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Abstract. We extend the terms on the geometric side of the trace formula for GL.2/ over Q
continuously to a natural Fréchet algebra of non-compactly supported test functions. For the
spectral side the analogous result had been obtained previously (in much greater generality) in
collaboration with W. Müller.
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1. Introduction

The trace formula is one of the most important tools in the theory of automorphic
forms. It was introduced by Selberg in his celebrated paper [Sel56] to study the spectra
of locally symmetric spaces �nG=K, where � is a lattice in a reductive Lie group
G and K a maximal compact subgroup of G. More generally, one can consider the
right regular representation of G on the space L2.�nG/. For functions f 2 L1.G/

this representation induces the integral operators

R.f /'.x/ D
Z

G

f .g/'.xg/ dg:

The derivation of the trace formula identity is not difficult in the case of uniform
lattices � , i.e. when the quotient space �nG is compact. (We remark that only in this
case Selberg was able to treat general groups G.) The operator R.f / is then of trace
class for f 2 C 1

c .G/ and L2.�nG/ decomposes discretely as
L

�2 OG m.�/� . The
trace of R.f / can be evaluated asX

Œ��

vol.��nG� /

Z
G� nG

f .g�1�g/ dg D
X
�2 OG

m.�/ tr �.f /

�Authors partially sponsored by grant # 964-107.6/2007 from the German–Israeli Foundation for Sci-
entific Research and Development. This paper forms a part of the first named author’s 2009 Habilitation
at Heinrich-Heine-Universität Düsseldorf.
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where � ranges over the conjugacy classes of � and �� is the centralizer of � in � .
This is Selberg’s trace formula in the case of compact quotient. It can be extended
from C 1

c .G/ to the space of smooth functions on G whose derivatives are all in
L1.G/.

Selberg transformed the trace formula for bi-K-invariant test functions f into an
identity between distributions on the space of spherical spectral parameters, which
is reminiscent of the Poisson summation formula in that it involves (weighted) delta
distributions and their Fourier transforms (in addition to more general distributions,
for example the contribution from the identity element). The analytic applica-
tions of the formula include Weyl’s law and its multi-variable generalizations by
Duistermaat–Kolk–Varadarajan ([DKV79]), which describe the asymptotic behav-
ior of the spectrum of �nG=K, and the results on limit multiplicities obtained by
DeGeorge–Wallach ([DW78], [DW79]) and Delorme ([Del86]) among others. It is
also possible to incorporate the action of double classes ��� , where � is an element
of the commensurator of � in G (Hecke operators).

Selberg also extended the trace formula to the case of non-cocompact lattices �

in the group SL.2; R/. In this case the operators R.f / are not of trace class and the
spectrum is not discrete. Nevertheless, it is possible to derive a trace formula identity
which includes modified terms for unipotent conjugacy classes in � and a contribution
from the continuous spectrum on the other side. Selberg used his formula to deduce
Weyl’s law for congruence subgroups of SL.2; Z/.

A necessary prerequisite for the trace formula is an understanding of the spectral
decomposition of the space L2.�nG/. Selberg initiated the theory and worked out
the case of lattices in SL.2; R/. The higher rank case was successfully treated in the
groundbreaking work of Langlands ([Lan76]). Building on this, Arthur considered
in his lifelong work the trace formula in the context of adelic quotients G.F /nG.A/

of general reductive groups G over number fields F . (Compared to the above formu-
lation, this amounts to the consideration of all corresponding congruence arithmetic
lattices in G.F / � G.F ˝ R/ and all possible Hecke operators at once.) Arthur’s
trace formula is an identity

Jgeom.f / D Jspec.f /

between a sum of geometric distributions and a sum of spectral distributions on the
group G.A/1. The test functions f are compactly supported smooth functions on
G.A/1. The main task undertaken by Arthur after establishing this identity was to
explicate these distributions (albeit not completely). See [Art05] for more details and
a broader scope of the trace formula and for a survey of its deep applications in the
context of the Langlands program.

It is natural to ask whether there is a bigger class of test functions to which the trace
formula applies. More precisely, can we find a “natural” Fréchet algebra of func-
tions on G.A/1 (or perhaps a direct limit of such algebras) containing C 1

c .G.A/1/

as a dense subalgebra, for which the sum-integrals appearing on both sides of the
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trace formula are absolutely convergent and define (if taken with absolute values)
continuous seminorms?

A case to bear in mind is the Poisson summation formulaX
n2Z

f .n/ D
X
n2Z

Of .n/

which is valid for functions f on R whose derivative is absolutely continuous and
for which f; f 0; f 00 2 L1.R/. The space of these functions forms a Banach algebra
(Sobolev space) with respect to the norm kf k1 Ckf 0k1 Ckf 00k1, where k�k1 denotes
the L1-norm. Moreover, X

n2Z

jf .n/j � kf k1 C kf 0k1;

X
n2Z

j Of .n/j �
X
n2Z

1

.2�n/2 C 1
.kf k1 C kf 00k1/ D

�
1

2
C 1

e � 1

�
.kf k1 C kf 00k1/:

Analogously, natural Fréchet algebras of test functions for Arthur’s trace formula
are obtained by fixing a compact open subgroup K of G.Afin/ and considering bi-
K-invariant functions on G.A/1. The double coset space KnG.A/1=K is a disjoint
union of countably many copies of G.R/1 D G.R/ \ G.A/1, and in particular a
differentiable manifold. Let g1

C denote the complexified Lie algebra of G.R/1 and
U.g1

C/ its universal enveloping algebra with the usual grading. This algebra acts from
the left and from the right on the space of smooth functions on KnG.A/1=K. We
consider the Fréchet algebra C.G.A/1I K/ of smooth functions f on KnG.A/1=K

for which the norms

jkf kjn ´
X

i;j �0;iCj �n

X
X2Bi ;Y 2Bj

kX � f � Y k1; n D 0; 1; : : : ;

are finite, where Bk denotes a basis of U.g1
C/k . The subalgebra C 1

c .G.A/1I K/

of compactly supported smooth bi-K-invariant functions on G.A/1 is dense in
C.G.A/1I K/.

Non-compactly supported test functions appeared already in Selberg’s work. Im-
portant examples in spectral theory are the heat kernels. In the adelic framework, this
corresponds to test functions with non-compact support at the infinite places. Another
motivation emerged from a relatively recent idea of Langlands to use the trace formula
in order to sieve the representations having a pole at s D 1 for a given L-function
([Lan04], [Lan07]). This requires the consideration of test functions whose support
is non-compact at almost all places. (See (11), (12) below for a simple example.) A
closely related setup of limiting forms of the trace formula shows up in the thesis of
Akshay Venkatesh ([Ven04]).

In the paper [FLM], W. Müller and the present authors refined the spectral side
of Arthur’s trace formula and at the same time extended it to test functions in



370 T. Finis and E. Lapid

C.G.A/1I K/. We quickly sketch the main result, referring to [loc. cit.] for de-
tails.1 The basic objects appearing on the spectral side are the representations of
G.A/ parabolically induced from the discrete spectra of the Levi subgroups M of
G. For a parabolic subgroup P of G with Levi decomposition P D MU let a�

M

denote the real vector space spanned by the F -rational characters of G=Z.G/, aM the
dual space, and HP W G.A/ ! aM the map induced by the Iwasawa decomposition
G.A/ D M.A/U.A/K with respect to a suitable maximal compact subgroup K of
G.A/. Let

. xA2.P /; �.P; �//; � 2 a�
M ˝ C;

be the representation of G.A/ induced from the P.A/-representation

L2
disc.AM M.Q/nM.A// ˝ eh�;HP .�/i:

The representation �.P; �/ is unitary for � 2 ia�
M . In Arthur’s formulation the

spectral side involves the representations �.P; �/ for � 2 ia�
M , but it is written as

an infinite sum over contributions associated to so-called cuspidal data because of a
subtle convergence problem. In [loc. cit.], this problem was resolved and the spectral
side could be rewritten in the form

Jspec.f / D
X
ŒM�

1

ŒNG.M/ W M�

X
s2NG.M/=M

j det.s � 1/j�1
aM =as

MZ
i.a�

M
/s

tr.MMs
.P; �/MP jP .s; 0/�.P; �; f // d�

for f 2 C.G.A/1I K/, where the sum is over conjugacy classes of Levi subgroups M

of G and the Levi subgroup Ms is defined by aMs
D as

M , the space of vectors in aM

fixed by s. The operators MP jP .s; 0/ are intertwining operators and the operators
MMs

multi-dimensional derivatives of intertwining operators acting on the space
xA2.P /. It is also possible to express MMs

in terms of logarithmic derivatives of
co-rank one intertwining operators. Furthermore, if one replaces the trace by the
trace norm, the integral-sum defines a continuous seminorm on C.G.A/1I K/.

It is natural to expect an analog of this result for the geometric side, resulting in a
trace formula identity which is valid for functions in C.G.A/1I K/. One encounters
two principal difficulties with Arthur’s fine geometric expansion ([Art85], [Art86]),
in which Jgeom.f / is expressed as a sum over conjugacy classes of Levi subgroups
M and classes of elements � 2 M.F / (for a certain equivalence relation weaker
than conjugacy and depending on a finite set of places S ) of constant multiples of
weighted orbital integrals JM .�; f /. First, it applies only to functions of the form
fS ˝ 1S where S is a finite set of places (containing the Archimedean ones) and 1S

is the characteristic function of the maximal compact subgroup K S outside S (rather

1A preliminary announcement is contained in the note [FLM09]. The Fréchet algebras considered in
these two papers are slightly different from the Fréchet algebras C.G.A/1I K/.
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than an arbitrary bi-K S -invariant function outside S ). The second and more serious
difficulty is that while the local distributions JM .�; �/ appearing in the expansion are
explicit and fairly well-understood, their coefficients are left unspecified, and depend
on S in a complicated way. For the problem at hand it would be imperative to bound
them in a uniform way.

The purpose of this paper is to resolve the problem for the group G D GL.2/ over
Q, where a completely explicit form of the trace formula is available (see [GJ79],
[Gel96], [KL06] for detailed accounts). The restriction to Q is merely for the sake of
exposition. We give an extension of the trace formula to C.G.A/1I K/ and prove the
continuity of the associated seminorms. The precise statement is given by Theorem 1
below. The terms in the extended trace formula associated to the non-elliptic conju-
gacy classes are modified compared to the usual trace formula for C 1

c .G.A/1I K/.
This is crucial because the contribution of the unipotent classes is originally defined
only for compactly supported functions. We also write the regular hyperbolic contri-
bution in a structurally analogous way. The non-elliptic terms in the modified trace
formula depend on a finite set of places S with K � K S . The modified distributions
appearing in these terms are an interesting feature of our version of the trace formula.
Note that even if we are interested only in compactly supported test functions, our
formula is by construction independent of the support of the test function.

We hope that the case of GL.2/ will serve as a blueprint for the general case. In
fact, since the first version of this paper was completed, the authors have succeeded
in establishing the continuity of the semisimple part of the trace formula for general
reductive groups G ([FL]).2 We would also like to mention related work by Hoffmann
on the coarse geometric expansion ([Hof08]).

We thank the referee for a careful reading of the manuscript which led to the
correction of several inaccuracies.

2. The main result

Notation. Let A D R � Afin be the ring of adeles, I (resp. I1) the group of ideles
(resp. ideles of norm 1), and O D Q

p<1 Zp . Let G be the group GL.2/, Z its center,
B the standard Borel subgroup, T the diagonal torus and U the unipotent radical of
B . Let K D Q

p�1 Kp be the standard maximal compact subgroup of G.A/.
Set G.A/1 D fg 2 G.A/ W jdet gj D 1g, Z.A/1 D Z.A/ \ G.A/1 and T .A/1 D˚�

t1 0
0 t2

� W t1; t2 2 I1
�
. We have

G.A/ ' G.A/1 � AG ; T .A/ D .T .A/ \ G.A/1/ � AG ;

T .A/ D T .A/1 � A0;
(1)

where AG D ˚�
a 0
0 a

� W a 2 R>0

�
and A0 D ˚�

a1 0
0 a2

� W a1; a2 2 R>0

�
.

2The Fréchet algebras considered in [FL] are slightly different from the Fréchet algebras
C.G.A/1I K/.
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We fix Haar measures according to the following table:

group normalization

discrete counting measure
R Lebesgue measure
iR through x 7! ix
Qp , p < 1 vol.Zp/ D 1

A product measure
R�, R>0 d �x D dx

jxj
Q�

p , p < 1 vol.Z�
p/ D 1

I product measure
I1 compatible with I D R>0 � I1

Z.A/1, AG through t 7! �
t 0
0 t

�
U.Qp/, U.A/ through x 7! �

1 x
0 1

�
T .Qp/, T .A/, T .A/1, A0 through t1; t2 7! �

t1 0
0 t2

�
Kp , p � 1, K vol D 1

G.Qp/, p � 1, G.A/ compatible with Iwasawa decomposition
G.A/1, T .A/ \ G.A/1 compatible with (1)

Let

��.s/ D
Z

I
e��x21	I\O.xfin/jxjs d �x D ��s=2�.s=2/

Y
p<1

.1 � p�s/�1:

Recall that vol.QnA/ D 1 and vol.Q�nI1/ D ressD1 ��.s/.D 1/.
The modulus function on B.A/ is given by ıB.A/.

�
t1 0
0 t2

�
/ D j t1

t2
j. If g 2 G.A/

has Iwasawa decomposition g D tuk, t D �
t1 0
0 t2

� 2 T .A/, u 2 U.A/, k 2 K , we
write t.g/ D j t1

t2
j 2 R>0. Similarly Nt is defined with respect to the opposite Borel

subgroup xB D T xU . Recall that

t.g/ � Nt.g/ (2)

for all g 2 G.A/.
We denote by Rdisc.f / the action of L1.G.A/1/ on the discrete part of

L2.G.Q/nG.A/1/. Consider the space

I D IndG.A/

B.A/
L2.A0T .Q/nT .A//

which is the completion of the space of smooth functions ' W G.A/ ! C such that

'.utag/ D ı
1
2

B.A/
.a/'.g/ for all u 2 U.A/, t 2 T .Q/, a 2 A0 and g 2 G.A/ and

k'k2 D
Z

A0U.A/T .Q/nG.A/

j'.g/j2 dg D
Z

K

Z
T .Q/nT .A/1

j'.tk/j2 dt dk < 1:
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For any s 2 C the group G.A/1 acts on this space via

I.g; s/'.x/ D '.xg/t.xg/st.x/�s:

We denote by I.f; s/ the corresponding action of L1.G.A/1/. The theory of Eisen-
stein series gives rise to intertwining operators M.s/ which after meromorphic con-
tinuation define unitary operators on I for s 2 iR.

From now on, we fix an open subgroup K of Kfin D Q
p<1 Kp . Let S be a finite

set of primes, including 1, such that K � Kp if p … S . Define

�t;S D �
X

p…S Wjt1jpDjt2jp

1 � j1 � t2
t1

jp
p � 1

log p

for t 2 T .Q/ n Z.Q/ and

�z;S D lim
X!1

�P
1�n�X W.n;S/D1

1
n

ressD1 �S .s/
� log X

�

for z 2 Z.Q/, where we write .n; S/ D 1 to mean that .n; p/ D 1 for all p 2 S , and

�S .s/ D
Y
p…S

.1 � p�s/�1 D
X

n�1W.n;S/D1

n�s

as usual. Note that if p … S then for all t 2 T .Q/ (including Z.Q/) we have

�t;S[fpg D �t;S C
8<
:

1�j1� t2
t1

jp
p�1

log p; jt1jp D jt2jp;

0 otherwise.
(3)

We also remark that for z 2 Z.Q/

�z;S D Œ.s � 1/�S .s/�0sD1

ressD1 �S .s/
: (4)

In fact, the relation (3) reduces this equality to the case S D f1g which is a standard
identity. (Both sides are equal to Euler’s constant � in this case.)

Also define, for t D �
t1 0
0 t2

� 2 T .A/ and u 2 U.A/,

!.t; u/ D
X

p�1
!p.t; u/

where for p 2 S

!p

�
t;

�
1 x
0 1

�� D !std
p

�
t;

�
1 x
0 1

�� ´
8<
:

log max.jxjp; j1 � t2
t1

jp/; p < 1;

log
q

.1 � t2
t1

/2 C x2; p D 1;
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while for p … S

!p

�
t;

�
1 x
0 1

�� D

8̂̂<
ˆ̂:

!std
p

�
t;

�
1 x
0 1

��
; jt1jp ¤ jt2jp;

1�j1� t2
t1

jp
p�1

log p C !std
p

�
t;

�
1 x
0 1

��
; jt1jp D jt2jp; jxjp > 1;

0; jt1jp D jt2jp; jxjp � 1:

Note that for almost all u 2 U.A/ (namely, when xp ¤ 0 for all p 2 S ) !.�; u/ is a
continuous function on T .A/.

Finally, for any � 2 G.Q/, let G� be the centralizer of � , and let G� .A/1 D
G� .A/ \ G.A/1.

The trace formula identity

Theorem 1. For any f 2 C.G.A/1I K/

X
� elliptic conjugacy class

vol.G� .Q/nG� .A/1/

Z
G� .A/nG.A/

f .x�1�x/ dx

C vol.T .Q/nT .A/1/
X

t2T .Q/

Z
K

Z
U.A/

f .k�1tuk/!.t; u/ du dk

C vol.T .Q/nT .A/1/
X

t2T .Q/

�t;S

Z
K

Z
U.A/

f .k�1tuk/ du dk

D tr Rdisc.f / � 1

4�

Z
iR

tr.M �1.s/M 0.s/I.f; s// ds C 1

4
tr.M.0/I.f; 0//:

Moreover, X
� elliptic conjugacy class

vol.G� .Q/nG� .A/1/

Z
G� .A/nG.A/

jf .x�1�x/j dx; (5)

X
t2T .Q/

Z
K

Z
U.A/

jf .k�1tuk/j
X

p

j!p.t; u/j du dk; (6)

X
t2T .Q/

j�t;S j
Z

K

Z
U.A/

jf .k�1tuk/j du dk; (7)

and

kRdisc.f /k1 C
Z

iR
kM �1.s/M 0.s/I.f; s/k1 ds C kM.0/I.f; 0/k1

D kRdisc.f /k1 C
Z

iR
kM 0.s/I.f; s/k1 ds C kI.f; 0/k1

(8)

are continuous seminorms on C.G.A/1I K/, where in (8) the subscript 1 denotes
trace norm.
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Implicit in the statement is that the operator M �1.s/M 0.s/I.f; s/, originally de-
fined on a dense subspace of I , extends to a bounded, and in fact trace-class operator.
We also remark that

tr.M.0/I.f; 0// D � tr I.f; 0/j QI
where

QI D ˚
' 2 I W '

��
t 0
0 t�1

�
g

� D '.g/ for all t 2 I1
�
:

We will momentarily check that the identity of Theorem 1 reduces to the usual
trace formula for GL.2/ for f 2 C 1

c .G.A/1I K/. This will reduce Theorem 1 to its
continuity part which will be proved in §4. We point out however, that unlike in the
usual trace formula for f 2 C 1

c .G.A/1/, the coefficients �t;S and weights !.t; x/

appearing in the geometric side depend on the choice of S , and therefore, on K. This
“feature” seems essential for our approach. Of course, for Theorem 1 to hold, the
geometric side as a whole should not depend on the choice of S . To check that this
is indeed the case, one only has to verify the purely local identityZ

U.Qp/

fp.tu/.!p.t; u/C�t;S /du D
Z

U.Qp/

fp.tu/.!std
p .t; u/C�t;S[fpg/du (9)

for p … S and any bi-Kp-invariant function fp 2 L1.G.Qp//. See Remark 1 in §3
for the necessary computation.

Assume now that f 2 C 1
c .G.A/1I K/. Traditionally, the non-elliptic contribu-

tion is written in a different form than the above (cf. [GJ79], [Gel96], [KL06]; in
the case at hand we sum over all characters of Z.Q/nZ.A/1). Namely, the regular
hyperbolic contribution is written as the sum over t 2 T .Q/ n Z.Q/ of

1

2
vol.T .Q/nT .A/1/

Z
T .A/nG.A/

f .x�1tx/.log Nt.x/ � log t.x// dx

and the unipotent (modulo center) contribution as the derivative at s D 1 of

.s � 1/

Z
I

ˆ.x/jxjs d �x; (10)

where

ˆ.x/ D vol.Z.Q/nZ.A/1/
X

z2Z.Q/

Z
K

f .k�1z
�

1 x
0 1

�
k/ dk:

In order to see that this agrees with Theorem 1, we use the Iwasawa decomposition to
write the regular hyperbolic contribution as the sum over t D �

t1 0
0 t2

� 2 T .Q/ n Z.Q/

of
1

2
vol.T .Q/nT .A/1/

Z
K

Z
U.A/

f .k�1u�1tuk/ log Nt.u/ du dk
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which by a change of variable is equal to

1

2
vol.T .Q/nT .A/1/

Z
K

Z
A

f
�
k�1t

�
1 x
0 1

�
k

�
log Nt��1 x

1�.t2=t1/

0 1

��
dx dk

D vol.T .Q/nT .A/1/

Z
K

Z
U.A/

f .k�1tuk/
X

p�1
!std

p .t; u/ du dk:

We choose S such that for t 2 T .Q/nZ.Q/ and u 2 U.A/ we have f .tu/ D 0 unless
j t1

t2
jp D j1 � t2

t1
jp D 1 and up 2 U.Zp/ for all p … S , and in particular, �t;S D 0 and

!.t; x/ D P
p�1 !std

p .t; x/. This is possible since there are only finitely many t ’s,
depending on the support of f , which give a non-zero contribution. We can therefore
write the above integral as

vol.T .Q/nT .A/1/

Z
K

Z
U.A/

f .k�1tuk/!.t; u/ du dk;

which coincides with the expression in Theorem 1.
Similarly we can write the unipotent contribution (for S sufficiently large) as�

.s � 1/�S .s/

Z
Q�

S

ˆ.x/jxjs d �x

�0

sD1
D Œ.s � 1/�S .s/�0sD1 �

Z
Q�

S

ˆ.x/jxjS d �x

C ressD1 �S .s/ �
Z

Q�
S

ˆ.x/jxjS logjxjSd �x:

Converting the integration over Q�
S to one over QS yields a factor of �S .1/. Using

(4) we get

ressD1 ��.s/�1;S

Z
QS

ˆ.x/ dx C ressD1 ��.s/

Z
QS

ˆ.x/ logjxjS dx:

Once again, this coincides with the corresponding contribution of t 2 Z.Q/ in
Theorem 1.

Note that the rewriting of the unipotent contribution is especially important for the
purpose of Theorem 1 since the Tate integral only makes sense for Schwartz–Bruhat
functions.

A typical function which one may want to plug in the trace formula is

fs.g/ D
Z

AG

Fs.ag/ da (11)

where
Fs.g/ D e�� tr gt1g1	M2.O/\G.Afin/.gfin/jdet gjsC 1

2 (12)

for Re.s/ > 3
2

. On the spectral side, the contribution from the discrete spectrum isX
�

L.s; �/;
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where � ranges over the representations occurring discretely in L2.AGG.Q/nG.A//

which have a K -fixed vector, and L.s; �/ is the (complete) standard L-function
([GJ72]). Note that by [Shi71], p. 64, and [GJ72]Z

G.A/1

fs.g/ dg D
Z

G.A/

Fs.g/ dg D ��.s C 1
2
/��.s � 1

2
/

and both sides are absolutely convergent when Re.s/ > 3
2

. Moreover, for any X; Y 2
U.g1

C/,
ŒX � Fs � Y �.g/ D P.g1/Fs.g/

for some polynomial P D PX;Y in the entries of g1, as is easily seen by induction
on the degrees of X and Y . It follows once again from [GJ72] thatZ

G.A/1

jX�fs�Y.g/j dg D
Z

G.A/

jX�Fs�Y.g/j dg D
Z

G.A/

jP.g1/Fs.g/j dg < 1

for Re.s/ > 3
2

, so that fs 2 C.G.A/1I Kfin/ in this region.

3. Auxiliary estimates

In this section we study some local integrals which appear in the analysis of the trace
formula. In addition, we prove a simple but crucial lemma on lattice sums.

p-adic estimates. For k; n 2 Z, n 	 0, let fk;n be the characteristic function of the
subset 	

pk 0

0 pk



Kp

	
pn 0
0 1



Kp

of G.Qp/. These functions form a basis for the Hecke algebra of bi-Kp-invariant
functions on this group. Recall that

fk;n

��
a b
c d

�� D 1 () max.jaj; jbj; jcj; jd j/ D p�k and
ˇ̌
det

�
a b
c d

�ˇ̌ D p�.2kCn/:

(We often suppress the subscript p from j � j if it is clear from the context.) Let
w D �

0 1
1 0

�
.

Lemma 3.1. Let t D �
t1 0
0 t2

� 2 T .Qp/. The integralZ
U.Qp/

Z
U.Qp/

fk;n

��
pk 0

0 pk

�
txwy

�
dx dy

vanishes unless jdet t j D p�n and jt2j � 1, in which case it is bounded by

jt1j�1.min.vp.t2/; n/ C 1/:
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Proof. Without loss of generality we can assume that k D 0. The condition on the
determinant is clear. Let mi D vp.ti /, i D 1; 2. Since�

t1 0
0 t2

��
1 x
0 1

�
w

�
1 y
0 1

� D �
t1x t1.1Cxy/
t2 t2y

�
;

the condition m2 	 0 follows as well. Moreover, the integral is bounded by the
volume of the subset C of Q2

p defined by the inequalities

jxj � pm1 ; j1 C xyj � pm1 ; jyj � pm2 :

Note that each of the sets

Di D f.x; y/ W jxj D pm1�i ; j1 C xyj � pm1g;
Ej D f.x; y/ W jyj D pm2�j ; j1 C xyj � pm1g

has volume .1 � p�1/pm1 regardless of i and j . The lemma follows from the easily
verified inclusions

C �
´

¹.x; y/ W jxj � pm1�m2 ; jyj � pm2º [ S
0�i<m2

Di for any n; m1; m2;S
0�j �n Ej for n < m2:

Lemma 3.2. Let t D �
t1 0
0 t2

� 2 T .Qp/. ThenZ
U.Qp/

fk;n

��
pk 0

0 pk

�
tu

�
du D

Z
U.Qp/

fk;n

��
pk 0

0 pk

�
tu

�j!p.t; u/j du D 0;

unless jdet t j D p�n and jt1j; jt2j � 1, in which caseZ
U.Qp/

fk;n

��
pk 0

0 pk

�
tu

�
du � jt1j�1; (13)Z

U.Qp/

fk;n

��
pk 0

0 pk

�
tu

�j!p.t; u/j du � jt1j�1.� logjt1j C ıp/; (14)

where ıp D 1 if p 2 S and 0 otherwise.

Proof. We can assume that k D 0. The condition on the determinant is clear. Assume
from now on that jdet t j D p�n. Note that f0;n

��
t1 0
0 t2

��
1 x
0 1

�� D 1 iff

max.jt1j; jt1xj; jt2j/ D 1:

The vanishing statement and (13) follow easily. To show (14) we separate into cases.
Suppose first that jt1j ¤ jt2j. Then

0 � !p.t; u/ � � logjt1j whenever f0;n.tu/ D 1: (15)
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Thus (14) follows. Suppose now that jt1j D jt2j. If p 2 S and jt1j D jt2j < 1 then
once again (15) holds since jxj D jt1j�1 > 1 where u D �

1 x
0 1

�
. On the other hand, if

p 2 S and jt1j D jt2j D 1 then the integral is bounded by

1X
kD0

kp�k.1 � p�1/ log p D log p

p � 1
� 1:

Finally if p … S and jt1j D jt2j then the integral is 0 unless jt1j < 1 in which case it
is bounded by

jt1j�1.1 � p�1/.� logjt1j C log p
p�1

/ � �jt1j�1 logjt1j
as required.

Remark 1. For any p … S and k 2 Z we have

Z
U.Qp/

fk;0.tu/!std
p .t; u/ du D

8<
:�1�j1� t2

t1
jp

p�1
log p; if jt1jp D jt2jp D p�k;

0; otherwise,

as a consequence of the identity

p�m log p�m C
m�1X
j D0

p�j .1 � p�1/ log.p�j / D �1 � j1 � t2
t1

j
p � 1

log p

for m D vp.1� t2
t1

/. Using (3) and the fact that fk;0.t
�

1 x
0 1

�
/ ¤ 0 implies jxj � 1, one

obtains from this the local identity (9) for the functions fk;0. For the functions fk;n,
n > 0, this identity is an immediate consequence of the definitions together with the
observation that fk;n.t

�
1 x
0 1

�
/ can be only non-zero for jxj > 1 if n > 0. It follows

that (9) is true in general and that the geometric side of the identity in Theorem 1 is
invariant under enlarging S .

Recall that the set
˚�

r 0
0 r

��
N 0
0 1

� W r 2 Q>0; N 2 N
�

forms a set of representatives
for KfinnG.Afin/=Kfin. Let Tr;N , r 2 Q>0, N 	 1, denote the characteristic function
of the double coset �

r 0
0 r

�
Kfin

�
N 0
0 1

�
Kfin

in G.Afin/. Recall that

deg Tr;N ´
Z

G.Afin/

Tr;N .x/ dx D N
Y
pjN

.1 C p�1/:

As usual, denote by 
s the divisor function


s.n/ D
X
d jn

d s:

From the estimates above we immediately obtain
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Proposition 3.3. (1) Let t 2 Q�. ThenZ
U.Afin/

Z
U.Afin/

Tr;N

��
r 0
0 r

��
Nt�1 0

0 t

�
xwy

�
dx dy D 0

unless t 2 Z, in which case it is bounded by N
jt j
0.gcd.N; jt j//.

(2) For t D �
t1 0
0 t2

� 2 T .Q/ the integrals

Z
U.Afin/

Tr;N

��
r 0
0 r

�
tu

�
du;

Z
U.Afin/

Tr;N

��
r 0
0 r

�
tu

� X
p<1

j!p.t; u/j du

vanish unless det t D ˙N and t1; t2 2 Z, in which case the first is bounded by jt1j,
and the second by jt1j.logjt1j C jS j � 1/.

Lattice sums. For any absolutely continuous function f on R such that f; f 0 2
L1.R/ we have X

n2Z

jf .n/j � kf k1 C kf 0k1: (16)

Indeed, for any 0 � x � 1

X
n2Z

jf .n/ � f .n C x/j �
X
n2Z

Z nCx

n

jf 0.t/j dt � kf 0k1;

so that X
n2Z

jf .n/j � kf 0k1 C
X
n2Z

jf .n C x/j:

Integrating over x we obtain (16).
For an open subgroup O0 of O we denote by C.AI O0/ the space of smooth O0-

invariant functions f on A such that f .n/ 2 L1.A=O0/, n D 0; 1; : : : .

Lemma 3.4. For any f 2 C.AI O0/ we haveX
�2Q

jf .�/j � ŒO W O0�.kf k1 C kf 0k1/:

Proof. For each r 2 O0nAfin let fr be the restriction of f to R C r C O0. Thus, we
can write f D P

r2O0nAfin
fr where fr.x/ D gr.x1/	rCO0.xfin/ and gr.x1/ is the

value of f on the coset x1 C r C O0. By (16), for any rX
n2Q\O0

jgr.n C r/j �
X
n2Z

jgr.n C r/j � kgrk1 C kg0
rk1:
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Summing over r 2 O0nAfin we obtainX
�2Q

jf .�/j D
X

r2O0nAfin

X
n2Q\O0

jgr.n C r/j

�
X

r2O0nAfin

.kgrk1 C kg0
rk1/ D ŒO W O0�.kf k1 C kf 0k1/;

as required.

Archimedean estimates. Let G.R/1 D G.R/ \ G.A/1 D fg 2 G.R/ W jdet gj D
1g and T .R/1 D T .R/ \ G.R/1. We have

G.R/ ' G.R/1 � AG ; T .R/ ' T .R/1 � AG :

We endow G.R/1 and T .R/1 with Haar measures accordingly.
We denote by C.G.R/1/ the Fréchet algebra of smooth functions on G.R/1 such

that X � f � Y 2 L1.G.R/1/ for all X; Y 2 U.g1
C/ with respect to the normsX

i; j �0;iCj �n

X
X2Bi ;Y 2Bj

kX � f � Y k1; n D 0; 1; : : : :

By a standard integration formula with respect to the Cartan decomposition, the
integral of a function f 2 L1.G.R/1/ can be expressed asZ

G.R/1

f .g/ dg D 8�

Z
K1

Z 1

1

Z
K1

f
�
k1

�
a 0
0 a�1

�
k2

�
.a2 �a�2/ dk1 d �a dk2: (17)

Another useful integration formula isZ
T .R/1

Z
U.R/

Z
U.R/

f .txwy/ dx dy dt D �

Z
G.R/1

f .g/ dg: (18)

Identify the Lie algebra g of G with the algebra of 2�2 matrices. Let H be any of
the one-dimensional Lie groups T .R/1, U.R/, xU .R/ or K1. To each H we attach
a generator xH of its Lie algebra. Explicitly, xH D �

1 0
0 �1

�
;
�

0 1
0 0

�
,

�
0 0
1 0

�
, or

�
0 1�1 0

�
,

respectively. As in the argument proving (16) we have

sup
h2H

jf .hg/j �
Z

H

jf .hg/j dh C
Z

H

jxH � f .hg/j dh; (19)

sup
h2H

jf .gh/j �
Z

H

jf .gh/j dh C
Z

H

jf � xH .gh/j dh;

for all g 2 G.R/1. It follows that

Qf .g/ ´ max
k1;k22K1

jf .k1gk2/j �
X

Y1;Y2D1;xK1

Z
K1

Z
K1

jY1�f �Y2.k1gk2/j dk1 dk2:
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Using the integration formula (17) we infer thatZ 1

1

Qf
��

a 0
0 a�1

�
/.a2 � a�2

�
d �a

�
X

Y1;Y2D1;
xK1

Z 1

1

Z
k1;k22K1

ˇ̌
Y1 � f � Y2

�
k1

�
a 0
0 a�1

�
k2

�ˇ̌
.a2 � a�2/ dk1 dk2 d �a

D .8�/�1
X

Y1;Y2D1;xK1

kY1 � f � Y2k1: (20)

Lemma 3.5. The norm supg2G.R/1 jf .g/j is continuous on C.G.R/1/.

Proof. Consider the inequality

j'.0/j �
X

I�f1;2;3g

Z
Œ0;1�3

ˇ̌̌
ˇ @jI j'Q

i2I @xi

.x/

ˇ̌̌
ˇ dx

for any smooth function ' on Œ0; 1�3, which is valid by the Fundamental Theorem of
Calculus.

Using local coordinates, it follows that for any compact neighborhood C of the
identity in G.R/1 there exists a constant c > 0 with

jf .e/j � c
X

0�i�3;X2Bi

Z
C

jf � X.g/j dg

for all f 2 C.G.R/1/, which clearly implies

jf .e/j � c
X

0�i�3;X2Bi

kf � Xk1:

Applying left translation by arbitrary elements of G.R/1 finishes the proof.

Lemma 3.6. There exists an absolute constant C > 0 such that for all t D �
t1 0
0 t2

� 2
T .R/1 and u D �

1 x
0 1

� 2 U.R/ with jxj 	 j t2
t1

j we have

j!1.t; u/j � C min.jxj; j t1
t2

xj/ log.2 C j t2
t1

j/: (21)

Proof. This is straightforward. We can assume that x 	 0. Consider first the case
j t2

t1
j 	 1

2
. Clearly, !1.t; u/ is then bounded from below. To show the upper bound

note that
.1 � t2

t1
/2 � .1 C x/2 � 9x2

and therefore

!1.t; u/ � log x C log 10

2
:
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The inequality (21) follows now from the fact that log x=x is monotone decreasing
for x 	 e.

Now assume that j t2
t1

j � 1
2

. Then !1
�
t;

�
1 x
0 1

�� � x is monotone decreasing for
x 	 0 since

x

.1 � t2
t1

/2 C x2
� x

1
4

C x2
� 1:

Thus, !1
�
t;

�
1 x
0 1

�� � x for x 	 j t2
t1

j since

1

2
log..1 � t2

t1
/2 C j t2

t1
j2/ �

ˇ̌̌
ˇ t2
t1

ˇ̌̌
ˇ

from the Taylor expansion of the exponential function. Also, for x 	 j t2
t1

j,

!1
�
t;

�
1 x
0 1

�� 	 1

2
log..1 � t2

t1
/2 C j t2

t1
j2/ 	 �

ˇ̌̌
ˇ t2
t1

ˇ̌̌
ˇ:

Thus, (21) holds in this case as well.

Lemma 3.7. There exists a continuous seminorm � on C.G.R/1/ such thatZ
U.R/

jf .tu/j du � �.f /

max.1; j t1
t2

j/ (22)

and Z
U.R/

jf .tu/!1.t; u/j du � �.f / log.2 C j t2
t1

j/
max.1; j t1

t2
j/ (23)

for all t D �
t1 0
0 t2

� 2 T .R/1 and f 2 C.G.R/1/.

Proof. Using (19) we get

sup
k2K1;t2T .R/1

jf .tgk/j �
X

X1D1;x
T .R/1

X
X2D1;xK1

Z
K1

Z
T .R/1

jX1�f �X2.tgk/j dt dk:

Integrating over g 2 U.R/ we get

sup
t2T .R/1

Z
U.R/

jf .tu/j du

�
X

X1D1;x
T .R/1

X
X2D1;xK1

Z
K1

Z
U.R/

Z
T .R/1

jX1 � f � X2.tuk/j dt du dk

D
X

X1D1;x
T .R/1

X
X2D1;xK1

kX1 � f � X2k1:
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In a similar vein,

sup
t2T .R/1

Z
U.R/

jf .ut/j du

�
X

X1D1;xK1

X
X2D1;x

T .R/1

Z
K1

Z
U.R/

Z
T .R/1

jX1 � f � X2.kut/j dt du dk

D
X

X1D1;xK1

X
X2D1;x

T .R/1

kX1 � f � X2k1:

Combining the two we obtain (22). To show (23) we write

Z
U.R/

jf .tu/!1.t; u/j du D
Z

jxj�max.1;j t2
t1

j/

ˇ̌
f

��t1 t1x
0 t2

��
!1

�
t;

�
1 x
0 1

��ˇ̌
dx

C
Z

jxj�max.1;j t2
t1

j/

ˇ̌
f

��t1 t1x
0 t2

��
!1

�
t;

�
1 x
0 1

��ˇ̌
dx:

(24)

To deal with the first integral, we split into two cases. If j1 � t2
t1

j 	 1
2

, we bound it
by a constant multiple of

log.2 C j t2
t1

j/
Z

R

ˇ̌
f

��t1 t1x
0 t2

��ˇ̌
dx

which we already know how to bound. If j1 � t2
t1

j � 1
2

, we bound the integral by a
constant multiple of

Z 3=2

0

.1 C jlog xj/ dx sup
1p

2
�jt1j;jt2j�p

2

jxj� 3
2

ˇ̌
f

��t1 t1x
0 t2

��ˇ̌

which is a continuous seminorm. To deal with the second integral in (24) write

�t1 t1x
0 t2

� D k1

�
a 0
0 a�1

�
k2; k1; k2 2 K1;

where a D a.x/ > 1 satisfies a2 C a�2 D t2
1 .1 C x2/ C t2

2 . Thus

a0.x/

a.x/
.a.x/2 � a.x/�2/ D t2

1 x:

By Lemma 3.6 and (20), the second integral in (24) is bounded by a constant multiple
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of

log.2 C j t2
t1

j/
max.1; j t1

t2
j/

Z
jxj�max.1;j t2

t1
j/

Qf
��a.x/ 0

0 a.x/�1

��
a.x/2�a.x/�2

a.x/
a0.x/ dx

� log.2 C j t2
t1

j/
max.1; j t1

t2
j/

Z 1

1

Qf
��

a 0
0 a�1

��
.a2 � a�2/ d �a

� .8�/�1
log.2 C j t2

t1
j/

max.1; j t1
t2

j/
X

Y1D1;xK1

X
Y2D1;xK1

kY1 � f � Y2k1: �

4. Continuity of the trace formula

We are now ready to show the continuity of the seminorms (5)–(8). Note that each
distribution is invariant under conjugation by K . By passing to

R
K

f .k�1 � k/ dk we
can assume at the outset that f is invariant under conjugation by K .

The spectral side is easy to handle. The fact that the trace norm of Rdisc.f / is a
continuous seminorm follows from the simplest bounds on the number of cuspidal au-
tomorphic representations on G.Q/nG.A/ with a K-fixed vector as the infinitesimal
character grows. (Any polynomial bound will suffice.) Furthermore, there are only
finitely many Dirichlet characters (depending on K) contributing to the continuous
part, and the contribution of each one can be easily majorized. We omit the details,
since the continuity of (8) was proved in much greater generality in [FLM].

Consider the geometric side. We first make a simple reduction. For any x 2
G.Afin/ let fx 2 C.G.A/1I K/ be the restriction of f to the inverse image of the
coset KxK under the map g 7! gfin. Then

f D
X

x2KnG.Afin/=K

fx;

and for any X; Y 2 U.g1
C/

kX�f �Y k1 D
X

x2KnG.Afin/=K

k.X�f �Y /xk1 D
X

x2KnG.Afin/=K

kX�fx�Y k1: (25)

Thus, in proving the continuity of (5), (6) and (7) it suffices to show that these
seminorms are bounded by �.f / for some continuous seminorm �, whenever f D
fx for some x 2 KnG.Afin/=K. Fix x and let x1 be the G.A/1-component of
x under the isomorphism (1). Define f 1

x 2 C.G.R/1/ by f 1
x .g/ D fx.x1g/.

Thus, fx.g/ D f 1
x .g11/	KxK.gfin/. Let r 2 Q>0 and N 	 1 be such that x 2�

r 0
0 r

�
Kfin

�
N 0
0 1

�
Kfin. Then for any X; Y 2 U.g1

C/ we have

kX � fx � Y k1 	 ŒKfin W K��2kX � f 1
x � Y k1 deg.Tr;N /: (26)
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Thus, it suffices to show that there exists a continuous seminorm � on C.G.R/1/

such that for all r 2 Q>0, N 	 1 and f1 2 C.G.R/1/ each of the expressions (5),
(6) and (7) for the function

f .g/ D f1.g11/Tr;N .gfin/ 2 C.G.A/1I Kfin/ (27)

is bounded by �.f1/ deg Tr;N . We will consider each type of conjugacy class sepa-
rately.

Central contribution. The sum
P

z2Z.Q/jf .z/j for f of the form (27) reduces to
f1.e/ C f1.�e/ since only z D ˙�

r 0
0 r

�
contribute. This case immediately follows

from Lemma 3.5.

Elliptic contribution. To deal with (5) we show that

Z
G.Q/nG.A/1

X
�2G.Q/ell: reg:

jf .x�1�x/j dx

is a continuous seminorm on C.G.A/1I K/. Note that we can restrict to the regular
elliptic elements, since the non-regular ones are the central elements.

For c > 0 let

�c D futk W u 2 U.A/; k 2 K ; t 2 T .A/ \ G.A/1; j t1
t2

j > cg:

Note that �c is left B.Q/-invariant. By reduction theory it is known that G.Q/�c D
G.A/1 for c 
 1.

Since G.Q/ell: reg: � B.Q/wU.Q/ it will suffice to show that

Z
B.Q/n�c

X
t2T .Q/

X
u;u02U.Q/

jf .x�1u0twux/j dx

is a continuous seminorm on C.G.A/1I K/. Since f is invariant under conjugation
by K we write the integral as

Z
U.Q/nU.A/

Z
T .Q/nT .A/1

Z 1
p

c

P
t2T .Q/

P
u;u02U.Q/ˇ̌

f
��

a�1 0
0 a

�
s�1x�1u0twuxs

�
a 0
0 a�1

��ˇ̌
d�a
a2 ds dx:

Combining u0 and x and recalling that I1 D Q�O� where O� D Q
p<1 Z�

p , we can
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write this as

Z
U.A/

Z
.Q�nI1/2

Z 1
p

c

P
t2T .Q/

P
u2U.Q/ˇ̌

f
��

.as1/�1 0
0 as2

�
x�1twux

�as1 0

0 .as2/�1

��ˇ̌
d�a
a2 ds1 ds2 dx

D
Z

A

Z
.O�/2

Z 1
p

c

P
t2T .Q/

P
u2Qˇ̌̌

f
	�

.as1/�1 0
0 as2

��
1 �x
0 1

�
tw

�as1 0

0 .as2/�1

�	
1 uCx

a2s1s2
0 1



ˇ̌̌
d�a
a2 ds1 ds2 dx:

Applying Lemma 3.4 we may replace the sum over u by the sum of two integrals
(of the functions f and a�2f � xU.R/) over A. Since a is bounded from below, we
reduce after a change of variables to the estimation of

Z
U.A/2

Z
.O�/2

Z 1
p

c

P
t2T .Q/

ˇ̌
f

��
.as1/�1 0

0 as2

�
xtw

�as1 0

0 .as2/�1

�
y

�ˇ̌
d �a ds1 ds2 dx dy

for f and f � xU.R/. Conjugating
�as1 0

0 .as2/�1

�
we can rewrite this as

Z
U.A/2

Z
.O�/2

Z 1
p

c

P
t1;t22Q�

ˇ̌
f

��
.a2s1s2t1/�1 0

0 a2s1s2t2

�
xwy

�ˇ̌
d�a
a2 ds1 ds2 dx dy

D 1

2

Z
U.A/2

Z
.O�/2

Z 1

c

P
t1;t22Q�

ˇ̌
f

��
.as1s2t1/�1 0

0 as1s2t2

�
xwy

�ˇ̌
d�a

a
ds1 ds2 dx dy:

We will show that this is bounded by a constant multiple of kf k1. As pointed out
before we may assume that f is of the form (27). In particular we may assume that
K D Kfin. We can then remove the si ’s from the integration to get

Z
U.A/2

Z 1

c

X
t1;t22Q�

ˇ̌
f

��
.at1/�1 0

0 at2

�
xwy

�ˇ̌
d�a

a
dx dy

D
Z 1

c

X
t1;t22Q�

Z
U.R/2

ˇ̌
f1

��
.r

p
N at1/�1 0

0 .r
p

N /�1at2

�
x1wy1

�ˇ̌
dx1 dy1

Z
U.Afin/2

Tr;N

��
t�1
1

0

0 t2

�
xfinwyfin

�
dxfin dyfin

d�a
a

:

Only t�1
1 t2 D ˙r2N contribute, so letting t D rNt1 we can rewrite this as (the sum
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over both possible sign choices of)Z 1

c

X
t2Q�

Z
U.R/2

ˇ̌
f1

��p
N .at/�1 0

0 ˙p
N

�1
at

�
x1wy1

�ˇ̌
dx1 dy1

Z
U.Afin/2

Tr;N

��
rNt�1 0

0 rt

�
xfinwyfin

�
dxfin dyfin

d�a
a

D
X

t2Q�

Z
U.R/2

Z 1

cjt j=p
N

jt jp
N

ˇ̌
f1

�
sgn t

�
a�1 0

0 ˙a

�
x1wy1

�ˇ̌
dx1 dy1

Z
U.Afin/2

Tr;N

��
rNt�1 0

0 rt

�
xfinwyfin

�
dxfin dyfin

d�a
a

D
Z 1

0

X
t2Q�Wjt j<p

N a=c

jt jp
N

Z
U.R/2

ˇ̌
f1

�
sgn t

�
a�1 0

0 ˙a

�
x1wy1

�ˇ̌
dx1 dy1

Z
U.Afin/2

Tr;N

��
rNt�1 0

0 rt

�
xfinwyfin

�
dxfin dyfin

d�a
a

:

By Proposition 3.3 the last integral vanishes unless t 2 Z in which case it is bounded
by N

jt j
0.gcd.N; jt j//. We can therefore bound the entire expression by

Z 1

0

X
0¤t2ZW

jtj<
p

N a=c

p
N 
0.gcd.N; t//

Z
U.R/2

ˇ̌
f1

�
sgn t

�
a�1 0

0 ˙a

�
x1wy1

�ˇ̌
dx1 dy1 d�a

a
:

We have

p
N

X
1�k�p

N a=c


0.gcd.k; N // D p
N

X
d jN

X
k�p

N a=cWd jk
1 � a

c

X
d jN

N

d
D a
1.N /

c
:

Therefore, the expression above is bounded by


1.N /

c

Z
R�

Z
U.R/2

ˇ̌
f1

��
a�1 0

0 ˙a

�
x1wy1

�ˇ̌
dx1 dy1 d �a: (28)

Observe that


1.N /

deg.Tr;N /
� N

Q
pjN .1 � p�1/�1

N
Q

pjN .1 C p�1/
D

Y
pjN

.1 � p�2/�1 � �.2/:

Using (18) we can therefore bound (28) by

��.2/

c
deg.Tr;N /kf1k1;

as required.
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Hyperbolic contribution. Assume that f is of type (27). Then upon changing the
variable t by a scalar matrix, the seminorms (7) and (6) are given by

X
t2T .Q/

�t;S

Z
U.R/

jf1.t11u/j du

Z
U.Afin/

Tr;N

��
r 0
0 r

�
tu

�
du (29)

and

X
t2T .Q/

Z
U.R/

jf1.t11u/!1.t; u/j du

Z
U.Afin/

Tr;N

��
r 0
0 r

�
tu

�
du

C
X

t2T .Q/

Z
U.R/

jf1.t11u/j du

Z
U.Afin/

Tr;N

��
r 0
0 r

�
tu

� X
p<1

j!p.t; u/j du;

(30)

respectively. Combining Proposition 3.3 and Lemma 3.7 the invariant term (29) is
bounded by

�.f1/
X

t2D.N /

�t;S min.jt1j; jt2j/

for some seminorm � on C.G.R/1/ where

D.N / D ˚
t D �

t1 0
0 t2

� 2 T .Q/ W det.t/ D ˙N; t1; t2 2 Z
�
:

Clearly, �t;S � log N if t 2 D.N / n Z.Q/, and therefore the sum is bounded by

2�1;S C 2
0.N /
p

N log N:

On the other hand, again by Proposition 3.3 the non-invariant term (30) is bounded
by

X
t2D.N /

jt1j.log t1CjS j�1/

Z
U.R/

jf1.t11u/j duC
X

t2D.N /

jt1j
Z

U.R/

jf1.t11u/!1.t; u/j du:

By Lemma 3.7 this is bounded by

2
X

t2D.N /

�.f1/ min.jt1j; jt2j/.log N CjS jC1/ � 4�.f1/
0.N /
p

N .log N CjS jC1/:

It remains to invoke the crude estimate


0.N /
p

N log N D O.deg Tr;N /:

Remark 2. The proof shows in fact that the seminorms (5), (6) and (7) are continuous
with respect to jk � kj3.
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