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Abstract. Let M be a compact 3-manifold with infinite fundamental group � . Given a
homomorphism from � to a p-adic analytic group G with dense image, we describe the
possible mod-p homology growth of covers Mn of M determined by the congruence subgroups
Gn. If d D dim.G/ > 3, this growth is always non-trivial, growing at least as fast as
Vol.Mn/.d�1/=d .
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1. Introduction

Let M be a compact, orientable, connected 3-manifold with fundamental group � .
Let p be a prime, let n � 1 be a positive integer, and let � W � ! GLn.Zp/ be a
homomorphism. If we let G denote the closure in GLn.Zp/ of the image of � , then
G is a p-adic analytic group, admitting a normal exhaustive filtration

Gn ´ G \ ker.GLN .Zp/! GLN .Z=pnZ//:

This filtration gives rise to a corresponding filtration f�ng of � via the normal sub-
groups �n ´ ��1.Gn/. This filtration may or may not be exhaustive (depending on
whether or not � is injective).

Associated to each of the finite index subgroups �n of � is a finite connected cover
Mn of M . The main concern of this paper is to estimate the growth of H1.Mn; Fp/

as a function of n, in terms of the geometry of M and the dimension of the group G.

�The first author was supported in part by the Sloan foundation and by NSF grants DMS-0701048
and DMS-0846285. The second author was supported in part by NSF grants DMS-0701315 and DMS-
1002339.
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The methods of this paper are very similar to those of [4], [5]. The point of
this note, however, is to point out that no assumption on the arithmeticity (or even
hyperbolicity) of M is required, and that � need not be a congruence homomorphism.
Indeed, our conclusions do not depend at all on the geometry of M , beyond the fact
that it has dimension 3.

If H is any pro-p group, let ı.H/´ dimFp
H=ˆ.H/ where ˆ.H/ is the Frattini

subgroup of H . If ı.H/ is finite, it is equal to the minimal number of topological
generators of H . Recall that the dimension d ´ dim.G/ of a p-adic analytic group
G is equal to ı.H/ for any open uniform subgroup H of G. The sequence of normal
subgroups Gn � G constructed above is an exhaustive sequence of subgroups, that
is,

T
Gn D f1g. It follows that for any finite index open subgroup H � G, there is

an inclusion Gn � H for sufficiently large n. In particular, taking H to be uniform,
we deduce from Theorem 3.8 of [7] that ı.Gn/ � d for sufficiently large n.

The following result is the main theorem of this note.

Theorem 1.1. Let d D dim.G/. Then one of the following holds:

(1) dim H1.Mn; Fp/ D � � pdn CO.p.d�1/n/ for some rational constant � ¤ 0.

(2) dim H1.Mn; Fp/ D ��p.d�1/nCO.p.d�2/n/ for some rational constant � ¤ 0.

(3) d D 2, and dim H1.Mn; Fp/ D O.1/.

(4) d D 3, the boundary of M is a (possibly empty) union of spheres, and one has
dim H1.Mn; Fp/ D ı.Gn/ and dim H1.Mn; Fp/ � 3 for sufficiently large n.

If d > 3, then Theorem 1.1 implies that the rate of growth of mod-p homol-
ogy comes in two possible flavours. Since ŒG W Gn� is of order pdn, case (1) of
Theorem 1.1 corresponds to “linear growth” of mod-p homology. The question of
linear mod-p homology growth is considered in recent work of Lackenby [8], [9],
where the existence of such growth in certain circumstances can be used to deduce
that some finite index subgroup of � is “large” (i.e., admits a surjection onto a free
group of rank � 2). (We shall see in Example 5.1 that large subgroups give rise to
examples where case (1) applies.) Case (2) of Theorem 1.1, however, corresponds to
“sub-linear growth” of mod-p homology. Perhaps the most surprising aspect of our
result is that whenever the growth of mod-p homology in a p-adic analytic tower is
sub-linear (and dim.G/ > 3) the rate of growth is still quite fast, and, moreover, is
determined (up to a non-zero scalar) by the single invariant dim.G/. A natural ques-
tion to consider is whether one should expect case (1) or (2) to hold. We conjecture
the following:

Conjecture 1.2. Suppose that M is a finite volume hyperbolic manifold and that �

is injective, or equivalently, that
T

�n D f1g. Then case (1) of Theorem 1.1 does
not occur.

Although this conjecture is motivated by questions in the theory of automorphic
forms (see, for example, [5]), it reflects the general principle that fundamental groups
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of finite volume hyperbolic 3-manifolds are a long way from being free, unlike the
fundamental groups of surfaces. (For example, the fundamental group of any closed 3-
manifold admits a balanced presentation, i.e., one with an equal number of generators
and relations.)

In Section 5, we give examples illustrating our theorem. In particular, every
possible case of Theorem 1.1 does occur.

2. Iwasawa theory

We maintain the notation of the introduction. We define the completed homology
groups as follows:

zHi .Fp/ D lim �Hi .Mn; Fp/:

Example 2.1. Consider the case i D 0. Each Hi .Mn; Fp/ is then canonically identi-
fied with Fp , and the transition maps in the projective limit are just the identity map.
Hence zH0.Fp/ D Fp .

Example 2.2. If M is not closed, then H3.Mn; Fp/ D 0 for each n, and so certainly
zH3.Fp/ D 0. On the other hand, suppose that M is closed, so that H3.Mn; Fp/ D Fp

for each value of n, generated by the fundamental class ŒMn�. If the dimension d of
G is at least 1, then for any n � 1, there is n0 > n such that the degree of the map
Mn0 ! Mn is divisible by p, and hence induces the zero map on H3. Thus, when
d � 1, we see that zH3.Fp/ D 0 even when M is closed.

Each of the modules zHi .Fp/ carries a continuous action of G, and thus is a
ƒ ´ FpŒŒG��-module. The modules zHi .Fp/ are, in fact, finitely generated as ƒ-
modules. One way to see this, which also sheds light on the nature of the groups
zHi .Fp/, is as follows: Fix a triangulation of M , and pull this back to obtain a G=Gn-

equivariant triangulation to Mn. We obtain a chain complex of free FpŒG=Gn�-
modules which compute Hi .Mn; Fp/ together with the action of G=Gn. The rank of
these modules is bounded by the number of cells in the triangulation of M , and is
hence bounded independently of n. The projective limit of these complexes defines
a chain complex of finite rank free ƒ D FpŒŒG��-modules

S
�
W S3 ! S2 ! S1 ! S0;

whose homology equals zHi .Fp/.
In particular, zH1.Fp/ can be thought of as an analogue of the Alexander invariant,

where the group G plays the role of the covering group Z of a knot complement
in the theory of the Alexander invariant, and the ring ƒ plays the role of the ring
ZŒZ� D ZŒt; t�1� in that theory.
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A basic fact underlying the viewpoint of the paper is that the category of finitely
generated modules over ƒ ´ FpŒŒG�� has good properties whenever G is p-adic
analytic; e.g., for any such G, the ring ƒ is (left and right) Noetherian [10], and if G

is furthermore sufficiently small, then ƒ is Auslander regular [14]. For example, If
G D ZN

p , then ƒ ' FpŒŒT1; : : : ; TN �� is a regular local ring of dimension N .
The key technical ingredient that we employ is the notion of codimension for

finitely generated ƒ-modules. A finitely generated ƒ-module A is defined to have
codimension c if Exti .A; ƒ/ D 0 for all i < c and is non-zero for i D c. A non-zero
finitely generated module has codimension � d ; we define the codimension of the
zero module to be1. The utility of this definition is the following result (see [1],
§5):

Theorem 2.3. Suppose that A is a finitely generated ƒ-module of codimension c, and
as usual, write dim.G/ D d . Then, letting fGng denote the filtration of G defined
above, we have that

dim H0.Gn; A/ D dim.the space of Gn-coinvariants of A/

D � � p.d�c/n CO.p.d�c�1/n/

for some non-zero rational number �.

In order to connect this result to our main theorem, we note the following:

Lemma 2.4. There is an exact sequence:

H2.Gn; Fp/! H0.Gn; zH1.Fp//! H1.Mn; Fp/! H1.Gn; Fp/! 0:

Proof. This follows from a version of the Hochschild–Serre spectral sequence for
completed homology (where we have taken into account the fact that zH0 D Fp , by
Example 2.1).

Note that dim H1.Gn; Fp/ D ı.Gn/ � d D dim.G/ for sufficiently large n, and
that H2.Gn; Fp/ is bounded as a function of n (see [6]). The main theorem is thus
automatically true for d � 2. Moreover, when d � 3, it suffices to prove either that
zH1.Fp/ has codimension � 1, or else that the boundary of M is a union of spheres,

that d D 3, and that zH1.Fp/ D 0. (This equivalence uses the fact that if zH1.Fp/ D 0,
then H1.Mn; Fp/ D H1.Gn; Fp/ has dimension ı.Gn/.)

3. The case of closed M

We shall assume in this section that @M D ;. This case contains all the essential
ideas of this paper and is unencumbered by the technical modifications required when
M has boundary.
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Lemma 3.1. There is a spectral sequence

Exti . zHj .Fp/; ƒ/) zH3�i�j .Fp/:

Proof. Apply Hom.–; ƒ/ to the chain complex S
�

described above.

Remark 3.2. Note that Lemma 3.1 (and its proof) is essentially Poincaré duality
“over ƒ”, the only difference being that ƒ (unlike a field) is not cohomologically
trivial, so that one obtains a spectral sequence rather than a simple isomorphism
between the ƒ-dual of zHi .Fp/ and zH3�i .Fp/.

Let us now study the spectral sequence. Note that Exti .Fp; ƒ/ D 0 unless i D d ,
in which case it equals Fp . Thus the E2-page of the spectral sequence has the
following form:

Hom. zH2.Fp/; ƒ/ Ext1. zH2.Fp/; ƒ/ : : :

Hom. zH1.Fp/; ƒ/ Ext1. zH1.Fp/; ƒ/ : : :

0 0 : : : Fp:

The .0; 0/ term is stable, and hence, we recover the fact that zH3.Fp/ D 0 when d � 1

(which we already observed in Example 2.2 above).
As noted at the end of the preceding section, in order to prove our main theo-

rem, we may assume that d � 3 and that zH1.Fp/ has codimension at least 2. We
henceforth make these assumptions. From the definition of codimension, we find that
Hom. zH1.Fp/; ƒ/ D Ext1. zH1.Fp/; ƒ/ D 0. In particular (since also d > 1) we de-
duce from the spectral sequence that zH2.Fp/ D 0. Then also Hom. zH2.Fp/; ƒ/ D 0,
which, together with the fact that Ext1. zH1.Fp/; ƒ/ D 0 and that d > 2, allows us
to deduce from the spectral sequence that zH1.Fp/ D 0. Thus, the E2-page of the
spectral sequence in fact contains only one non-zero term, namely the .d; 0/ term Fp .
We therefore conclude that zHi .Fp/ D 0 unless i D 3�d , and that zH3�d .Fp/ D Fp .
Since we know that zH0.Fp/ D Fp , we deduce that d D 3. This completes the proof
of Theorem 1.1 in the closed case.

4. The case when M has boundary

If M has boundary, then it is still of interest to consider the completed homology
groups zHi .Fp/. However, we also need to consider homology relative to the boundary,
and the corresponding completed homology groups:

zH BM
i .Fp/ D lim �Hi .Mn; @MnIFp/:
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(Here the superscript “BM” stands for Borel–Moore homology; the reason for us-
ing this notation is that the relative homology Hi .Mn; @MnIFp/ coincides with the
Borel–Moore homology of the complement of the boundary H BM

i .Mn n @Mn; Fp/.)
Similarly, if we let @M denote the boundary of M , then we may define

zHi .@; Fp/ D lim �Hi .@Mn; Fp/:

Lemma 4.1. There are spectral sequences

(1) Exti . zH BM
j .Fp/; ƒ/) zH3�i�j .Fp/,

(2) Exti . zHj .Fp/; ƒ/) zH BM
3�i�j .Fp/,

(3) Exti . zHj .@; Fp/; ƒ/) zH2�i�j .@; Fp/.

Moreover, there is a long exact sequence:

� � � ! zHj .@; Fp/! zHj .Fp/! zH BM
j .Fp/! zHj �1.@; Fp/! � � � :

Proof. For the various spectral sequences we proceed as in the closed case. The long
exact sequence is obtained as the projective limit of the usual long exact sequences
for the pairs .Mn; @Mn/.

Suppose that n0 � n. Although @Mn0 is a finite cover of @Mn, typically neither is
connected. We will take a moment to discuss the structure of their component sets in
terms of the map �, the group G, and so on.

If † is a component of @Mn, then composing the natural map �1.†/! �1.Mn/ D
�n with the map �j�n

W �n ! Gn yields a map �1.†/! Gn. We let H denote the
closure of the image of this map. If n0 � n, and if we let †n0 denote the preimage of
† in @Mn0 , then there is a bijection

�0.†n0/ Š Gn=Gn0H:

We say that the component † of @Mn splits completely up the tower if each
component of †n0 maps homeomorphically to †, for each n0 � n, or equivalently, if
†n0 has ŒGn W Gn0 � connected components, for each n0 � n, or again equivalently (as
one deduces from the preceding description of �0.†n0/), if H D f1g.

Lemma 4.2. The following are equivalent:

(1) For some value of n, the boundary @Mn contains a component which splits
completely up the tower;

(2) zH0.@; Fp/ has codimension 0 as a ƒ-module.

Furthermore, either these equivalent conditions hold, or else zH2.@; Fp/ D 0.

Proof. Let @M D †1
` � � �` †m be the decomposition of @M into a disjoint union

of connected components. For each n, let †i
n denote the preimage of †i under the
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covering map Mn ! M . If we define Ai ´ lim �H 0.†i
n; Fp/, then zH0.@; Fp/ D

A1 ˚ � � � ˚ Am, and so zH0.@; Fp/ has codimension 0 if and only if at least one Ai

does.
Now if we write H i to denote the closure of the image of the composite

�1.†i /! �1.M/ D �
��! G;

then we see from the above discussion that �0.†i
n/ D G=GnH i , and thus that

Ai D lim �FpŒG=GnH i � D FpŒŒG=H i ��

(with the ƒ-module structure being induced by the left action of G on G=H i ). From
this description of Ai , one easily verifies that the codimension of Ai is equal to the
dimension of H i . Thus Ai has codimension 0 if and only if H i has dimension 0, i.e.
is finite. This in turn is equivalent to having H i \ Gn D f1g for sufficiently large
n, which is in turn equivalent to one (or equivalently, every) component of †i

n being
completely split up the tower. This establishes the equivalence of (1) and (2).

The final statement follows immediately from a consideration of the .0; 0/-term
of the third spectral sequence of Lemma 4.1. We may also prove it more directly:
since each @Mn is a disjoint union of closed surfaces, by arguing just as in the
3-manifold case considered in Example 2.2, we find that zH2.@; Fp/ D 0 unless,
for some sufficiently large value of n, there is a component of @Mn which splits
completely up the tower.

We now turn to proving Theorem 1.1. Since the 2-sphere is simply connected, any
2-sphere in the boundary of M splits completely up the tower of Mn. Thus we may cap
off all these 2-spheres with 3-balls; note that this does not change H1.Mn; Fp/. Hence
we may and do assume that every component of @M , and hence every component of
@Mn for each value of n, has positive genus. As noted in the preceding section, the
theorem is automatic if d � 2, and so we may assume that d � 3. We have already
proved the theorem in the closed case, and thus we may also assume that M has a
non-empty boundary (every component of which has positive genus). The theorem
will follow if we prove that zH1.Fp/ has codimension at most one. Thus we assume
that zH1.Fp/ has codimension at least 2, and argue by contradiction.

Since M , and so each Mn, is not closed, we certainly have that zH3.Fp/ D 0,
and an argument like that given in the closed case in Example 2.2 shows that
also zH BM

3 .Fp/ D 0. (Alternatively, this follows from the second spectral sequence
of Lemma 4.1.) Furthermore, zH BM

0 .Fp/ D 0 (since each Mn is not closed) and
zH0.Fp/ D Fp .

We now collect various consequences of our assumptions:

(1) zH BM
1 .Fp/ D 0, as follows from the second spectral sequence of Lemma 4.1, the

fact that d > 1, and the fact that zH1.Fp/ has positive codimension.
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(2) zH2.@; Fp/ Š zH2.Fp/, as follows from the long exact sequence of Lemma 4.1
and the vanishing of zH BM

3 .Fp/ (noted above) and zH BM
2 .Fp/ (noted in the pre-

ceding point).
(3) zH1.@; Fp/ has positive codimension, as follows from the fact that it embeds into
zH1.Fp/ (since zH BM

2 .Fp/ vanishes, by (1)), which has positive codimension by
assumption.

We now deduce that @Mn has no completely split boundary component, for any
value of n. Indeed, suppose that Mn did have such a component for some n. By
assumption, the genus g of this component would be positive, and so we would find
that zH1.@; Fp/ has codimension 0, contradicting point (3) above. Lemma 4.2 then
implies that zH2.@; Fp/ D 0, and so point (2) above implies that zH2.Fp/ D 0.

A consideration of the second spectral sequence of Lemma 4.1, taking into account
our assumptions that d � 3 and that zH1.Fp/ has codimension � 2, then shows
that zH BM

1 D 0. We have already observed that zH BM
i D 0 for i D 0; 2; 3, and

so we conclude that the first spectral sequence of Lemma 4.1 is identically zero.
Consequently, zHi .Fp/ must vanish for every value of i . This contradicts the fact
that zH0.Fp/ D Fp . Thus in fact the codimension of zH1.Fp/ is at most one, and the
theorem is proved.

5. Examples

Example 5.1. Fix a p-adic Lie group G, let F be a free group of rank � 2, and
consider a map F ! G with Zariski dense image. If Fn denotes the preimage of
Gn, then Fn will be free of rank ŒG W Gn�.rank.F / � 1/ C 1. In particular, the
Fp-homology of Fn will grow linearly in the degree.

Now suppose that M is a closed 3-manifold such that � D �1.M/ admits a
surjective map � ! F . If we define � to be the composite � W � ! F ! G, then
we are in case .1/ of Theorem 1.1. This construction applies more generally: we may
take F to be any group admitting a faithful representation into a p-adic Lie group G

such that the Fp-homology of any finite index subgroup Fn has rank at least c �ŒF W Fn�

for some constant c independent of n. For example, F could be the fundamental group
of a compact surface †g of genus g � 2. It seems a difficult problem to characterize
such groups F . If M is hyperbolic, one might wonder whether this is the only way
in which case .1/ can occur.

Example 5.2. The prime 3 splits in ZŒ
p�2�, and so there is a surjection ZŒ

p�2�!
F3 � F3, inducing a surjection SL2.ZŒ

p�2� ! SL2.F3/ � SL2.F3/. If � denotes
the kernel of this map, then � admits a map to SL2.Z2

3/ Š SL2.Z3/2 with Zariski
dense pro-3 image (induced by the embedding ZŒ

p�2� ,! Z2
3 given by forming

the 3-adic completion of ZŒ
p�2�). The dimension of the target is d D 6 > 3. The
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computations of [12], §4.1, imply that, with respect to the corresponding pro-3 cover,
case .2/ of the main theorem occurs.

Example 5.3. Suppose that @M is the union of N tori. We obtain a map � W � ´
�1.M/ ! ZN ,! ZN

p μ G. Let zM be the cover of M with covering group ZN

corresponding to the kernel of �. The ZŒZN �-module H 1. zM; Z/ is the Alexander
invariant of M . There is a natural map ZŒZN � ! FpŒŒZN

p ��, and the completed

homology zH1.Fp/ is obtained from the Alexander invariant by base-change along
this map:

zH1.Fp/´ FpŒŒZN
p �˝ZŒZN � H 1. zM; Z/:

Theorem 1.1 shows that zH1.Fp/, and hence the Alexander invariant, can be trivial
only if N � 2.

If M is a knot complement (in which case N D 1), then in fact zH1.Fp/ D 0, as
we now show.

Lemma 5.4. If M is a knot complement in S3, then zH1.Fp/ D 0, and consequently
H1.Mn; Fp/ D Fp for all n.

Proof. We give two proofs, one in the spirit of this note, and the other (which was
explained to us by Barry Mazur) using the classical theory of the Alexander polyno-
mial.

First proof. We have G D Zp , and Gn D pnZp for each n. Then ƒ D FpŒŒT ��,
and the exact sequence of Lemma 2.4 simplifies to the following short exact sequence:

0! zH1.Fp/=T pn zH1.Fp/! H1.Mn; Fp/! Fp ! 0:

Taking n D 1, and noting that H1.M; Fp/ D Fp (since M is a knot complement), we
find that zH1.Fp/=T zH1.Fp/ D 0. Since zH1.Fp/ is finitely generated over FpŒŒT ��,
Nakayama’s lemma implies that zH1.Fp/ D 0.

Second proof. Write M D S3 n xK, where xK is a tubular neighbourhood of the
knot K. For any integer e � 1, let Xe denote the e-fold cover of S3 ramified along
K. If �.t/ denotes the Alexander polynomial of M (note that the variables t and T

are related via t D T C 1), then #H1.Xe; Z/ DQ
�eD1 �.�/ if the right hand side is

non-zero. (If the right hand side vanishes, then H1.Xe; Z/ has positive rank).
Recall that �.1/ D 1. Thus, taking e D pn, we find that #H1.Xpn ; Z/ �

1 mod � � 1, where � is a primitive pnth root of 1. Since � � 1 is a non-unit
algebraic integer of norm p, while #H1.Xe; Z/ is an integer, we find that in fact
#H1.Xpn ; Z/ � 1 mod p. In particular, H1.Xpn ; Z/ is finite and p-torsion free,
and so by the universal coefficient theorem, H1.Xpn ; Fp/ D 0. Now Mn is equal to
the complement in Xpn of a tubular neighbourhood of the preimage of xK, and thus
H1.Mn; Fp/ D Fp , generated by the class of a meridian in the preimage of xK.
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If n0 > n, then the map of meridians induced by the map Mn0 !Mn has degree
pn0�n, and hence the map H1.Mn0 ; Fp/ ! H1.Mn; Fp/ is zero. Thus we also
conclude that zH1.Fp/ D 0.

Note that the argument in the second proof of the preceding lemma breaks down
if e is divisible by more than one prime, since if � is a primitive eth root of unity for
such a value of e, then � � 1 is a unit in the ring of algebraic integers. And indeed,
for such e, the cover Xe can have non-zero 1st Betti number, or torsion in H 1 of
order that is not coprime to e. (For example, if K is the trefoil knot and e D 6 then
H1.X6; Z/ is infinite [13], p. 150.)

If M is the complement of the Hopf link, then N D 2, and it is known that
the Alexander invariant, and hence zH1.Fp/, vanishes [13], p. 190. This provides an
example in which case .3/ of Theorem 1.1 occurs.

Example 5.5. In [3] and [2], a closed arithmetic manifold M is considered which
has the property that the 3-adic completion G of its fundamental group � is analytic.
This implies, for the associated map � W � ! G, that zH1.Fp/ D 0, and hence that
we are in case .4/ of Theorem 1.1 (with p D 3). Another example is given (with
p D 5) by a finite cover of the Weeks manifold (see [3], p. 321.

Example 5.6. If M is hyperbolic, then � can be realized as a torsion free discrete
subgroup of SL2.C/ and M ' �nH3. If M has finite volume, then, by Mostow
rigidity, we may assume (after possibly conjugating �) that � � SL2.E/ for some
(minimal) number field E. Since � is finitely generated, there exists a finite set of
primes S in E such that � � SL2.OE;S /, where OE;S denotes the ring of S -integers
in E. From this description of � , it follows that � is residually finite, and, for all but
finitely many primes p 2 OE , admits an injective map �p W � ! SL2. yOE;p/ (where
yOE;p denotes the p-adic completion of the ring of integers of E). This construction
provides a natural source of homomorphisms � of the type considered in this paper.

Note that these maps are of quite a different nature to those considered in Exam-
ple 5.1 (when the latter exist), since the latter cannot be injective. (A finite volume
hyperbolic 3-manifold group cannot be free.)

Example 5.7. Let M be any finite volume hyperbolic 3-manifold. Let � be the direct
sum of �p for all primes p above p. The Zariski closure of the image is a group G of
dimension at least 6. It follows that M admits a sequence of covers with large mod-p
homology growth. Moreover, we see that any hyperbolic 3-manifold M admits a
finite cover M 0 such that the fundamental group � 0 of M 0 admits a map to a pro-p
analytic group G of dimension > 3. If the pro-p completion of � 0 were analytic
and isomorphic to G, then zH1.Fp/ would vanish, contradicting Theorem 1.1. In
particular, we see that if � is arithmetic, it cannot satisfy the congruence subgroup
property. This was first proved for arithmetic lattices in SL2.C/ by Lubotzky [11].
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Remark 5.8. The assumption that M be orientable has been made primarily for sim-
plicity of exposition, and it should not be difficult to extend the proof of Theorem 1.1
to the non-orientable case. Indeed, any manifold is orientable mod 2, while if p is
odd, then we may pass to the orientation double covers zMn of the Mn, each of which is
equipped with an orientation reversing involution 	 such that Mn D zMn=	 , and work
with the 	 -fixed part of the Fp-homology of zMn (which is canonically isomorphic to
the Fp-homology of Mn). The reader will easily verify that the arguments of the paper
remain valid after restricting to 	 -invariants. (The key point is that H 0. zMn; Fp/ is
fixed by 	 .)

Acknowledgments. The authors would like to thank Barry Mazur for explaining the
second proof of Lemma 5.4 to them.
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