by following a simpler argument very similar to that used in [2]. Another
key ingredient will be that almost all pairs .a; b/ in Sz.q/ satisfy no relation of length
up to � log q, for some � > 0, a fact first proved in [10] (see also Appendix B below).

3. Basic facts about Suzuki groups

There are various conceptually enlightening ways to define the Suzuki groups: we
refer the reader to [7], [27] for some of them. For our purposes it is more convenient
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to proceed using a quite explicit presentation of these groups using 4�4matrices over
fields of characteristic two (although we will not, in this paper, really need to know
the detailed form of this presentation). This is in fact the way Suzuki first defined
these groups in his original paper [26]. A closely related parametrisation was used
in a paper of Jones [17]. Since we will require results from Jones’ paper, we use his
particular parametrisation below.

Here, and for the rest of the paper, we will set q ´ 22nC1 and consider the finite
field Fq . Set � ´ 2nC1. Then, for any x 2 Fq , we have .x� /� D x2; that is to say,
the map x 7! x� acts as a “square root” of the Frobenius map x 7! x2. As Fq has
characteristic 2, the map x 7! x� is of course an automorphism.

Definition 3.1 (Suzuki group). Suppose that a; b; ˛; ˇ 2 Fq and c; � 2 F�
q . Define

4 � 4 matrices over Fq by

u.a; b; ˛; ˇ/ ´

0
BB@

1 0 0 0

˛ 1 0 0

˛aC ˇ a 1 0

˛2aC ˛ˇ C b ˇ ˛ 1

1
CCA ;

d.c; �/ ´

0
BB@
c� 0 0 0

0 � 0 0

0 0 ��1 0

0 0 0 ��1c�1

1
CCA ; T ´

0
BB@
0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

1
CCA :

Then, setting U.˛; ˇ/ ´ u.˛� ; ˇ� ; ˛; ˇ/ and D.�/ ´ d.�� ; �/, we define

Sz.q/ ´ fU.˛; ˇ/D.�/T U.˛0; ˇ0/ W ˛; ˛0; ˇ; ˇ0 2 Fq; � 2 F�
q g

[ fU.˛; ˇ/D.�/ W ˛; ˇ 2 Fq; � 2 F�
q g:

Throughout the paper we write B for the subgroup consisting of the products
U.˛; ˇ/D.�/. The reader may care to check that the parametrisations given in the
definition above are unique. Thus jBj D q2.q�1/ and jSz.q/j D q2.q2C1/.q�1/ �
q5. Moreover Sz.q/ is a subgroup of Sp4.q/ ´ fA 2 SL4.q/; A

tTA D T g and the
matrices of the form u.a; b; ˛; ˇ/d.c; �/ parametrise a Borel subgroupB0 of Sp4.q/.
Finally we remark that what we have described in Definition 3.1 is essentially the
Bruhat decomposition of the Suzuki group.

Let us now detail several lemmas concerning these groups. First, we need the
following result concerning their subgroup structure.

Lemma 3.2 (Subgroups of Sz.q/). Every proper subgroup H < Sz.q/ is either a
conjugate of Sz.q0/ for some subfield Fq0

¨ Fq or else is a 3-step solvable group.

Proof. For this we refer the reader to [27], Theorem 4.1, and the references therein.
The notation used there hails from the Atlas of finite groups and is not necessarily
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standard. Note, for example, that in parts (iii) and (iv) of [27], Theorem 4.1, one sees
the notation Cn W 4, which refers to a semidirect product of the cyclic group Z=nZ
by the elementary abelian group Z=2Z � Z=2Z.

The next lemma asserts that Sz.q/ is not contained in any low-complexity subva-
riety of Sp4.F2/; it is needed in order to give the second proof of Theorem 2.1 using
the results in [6].

Lemma 3.3 (Sz.q/ is sufficiently Zariski dense). The Suzuki group Sz.q/ is not
contained in any proper algebraic subgroup of Sp4.F2/ of complexity Mq , where
Mq ! 1 as q ! 1.

Proof. See Appendix A. In fact we can take Mq � q1=2, although the exact rate is
not of importance for our argument.

Remark. For a full discussion of the notion of complexity of an algebraic variety, see
our earlier paper [6]. In the context of this lemma, it simply means that the smallest
degree of a polynomial which vanishes on Sz.q/ but not on Sp4.F2/ tends to infinity
as q does.

We will also require some less standard facts about the Suzuki groups. The first is a
result of G. Jones, giving a lower bound on the shortest word that vanishes identically
on Sz.q/.

Lemma 3.4 (No short word laws in the Suzuki group). Suppose thatw is some word
in the free group F2, such that w.a; b/ D id for all a; b 2 Sz.q/ n B . Then w has
length at least c

p
q for some absolute constant c > 0.

Proof. This follows from the proof of [17], Lemma 5, but for the convenience of the
reader we sketch the argument in Appendix A. We remark that the correct bound in
this lemma is probably cq: see the remarks following Lemma 4.1 of [13].

Finally, we will require the following result of Gamburd, Hoori, Shahshahani,
Shalev and Virág [10].

Lemma 3.5 (Large girth, [10]). LetG D Sz.q/. There is an absolute constant � > 0
such that, with probability 1 � oq!1.1/, a randomly chosen pair a; b 2 G will be
such that w.a; b/ ¤ id for all nontrivial words in the free group F2 with length at
most � log q.

Here, recall, oq!1.1/ denotes a quantity that goes to zero as q ! 1. Most of
the details in the paper [10] are concerned with the case of Chevalley groups, and
mention of twisted groups such as the Suzuki groups under consideration here is
confined to a few lines. More importantly, the treatment of these groups depends on
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a paper of Hrushovski [16] which uses methods of mathematical logic. If we were
to simply quote [10], then, our main theorem would be genuinely ineffective1. For
these reasons we give a self-contained and rather elementary proof of Lemma 3.5 in
Appendix B, leading to a value of � which is half that obtained in [10]. Although it
is not strictly necessary for our paper we then indicate a more complicated, but still
elementary, proof of exactly the bound in [10].

4. The nonconcentration estimate

The aim of this section is to prove Theorem 2.3. We may assume that q is sufficiently
large, since the claim is trivial for bounded q by selecting a; b to be an arbitrary pair
of generators of Sz.q/. (It has long been known that such generators exist: see [25].)

Note that it will be enough to prove this estimate for n of the order of log q
(up to multiplicative constants). Indeed, if �.2n/

a;b
.H/ < q�ı for some such n, then

�
.nCm/

a;b
.H/ D Eg�

.m/

a;b
.g/�

.n/

a;b
.g�1H/ 6 .�

.2n/

a;b
.H//1=2 < q� ı

2 for all m > 0,

since �.2n/

a;b
.H/ > �

.n/

a;b
.g�1H/�

.n/

a;b
.Hg/ D �

.n/

a;b
.g�1H/2.

We will in fact show that (2.1) holds for randomly selecteda andb, with probability
1 � oq!1.1/ as q ! 1. Note that this implies that randomly selected a and b do
generate Sz.q/ if q is sufficiently large. By Proposition 3.2 this task divides into two
subtasks: we must handle the algebraic case in which H is 3-step solvable and the
arithmetic case in which H D g�1 Sz.q0/g for some Fq0

¨ Fq; g 2 G.

The algebraic case. Our argument here is almost identical to that in [2].
Let Fk be the free group on k letters, and write Wk.L/ for the ball of radius L

about id in the word metric on Fk . If G is a group, then for each i D 0; 1; 2; 3; : : :

we define the i -fold commutator maps  i W G2i ! G by

 0.g/ D g;

 1.g0; g1/ D Œg0; g1�;

 2.g00; g01; g10; g11/ D ŒŒg00; g01�; Œg10; g11��;

 3..g!/!2f0;1g3/ D ŒŒŒg000; g001�; Œg010; g011��; ŒŒg100; g101�; Œg110; g111���

and so on. For definiteness (though it scarcely matters) we use the group theorists’
definition of commutator, namely Œx; y� D x�1y�1xy.

The following lemma is a very straightforward modification of [2], Proposition 8.

Lemma 4.1. Suppose that S � Wk.L/ is a set with the property that

 l..s!/!2f0;1gl / D id

for all 2l -tuples .s!/!2f0;1gl � S . Then jS j �l L
2l .

1The ineffectivity would be of the following type: one could give an explicit expansion constant � > 0

which works for Sz.q/, q > q0, but no effective bound on q0.
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We remark that we will only need this lemma in the case k D 2; l D 3, though it
is scarcely more difficult to establish the general case.

Proof. Write f .k; l; L/ for the smallest function which works in the claimed bound;
thus our desire is to show that f .k; l; L/ �l L

2l . Suppose that S is a set with the
stated property. Then the set S 0 ´ fŒs; s0� W s; s0 2 Sg is a subset of Wk.4L/ with
the property that all the .l � 1/-fold commutator maps are trivial on S 0. Therefore
we have

jS 0j 6 f .k; l � 1; 4L/:
By the pigeonhole principle it follows that there exists some a 2 S 0 and b 2 S such
that there is a set S0 � S ,

jS0j > jS j=f .k; l � 1; 4L/; (4.1)

such that Œb; s� D a for all s 2 S0.
Suppose that s1; s2 2 S0. Then we have s�1

1 bs1 D s�1
2 bs2, which implies that

b commutes with s1s�1
2 . By standard facts about the free group this implies that

there is some word x and some integers m; n, jmj; jnj 6 2L such that b D xm and
s1s

�1
2 D xn. Since knowledge of xm andm uniquely determines x (another standard

fact about the free group), we see that, assuming b is fixed, there are no more than
.4LC 1/2 < .5L/2 possible values for s1s�1

2 .
Double-counting pairs of elements of S0, it follows that jS0j2 6 .5L/2jS0j.

Comparing this with (4.1) of course yields

jS j 6 .5L/2f .k; l � 1; 4L/:
By the definition of f this means that

f .k; l; L/ 6 .5L/2f .k; l � 1; 4L/;
and hence

f .k; l; L/ 6 52lL2.4L/2 : : : .4l�1L/2 � f .k; 0; 4lL/ 6 52l4l2

L2lf .k; 0; 4lL/:

This concludes the proof.

We now have enough tools to conclude the analysis of the algebraic case. Select a
random pair of elements a; b 2 Sz.q/. By Proposition 3.5 these are free up to length
� log q with probability 1�oq!1.1/. Set n0 ´ � log q=100 (say), and suppose that

�
.n/

a;b
.H/ > �;

for some n > n0 and for some 3-step solvable groupH . Then by a simple averaging
argument there is some g such that

�
.n0/

a;b
.Hg/ > �:
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As in the argument at the start of the section, this implies that

�
.2n0/

a;b
.H/ > �2:

Note that�a;b is counting walks of length 2n0 rather than distinct words; for example
if n0 D 3 then ab could be counted as abb�1aa�1b. However, just as in [2], p. 637,
it follows from Kesten’s celebrated thesis [19] that no more than .2

p
3/2n0 of the

42n0 walks of length 2n0 starting from the identity end up at any given point g.
Now words in a, b of length up to 16.2n0/ behave freely, and so we can bound

�
.2n0/

a;b
.H/ above by .

p
3=2/2n0 times jW2.2n0/ \H j. Since H is 3-step solvable,

the 3-fold iterated commutator  3 vanishes on H 8. Applying Lemma 4.1, we thus
obtain

�
.2n0/

a;b
.H/ � n8

0.
p
3=2/2n0 :

Since n0 � log q, it follows that � < q�ı for some suitably small absolute constant ı.
This concludes the proof of the algebraic case.

The arithmetic case. Recall that our aim is to show that

sup
g2G;Fq0

¨Fq

�
.n/

a;b
.g�1 Sz.q0/g/ < q

�ı

for all n � C log q, for some choice of a; b 2 G D Sz.q/ and for some C; ı > 0.
We will in fact establish the bound

Ea;b2Sz.q/ sup
g2G;Fq0

¨Fq

�
.n/

a;b
.g�1 Sz.q0/g/ < q

�ı ; (4.2)

from which the stated result is immediate by Markov’s inequality.
If t 2 SL4.q/ is a matrix, write

�4 C c1.t/�
3 C c2.t/�

2 C c3.t/�C 1 ´ det.t C �/

for the characteristic polynomial of t ; thus, for example, c1.t/ D tr.t/ and c3.t/ D
tr.t�1/. Since the characteristic polynomial is invariant under conjugation, for given
a, b the supremum in (4.2) is bounded above by

Pw

�
c1.w.a; b//; c2.w.a; b//; c3.w.a; b// 2 S

Fq0
¨Fq

Fq0

�
;

where the probability is taken over all words w of length n � C log q. We conclude
that

LHS of (4.2) 6 	1 C 	2 (4.3)

where

	1 ´ Ea;b2Sz.q/

3X
iD1

X
x2

S
Fq0

¨Fq
Fq0

x¤0

Pw.ci .w.a; b// D x/ (4.4)
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and

	2 ´ Ea;b2Sz.q/Pw.c1.w.a; b// D c2.w.a; b// D c3.w.a; b// D 0/: (4.5)

To bound these quantities 	1 and 	2, we use the following simple lemma.

Lemma 4.2 (Schwartz–Zippel type lemma). Suppose that F D Fq for some q D
22nC1, n > 1, and thatP W Fk �Fk ! F is a polynomial in 2k variables of degree at
most d in any one of them. Set � ´ 2nC1. Then either P.x1; : : : ; xk; x

�
1 ; : : : ; x

�
k
/ D

0 for all x1; : : : ; xk 2 F , or else the probability that P.x1; : : : ; xk; x
�
1 ; : : : ; x

�
k
/ D 0

for a random choice of x1; : : : ; xk 2 F is O.kdq�1=2/.

Proof. Write f .q; k; d/ for the least quantity that will work as a bound in this lemma.
Let P W Fk � Fk ! F be a polynomial such that P.x1; : : : ; xk; x

�
1 ; : : : ; x

�
k
/ does not

vanish identically. Write

P.x1; : : : ; xk; x
�
1 ; : : : ; x

�
k / D

X
06j;j 06d

pj;j 0.x2; : : : ; xk; x
�
2 ; : : : ; x

�
k /x

j
1x

j 0�
1 ; (4.6)

where the pj;j 0 are polynomials of degree at most d in each variable. Then there
exists some j , j 0 for which

pj;j 0.x2; : : : ; xk; x
�
2 ; : : : ; x

�
k /

does not vanish identically. For a randomly selected2k-tuple .x1; : : : ; xk; x
�
1 ,: : : ; x�

k
/

we distinguish two cases: either

pj;j 0.x2; : : : ; xk; x
�
2 ; : : : ; x

�
k / D 0;

or this is not so. The chance of the first case occurring is at most f .q; k�1; d/. In the
second case, let us fix x2; : : : ; xk; x

�
2 ; : : : ; x

�
k

and count the number of possibilities
for x1; x

�
1 . In this case (4.6) becomes a nontrivial polynomial equation of the form

p.x1; x
�
1 / D 0. Recalling that x�

1 D x2nC1

1 , we may regard this as a polynomial
equation of degree at most d.2nC1 C1/ in x1, and therefore it has at most d.2nC1 C1/
solutions. Putting these observations together we obtain the inequality

f .q; k; d/ 6 f .q; k � 1; d/C q�1d.2nC1 C 1/:

Iterating we obtain
f .q; k; d/ 6 kdq�1.2nC1 C 1/;

which implies the claimed bound.

Remark. By using Lemma B.1, which gives a bound of 2d2 instead of the trivial
bound of d.2nC1 C 1/ for the number of solutions to p.x1; x

�
1 / D 0, it is possible to

obtain the stronger bound f .q; k; d/ 6 2kd2=q in this lemma. We will not require
this improvement in this paper.
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Using Lemma 4.2 we can bound the probability that ci concentrates at a non-zero
value.

Lemma 4.3 (Non-concentration away from zero). Suppose that w is a word in the
free group F2 of length L, that x 2 Fq n f0g, and that i D 1; 2 or 3. Then if a, b are
selected randomly from Sz.q/ we have

Pa;b.ci .w.a; b// D x/ � q�1=2L:

Proof. The reader may wish to recall the explicit definition of Sz.q/ given in Def-
inition 3.1. The probability that either a or b lies in the subgroup B is at most
O.q�2/, which is acceptable. For all other a, b we may use the parametrisation
U.˛; ˇ/D.�/T U.˛0; ˇ0/. To parametrise a and b we require 10 variables, which we
denote by x1; : : : ; x10. Clearing denominators arising from the appearance of ��1

and ��� in D.�/, we may rewrite the equation ci .w.a; b// D x in the form

P.x1; : : : ; x10; x
�
1 ; : : : ; x

�
10/ D 0;

where P is a polynomial in 20 variables, of degree O.L/ in each of them (note that
every matrix in Sp4.q/ has determinant one, so there is no issue when w contains
inverses of a and b). This polynomial does not vanish identically, since when a D
b D T the characteristic polynomial of any word w.a; b/ is simply �4 C 1, so in this
case c1.w.a; b// D c2.w.a; b// D c3.w.a; b// D 0. We are assuming, however,
that x ¤ 0. The result now follows from Lemma 4.2.

An immediate corollary of Lemma 4.3 is a bound for the quantity 	1 from (4.4).

Corollary 4.4. We have 	1 � q�1=6 log q.

Proof. By Lemma 4.3 and the definition of 	1 we have

	1 �
ˇ̌̌ [

Fq0
¨Fq

Fq0

ˇ̌̌
� q�1=2L:

Now simply observe that
X

Fq0
¨Fq

jFq0
j 6

X
r6.2nC1/=3

2r � q1=3;

this being a consequence of the fact that 2nC1 is odd, and hence has no proper factor
larger than .2nC 1/=3.

It remains to bound the quantity 	2 from (4.5). Note that if c1.w.a; b// D
c2.w.a; b// D c3.w.a; b// D 0 then the characteristic polynomial of w.a; b/ is
simply �4 C 1 and hence, by the Cayley–Hamilton theorem, w.a; b/4 D id. Once
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again, the probability that either a or b lies in the subgroupB � Sz.q/ is justO.q�2/.
It therefore suffices to bound

Ea;b2Sz.q/Pw.a; b … B;w.a; b/4 D id/:

The average over w involves words of length onlyO.log q/. By Lemma 3.4, none of
these words w.a; b/4 (except the trivial word) vanishes identically on Sz.q/ n B .

Parametrise pairs of elements of a; b 2 Sz.q/ nB as before, using ten parameters
x1; : : : ; x10. The condition thatw.a; b/4 D id leads to sixteen polynomial equations,
each of degree O.log q/ in every variable. By Jones’ result (and for Q sufficiently
large), at least one of these polynomials must be nontrivial. Applying Lemma 4.2 we
may conclude that

	2 � q�1=2 log q: (4.7)

Combining this with Corollary 4.4 and recalling the definition of 	1; 	2 (cf. (4.3))
we obtain (4.2) as desired. This concludes our analysis of the arithmetic case and
hence the proof of Theorem 2.3.

5. Remarks on SL2.q/

All of our arguments go through (and are considerably simpler) for SL2.q/, q D pn,p
prime, n > 1. It is, however, already known due to work of Lubotzky [22] (referenced
in [18]) that the groups SL2.q/ are uniformly expanders (with varying p and n) for
some rather explicit sets of three generators and their inverses. The methods of this
paper, then, provide an alternate proof of Lubotzky’s result. There are perhaps three
good reasons for wishing to have such an alternative proof. Firstly, we avoid the
use of any deep number-theoretic information. Secondly, we can get two generators
rather than three. Thirdly, the result itself is an ingredient (in fact only one of many)
of the work of Kassabov–Lubotzky–Nikolov [18].

Everything goes through in much the same way as for the Suzuki groups. The
“Helfgott-type” product theorem for SL2.q/ (analogous to Theorem 2.1) was obtained
by Helfgott himself [14] for q prime, and was subsequently generalized to arbitrary
q in Oren Dinai’s thesis (see [9]). As for the proof of the non-concentration estimate,
the algebraic case involves, apart from some subgroups of bounded order (6 60),
only 2-step solvable groups rather than 3-step. We refer the reader to Dickson’s book
[8], [XII, 260, for a careful description of the subgroup structure of SL2.q/. Finally,
there is a much more elementary argument for the arithmetic case, which we now
give.

Recall that the aim is to show that, for a proportion 1�oq!1.1/ of pairs a; b 2 G,
we have

�
.n/

a;b
.x�1 SL2.q0/x/ < q

�ı (5.1)

for some ı > 0 and for all n > C log q, uniformly for all x 2 G and all q0 D q1=r ,
r > 1. In SL2, the characteristic polynomial is determined by the trace, so we can
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proceed exactly as in the last section with the trace in place of the ci ’s, except now
there is a somewhat easier way to obtain a bound

Pa;b2SL2.q/.tr.w.a; b// D x/ � q�1C"; (5.2)

which suffices for our purposes in exactly the same way that Corollary 4.4 and the
bound .4.7/ did in the previous section. Indeed, suppose that

a D
�
t1 t2
t3

t2t3C1
t1

�
; b D

�
u1 u2

u3
u2u3C1

u1

�

with t1; u1 ¤ 0. For a fixed wordw of lengthO.log q/, the condition tr.w.a; b// D x

can be written (by clearing the denominators t1 and u1) as a polynomial of degree
O.log q/ in the variables ti ; ui . By Borel’s theorem [1] (see also [21]), the word
map w W SL2 � SL2 ! SL2 is a dominant map as soon as w is non-trivial. This
implies that our polynomial is not constant. Thus it is not hard to see that the number
of solutions to it is O.q5 log q/ by a somewhat simpler, untwisted, version of the
counting argument given in Proposition 4.2 above. The number of pairs a, b in which
the top left entry of either a or b is zero is clearlyO.q5/, and this completes the proof
of .5.2/.

To get .5.1/ it suffices to observe that the subset of elements in Fq which lie in a
proper subfield has size O.

p
q/. This completes the argument.

Appendix A. A result of G. A. Jones

In this appendix, we prove Lemmas 3.3 and 3.4 following G. Jones’ paper [17].
We keep the notation of Section 3. Let q D 22nC1 and let k D F2 be the

algebraic closure of F2. We will view Sp4.k/ as a closed affine algebraic subset
of 4 � 4 matrices over k, i.e., as a subset of k16. We view it as an algebraic group
endowed with the Zariski topology. Let f be a polynomial in 16 variables over k. We
begin by establishing the following lemma, which forms the heart of Jones’argument.

Lemma A.1. There is a constant c > 0 such that if f has degree at most c
p
q, and

f vanishes identically on Sz.q/ n B , then f vanishes identically on Sp4.k/.

Proof. Suppose f has degree at most M WD1=2 =10 is each of the 16 variables. Re-
call the parametrisation of the (lower triangular) Borel subgroup B0 of Sp4.k/ as
u.a; b; ˛; ˇ/d.c; �/. The set B0TB0 can be parametrised by matrices of the form
u.a; b; ˛; ˇ/d.c; �/T u.a0; b0; ˛0; ˇ0/. It is the so-called “big-cell” of the Bruhat
decomposition of Sp4.k/. It is Zariski-open and hence Zariski-dense in Sp4.k/.
Hence if f vanishes entirely on B0TB0, it must vanish entirely on Sp4.k/. After
multiplying f by .�c/M in order to clear denominators, we obtain a polynomial
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P D P.a; b; ˛; ˇ; c; �; a0; b0; ˛0; ˇ0/ of degree at most 2M in each of the ten vari-
ables, with the property that P D 0 if and only if �c D 0 or if f D 0. It particular
if P vanishes on k10, i.e., is the zero polynomial, then f vanishes identically on
Sp4.k/.

Recall from Definition 3.1 that any element g 2 Sz.q/ n B can parametrised as

g D u.˛� ; ˇ� ; ˛; ˇ/d.�� ; �/T u.˛0� ; ˇ0� ; ˛0; ˇ0/:

Let Q be the polynomial in 5 variables defined as

Q.˛; ˇ; �; ˛0; ˇ0/ D P.˛� ; ˇ� ; ˛; ˇ; �� ; �; ˛0� ; ˇ0� ; ˛0; ˇ0/:

Since (by assumption) f vanishes on Sz.q/ n B , Q must vanish identically for all
values of ˛; ˇ; �; ˛0; ˇ0 taken in Fq . We shall prove that, due to the upper bound onM ,
this forces the polynomial P.a; b; ˛; ˇ; c; �; a0; b0; ˛0; ˇ0/ to be the zero polynomial
and that will complete the argument.

Note that Q has degree at most 2M.� C 1/ in each of its 5 variables. Since
10M.� C 1/ < q, Q must take a non-zero value on F5

q unless Q is formally zero.
This follows from the well-known fact that any non-zero polynomial in k variables
over Fq of degree at most d in each variable has at most kdqk�1 solutions in Fk

q ,
by the Schwartz–Zippel lemma (which one can prove by an induction on dimension
argument similar to that used to prove Lemma 4.2). Therefore Q is formally zero.

Suppose now that P is formally non-trivial. Then there must be two distinct

monomials m1 D am1
abm1

b˛m1
˛ : : : c0m1

c0 and m2 D am2
abm2

b˛m2
˛ : : : c0m2

c0 appearing
in P which coincide after the substitution a 7! ˛� , b 7! ˇ� , c 7! �� . This means
that �m1

a C m1
˛ D �m2

a C m2
˛ and similarly for b and c. However, since 2M < � ,

this forces m1
a D m2

a and m1
˛ D m2

˛ and similarly for b, c, ˇ and � , that is to say
m1 D m2. This contradiction implies that P is formally trivial and this ends the
proof of the lemma.

We are now in a position to deduce Lemma 3.3, whose statement we recall now.

Lemma 3.3. The Suzuki group Sz.q/ is not contained in any proper algebraic sub-
group of Sp4.k/ of complexityMq , whereMq ! 1 as q ! 1.

Proof. Let V be a proper closed subvariety of Sp4.k/ of complexity at most M
containing Sz.q/. Then by the definition of complexity (cf. [6], Section 3), there is a
polynomial f on 16 variables over k and of degree at mostM , which does not vanish
identically on Sp4.k/ yet is identically zero on V . We are thus in a position to apply
the above lemma and conclude that M > cq1=2.

Our other business is to establish Lemma 3.4.

Lemma 3.4. Suppose thatw is some word in the free groupF2, and thatw.a; b/ D id
identically on Sz.q/nB . Thenw has length at least c

p
q for some absolute constant

c > 0.
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Proof. Suppose not. The relation w.a; b/ D id can be written as 16 polynomial
equations of degree � q1=2 in the 16 matrix coordinates. Applying Lemma A.1
to each of them, we conclude that w.a; b/ D id for every a and b in Sp4.k/. We
then observe that Sp4.k/ contains a closed algebraic subgroup isomorphic to SL2.k/

(for example the subgroup of Sp4 fixing the vectors e1 and e4). On the other hand
it follows from Borel’s result2 [1] that w.a; b/ � id cannot vanish identically on
SL2.k/ � SL2.k/ unless w is trivial.

Appendix B. Random Cayley graphs of Sz.q/ have large girth

Our aim in this appendix is to supply a self-contained proof of Lemma 3.5. The
argument is basically the same as that in [10], only we use elementary estimates
instead of the deep model-theoretic work of Hrushovski. We first recall the statement
of the lemma.

Lemma 3.5. Let G D Sz.q/. There is an absolute constant � > 0 such that,
with probability 1 � oq!1.1/, a randomly chosen pair a; b 2 G will be such that
w.a; b/ ¤ id for all nontrivial words w in the free group F2 with length at most
� log q.

Proof. Let � > 0 be a quantity to be specified later. The number of nontrivial words
w 2 F2 of length at most � log q is � q� log 3. For each of them, let us estimate the
probability that a random pair of elements a; b 2 Sz.q/ satisfies w.a; b/ D id. The
probability that either a or b lies in the subgroupB (cf. Definition 3.1) isO.q�2/ and
will be ignored. The other elements may be parametrised asU.˛; ˇ/D.�/T U.˛0; ˇ0/.
Parametrising a and b by ten variables x1; : : : ; x10, the equation w.a; b/ D id is
equivalent to sixteen polynomial equations

Pij .x1; : : : ; x10; x
�
1 ; : : : ; x

�
10/ D 0;

one for each matrix entry, where each Pij has degree O.log q/ in each variable
(we have cleared the denominators ��1 and ����1 appearing in the expression by
multiplying by a O.log q/ power of � and �� to get Pij ).

By Lemma 3.4 we do not havew.a; b/ D id identically for a; b 2 Sz.q/ nB , and
so at least one of these polynomial equations is nontrivial. By Lemma 4.2, it follows
that

Pa;b.a; b … B;w.a; b/ D id/ � q�1=2 log q:

Summing over w, one sees that the probability that a randomly selected pair a, b
will satisfy any word of length � log q is bounded byO.q� log 3�1=2 log q/. Choosing
� < 1=2 log 3, the result follows immediately.

2This particular fact may be also be proven more elementarily by a ping-pong argument, noting that w

would also have to vanish on SL2.k.t// � SL2.k.t//, where t is an indeterminate. This avoids an appeal
to the Tits Alternative.
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As we remarked in the overview, our lower bound for the girth is precisely half
that of [10]. The reason for this is the rather crude bound on the number of solutions
to p.x; x� / D 0 that we employed during the proof of Lemma 4.2. By employing
the following lemma instead (with appropriate modifications of Lemma 4.2) we may
recover the bound of [10]. This lemma is plausibly of independent interest.

Lemma B.1. Let q D 22nC1 and write � ´ 2nC1. Let p.x; y/ 2 FqŒx; y� be a
nontrivial polynomial with degree at most d in each of its variables. Then the number
of solutions to p.x; x� / D 0 with x 2 Fq is at most 2d2.

Proof. Suppose thatp.x; x� / D 0. Raising to the power � and recalling that x 7! x�

is an automorphism with .x� /� D x2, we obtain

p� .x� ; x2/ D 0: (B.1)

Here, p� means the polynomial obtained from p by raising each coefficient to the
power � . Motivated by this observation let us consider the more general problem of
bounding above the number of solutions to

p� .y; x2/ D p.x; y/ D 0

with x; y 2 Fq . WriteP.x; y/ D p� .y; x2/; note that the total degree ofP is at most
2d . Let f .x; y/ be the highest common factor of p and P in FqŒx; y�. Multiplying
by a suitable unit, we may take f .x; y/ to lie in FqŒx; y�: indeed any Gal.Fq=Fq/-
conjugate of f .x; y/ is also a common factor of p and P and so every irreducible
factor of f .x; y/ comes together with all of its conjugates, and the product of those
is defined over Fq . Write p D fp1 and P D fP1.

Write d 0 for the total degree of f , and suppose that d 0 < d . By Bezout’s theorem,
the number of solutions top1.x; y/ D P1.x; y/ D 0 is at most .2d�d 0/.d�d 0/. All
other solutions to p.x; x� / D 0 must also satisfy f .x; x� / D 0, and so we may thus
proceed inductively to conclude that the total number of x 2 Fq with p.x; x� / D 0

is at most
.2d � d 0/.d � d 0/C 2d 02 6 2d2;

as required.
If d 0 D d then we must proceed differently. In this case p.x; y/ divides P.x; y/,

and so we may write

P.x; y/ D p� .y; x2/ 	 g.x; y/p.x; y/

for some polynomial g.x; y/ 2 FqŒx; y�. Here, and henceforth, we use 	 to denote
equality of polynomials (and not just expressions that are equal for all substitutions
of variables from Fq). Making an obvious substitution, we have

p� .x2; y2/ 	 g.y; x2/p.y; x2/:
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Raising both sides to the power � then yields

p2.x2� ; y2� / 	 g� .y� ; x2� /p� .y� ; x2� /

and hence that
p2.x2; y2/ 	 g� .y; x2/p� .y; x2/:

It follows that

p.x; y/2 	 p2.x2; y2/ 	 g� .y; x2/p� .y; x2/ 	 g� .y; x2/g.x; y/p.x; y/;

and so
p.x; y/ 	 g� .y; x2/g.x; y/:

In particular p is reducible over Fq and we may proceed by induction on the total
degree of p.

The second author would like to thank Michael Larsen for helpful conversations
in connection with this lemma.
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