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394 G. Harder

1. Introduction

For the basic notations we refer to [Ha-Coh], Chap. 3, Sect. 1 and Sect. 2, 2.1.
We consider a reductive group G=Q, an open compact subgroup Kf � G.Af /, a
subgroup K1 � G.R/, and put

SGKf
D G.Q/ n �

G.R/=K1 �G.Af /=Kf
�
:

We choose a highest weight � and use the resulting highest weight module M� to
construct a sheaf zM� on the space SGKf

, we are interested in the sheaf cohomology

groups H �.SGKf
; zM�/.

We pick a primep. We assume in addition that we have chosen a lattice MZ which
is Kf stable (see loc. cit. 2, 2.1). Then we can consider H �.SGKf

; zM�;Z/, actually

we study the cohomology groupsH �.SGKf
; zM�;Z˝Zp/. The choice of these lattices

zM�;Z or zM�;Z ˝ Zp has to be done with some care.
We recall the construction of Hecke operators from [Ha-Coh], Chap. 2, 2.2. We

construct certain specific operators T .tpk ; ut
pk
/ acting on our cohomology groups

H �.SGKf
; zM�;Z ˝ Zp/ (see 2.2 below).

These operators allow us to define a quotient of the cohomology, on which these
operators act as isomorphisms. This quotient is called the ordinary cohomology and
denoted by H �

ord.S
G
Kf
; zM�;Z ˝ Zp/. This definition goes back to Hida.

In this note we want to investigate how these ordinary cohomology groups vary if
we vary the highest weight p-adically. Let us assume that G=Q is split semi-simple,
let f˛; ˇ; : : : g be the simple roots and f�˛; �ˇ ; : : : g be the corresponding dominant
fundamental weights. Let �0 D P

�˛�˛ , be a dominant weight, where we assume
0 � �˛ < p � 1. We consider the weights

ƒ�0
D f� j � D �0 C .p � 1/P

z˛�˛; z˛ 2 Ng:
We want to interpolate the cohomology groupsH �

ord.S
G
Kf
; zM�;Z˝Zp/ p-adically, in

a certain sense we want to replace the integers z˛ by p-adic numbers. To achieve this
goal we construct interpolating sheaves zP Q� on our locally symmetric space. These
sheaves depend on a character � W T .Zp/! Z�

p which is written as

� D .�Œ1�
�0
;
P
�˛�˛/:

Such a character has two components where �Œ1�
�0

is a character on T .Fp/! Z�
p and

the second component is a character on T .1/.Zp/ D ker.T .Zp/! T .Fp//. To any
such a character � we define some kind of an induced module P�. Any � yields a ��
and we have a natural inclusion zM�;Z ˝ Zp ,! zP Q��

.
We also consider finite quotients zM�;Z˝Z=pmZ and zP Q�Œm� . It will turn out that

zP Q�Œm� only depends on the numbers z˛ modpm�1. Hence we get a bunch of coho-
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mology groups. These cohomology groups are finitely generated (or even finite) Zp-
modules. On these cohomology groups we construct Hecke operators T .tpk ; ut

pk
/.

We will see that we have a greater degree of freedom in the choice of the second
component ut

pk
. (See 3.5 and 3.6.)

LetH � be any such a cohomology group. A Hecke operators T .tpk ; ut
pk
/ decom-

poses cohomology groups H � into a direct sum H �

nilpt ˚H �

ord such that T .tpk ; ut
pk
/

acts (topologically) nilpotently on the first summand and as an isomorphism on the
second one. Two ordinary summands which are defined with respect to different
choices of T .tpk ; ut

pk
/ are canonically isomorphic.

Our first theorem (Thm. 2.1) asserts that under some assumptions on �0 the mor-
phisms zM�;Z ˝ Z=pmZ! zP Q�Œm�

�

induce isomorphisms of Hecke modules

H
�

ord.S
G
Kf
; zM�;Z ˝ Z=pmZ/ ��!� H

�

ord.S
G
Kf
; zP Q�Œm�

�

/:

This is a first approximation to interpolating H �

ord.S
G
Kf
; zM�;Z ˝ Zp/; at least it

implies that for �; �0 2 ƒ�0
which satisfy z˛ � z 0̨ modpm�1 we get a canonical iso-

morphismH �

ord.S
G
Kf
; zM�;Z˝Z=pmZ/ ��!� H �

ord.S
G
Kf
; zM��0;Z

˝Z=pmZ/, i.e., we
get congruences between cohomology groups if the highest weight of the coefficient
system satisfy congruences.

The second theorem (Thm. 4.4 and 4.6) proved in this note says that the p-torsion
of the ordinary cohomology groupsH �

ord.S
G
Kf
;M�˝Zp/ is bounded independently

of � 2 ƒ�0
as long as � stays away from certain sets Y �

i of irregular p-adic weights.
These theorems use the first theorem but they are not a direct consequence. In a first
version of this note I stated a much stronger result which turned out to be false, Hida
showed a counter-example to me (see Section 4).

In a subsequent paper with J. Mahnkopf we will show that this theorem implies
that under certain assumptions the ordinary cohomology groupsH �

ord.S
G
Kf
; zP Q�/ form

a nice analyticp-adic family in the variable .�Œ1�
�0
;
P
�˛�˛/, the first entry is fixed, the

variables are the �˛ . A precise version of this result will be formulated in Section 4.2,
Theorem 4.7.

As long as everything happens on the level of sheaf cohomology, there is no
mentioning of automorphic forms so far. In the paper with J. Mahnkopf we implement
methods from analysis and representation theory. Using the trace formula, some
vanishing results and results on Eisenstein cohomology we can find some �0 such
that Theorem 4.7 applies to all � 2 ƒ�0

.
The results explained so far are perhaps not really new. There is certainly an

overlap with the results proved by Hida, Ash–Stevens, Urban, Tilouine, Mauger,
Emerton and others. But I claim that the approach to the subject is new, very simple,
direct and transparent. In any case the results as they are stated here are just in right
form for the applications I have in mind and which are discussed at the end of this
paper.
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The boundedness theorem provides a tool to make further progress in the questions
which are discussed in my paper “A congruence …” in [1-2-3]. In my paper on rank-
one Eisenstein cohomology [Ha-Bom2] I discuss rationality of certain ratios of special
values ofL-functions. The theorems we hope to prove in the forthcoming paper with
J. Mahnkopf provide a method to prove that in a certain sense these ratios of special
values of L-functions are p-adic analytic functions.

These applications are discussed in Sections 4.3 and 4.4, and they are my main
motivation for writing this paper.

For the discussion of the Hecke operators and also for some basic notions and
notations used in this note I refer to my book project “Cohomology of arithmetic
groups” ([Ha-Coh], Chap. 2–6), which exists in preliminary form on my homepage:

www.math.uni-bonn.de/people/harder/Manuscripts/buch/

Part of this paper was prepared when I was visiting the Institute for Advanced
Study in Princeton in the fall term 2006. The idea that the (wrong) boundedness
theorem may be true and may be interesting came to me when I walked down the
Strudlhofstiege in Vienna during my stay at the workshop on Automorphic Forms in
2006 at the Erwin Schrödinger Institute. I thank both institutions for their support.

2. The case Gl2

2.1. The coefficient systems. Let Cp the completion of the algebraic closure xQp ,
let OCp

be its ring of integers. We assume for a moment that p > 2. We have the

canonical homomorphism r W Z�
p ! F�

p the kernel is the group Z.1/p of 1-units and
the Teichmüller character provides a section ! W F�

p ,! Z�
p . It is defined by the

requirements that !.x/ is a (p � 1)-th root of unity and !.x/ � x modp. Hence
we have x=!.x/ D 1 C l.x/p 2 Z.1/p . Any x 2 Z�

p can be written uniquely as
!.x/.1C l.x/p/ with l.x/ 2 Zp .

We will forget the homomorphism r and we will write !.x/ for !.r.x//. Then
Z�
p is a direct product F�

p � Z.1/p . We consider a pair .i; �/ where i 2 Z=.p � 1/Z
and � 2 OCp

. We denote such a pair by � D .i; �/. Any such � defines a character

� W Z�
p ! O�

Cp
; � W x D !.x/.1C l.x/p/ 7! !.x/i .1C l.x/p/� :

The assumption p > 2 guaranties the convergence of the series

.1C l.x/p/� D 1C �l.x/p C
�
�

2

�
l.x/2p2 C � � � :

If p D 2 then we replace F2 by .Z=4Z/� and ! by the character !2 W Z�
2 ! f˙1g,

which satisfies !2.x/ � x mod 4. Again we can write x D !2.x/.1 C l.x/4/ and
then we can proceed as before. In the following we always pretend that p > 2, our
arguments are – mutatis mutandis – also correct for p D 2.

http://www.math.uni-bonn.de/people/harder/Manuscripts/buch/
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We are not forced to assume that � 2 OCp
. We have the homomorphism

ordp W C�
p ! Q which has value zero on O�

Cp
the units and satisfies ordp.p/ D 1.

Then we can define the open disc D.� 1
p�1 / D f� jordp.�/ > � 1

p�1g and it is well

known that the series defining .1C xp/� converges for � 2 D.� 1
p�1 / and it defines

a homomorphism Z.1/p ! C�
p .

For any integer m we get

�Œm� W .Z=pmZ/� ! .OCp
=pmOCp

/�:

By Gl2 we mean the semi-simple group scheme Gl2=Spec.Z/, for any commu-
tative ring R with identity the group of R-valued points is Gl2.R/. Let A.Gl2/ be
the Z-algebra of regular functions on Gl2.

Let B D BC be the Borel subgroup of upper triangular matrices. Its quotient by
its unipotent radical UC of strictly upper triangular matrices is equal to the torus of
diagonal matrices

T D ft D �
t1 0
0 t2

�g:
We define the character Q�Œm� W BC.Z=.pm//! .OCp

=pmOCp
/�, which is given

by

Q�Œm� W
�
t1 �
0 t2

�
7! �Œm�.t1/:

We can consider the induced Gl2.Z=pmZ/-module

I Q�Œm� ´ IndG.Z=p
mZ/

B.Z=pmZ/ Q�Œm�
D ˚

f W G.Z=pmZ/! OCp
=.pm// j f � �t1 �

0 t2

� �
a b
c d

� �
D Q�Œm�.�t1 �

0 t2

�
/f

� �
a b
c d

� ��
:

Of course as usual the group acts on this module by translations from the right, i.e.,
Rx.f /.g/ D f .gx/. Sometimes it is convenient to consider the submodule of those
functions which take their values in a subring of R � OCp

: This ring must receive
the values of �, i.e., we must require that � 2 R. Then we putRm D R=.pm/. Hence
we get that I Q�Œm� is a free Rm-module of rank #P1.Z=.pm//.

We formulate a Lipschitz condition which defines a submodule

P Q�Œm� D ff 2 I Q�Œm� jfor all 0 < � < m; g� � 1 modp�; f .gg�/ � f .g/ modp�g:
For this system of submodules we have G.Z=.pm// equivariant homomorphisms

r�Œm� W P Q�Œm� �! P Q�Œm�1� :

We choose an open compact subgroup Kf D
Q
`K` and assume that Kp D

Gl2.Zp/. Let SGKf
the associated modular curve (see [Ha-Coh], Chap. 3, 1.2), it has

an adelic description as

SGKf
D Gl2.Q/nGl2.R/=SO.2/ �G.Af /=Kf :
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The P Q�Œm� are Gl2.yZ/ D Kf -modules and hence we get sheaves zP Q�Œm� on SGKf
.

These sheaves can be considered as sheaves for the analytic topology on SGKf
: But

in our case SGKf
is the set of complex points of a scheme �GKf

=Q (or a number field)

and then we may also interpret QP Q�Œm� as sheaves for the etale topology on �GKf
.

We get a projective system of sheaves on SGKf
, and we define

H 1.SGKf
; zP Q�/´ lim �

m

H 1.SGKf
; zP Q�Œm�/:

For any integer n we can define the special character

�n D .n mod .p � 1/; n/:
For integers n 	 0 we can relate the sheaves zP Q��n

to sheaves which are obtained
from rational representations.

Let us denote by Mn the module of homogenous polynomials in two variables
X; Y with Z-coefficients, we define an action of Gl2.Z/ by�

a b

c d

�
P.X; Y / D P.aX C cY; bX C dY / det

� �
a b
c d

� ��n
:

The resulting Gl2.Z/-module will be denoted by MnŒ�n�.
Remark. It is important that we view MnŒ�n� as a module for the group scheme
Gl2=Z, this means that for any commutative ring R with identity we have an action
of Gl2.R/ on Mn˝R. We notice that for any n we have a family of modules MnŒr�

where we replace the determinant factor by det.
�
a b
c d

�
/r . These modules become the

same, if we restrict them to the derived group Sl2=Z. This restriction is in a sense
the “essential part” of the representation. Two such representations differ by their
restriction to the centre where they are given by the central character z 7! znC2r . This
central character is less relevant and the choice of r D �n is natural (see [Ha-MM]).

We review briefly the standard construction of Gl2-modules. On our torus we have
the two rational characters � W t 7! t1, det W t 7! t1t2. To any character � W T ! Gm
we define the line bundle L� on BnGl2, its global sections are

H 0.BnGl2;L� / D ff 2 A.Gl2/ j f .bg/ D �.b/f .g/g:
This is a Gl2-module, the group scheme acts by translations from the right. Now it is
well known and easily verified that we have a canonical isomorphism of Gl2-modules

Mn DMnŒ�n� ��!� H 0.BnGl2;L�n�1
/:

If we restrict the character �n�1 to the Z=pmZ-valued points then we obviously
get

�n�1jT .Z=pmZ/ D �Œm��n
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and hence restriction of the sections in H 0..BnGl2;L�n�1
/ to Gl2.Z=pmZ/ yields

a Gl2.Z=pmZ/-module homomorphism H 0..BnGl2;L�n�1
/˝ Z=pmZ! I

�
Œm�
n

.
This morphism clearly factors through P Q�Œm� .

Hence we get a Gl2.Z=pm/ invariant homomorphism

jm W Mn=p
mMn ! P Q�Œm�

�n
;

which sends a polynomial P 2Mn to the function

fP .
�
u v
x y

�
/ D P.x; y/ det

� �
u v
x y

� ��n

on Gl2.Z=pm/. It will neither injective nor surjective in general. This homomorphism
induces a homomorphism

H
�
.SGKf

;Mn=p
mMn/ �! H

�
.SGKf

;P Q�Œm�
�n
/:

In this case we may take Rm D Z=pmZ.

2.2. The Hecke operators. We want to construct Hecke operators T .g; ug/ which
act on these cohomology groups as endomorphisms.

We recall the construction of Hecke operators acting on the cohomology with
coefficients as it is outlined in [Ha-Coh], Chap. II, in the section on Hecke operators.
It has to be translated into the adelic language, but this is a minor point.

Let � be any arithmetic congruence group. Any �-module M gives us a coeffi-
cient system zM and we study the cohomology groups H �.�nX; zM/. To get Hecke
operators acting on these cohomology groups we need two data:

a) an element g 2 G.Q/.
The group �.g/ D g�g�1 \ � has finite index in � . We define a new �.g/-

module M .g/, which is equal to M as an abelian group, but the action of � 2 �.g/
is given by

.g;m/ 7! .g�1�g/m:

The second datum is

b) a �.g/-homomorphism ug W M .g/ !M .

Then such a pair .g; ug/ induces an endomorphism in the cohomology (see
[Ha-Coh], Chap. III, 2)

T
�
.g; ug/ W H �

.�nX; zM/! H
�
.�nX; zM/:

It also induces an endomorphism on the cohomology with compact supports and the
cohomology of the boundary of the Borel–Serre compactification. Of course it is
compatible with the fundamental long exact sequence.
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In our case we will take for g the element tpk D
�
pk 0
0 1

�
and we have to look for

the possible choices for a morphism ug D ut
pk

.

If for instance our M is one of the modules Mn (this is a Z-module), then we
have essentially only one good choice for ut

pk
this is the so called canonical or

classical choice in Chap. 2 loc. cit. We briefly recall how it looks in this case. The
element ut

pk
2 Gl2.Q/ induces a linear map Mn˝Q!Mn˝Q: This map sends

X iY n�i ! pikp�nkX iY n�i D pk.i�n/X iY n�i . Up to a scalar this is the unique
homomorphism from .Mn ˝Q/.tpk / !Mn ˝Q. But it does not send the integral
lattice to the integral lattice. We have to multiply it by pnk to get a homomorphism

uclass
t
pk
W M.t

pk /

n !Mn:

Under this homomorphism Y n is mapped to itself, all other monomials get mul-
tiplied by a strictly positive power of p.

But if we pass to Mn˝Z=.pm/, or if we consider one the modules P Q�Œm� , I Q�Œm� ,
then we will find many more such ut

pk
. We always can consider the reduction of

uclass
t
pk

to Mn=p
mMn, and then we also call this reduction uclass

t
pk

.

We will not consider all of them. For any � and any pair of integers k;m > 0 we
want to construct a set

H Œm�
� D T .ftpk ; ut

pk
//g

which means to give a collection of ut
pk

. In general we assume that k 	 m, unless
we discuss the classical operator, in this case this assumption does not make sense.

We assume that n > 0 and formulate certain requirements, that should be fulfilled
by this families of operators.

(i) We want to have diagrams

P
.t

pk /

Q�Œm�

��

ut
pk

�� P Q�Œm�

��
I
.t

pk /

Q�Œm�

ut
pk

�� I Q�Œm� ,

i.e., they are defined on the I and restrict to the P .
(ii) We want them to form a projective system if we restrict them to the sheaves

P Q�Œm� . This means that given k 	 mC 1 and an homomorphism

ut
pk
W P .t

pmC1 /

Q�ŒmC1� ! P Q�ŒmC1�
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we require that it “pushes down” to an ut
pk

, i.e., we get diagrams

P
.t

pk /

Q�ŒmC1�

��

ut
pk

�� P Q�ŒmC1�

��
P
.t

pk /

Q�Œm�

ut
pk

�� P Q�Œm� .

This means that we can defineut
pk

which induce morphisms on all levelsm � k.

We get a projective system of Hecke operators rmC1 W H ŒmC1�
� ! H

Œm�
� , we do

not require that the rmC1 are surjective. The set H
Œm�
� depends only on �Œm� as

the notation indicates.
(iii) We want to construct a principal operator

uprinc D .: : : ; T .tpkC1 ; u
princ
t
pkC1

/; T .tpk ; u
princ
t
pk
/; : : : /

in the projective system of H
Œm�
� , which has the following properties:

a) uprinc
t
pk
.I Q�Œm�/ � pI Q�Œm� CP Q�Œm� .

If we know in addition that �Œm� D �Œm�
�

with some highest weight � then
we even have

u
princ
t
pk
.I Q�Œm�/ � pI Q�Œm� C jm.Mn ˝ Z=.pm//:

b) For any ut
pk
2 H

Œm�
� we find an integer b 2 Zp such that

.ut
pk
� buprinc

t
pk
/.I Q�Œm�/ � pI Q�Œm� : (Princ)

(iv) And finally we want: If � D ��n as above then the classical Hecke operator on
Mn ˝ Z=.pm/ extends to an operator in H

Œm�
��n

.

Our first and in some sense main result will be the existence of such a system of
Hecke operators. We will construct such a system in Section 3. Actually for the case
Gl2 this discussion will be much to detailed, we will see that we really have quite a
lot of Hecke operators, many more than we need. After that we will discuss the more
general case of reductive group schemes.

2.3. First consequences. The existence of such a system of sheaves together with
the Hecke operators acting on their cohomology has interesting consequences. Let
F be any of the above sheaves.

We introduce some notation. We write H �

�;� for the various variants of coho-
mology. We explain the options for the first �. It indicates whether we take the
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cohomology with compact supports, then � D c, whether we take the cohomology
without supports, then � D \. We may also take the cohomology of the boundary.
Then we write

H
�

�.@SGKf
;F / D H �

@;�.S
G
Kf
;F /:

These cohomology groups are related by the exact sequence

H
��1
@;� .S

G
Kf
;F /! H

�

c;�.SGKf
;F /! H

�

\;�.S
G
Kf
;F /! H

�

@;�.S
G
Kf
;F /! :

Finally we may take � D Š; this is the “inner cohomology” and it is the image of the
cohomology with compact supports in the cohomology without supports.

Now we explain the options for the second �. It may be blank or ord, we explain
what we mean by that.

It follows from (iiia) that all Hecke operators in H
Œm�
� act nilpotently on

H �

�;�.SGKf
; I Q�Œm�=P Q�Œm�/. A first consequence of the properties of the system of

Hecke operators is the following assertion:

Let us denote by J�;m the set of operators ut
pk

for which the number b in
(Princ) is zero modulo p. Then it is clear that any composition of operators in
H
Œm�
� which contains more than m factors from J�;m annihilates the cohomology

H �

�; .SGKf
; I Q�Œm�=P Q�Œm�/ for any choice of the first �.

Using the long exact sequence we get the same consequence for the cohomology
of the sub sheaves

H
�

�;�.SGKf
;P Q�Œm�/;

but now we may need 2m factors.
Hence we see: If X is any of the above cohomology groups. We know that it

is finitely generated over Zp . Let us assume for the moment that it is torsion, i.e.,
finite. Then we can take the principal Hecke operator T princ

pk D T .tpk ; u
princ
t
pk
/ and

consider the image .T princ
pk /N .X/ for a high power N . This becomes stationary and

will be called Xprinc
ord . The operator T princ

pk induces an isomorphism on Xprinc
ord . We

denote by Xprinc
nilpt the maximal submodule of X on which uprinc

tpm
acts nilpotently. We

get a decomposition
X D Xprinc

nilpt ˚Xprinc
ord :

It is also clear that we can replace T princ
pk by any other operator T .tpk ; ut

pk
/where

ut
pk
D uprinc

t
pk
C vm with vm 2 J�Œm� . Then ut

pk
will define a second decomposition

X D X .ut
pk
/

nilpt ˚X .ut
pk
/

ord :

In both cases we have an identification Xord ��!� X=Xnilpt. We claim that X
.ut

pk
/

nilpt \
X

princ
ord D .0/.
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To see this let us pick an element x 2 X .ut
pk
/

nilpt \Xprinc
ord . Then we get

T .tpk ; u
princ
t
pk
/x D T .tpk ; ut

pk
/x C vmx:

We repeatedly apply T .tpk ; u
princ
t
pk
/ to this equation and get

T .tpk ; u
princ
t
pk
/Nx D T .tpk ; ut

pk
/Nx C Qvm.x/;

where Qvm is an endomorphism ofX which is a sum of products of endomorphisms and
where each such product contains a factor vm. This implies the following: Ifx 2 prX
then Qvm.x/ 2 prC1X . If nowN is large enough the first summand on the right-hand
side becomes zero. Then we can conclude that T .tpk ; u

princ
t
pk
/Nx 2 prC1X . But since

X
.ut

pk
/

ord is a direct summand it follows that T .tpk ; u
princ
t
pk
/Nx 2 prC1Xprinc

ord , and hence

we can conclude thatx 2 pmXprinc
ord for anym > 0 and thereforeT .tpk ; u

princ
t
pk
/Nx D 0.

But this implies x D 0 because T .tpk ; u
princ
t
pk
/ induces an isomorphism on Xprinc

ord .
Clearly we have a similar conclusion if X is only finitely generated, we simply

have to replace nilpotent by topologically nilpotent. We still call the summand on
which the given operator T .tpk ; ut

pk
/ acts topologically nilpotently Xnilp.

From this it follows that we get a canonical identification

X
princ
ord ��!� X=X

.ut
pk
/

nilpt ��!� X
.ut

pk
/

ord

and this allows us to speak of the module Xord. It is the collection of modules

fX .ut
pk
/

ord gut
pk

, which are identified to each other.

It is clear that a homomorphism X ! X1 which is compatible with the action
of the Hecke algebra sends Xord ! X1;ord and from an exact sequence of Hecke
modules

X 0 ! X 0 ! X 00

we get an exact sequence
X 0

ord ! X 0
ord ! X 00

ord:

We consider the cohomology groups H �

�.SGKf
;Mn=p

mMn/. We use the Hecke

operator T .tpk ; uclass
t
pk
/ to defineH �

�;ord.S
G
Kf
;Mn=p

mMn/. Hence the second � in the

subscript �;�may be ord if we consider the ordinary cohomology, it is a blank if we
consider all the cohomology, in principle it could also be a nilpt.

We could ask ourselves whether we can have a mild form of a commutation
relation:

(v) For any v 2 J�;m we can find an endomorphism w 2 End.X/ such that

T .tpk ; u
princ
t
pk
/ � v D .pw/T .tpk ; u

princ
t
pk
/:



404 G. Harder

If our system of Hecke operators has this property then it is rather easy to see that
the submoduleXnilpt does not depend on the choice of ut

pk
provided that the element

b in (Princ) is a unit.
Now we consider the group Gl2=Q and formulate the following result, which is

more or less an obvious consequence of the existence of the family of Hecke operators
having the property above. We formulate it in the special case Gl2=Q, but later on
we give a more general statement.

Theorem 2.1. Assume that n > 0. We get a sequence of isomorphisms

H
�

�;ord.S
G
Kf
;Mn=p

mMn/ ��!� H
�

�;ord.S
G
Kf
;P

�
Œm�
n
/ ��!� H

�

�;ord.S
G
Kf
; I
�

Œm�
n
/:

This holds for any choice of the first �.

This is a control theorem in the sense of Hida. Theorems of this kind have been
proved by Hida himself, by Ash and Stevens and by Mauger. We will formulate a
general result for arbitrary reductive groups later (Thm. 4.1)

The proof is simple. Our previous considerations imply that the second homo-
morphism is an isomorphism. If we investigate the morphism Mn=p

mMn ! I Q�Œm�
n

a
little bit more closely then we see easily that the kernel has no ordinary cohomology,
i.e., H

�
Œm�
n

acts nilpotently on the cohomology of the kernel of this homomorphism
(for a detailed argument we refer to the discussion of the general case in 3.6). Our
requirement (iiib) implies ut

pk
.I Q�Œm�

n
/ � pI Q�Œm�

n
Cjn.Mn=p

mMn/ and then it is also
clear that H

�
Œm�
n

acts nilpotently on the cohomology of the cokernel.
Therefore the claim is proved: All the homomorphisms above are isomorphism.

The proof depends on the existence and properties of the zP� and the existence of the
Hecke operators, we will see why we need n > 0.

I want to call these sheaves zP� interpolating sheaves, they have the property that
for two such characters � D .i; �/;  D .i1; �1/ we have P Q�Œm�

�n
D P Q Œm�

�n
if i D i1

and � � �1 modpm�1. It seems impossible to find such congruences for the Mn.
But still we know that

H
�

�;ord.S
G
Kf
;Mn=p

mMn/ ��!� H
�

�;ord.S
G
Kf
;Mn1

=pmMn1
//

if n; n1 > 0 and n � n1 mod .p � 1/pm�1.

3. The construction of Hecke operators on the interpolating coefficient systems

3.1. The case m D 1. We assume that 0 � n < p � 1 and consider the Gl2.Fp/
homomorphism

jn W Mn=pMn ! I Q�Œ1�
�n
;
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under our assumption on n this is always an inclusion. Of course we can define
this homomorphism jn for any integer n 	 0 and it is important to notice that the
right-hand side depends only on n mod .p � 1/.

We want to compute the spaces of Hecke operators for these modules and in-
vestigate the spaces of Hecke operators which are compatible with jn. In the
beginning of 3.3 we show that for any Gl2.Fp/-module M we have to compute
HomT.Fp/.MU�.Fp/;M

UC.Fp// (see 3.3 (Hom)). Hence we have to compute the
spaces of UC.Fp/ coinvariants and U�.Fp/ invariants for our modules and then we
have to determine the spaces of T .Fp/-invariant homomorphism between the co-
invariants and the invariants. We use the Bruhat decomposition. Let w the nontrivial
element in the Weyl group, let u 2 UC.Fp/. We define functions ‰0 (resp. ‰w;u/ 2
I Q�Œ1�

�n
by the condition, that they are supported onBC.Fp/ (resp.BC.Fp/wu, see 3.3)

and assume the value one at e resp. w.
Let x‰e (resp. x‰w ) be the images of‰0 (resp.‰w;u) in the space of coinvariants, the

element x‰w;u does not depend on u. The space of U�.Fp/ invariants is generated by
the functionsˆe.g/ D ˆe.bu�/ D Q�Œ1�.b/ andˆw.g/ D ˆe.bwu�/ D ˆe.bw/ D
Q�Œ1�.b/. Then an easy computation shows (here we use n � p � 1)

.Mn=pMn/UC.Fp/ D FpY n

uclass
t
pk

��

�� .I Q�Œ1�
n
/UC.Fp/ D Fp x‰e ˚ Fp x‰w

��

.Mn=pMn/
U�.Fp/ D FpY n �� .I Q�Œ1�

n
/U�.Fp/ D Fpˆe ˚ Fpˆw .

It is easy to see that the T .Fp/ rational points of our standard torus acts by the
characters t 7! t�n1 on x‰e , ˆe and t 7! t�n2 on x‰w , ˆw . Hence we see that for
0 < n < p � 1 the space of possible ut

pk
is of dimension two: We have the operator

– which will be called the principal operator later –

u
princ
t
pk
W x‰e 7! ˆe; x‰w 7! 0

and a second one which just does the opposite.

We observe that for all n the polynomial Y n goes to x‰e in the module of coinvari-
ants. If n > 0 the polynomial Y n maps to ˆe in the module of invariants and hence
we see that under the assumption n > 0 the principal operator is an extension of the
classical operator. Especially we have that the classical Hecke operator induces the
zero map onH �.SGKf

; I Q�Œ1�
n
=.Mn=pMn//.

Hence we see that for n > 0 we get isomorphisms

j
�

n W H �

�;ord..S
G
Kf
;Mn=pMn/ ��!� H

�

�;ord.S
G
Kf
; I Q�Œ1�

n
/:

But we also see that this is not the case if n D 0. In this case Y n is mapped to
ˆe C ˆw in the space of invariants. So we see that (iii) is not valid. But since the
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torus action becomes trivial, we see that the space of possible ut
pk

has dimension 4
and we have several extensions of the classical operator.

We also can replace n by n1 D n C k.p � 1/, where k > 0 is an integer. This
does not change the module I Q�Œ1�

n
. It is easy to see that then the homomorphism

Mn1
=pMn1

! I Q�Œ1�
�n

is surjective, if k > 0 and 0 < n < p � 1. But then the
homomorphism jn1

has a kernel and clearly the classical Hecke operator induces the
trivial map on the cohomology of the kernel. Hence we get for any n > 0 as above
and any n1 D nC k.p � 1/ that the natural maps

H
�

�;ord.S
G
Kf
;Mn1

=pMn1
/! H

�

ord.S
G
Kf
;P

�
Œ1�
n
/! H

�

ord.S
G
Kf
; I
�

Œ1�
n
/

are isomorphisms. This is our Theorem 2.1 form D 1, the exceptional case is n D 0.
If n D 0 the situation is a little bit different. Let us look at the more general case

that n � 0 mod .p � 1/. In this case we have

I
�

Œ1�
n
D I

�
Œ1�
0

D IndG.Fp/

B.Fp/
Fp;

and this module decomposes into the one-dimensional subspace of constant functions
and ap-dimensional space of functions which are orthogonal to the constant functions.
It is clear that the constant functions are simply the given by the image of j0 and the
complement is given as the image of jp�1. Then jp�1 induces an isomorphism on
ordinary cohomology, but j0 does not if we define “ordinary” with respect to the
principal operator.

If we take for n D pm.p � 1/ with m > 0, then jn becomes surjective. Then
we have that in the p-adic topology n D pm.p � 1/ ! 0, but we do not have
H �

�;ord.S
G
Kf
;Mn=p

kMn/! H �

�;ord.S
G
Kf
;M0=p

kM0/.

3.2. More general group schemes. These considerations generalize. Let us con-
sider a semi-simple (or reductive) group over G=Q. Let us assume that G=Q is
quasi-split. We find a minimal extensionE=Q over which it splits. Let p be a prime,
we assume that this extension is unramified at p. We choose a prime p above p, let
Ep=Qp the local extension. Then we can extendG=Q to a flat group scheme of finite
type G=Spec.Z/, which is reductive over an open subset Vp containing p. This open
subset may shrink during the following considerations. We can choose a maximal
torus T =Vp � G �Spec.Z/ Vp D GVp

which is contained in a Borel subgroup B=Vp .
This means that we can find a Weyl chamber C � X�.T / which is invariant under
the action of the Galois group Gal.Ep=Qp/. We have a unique element w0 in the
Weyl group, which sends this chamber to the opposite chamber �C . Let UC be the
unipotent radical of B, let U� D U

w0C , it is the unipotent radical of the opposite
Borel B� 
 T .

Let us assume that the derived group G .1/ is simply connected. Let T .1/ �
T be the torus G .1/ \ T . Let 	 be the set of simple positive roots, the Galois
group Gal.Ep=Qp/ acts by permutations on 	 . The dominant fundamental weight
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corresponding to ˛ 2 	 is denoted by �˛ . These dominant weights �˛; �ˇ ; : : : are in
X�.T .1//. If � 2 X�.T /, then its restriction to T .1/ is a linear combination

P
n˛�˛ ,

if all n˛ 	 0 (or
P
n˛�˛ 2 C ), then � is a highest weight. The homomorphism

X�.T / ! X�.T .1// is surjective, hence any
P
n˛�˛ extends to a �, which is also

considered as a highest weight.
For any highest weight � we have the highest weight module M�. Here a few

words of explanation seem to be in order. Let OE be its ring of integers of E, let
V 0
p � Spec.OE / be the inverse image of Vp . Then we can extend the Borel subgroup

B=Spec.Zp/ to a Borel subgroup zB=V 0
p , the weight w0.�/ defines a line bundle

Lw0.�/ on the flag variety of Borel subgroups . zBnG /Vp
(see [De-Gr], Exp. XXII,

5.8). This line bundle is ample if and only if n˛ > 0 for all ˛. It has non triv-
ial global sections if and only if n˛ 	 0 for all ˛. The space of global sections
H 0.. zBnG /V 0

p
;Lw0.�// is a finitely generated projective O.V 0

p/-module on which the
group scheme GVp

acts. By definition we get an action of G .Zp/ on this module, it
is easy to see that we can extend H 0.. zBnG /V 0

p
;Lw0.�// to an OE -module M� on

which we have an action of G .OE /. This extension is not unique, but we are only
interested in what happens at p, so this does not matter.

The moduleH 0.. zBnG /V 0
p
;Lw0.�// has two specific elements. Let A be the ring

of regular functions of GVp
, then we have by definition

H 0.. zBnG /V 0
p
;Lw0.�// D ff 2 A j f .bg/ D w0.�/.b/f .g/g;

where b, g are elements in B.O.V 0
p//;G .O.V

0
p//.

The subsets B � U� (resp. Bw0UC) � GV 0
p

are open and Zariski dense. The
complement of these subsets is a divisorD� (resp.DC) whose irreducible components
correspond to the simple roots. We can write (see proof of Satz 1.3.1 in [Ha-vK])

D� D P
˛2�

Y �̨; DC D P
˛2�

Y C̨:

Now it is well known that the two functions, which are defined on B �U� and
Bw0UC respectively, namely

ew0.�/.bu�/ D w0.�/.b/; e�.bw0uC/ D w0.�/.b/

extend to regular functions on GV 0
p

. So they yield elements inH 0.. zBnG /V 0
p
; w0.L�//

(at this point we need that the coefficients n˛ 	 0).
More precisely we know that the divisor of zeroes of these two sections are given

by
Div.ew0.�// D

P
˛

n˛Y
�̨; Div.e�/ D

P
˛

n˛Y
C̨

and hence we see that ew0.�/ vanishes on the complement of B �U� if all the n˛ > 0,
i.e., our weight is regular.
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Moreover it is clear that the two sections are eigensections for the action of the
torus: For an element t 2 T .R/ we have

tew0.�/ D w0.�/.t/ew0.�/; te� D �.t/e�:
The vector ew0.�/ is invariant under the action of U� hence it is a highest weight

vector with respect to the Borel subgroup B� D Bw0 . It is a lowest weight vector
for B. An analogous statement holds for e�.

We will also consider the reduction mod p, i.e., the module H 0.. zBnG /V 0
p
�

Spec.OE=p/;Lw0.�//. This is a module for the group G .Fp/. This module is irre-
ducible if all coefficients satisfy 0 � n˛ � p � 1 and is equal to M� ˝ OE=p (see
[Ja], Chap. 3).

Now we consider the group T .Zp/, let T .1/ be its intersection with G .1/. It sits
in an exact sequence (see notations in the introduction to Chap. 3 of [Ha-Coh]).

1! T .1/.Zp/! T .Zp/! C 0.Zp/! 1:

We consider continuous characters � W T .Zp/ ! O�
Cp

, basically we are only

interested in their restriction to T .1/.Zp/. We want to construct the interpolating
modules. The group T .1/.Zp/ � T .1/.OEp/ and it is the subgroup of Galois invariant
elements. The group

T .1/.OEp/ D
Q
˛2�

O�
Ep
D f.: : : ; x˛; : : : /˛2� jx˛ 2 O�

Ep
g

the Galois group acts by 
.: : : ; x˛; : : : / D .: : : ; x	
	.˛/

: : : /. Hence T .Zp/ is the

subgroup of elements which satisfy 
.x˛/ D x	.˛/. This tells us that the torus T .1/

is a product over induced tori, the factors in this product correspond to the orbits of the
Galois group on 	 . If we denote such an orbit by N̨ and if we choose representatives
˛ 2 N̨ then this defines a subfield E˛ � Ep such that Gal.xQp=E˛/ is the stabilizer
of ˛. Since Ep is unramified, we know that E˛=Qp is cyclic of order r˛ , where r˛
is the length of the orbit. The Galois group Gal.E˛=Qp/ is cyclic and generated by
the Frobenius element 
 . Then the factor corresponding to N̨ is denoted by T N̨ and
we have T N̨ D ROE˛ =Zp

.Gm/.
Then

T N̨ .Zp/ D O�
E˛
�

r˛�1Q
	 i WiD0

O�
Ep

where the embedding is given by

x 7! .x; 
.x/; : : : ; 
 r˛�1.x//:

To get our interpolating modules we consider characters on T .1/.OEp/ and restrict
them to T .1/.Zp/. We still have the Teichmüller character ! W .OEp=p/

� ,! O�
Ep

.
We choose an embedding OEp ! OCp

and then we put as before

�..: : : ; x˛; : : : // DQ
!.x˛/

�˛ . x˛

!.x˛/
/z˛
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where z˛ 2 OCp
and �˛ 2 Z.

We restrict � to T .Zp/, more precisely we look at the restriction to the compo-
nents. Clearly we have !.
.x˛// D !.x˛/p and hence the factor in front is

Q
N̨

r˛�1Q
iD0

!.x˛/
�

�i .˛/
p� DQ

N̨
!.x˛/

P
i ��i .˛/

p� DQ
N̨
!.x˛/

� N̨ :

Hence we see that the N̨ component of the factor in front only depends on

� N̨ DP
i

�	 i .˛/p
� mod .pr˛ � 1/:

Now we can define the induced modules P�Œm� � I�Œm� as before. At this moment
we assume m D 1, then the z˛ do not play a role and we have P�Œ1� D I�Œ1� .

We observe that by definition � is a rational character on the torus T � E. Any
such character defines a homomorphism �� W T .Zp/! O�

Ep
� O�

Cp
. If we consider

the reduction modp then we get a homomorphism �
Œ1�

�
W T .Fp/! .OEp=.p//

� �
.OCp

=.p//�. We have OEp=.p/ D Fpr . We want to write this homomorphism in
the form above, we can forget the z˛ and

�
Œ1�

�
..: : : ; x˛; : : : // DQ

!.x˛/
�˛ :

Now we have to analyze the relation between the coefficients ni in � and the �˛ .
It suffices to investigate what happens on the factors T˛ . We pick a simple root ˛ and
we consider its orbit ˛; 
.˛/; : : : ; 
 r�1.˛/.

Since Ep is the splitting field of the entire torus it can happen, that our root ˛ is
fixed under the action of the Galois group. Then we have

T˛.Fp/ D Gm.Fp/ D F�
p � Gm.Fpr / D F�

pr :

The component of � corresponding to this root is a rational character x 7! xn˛ ; if we
restrict this to Gm.Fp/ it depends only on n˛ mod .p � 1/. On the other side �˛ is an
integer mod .pr � 1/, but if we restrict this to Gm.Fp/ this restriction only depends
on �˛ mod .p � 1/.

Now we consider the other extreme case namely the length of the orbit is r . Then
we have

T˛.Fp/ D F�
pr �Q

	

F�
pr

and the embedding is given by

x 7! .x; xp; : : : ; xp
r�1

/:

The N̨ component � N̨ D P
� n	�.˛/�	�.˛/ induces on T˛.Fp/ D F�

pr the homo-
morphism

x 7! x
P

� n�� .˛/p
� DQ

.xp
�
/n�� .˛/;
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and this implies that for any � N̨ 2 Z=.pr � 1/ we can find coefficients 0 � n	�.˛/ �
p � 1 such that P

�

n	�.˛/p
� D � N̨ mod .pr � 1/:

Hence we see that for any � we can find a � DP
˛ n˛�˛; 0 � n˛ < p � 1 such

that w0.�/jT .Fp/ D �Œ1�, and then we get a homomorphism

j� W M� ˝OEp=.p// DM�=pM� ! I�Œ1� :

We can define Hecke operators T .tpk ; ut
pk
/: We choose an element tpk 2 T .Qp/

such that for all positive simple roots j˛.tpk /jp < 1. (tpk is our g 2 G.Q/, the
parameter k is not an integer anymore; we should think of it as an array of positive
integers giving us the orders of the p-adic valuations of the ˛.tpk /.) Then it is again
clear that the possible ut

pk
are given by elements in

HomT .Fp/

�
.M�=pM�/UC.Fp/; .M�=pM�/

U�.Fp/
�
;

HomT .Fp/

�
I�Œ1�/UC.Fp/; I

U�.Fp/

�Œ1�

�
:

The T .Fp/-modules I�Œ1� ;UC.Fp/ ; I
U�.Fp/

�Œ1� are easy to compute, if we use the
Bruhat decomposition. We have the action of UC.Fp/;U�.Fp/ on B.Fp/nG .Fp/
we write

G .Fp/ DS
w

B.Fp/wUC.Fp/ D B.Fp/w0UC.Fp/ [ � � � [B.Fp/;

G .Fp/ DS
w

B.Fp/wU�.Fp/ D B.Fp/U�.Fp/ [ � � � [B.Fp/w0:

Clearly the module I�Œ1� decomposes into direct sums under the action of the
two unipotent radicals UC.Fp/;U�.Fp/ according to the decompositions. Then
we have the function ˆe supported on the smallest orbit B.Fp/, its image x̂ e in

I�Œ1�;UC.Fp/
generates a copy of Fp D Fp x̂ e . We have the function ‰e 2 IU�.Fp/

�Œ1�

which has support in B.Fp/U�.Fp/, i.e., it is given by ‰e.bu�/ D �.b/. If we
send x̂ e to ‰e and all other summands to zero then this gives us an element in

HomT .Fp/..I�Œ1�/UC.Fp/; I
U�.Fp/

�Œ1� / and this is our principal operator uprinc
t
pk

.
If now all n˛ > 0 (this is the regularity condition), then we have seen that the

function ‰e can be interpreted as the restriction of the U� highest weight ew0.�/

vector to G.Fp/. It is clear that the classical operator uclass
t
pk

sends ew0.�/ to ew0.�/

and the subspace Fpew0.�/ is the image of uclass
t
pk

. Hence we see that the classical and

the principal Hecke operator coincide in this case, and under the above regularity
condition we get an isomorphism

j
�

� W H �

�;ord.S
G
Kf
;M�=pM�/! H

�

�;ord.S
G
Kf
; I�Œ1�/:

It is easily checked that the Hecke operators induce the zero map on the kernel
and cokernel of j�. (See also 3.6.)
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3.3. The case m > 1 for the group Gl2. For this special group we give a very
detailed discussion (may be too detailed but perhaps useful) of the possible choices
of operators ut

pk
for our various coefficient systems.

The point is that these modules are Z=.pm/-modules and the action of � factors
through the quotient Gl2.Z=.pm/. Let us assume that now M is any Gl2.Z=pmZ/-
module. We assume k 	 m and consider

�.tpk / D ˚�
a b
c d

� j b � 0 mod pm
�

and its image in Gl2.Z=pmZ/ is the Borel subgroup

B�.Z=pmZ/ D ˚�
a 0
c d

� j a; d 2 .Z=pmZ/�; c 2 Z=pmZ
�
:

The group �.tpk / acts in two different ways on M we have the modules M .t
pk /

and M . The action on M is the action induced by the inclusion �.tpk / � � . The

module M .t
pk / is as an abelian group equal to M but the action of �.tpk / is the one

where we include �.tpk / via the conjugation � ! t�1
pk � tpk into � . To make it clear:

An element ut
pk
2 Hom
.t

pk /.M
.t

pk /;M/ is a homomorphism ut
pk
W M ! M

which satisfies
ut

pk
.t�1
pk � tpkf / D �ut

pk
.f /

or in terms of matrices

ut
pk

��
a b
pkc d

�
f

� D ��
a pkb
c d

�
ut

pk
f

�
:

Suppose that U�.Z=pmZ/; UC.Z=pmZ/ are the two unipotent radicals of
B�.Z=pmZ/; BC.Z=pmZ/. Then the module MUC.Z=pmZ/ of coinvariants and
MU�.Z=pmZ/ of invariants become T .Z=pmZ/-modules and it is clear that

Hom
.t
pk /.M

.t
pk /;M/ ��!� HomT.Z=pmZ/.MUC.Z=pmZ/;M

U�.Z=pmZ//: (Hom)

We have to understand the T .Z=.pm//-modules I�Œm�;UC.Z=.pm// and IU�.Z=.pm//

�Œm� .
To do this we have to investigate the action of U˙.Z=.pm// on

BC.Z=.pm//nGl2.Z=.p
m// D P1.Z=.pm//:

We write the elements of P1.Z=.pm// in the form .a; b/ and the group acts by
multiplication from the right.

We consider the action of UC.Z=.pm//. We see that x0 D .0; 1/ is the fixed
points for BC.Z=.pm//. Let w be the non trivial element in the Weyl group , i.e.,
w D �

0 1�1 0
�

and

.0; 1/w

�
1 u

0 1

�
D .1; u/:
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This gives us the “big cell”

BC.Z=.pm// � wUC.Z=.pm// � Gl2.Z=.p
m//:

The remaining points are of the form

.v; 1/ where v � 0 mod p:

The group UC.Z=.pm// acts by

.v; 1/

�
1 u

0 1

�
D .v; 1C uv/ D .v.1C uv/�1;; 1/;

and hence we see that two elements v; v0 are in the same orbit for the action of
UC.Z=.pm// if and only if

ord.v/ D ord.v0/ and v � v0 mod p2 ord.v/:

The stabilizer of .v; 1/ in UC.Z=.pm// is the congruence subgroup

U
m�2 ord.v//
C .Z=.pm// D ˚�

1 u
0 1

� j u � 0 modpm�2 ord.v/
�
;

which becomes the full group after 2 ord.v/ 	 m. We put

l.v/ D
´
m � 2 ord.v/ if 2 ord.v/ � m;
0 else:

then pl.v/ is also the length of the orbit. We denote the orbits of UC.Z=.pm// on the
set of v’s by Nv.

For any of the orbits we choose a representative .1; 0/, .v; 1/ and write it

.1; u/ D .0; 1/ � w
�
1 u

0 1

�
D .0; 1/ �

�
0 �1
1 u

�
;

.v; 1/ D .0; 1/ �
�
1 0

v 1

�
:

Then we consider the double cosets Xw D B.Z=pmZ/wUC.Z=pmZ/, the in-
termediate cosets X Nv D B.Z=pmZ/

�
1 0
v 1

�
UC.Z=pmZ/, where Nv runs over the orbits

with ord. Nv/ D 1; : : : ; m � 1 and the again special orbit X0 D B.Z=pmZ/ D
B.Z=pmZ/UC.Z=pmZ/.

We group the orbits according to the number � D ord. Nv/ and write the decompo-
sition into double cosets in decreasing order

Gl2.Z=.p
m// D Xw[ S

NvW�Dord. Nv/D1
X Nv[� � �[ S

NvW�Di
X Nv[� � �[ S

NvW�Dm�1
X Nv[B.Z=pmZ/:
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In this decomposition the number � goes up from zero tom, the numberpl.v/ start
with pm and drops to pm�2, pm�4 until we reach the middle and then it becomes
constant equal to one. Another number � D min.�;m��/ goes up from zero to

	
m
2



and after that drops again in steps by one to zero.

We choose a � and a ring Zp � R � OCp
which receives the values of �. We

define I Q� as the induced module with values in R. We get a decomposition of I Q�Œm�

into UC.Z=.pm//-submodules

I Q�Œm� D I .w/Q�Œm� ˚
�Dm�1M
�D1

M
NvWord. Nv/Di

I
. Nv/
Q�Œm� ˚ I .0/Q�Œm� ;

the submodules consist of functions which are supported on the orbits.
Now we define the functions: For u 2 UC.Z=.pm/ we put

‰w;u.g/ D
´
�Œm�.b/ if g D bwu;
0 else;

(1)

‰v.g/ D
´
‰v.b �

�
1 0
v 1

�
/ D �Œm�.b/ if g 2 BC.Z=.pm//

�
1 0
v 1

�
;

0 else;
(2)

which form a basis of I Q�Œm� : These functions are essentially like ı-functions. If we

want to be completely consistent, we should denote these functions by‰Œm�w;u; : : : , but
as long as we work on a fixed level we suppress the superscript.

It is clear that the image of the elements‰w;u in I Q�Œm�;UC.Z=.pm// is independent of

u. Let us call it x‰w . Two elements‰v ,‰v0 have the same image in I Q�Œm�;UC.Z=.pm//

if and only if v, v0 are conjugate under the action of UC.Z=.pm/. This means that
each orbit Nv of v’s contributes by a cyclic Rm-module and hence we get a direct sum
decomposition

I Q�Œm�;UC.Z=.pm// D Rm x‰w ˚
M

Nv
Rm x‰ Nv;

where x‰ Nv is the image of any of the ‰v , v 2 Nv. The summands Rm x‰ Nv are not
necessarily freeRm-modules. But by definition they are cyclic and hence we have to
determine their annihilators.

To understand these annihilators we have to take into account that these elements
.v; 1/ still have stabilizers in UC.Z=.pm//, we described them further above. If
we denote such a stabilizer by U .v/C , then it is clear that U .v/C acts upon the free
Rm-modules Rm‰v and

.Rm‰v/UC.Z=.pm// ' Rm x‰ Nv:

For xw D .0; 1/ the stabilizer is trivial and we get

Rm‰w D Rm x‰w :
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Now we saw that the stabilizer becomes bigger and bigger if ord.v/ goes from 1 to
m and once 2 ord.v/ 	 m we have U .v/C D UC.Z=.pm//.

We have to find out how these stabilizers act upon

Rm‰v:

This is easy: Since uv2 � 0 modpm we have�
1 0

v 1

� �
1 u

0 1

�
D

�
.1C uv/�1 u

0 .1C uv/
� �

1 0

v 1

�
:

Hence we see that �
1 u

0 1

�
‰v D �.1C uv/‰v;

and the annihilator of x‰v in Rm is the ideal generated by the elements

�.1C uv/ � 1 D .1C uv/� � 1 D �uv C � � � :
If we take into account that u satisfies u � 0 modpm�2 ord.v/, then this ideal is

.�uv/ D .�pm�ord.v//

as long as we have ord.v/ < m
2

. So the ideal becomes bigger and bigger as long as
ord.v/ < m

2
. But after that the stabilizer becomes UC.Z=.pm// and the ideal will be

�
�pord.v/

�
for ord.v/ 	 m

2

and eventually for v � 0 modpm it becomes trivial. We defined

� D min.�;m � �/:
Then we see that this ideal is .�pm��/.

We have
Rm‰0 D Rm x‰0:

Now we observe that the Rm x‰ Nv do not depend on the choice of a v 2 Nv and

.Rm‰v/U .v/
C

' Rm=.�pm��/‰ Nv D Rm x‰ Nv � I Q�Œm�;UC.Z=.pm//:

This means that we have a direct sum decomposition

I Q�Œm�;UC.Z=.pm// D Rm x‰w ˚
� �Dm�1M

�D1

M
NvWord. Nv/D�

Rm x‰ Nv
�
˚Rm x‰0:

We recall that we have to understand the module of coinvariants as a T .Z=.pm//-
module. The summands are T .Z=.pm//-modules and we have to investigate the
action of the torus T .Z=.pm// on these modules.
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The torus leaves the two outer terms invariant, it acts on Rm x‰w by

. Q�Œm�/w W t D
�
t1 �
0 t2

�
7! �Œm�.t1/;

which is the conjugate by the Weyl group of the character Q�Œm�. On Rm‰0 it acts
by �Œm�.

The individual summands in the middle are not invariant. The torus acts on the
set of orbits for UC.Z=.pm// and the orbits under the torus action are given by the
numbers � D ord.v/which vary from 1 tom�1. We group the summands according
to the order � D ord.v/ and consider the summandM

NvWord. Nv/Di
Rm x‰ Nv;

where Nv runs over the orbits of UC.Z=.pm//. This sum is invariant under the torus
T .Z=.pm//. The stabilizer of an orbit X Nv is the torus

T .�/.Z=.pm// D ˚�
t1 0
0 t2

� j t1=t2 � 1 mod p�
�
:

An easy calculation shows that the T .�/.Z=.pm// fixes the module Rm x‰ Nv . The
restriction of our character �Œm� to T .�/.Z=.pm// induces a character

Q�Œm;�� W T .�/.Z=.pm//! .Rm=.�p
m��//�;

by this character T .�/.Z=.pm// acts on Rm x‰ Nv . If we choose a representative Nv with
ord. Nv/ D �, we find for the term in the middleM

0<�<m

IndT.Z=.p
m//

T .�/.Z=.pm//
Rm x‰ Nv ˝ Q�Œm;��:

A completely analogous computation gives us the modules of invariants IU�.Z=.pm//

Q�Œm� .
We start with the list of double cosets

Yw D BC.Z=pmZ/wU�.Z=pmZ/ D BC.Z=pmZ/w; : : :

: : : ;Y Nv D BC.Z=pmZ/

�
0 �1
1 v

�
U�.Z=pmZ/; : : :

: : : ;Y0 D BC.Z=pmZ/U�.Z=pmZ/;

where in the middle the v runs over the elements in pZ modpmZ and the Nv are the
equivalence classes with respect to the equivalence relation above. But this time we
order them in descending order of ord. Nv/.

The two extremal terms are again easy. We have the U�.Z=.pm// invariant
function ˆ� which is supported on the big cell

ˆ�.bu/ D Q�.b/;
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and the function ˆ0 which is supported on B.Z=.pm//w (the smallest cell)

ˆ0.bw/ D Q�.b/;
and we know that T .Z=.pm// acts by Q�Œm� on Rmˆ� and by Q�Œm�;w on Rmˆ0.

We investigate the terms in the middle. Again we denote the orbit of v under
U�.Z=.pm// by Nv. For any such an orbit we can take a representative

BC.Z=.pm// �
�
0 �1
1 v

�

and define a function ˆv with support on BC.Z=pmZ/
�
0 �1
1 v

�
by the rule

ˆv
�
b � �0 �1

1 v

��
1 0
u 1

�� D Q�Œm�.b/:
The functionˆv is not invariant under the stabilizerU .v/� .Z=.pm// because it picks up
a factor�.1�uv/�1 if we translate it by

�
1 0
u 1

� 2 U .v/� .Z=.pm//. An easy computation
gives the formula �

1 0

u 1

�
ˆv D �.1 � uv/�1ˆ v

.1�uv/
:

If u 2 U .v/� .Z=pmZ/ then v
.1�uv/ D v. We saw that the expressions 1��.1�uv/�1

with u 2 U .v/.Z=pmZ/ generate the ideal .�pm��/: The annihilator of this ideal
is a principal ideal .ˇ.�// � Rm. Clearly ˇ.�/ divides p�. If � is a unit then
we see that it is given by .ˇ.�// D .p�/. The element ˇ.�/ˆv 2 Rmˆv is a
generator for theU .v/� .Z=.pm//-invariants in the space of the functions supported on
BC.Z=pmZ/

�
0 �1
1 v

�
U .v/� .Z=pmZ/.

We define

Q̂
v D ˇ.�/

X
u2 NU�.Z=.pm//=U

.v/
� .Z=.pm//

�
1 0

u 1

�
ˆv D

X
v02 Nv

�.1 � uv/�1ˆ v
.1�uv/

I

here we parametrized the elements of the orbit Nv by v0 D v=.1 � uv/.
Then we find that Rmˇ.�/ Q̂ v is the space of U�.Z=.pm//-invariant functions

with support on the orbit Nv containing v, this is actually a freeRm=.�pm��/-module.
An easy calculation shows that T .�/.Z=.pm/ acts again by Q�Œm;�� on this summand.
We can summarize: The coinvariants give

Rm x‰w ˚
m�1M
�D1

IndT.Z=.p
m//

T .�/.Z=.pm//
Rm=.�p

m��/x‰ Nv ˝ Q�Œm;�� ˚Rm x‰0; (coinv)

and the invariants (we arrange them in the opposite order) give

Rmˆ0˚
1M

�Dm�1
IndT.Z=.p

m//

T .�/.Z=.pm//
Rm=.�p

m��/.ˇ.�/ Q̂ v/˝ Q�Œm;��˚Rmˆ�; (inv)
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where v runs over a set of representatives of elements of given order ord.v/ D � (we
simply will take v D p�). Note that the extremal terms are also induced, but in this
case � D 0, so the induction step is trivial.

Now it is easy to see how to construct Hecke operators on our coefficient systems.
First of all we have the operator

u
.princ/
t
pk
W ‰0 7! ˆ�

which sends all the other summands to zero. This is the principal Hecke operator.
Since the function ˆ� 2 P Q�Œm� we see that it induces the zero operator on the
quotient I Q�Œm�=P Q�Œm� . I claim that the system of principal operators satisfies (ii),
hence it yields an element in the projective limit. To see this we observe that we have

for any f 2 P
.t

pmC1 /

Q�ŒmC1� the formula u.princ/
t
pmC1

.f / D f .emC1/ˆ.mC1/� , where emC1 is

the identity in Gl2.Z=.pmC1// and whereˆ.mC1/� is our functionˆ�, but on the next
higher level. We have to check that for an element x 2 Gl2.Z=.pmC1// congruent
to emC1 modulo pm we have

u
.princ/
t
pmC1

.Rx.f // � u.princ/
t
pmC1

.f / mod pm:

This is clear from the definition of P Q�ŒmC1� .
We can enlarge the supply of Hecke operators by adding linear combinations of

correction terms u.i;�
0/

tpm
which are homomorphisms

IndT.Z=.p
m//

T .�/.Z=.pm//
Rm=.�p

m��/x‰ Nv ˝ Q�Œm;��

u
.i;�0/
tpm

��

IndT.Z=.p
m//

T .�0/.Z=.pm//
Rm=.�p

m��0
/ˇ.�0/ Q̂ v0 ˝ Q�Œm;�0�

where ord.v0/ > 0 if � D 0 and where we may require that ord.v/C ord.v0/ � m.
We consider maps of the form ut

pk
D u

.princ/
t
pk

CP
u
.i;�0/
t
pk

, where the u.i;�
0/

t
pk

are as
above.

By Frobenius reciprocity this means that our u.i;�
0/

t
pk

are elements in

HomT .�0/.Z=.pm//.IndT.Z=.p
m//

T .�/.Z=.pm//
.Rm=.�p

m��/x‰ Nv ˝ Q�Œm;�/;
Rm=.�p

m��0

/ˇ.�0/ Q̂ v0 ˝ Q�Œm;�0�/:

We assume� � �0. ThenT .�
0/.Z=.pm// � T .�/.Z=.pm// and as aT .�/.Z=.pm//-

module we get a direct sum over � 2 T .Z=.pm//=T .�/.Z=.pm//,
IndT.Z=.p

m//

T .�/.Z=.pm//
.Rm=.�p

m��/x‰ Nv ˝ Q�Œm;�� D
M
�

.Rm=.�p
m��/ Q‰� Nv;˝ Q�Œm;��
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and hence we see that our module of homomorphisms is given byM
�

HomT .�0/.Z=.pm///.Rm=.�p
m��/x‰� Nv; Rm=.�pm��/ˇ.�0/ Q̂ v0/

D
M

�2T.Z=.pm//=T .�/.Z=.pm//

Rm=.�p
m��/:

We have a large supply of Hecke operators for the I Q�Œm� . Not all of them are good

because we also want that they send P
.t

pk /

Q�Œm� to P Q�Œm� .

3.4. Discuss the further requirements formulated at the beginning of this section.
The first step is to modify the situation slightly. We want to get rid of the dependence
of � and this means that we pass to the quotient Rm=.pm��/ on the left-hand side
and on the right-hand side we replace the factor ˇ.�0/ by p�

0
and hence we get a

submodule. We only look at correction terms that go from the quotient on the left to
the submodule on the right. Hence we see that the quotients on the left get smaller and
smaller if we go from right to left until we reach the middle. The analogous assertion
holds for the submodules on the right. We still go one step further. After we pass
the middle we continue with the drop rate, i.e., in the decomposition of the module
of coinvariants we replace pm�� by p� , and in the decomposition of the module of
invariants we replace ˇ.�/ by p� . Then we get a quotient of the coinvariants and a
submodule of the invariants. This means that we go to a still smaller quotient on the
left and a still smaller submodule on the right.

Then we look for operators between the T .Z=.pm//-modules

I Q�Œm�;UC.Z=.pm//;small D Rm=.p0/x‰w ˚
m�1M
�D1

IndT.Z=.p
m//

T .�/.Z=.pm//

Rm=.p
i /x‰ Nv ˝ Q�Œm;�� ˚Rm x‰0;

which is a quotient of the coinvariants and

I
UC.Z=.p

m//

Q�Œm�;small
D Rm=.p0/pmˆ0 ˚

1M
�Dm�1

IndT.Z=.p
m//

T .�/.Z=.pm//

Rm=.p
m�i /.p� Q̂ v/˝ Q�Œm;�� ˚Rmˆ�:

Now it is easily verified that the elements in I
UC.Z=.p

m//

Q�Œm�;small
are actually in P Q�Œm� .

It is clear that T .Z=.pm// invariant homomorphisms from I Q�Œm�;UC.Z=.pm//;small

to I
UC.Z=.p

m//

Q�Œm�;small
satisfy (i). The property (iiia, iiib) has been verified above. This

system of Hecke operators clearly satisfies (ii). So we are left to show that the
classical Hecke operator extends.
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3.5. The extension of the classical Hecke operator to an element in H
Œm�
� . Now

we consider the case � D ��n and the morphism

Mn=p
mMn ! P Q�Œm�

�n
� I Q�Œm�

�n
:

We have the classical Hecke operator on the cohomology of the sheaf zMn which is
given by the map uclass

t
pk
W X iY n�i 7! pkiX iY n�i . If k 	 m then uclass

t
pk

maps Y n to

Y n and all other monomials go to zero.
The monomial Y n has as image in the module of coinvariants

Y n 7! NfY n D � P
u2UC.Z=.pm//

un
�
‰w CP

Nv
pl.v/ x‰ Nv C‰0:

Under the homomorphism given by the projection to the last component I Q�Œm�
�n
!

Rmˆ0 we find NfY n 7! ‰0. Any T .Z=pmZ/-invariant homomorphism from Rmˆ0
– viewed as quotient of I Q�Œm�

�n
– to the submodule of small invariants gives us a Hecke

operator. Such a homomorphism is given by

‰0 7! P
v2pZ=.pm/

vn �ˆv Cˆ�;

where the right-hand side is the image of the polynomial Y n in P
U�.Z=pm/

Q�Œm�
�n

. This

gives us the desired extension of uclass
t
pk

to a homomorphism ut
pk
W I .tpk /

Q�Œm�
�n

! I Q�Œm�
�n

.

Since we assumed that n > 0 – this is the regularity condition –, we see that
(iiib) is satisfied. In the next section we will see that this argument works for general
reductive group schemes.

3.6. The case of a general reductive group scheme. At this point it turns out, that
our previous considerations are much to detailed. What we actually need is that our
system H

Œm�
� contains the principal operator and in the case that � D �� we only

want to extend the classical operator. We will see that we have the same extension
procedure to extend the classical Hecke operator in general. The regularity condition
guarantees that we have the essential properties (iiia), (iiib) for this operator.

We give a few comments. I recall the situation in 3.2. We put O.V 0
p/ and consider

theR-module M� D H 0.BnG ;Lw0.�//. It provides us a well-defined representation
of the group scheme G=Spec.R/. We can restrict this representation to the torus T ,
this representation is semi-simple, i.e., we have a decomposition into weight spaces

M� D
M
�

M�;� DM�;� ˚ � � � ˚M�;w0.�/;

where � runs over a finite set of weights of the form � D ��P
˛ m˛˛ withm˛ 	 0.

These weight spaces are free O.V 0
p/-modules. A weight vector e� 2 M�;� is also
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a regular function on G . We observe that such a weight function e� vanishes at the
identity element e 2 G .O.V 0

p/ provided � 6D w0.�/.
We define the character �� W T .Zp/ ! O�

Ep
by ��.x/ D w0.�/.x/. Then we

have the family of G .Zp/-homomorphisms

M�=p
mM�

jm��! P Q�Œm� ! I Q�Œm�

�

:

We consider the B.R/- homomorphism � W I Q�Œm�

�

! Rwhich is given by evaluation

at the identity element. This linear map sends ew0.�/ to 1, our observation above
implies that the kernel ker.jm/ is contained in˚�W�6Dw0.�/M�;�.

Now we need a closer look at our classical Hecke operators. Recall that these oper-
atorsT .tpk ; uclass

t
pk
/ induce endomorphisms on the cohomology groupsH �

�; .SGKf
: zMZ/

andH �

�; .SGKf
: zM�˝Z=pm/ and they are of course compatible with the reduction mor-

phism. They only depend on the first variable tpk . The identity map M
.t

pk /

�
!M�

is compatible with the action of the torus T =Spec.R/, especially it is clear that

the identity M
.t

pk /

Q ! MQ commutes with the action of T .Q/. The element

uclass
t
pk
W M

.t
pk /

�
! M� is now given by applying tpk and then multiplying the re-

sult by a scalar n.tpk / such that uclass
t
pk
D n.tpk /tpk maps M

.t
pk /

�
to M�. This is

achieved if n.tpk /tpkew0.�/ D ew0.�/. If now out tpk is sufficiently deep in the cham-
ber, i.e., it satisfies j˛.tpk /jp < 1 for all simple positive roots ˛ then it becomes clear
that for all weight vectors e� 2M� we have

uclass
t
pk
.e�/ D

´
e� if � D w0.�/;
pn.�;k//e� with n.�; k/ > 0 else.

If we choose k very deep inside the chamber, then we will get n.�; k/ 	 m and hence
we see that uclass

t
pk

annihilates all weight vectors e� with � ¤ w0.�/.
We come to a small intermission: This has the consequence that for two choices

tpk , tpk0 which both are sufficiently deep inside the chamber we have on any of our
cohomology groups

T .tpk ; uclass
t
pk
/ D T .tpk0 ; uclass

t
pk0
/C pV;

where V is an endomorphism of the cohomology.
Since this relation also holds on the cohomology groupsH �

�; .SGKf
: zM�˝Z=pm/

we see again that the ordinary cohomology groups H �

�;ord.S
G
Kf
: zM� ˝ Z=pm/ can

be defined with respect to any Hecke operator T .tpk ; uclass
t
pk
/ provided we choose tpk

deep inside the chamber.
The algebra of endomorphisms generated by the classical operators T .tpk ; uclass

t
pk
/

is commutative (this will be proved in [Ha-Coh], Chap. 2, but is not yet written) we
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see easily that the submodule H �

�;nilpt.S
G
Kf
: zM� ˝ Z=pm/ is not depending on the

parameter k in the operator T .tpk ; uclass
t
pk
/ which we choose to define it. The ends the

intermission.
We resume and see that uclass

t
pk

annihilates
L
�¤w0.�/

M�;� and hence the kernel

of jm if k is very deep inside the chamber. Hence we see that it also acts trivially
on the cohomology of this kernel. (This point was left open in the discussion of
Theorem 2.1.) On the other hand the principal operator

u
princ
t
pk
W .I Q�Œm�

�

/UC.Z=pmZ/ ! .I Q�Œm�

�

/U�.Z=pmZ/

is the composition of � and the homomorphismR! I Q�Œm�

�

U�.Z=pmZ/ which sends

1 to the functionˆ� , which is supported on the big cell B.Z=pmZ/U�.Zp=pmZ/.
Hence we see that the principal operator sends ew0.�/ toˆ� whereas the classical op-
erator sends ew0.�/ to itself, here we consider ew0.�/ as an element in I Q�Œm�

�

U�.Z=pmZ/

or P
U�.Z=pmZ/

Q�Œm�

�

. Then the regularity condition asserts that ew0.�/ vanishes modp

on the cells which are different from the big cell and hence we have shown that

.u
princ
t
pk
� uclass

t
pk
/.I Q�Œm�

�

/ � p.I Q�Œm�

�

/;

which establishes the validity in the requirements (i) to (iv) made in Section 2. Ev-
erything is ready to prove the generalization of Theorem 2.1

4. Further consequences

4.1. A boundedness result for ordinary torsion. We return to 3.6. For simplicity
we assume that our group scheme G=Z is a split Chevalley scheme. To any dom-
inant weight � we can attach the character �w0.�/, and we get the G .Zp/ invariant
homomorphisms

M�=p
mM� ! P Q�Œm�

�

! I Q�Œm�

�

:

Now we can take over the arguments in the proof of Theorem 2.1 verbatim and
get

Theorem 4.1. If � D P
˛ n˛�˛ is regular, i.e., n˛ > 0 for all ˛, then we get

isomorphisms

j
�

� W H �

�;ord.S
G
Kf
;M�=p

mM�/! H
�

�;ord.S
G
Kf
; I�Œm�/:

In the following we only allow � D \, c, @ for the first �. The space of characters
� is
� .X�.T /˝OCp

/, where
 is the finite set of � D �Œ1�
�0

, where �0 DP
�˛�a
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and �˛ such that 0 � �˛ < p � 1. These characters � D �
Œ1�

�0
should be viewed as

characters � W T .Fp/! Z�
p .

This space contains the subspace 
 � .X�.T / ˝ Zp/. It is easy to see that the
characters �� are dense in 
 � .X�.T / ˝ Zp/. We define a distance between two
characters �1; �2 2 
 � .X�.T /˝ Zp/ by the rule

d.�1; �2/ � 1

pm
if and only if �

Œm�
1 D �Œm�2 :

We want to state and prove a theorem which is the consequence of the existence of
the interpolating family. At various occasions and especially in my talk in Luminy I
stated a much stronger theorem and several people raised doubts about the correctness
of this stronger theorem. For instance E. Urban expressed some skepticism after
my talk at the Graduate center of CUNY and eventually H. Hida even produced a
counterexample. Now the new theorem is weaker and much less precise. But at the
same time it raises some questions which seem to me interesting.

For the formulation of the theorem I need some preparation. For an arbitrary
degree � and a fixed � we study the growth of the functions

m 7! #H ��;�.SGKf
;M�=p

mM�/:

We write the exact sequence (the level pmC1-exact sequence)

0! pM�=p
mC1M� !M�=p

mC1M� !M�=pM� ! 0

and the resulting long exact sequence for cohomology

� � � ! H ��1�;� ..SGKf
;M�=pM�/

ı��1
����! H ��;�.SGKf

; pM�=p
mC1M�/

! H ��;�.SGKf
;M�=p

mC1M�/! H ��;�.SGKf
;M�=pM�/

ı�
��! � � � :

The two extremal modules are finite dimensional vector spaces over Fp and clearly
the dimensions of the kernels of ı��1

�
, ı�

�
can only drop if m goes up. Hence

we find minimal values m��1�;� .�/, m��;�.�/ such that these kernels of ı��1
�

, ı�
�

be-
come stationary (minimal) if m 	 m��1�;� .�/, m��;�.�/. Let us now put c��;�.�/ D
dimH ��;�.SGKf

;M�=pM�/ and let ���;�.�/ be the minimal value of the dimension of
ker.ı�

�
/: Then given any � the sequence above yields the exact sequence

0! H ��1�;� ..SGKf
;M�=pM�/= ker.ı��1

� /! H ��;�.SGKf
; pM�=p

mC1M�/

! H ��;�.SGKf
;M�=p

mC1M�/! ker.ı��/! 0;

and since pM�=p
mC1M� ��!� M�=p

mM� the following holds:
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Under the assumption m 	 m��1�;� .�/;m��;�.�/ we get

#H ��;�.SGKf
;M�=p

mC1M�/

#H ��;�.SGKf
;M�=pmM�/

D p�c��1
�;� .�/C
��1

�;� .�/C
�
�;�.�/: (A)

For any m we may also consider the exact sequence

0! H ��;�.SGKf
;M�/˝ Z=pm ! H ��;�.SGKf

;M�=p
mM�/

! H �C1�;� .SGKf
;M�/Œp

m�! 0;

where Œpm� in the term below denotes the pm-torsion of the module. For a given �
the order the torsion is stationary for m 	 e�C1�;� .�/ D the exponent of this torsion
group. For any m,

#H ��;�.SGKf
;M�=p

mM�/ D #.H ��;�.SGKf
;M�/˝Z=pm/ � #H �C1�;� .SGKf

;M�/Œp
m�:

We write this for m 	 m��1�;� .�/;m��;�.�/ and for mC 1, and take the ratio:

#.H ��;�.SGKf
;M�/˝ Z=pmC1/

#.H ��;�.SGKf
;M�/˝ Z=pm/

#H �C1�;� .SGKf
;M�/Œp

mC1�

#H �C1�;� .SGKf
;M�/Œpm�

D p�c��1
�;� .�/C
��1

�;� .�/C
�
�;�.�/:

(B)

We know that H ��;�.SGKf
;M�/˝ Zp is finitely generated and write it as a direct

sum
H ��;�.SGKf

;M�/ D Z
b�

�;�.�/
p ˚H ��;�.SGKf

;M�/tors:

This tells us that for m 	 m��1�;� .�/;m��;�.�/ we have the equality

#.H ��;�.SGKf
;M�/tors ˝ Z=pmC1/

#.H ��;�.SGKf
;M�/tors ˝ Z=pm/

#H �C1�;� .SGKf
;M�/Œp

mC1�

#H �C1�;� .SGKf
;M�/Œpm�

D p�b�
�;�.�/�c��1

�;� .�/C
��1
�;� .�/C
�

�;�.�/:

For any given � and m� 0 the term on the left is equal to 1, this implies

b��;�.�/ D �c��1�;� .�/C ���1�;� .�/C ���;�.�/: (C)

We go back to the previous equality and observe that the two factors on the left-hand
side are 	 1. Since their product is one, we conclude

For m 	 m��1�;� .�/;m��;�.�/ we have the equality

#H ��;�.SGKf
;M�/tors ˝ Z=pmC1/

#H ��;�.SGKf
;M�/tors ˝ Z=pm/

D
#H �C1�;� .SGKf

;M�/Œp
mC1�

#H �C1�;� .SGKf
;M�/Œpm�

D 1; (D)

and moreover we have that e�C1�;� .�/ � max.m��1�;� .�/;m��;�.�//.
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Now we consider the functions � ! m��1�;ord.�/; � ! m��;ord.�/. In my earlier
version of this note I stated that these functions are continuous, provided I stay
away from a very small set of irregular elements which was easy to describe. But
this assertion is not necessarily true, we have to stay away from a larger and much
more complicated set of “irregular” elements. (Continuous means of course locally
constant because N has the discrete topology.)

What is clear is that the functions m��;ord.�/ are lower semi-continuous and the
���;ord.�/ are upper semi-continuous. More precisely we have the following

Lemma 4.2. If we pick a weight �0, a degree � and an m 	 m��;ord.�0/. Then for
any � which satisfies � � �0 modpm we have the inequalities

m��;ord.�/ 	 m��;ord.�0/; ���;ord.�/ � ���;ord.�0/:

A strict inequality in one line implies strict inequality in the other.

Proof. This is clear. We consider the two-level pmC1 exact sequences above for �0
and �. We have �ŒmC1�

�
D �

ŒmC1�
�0

. Then j �;ŒmC1�, provides isomorphisms which
yield ker.ı�

�
/ D ker.ı�

�0
/. We conclude that m��;ord.�/ 	 m��;ord.�0/: If we pass to

higher level sequences then the dimension of ker.ı�
�
/may drop, but not the dimension

of ker.ı�
�0
/.

I claim that we can extend these functions to lower continuous functions f�g �
.X�.T /˝OCp

/. To see that this is the case, we consider the exact sequence

0! P�Œm;0� ! P Q�ŒmC1� ! P�Œ1� ! 0;

where by definition P�Œm;0� is the kernel of the restriction. It is equal to the intersection
P Q�ŒmC1�\pI Q�ŒmC1� . We have a canonical homomorphism r W P�Œm;0� ! I Q�Œm� , which
is given by f D pg 7! g modpm. It is clear that P Q�Œm� � r.P�Œm;0�/ � I Q�Œm� and
hence we get isomorphisms

H
�

�;ord.S
G
Kf
;P Q�Œm�/ ��!� H

�

�;ord.S
G
Kf
;P�Œm;0�/ ��!� H

�

�;ord.S
G
Kf
; I Q�Œm�/:

This gives us again a long exact sequence (the level pmC1 long exact sequence)

� � � ! H ��1�;ord..S
G
Kf
;P�Œ1�/

ı��1
����! H ��;ord.S

G
Kf
;P Q�Œm�/! H ��;ord.S

G
Kf
;P Q�ŒmC1�/

! H ��;ord.S
G
Kf
;P�Œ1�/

ı�
��! � � � :

This allows us to extend the definition ofm��1�;ord.�/;m
��;ord.�/ to all characters �.

The above lemma extends to these characters.
Especially we can consider the extension to the compact space f�g�.X�.T /˝Zp/.

For any index � and any integer k > 0 we define the open subsets

f�g �D�
�;�;k D f� 2 f�g � .X�.T /˝ Zp/ j m��;ord.�/ 	 kg:
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Clearly we have \
k

D�
�;�;k D ;:

But the sets D�
�;�;k are not necessarily closed, we consider their closure xD�

�;�;k and

put Y ��i;k D xD�
�;�;k nD�

�;�;k . Then we get\
k

xD�
�;�;k D

\
k

Y ��;�;k D Y ��;�;

where the Y ��;� are compact.
We can characterize these sets in a different way

Lemma 4.3. The set Y ��;� consists of those points �1 which satisfy any of the two
conditions:

(i) The function � 7! m��;ord.�/ is discontinuous in �1.

(ii) The function � 7! m��;ord.�/ is unbounded in any neighborhood of �1.

Proof. The assertion (ii) is immediate from the definition. To see (i) we have to show
that in any point �0 62 Y ��;� the function � 7! m��;ord.�/ is continuous. We find an
integer k such that �0 62 xD�

�i;k . It follows from Lemma 4.2 that we can choose a
small box B.�0; "/ D f� j d.�; �0/ � "g such that

B.�0; "/ \ xD�
�i;k D ;

such that for all � in this box we have m��;ord.�/ 	 m��;ord.�0/. For any point � in
this box for whichm��;ord.�/ > m

��;ord.�0/we can choose another such box (a second
type box) such that on this box m��;ord does not drop. The values m��;ord.�/ are � k
on B.�0; "/. Lemma 4.2 tells us that these second type of boxes can be taken such
that their volume is bounded from below by a fixed constant c > 0. But since any
two of these second type boxes are either disjoint or one of them is contained in the
other, we can conclude that there are only finitely many disjoint boxes of the second
type. These second type boxes are open compact, hence their complement is open in
B.�0; "/ and contains �0.

Of course this has consequences for the functions � ! ���;ord.�/. If we are in
a point y 2 Y ��;� then this means that we can find � arbitrarily close to y such that
m��;ord.�/ > m

��;ord.y/. But this clearly implies that ���;ord.�/ < �
��;ord.y/. Hence we

can conclude that the functions �! ���;ord.�/ are upper semicontinuous, their values
only can drop in a neighborhood of a point.

We can define a distance d.�; Y ��;�/ from a point � 2 f�g � .X�.T / ˝ Zp/ to
Y ��;�: This distance is simple the smallest distance from � to a point y 2 Y ��;� . Now
for any " > 0 we define the tubular neighborhood

N".Y
��;�/ D f� 2 f�g � .X�.T /˝ Zp/jd.�; Y ��;�/ � "g:
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This is an open compact subset in f�g � .X�.T /˝ Zp/.

Theorem 4.4. For all indices � we choose an open compact neighborhoodN".Y ��;�/.
If � varies over all dominantweights� in the complementX" of ��S

� N".Y
��;�/, then

the order of thep-torsion of the ordinary cohomology groupsH �

�;ord.S
G
Kf
;M�˝Zp/

is bounded.

Proof. This is now almost obvious. We can find an integer m0 which is larger than
m��1�;ord.�/;m

��;ord.�/ for all � in the compact open set X". Then we get from (D) that
#H ��;ord.S

G
Kf
;M�/tors˝Z=pm/ does not depend onm providedm 	 m0. Hence for

m 	 m0 we conclude that

#.H ��;ord.S
G
Kf
;M�/tors ˝ Z=pm/ D #H ��;ord.S

G
Kf
;M�/tors

for all � 2 X". Now #.H ��;ord.S
G
Kf
;M�/tors ˝ Z=pm/ divides #.H ��;ord.S

G
Kf
;M� ˝

Z=pm0//, and since this group only depends on � modpm0 , the proof is finished.

Now we encounter the fundamental problem to understand the setsY ��;� . Of course
they may depend on the prime p, we have some informations concerning these sets
which will be discussed below. All these informations do not depend on p.

We recall the relation (C). The first term on the right-hand is p-adically continu-
ous, the next two terms are upper continuous, i.e., in a suitably small neighborhood
of a point they only can drop. Hence we see that � 7! b��;ord.�/ is also upper semi-
continuous. Moreover it is clear:

Lemma 4.5. The function � 7! b��;ord.�/ is continuous in a point �0 if and only if
the two functions � 7! ���1�;ord.�/; � 7! ���;ord.�/ are continuous in that point.

Hence we know in the above theorem that the Betti numbers b��;ord.�/ are constant
on X". We may turn this around and then we get a simpler version of Theorem 4.4.

Theorem 4.6. Let us fix a degree q. Let X � f�g � X�.T / ˝ Zp an open subset
such that �! b

q
�;ord.�/ is constant on X . Then the function

� 7! #.H q
�;ord.S

G
Kf
;M�/tors/ � #.H qC1

�;ord.S
G
Kf
;M�/tors/

is constant on X .
Especially if there exist a �0 2 X such that

H
q
�;ord.S

G
Kf
;M�0

/tors D H qC1
�;ord.S

G
Kf
;M�0

/tors D 0;

then all these torsion groups vanish for all � 2 X .
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The proof is obvious, just look at the standard exact sequence for m� 0.

We can draw some further conclusions. Let us consider an open subset Ui �
f�g � .X�.T / ˝ Zp/ which does not meet any of the Y ��;� . From our last formula
it follows that � ! b

q
�;ord.�/ is locally constant, more precisely it depends only on

� modpm1 , provided m1 	 m��1�;ord.�/;m
��;ord.�/. We consider a � 2 Ui and we

approximate � by a � . Then we look at our exact sequence

0 �� H q
�;ord.S

G
Kf
;M�/˝ Z=pm ��

�� H q
�;ord.S

G
Kf
;M�=p

mM�/

��

�� H qC1
�;ord.S

G
Kf
;M�/Œp

m� �� 0

H
q
�;ord.S

G
Kf
;P Q�Œm�/.

The vertical arrow is an isomorphism, the modules in the diagram stay the same if
we modify � into a better approximation of �.

Hence we see that H q
�;ord.S

G
Kf
;P Q�Œm�/ has a submodule Sm which is the image

of the module on the left and which is isomorphic to H q
�;ord.S

G
Kf
;M�/˝Z=pm and

where the cokernel by this submodule is H qC1
�;ord.S

G
Kf
;M�/Œp

m�.
If we now take the projective limit then we see that for the terms on the right the

projective limit is zero. This yields for the projective limit

lim �Sm D lim �H
q
�;ord.S

G
Kf
;P Q�Œm�/ D H q

�;ord.S
G
Kf
;P�/:

This gives us for � 2 f�g � .X�.T /˝ Zp/ the structure

H
q
�;ord.S

G
Kf
;P�/ ��!� H

q
�;ord.S

G
Kf
;M�/tors ˚ Z

b
q
�;ord.�/
p ;

where bq�;ord.�/ D bq�;ord.�/ and � is approximating � well enough.

4.2. p-adic families. We want to present some further consequences of our theo-
rems. These results will be discussed and proved in detail in a subsequent paper with
J. Mahnkopf.

As always we fix our prime p. For simplicity we consider the case of a split
semi-simple group scheme G=Spec.Z/. Look at our various coefficient systems
M� ˝ Z.p/;M�=p

mM�;P�Œm� . So far we only considered Hecke operators at the
prime p these are the operators T .tpk ; ut

pk
/. They allow the definition of ordinary

cohomology groups. We still have the other Hecke operators which are obtained from
elements g 2 G.ZŒ 1

q
�/where q is a prime different from p (or an integer prime to p).
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For these g we do not have any problem to choose a second component ug because
all our modules are G.Z.p//-modules.

Hence we get a Hecke algebra

H D Hp ˝
Y
q 6Dp

Hq D Hp �H .p/;

where Hp is generated by the T .tpk ; ut
pk
/. If our module is M� ˝ Z.p/ then we

only allow T .tpk ; u class
t
pk
/. We assume (for simplicity) that Kf D G. OZ/, which has

the effect that the Hecke algebra H .p/ is commutative.
We consider the cohomology H q�;.SGKf

; zM�/. We localize at our given prime p,
i.e., we replace M� by M� ˝ Z.p/ – this module will still be called M� –, but we
do not take the completion. At this point is does not make sense to speak of ordinary
cohomology.

We may decompose the inner cohomology into isotypical components

H
q
Š;
.SGKf

; zM� ˝Q/ D
M
…f

H
q
Š;
.SGKf

; zM�/.…f /:

If we take other values of � D \, @, c we do not have such a decomposition, but we
may consider a Jordan–Hölder series for the cohomology groupsH q�;.SGKf

; zM�˝Q/:

The irreducible subquotientsX are irreducible modules for the Hecke algebra. If I.X/
is the annihilator ofX in the Hecke algebra, then H˝Q=.I.X/˝Q/ is a field Q.X/,
which only depends on the isomorphism type of X .

Now we can find a minimal finite normal extension F=Q such that all the Q.X/
admit an embedding into F . Let OF be its ring of integers localized at p.

We consider the cohomologyH q�;.SGKf
; zM�˝F /. Then the above decomposition

(resp. the Jordan–Hölder series) refines and now the summands (resp. subquotients)
become absolutely irreducible. This means that

H
q
Š; .S

G
Kf
; zM� ˝ F / D

M
�f

H
q
Š;
.SGKf

; zM�/.	f /;

were the 	f are absolutely irreducible. In general we have a Jordan–Hölder filtration
with absolutely irreducible subquotients. Since we assumed that the Hecke algebra
is commutative, such a subquotient X is a one-dimensional vector space over F
and the isomorphism type as Hecke module is simply a homomorphisms 	f .X/ D
	f W H ! OF .

The Jordan–Hölder filtration induces such a filtration onH q�;.SGKf
; zM�˝OF /=tors:

We choose a prime ideal p 
 .p/, we localize at this prime (we do not take the com-
pletion), divide by the torsion and consider H q�;.SGKf

; zM� ˝ OF;.p//=tors. We say
that a 	f is ordinary at p (p-ordinary) if the image of T .tpk ; upk / is a unit in OF;.p/.
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Then we can regroup our Jordan–Hölder series and collect the ordinary 	f in one
group to get a decomposition into

H q�;�.SGKf
; zM� ˝OF;.p//=tors

D H q
�;ord.S

G
Kf
; zM� ˝OF;.p//=tors˚H q

�;nilpt.S
G
Kf
; zM� ˝OF;.p//=tors;

where by definition the first summand has a Jordan–Hölder series containing the p-
ordinary 	f and the second summand the others. We can lift this decomposition and
obtain

H q�;.SGKf
; zM�˝OF;.p// D H q

�;ord.S
G
Kf
; zM�˝OF;.p//˚H q

�;nilpt.S
G
Kf
; zM�˝OF;.p//:

We consider the inclusion Zp ,! OF;p (here we took the completion) and clearly

H
q
�;ord.S

G
Kf
; zM� ˝ Zp/˝OF;p ��!� H

q
�;ord.S

G
Kf
; zM� ˝OF;.p//˝OF;p:

Let us choose an highest weight �0 D P
˛ �˛�˛ where 0 < �˛ < p � 1. We

also consider the character �Œ1�
�0
:We may also view �

Œ1�

�0
W T .Fp/! F�

p as a character
�0 W T .Fp/! Z�

p . To formulate our goal we write two postulates on �0 which may
or may not be true for a given �0:

The ordinary cohomology groupsH �

�;ord.S
G
Kf
; zM�0

/ are torsion-free (�0-tf)

and

For a given pair of consecutive degrees q; q C 1 and for

all values � D \; Š; @; c we have that bq�;ord.�/ is constant

for � 2 ƒ�0
D f� D �0 C .p � 1/P

n˛�˛g:
(�0-Bc)

Theorem 4.6 shows that allH �

�;ord.S
G
Kf
; zM�/, � 2 ƒ�0

, are torsion-free if (�0-tf)
is true.

We choose a � 2 ƒ�0
and consider the Hecke moduleH q

�;ord.S
G
Kf
; zM�˝ Fp/ D

H
q
�;ord.S

G
Kf
; zP

�
Œ1�
0

/. At this point I want to restrict the action of the Hecke algebra to

the action of H .p/. The Hecke operators in Hp only serve the purpose to define the
ordinary cohomology and they depend on the choice of ut

pk
.

Let � � H .p/˝Fp is the annihilator ofH q
�;ord.S

G
Kf
; zM�˝Fp/, then the quotient

by this ideal A
.p/
�0
D H .p/ ˝ Fp=� is the direct sum of local algebras. It defines a

zero dimensional scheme V�0
D Spec.A.p/

�0
/=Spec.Fp/ We find a (smallest) finite

extension Fq 
 Fp such that the algebra A
.p/
�0
˝ Fq decomposes into a direct sum of

absolutely local algebras, i.e., all its (reduced) irreducible components are absolutely
irreducible. We write

A.p/
�0
˝ Fq D

M
�2ˆ

A.p/
�0
˝ Fqe� ;
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here the e� are a system of orthogonal idempotents andˆ is the set of these idempo-

tents. It is also the set of geometric points of A
.p/
�0
˝ Fq . For our given � 2 ƒ�0

we
choose a field F as above and a prime p 
 .p/ as above. We look exact sequence in
cohomology obtained from

0!M� ˝OF;.p/ !M� ˝OF;.p/ !M� ˝OF;.p/ ˝OF;p=p! 0

and see that our assumptions imply

H
q
�;ord.S

G
Kf
; zM� ˝OF;.p/=p/ D H q

�;ord.S
G
Kf
; zP�0

/˝OF;p=p: (red)

Let f0g � X1 � X2 � � � � � � � � � Xr D H
q
�;ord.S

G
Kf
; zM� ˝ OF;.p// be a filtration

obtained from intersecting with a Jordan–Hölder series of H q
�;ord.S

G
Kf
; zM� ˝ F /.

Then the subquotients Xi=Xi�1 provide homomorphisms 	.p/
f
.i/ W H .p/ ! OF;.p/.

Let†ord be the set of isomorphism classes occurring in the list f	.p/
f
.i/gi . It is called

the p ordinary spectrum of H q�;.SGKf
; zM� ˝ F /.

On the other hand we have the decomposition

H
q
�;ord.S

G
Kf
; zM� ˝OF;.p/=p/ D

M
�2ˆ

e�H
q
�;ord.S

G
Kf
; zM� ˝OF;.p/=p/:

We consider the reduction mod p of the filtration

f0g � NX1 � NX2 � � � � � � � � NXr D H q
�;ord.S

G
Kf
; zP�0

/˝OF;p=p:

It is clear that NX1 maps into a summand e�H
q
�;ord.S

G
Kf
; zM�˝OF;.p/=p/. Dividing by

NX1 on both sides we can apply this reasoning to NX2= NX1 and by induction we get map
from rp W †ord ! ˆ. It follows from (red) that this map is surjective. The set r�1

p .�/

of isomorphism classes 	.p/
f

which map to a given e� form a set of isomorphism
classes of Hecke modules, which are congruent to each other mod p. In other words
we get a decomposition

H
q
�;ord.S

G
Kf
; zM� ˝OF;.p// D

M
�2ˆ

H
q
�;ord.S

G
Kf
; zM� ˝OF;.p//.�/;

where

H
q
�;ord.S

G
Kf
; zM� ˝ F /.�/ D

M
�

.p/

f
2r�1

p .�/

H
q
�;ord.S

G
Kf
; zM� ˝ F /.	.p/f

/:

We know that the rank of H q
�;ord.S

G
Kf
; zM� ˝ OF;.p//.�/ is equal to the rank of

e�H
q
�;ord.S

G
Kf
; zP�0

/˝OF =p.
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Our assumption implies that, for any character � D .�; �/ with � D �Œ1� D �
Œ1�

�0

and � 2 X�.T /˝Zp , the cohomologyH q
�;ord.S

G
Kf
; zP�/ is a free Zp-module of rank

b
q
�;ord.�0/. If Op=Zp is an unramified extension with residue field our Fq above then

H
q
�;ord.S

G
Kf
; QP� ˝Op/ D

M
�2ˆ

H
q
�;ord.S

G
Kf
; zP� ˝Op/.�/:

On our cohomology groups we always have an action of the group 	0.G.R// of
connected components of G.R/ (See [Ha-Coh], Chap. 3, 1.1 and 2.8). This action
commutes with the action of the Hecke algebra and since this group is an elementary
2-group each isotypic component is split into a direct sum according to characters
� W 	0.G.R//! f˙1g.

We say that an element� 2 ˆ has minimal multiplicity if A
.p/
�0
˝Fqe� D Fq and if

for any character � W 	0.G.R//! f˙1g the eigenspaceH q
�;ord.S

G
Kf
; QP�˝Op/.�/.�/

has dimension � 1. We say that � is admissible for � if this dimension is equal to 1.
This condition implies that the congruence class rp.�/ consist of one element and if
this is so, then we need some input from the theory of automorphic forms to verify
this condition (multiplicity one theorems).

If � is of minimal multiplicity then it is clear that for all � 2 f�g �X�.T /˝Zp
and any admissible choice of � W 	0.G.R// ! f˙1g we have a unique 	f .�; �; �/
which occurs in H q

�;ord.S
G
Kf
; QP� ˝Op/ with multiplicity one and maps to �. If � D

��; � 2 ƒ�0
then we denote this Hecke module by 	.�; �; �/. The minimal normal

extensionF1=Q over which	f .�; �; �/ is defined, has a unique prime p 
 .p/which
is unramified and has residue field Fq such that 	f .�; �; �/ is an isotypical summand
of H q

�;ord.S
G
Kf
;M� ˝ O.p//. Of course this summand is simply a homomorphism

	f .�; �; �/ W H .p/ ! O.p/.
In the paper with J. Mahnkopf we want to show that we get a family

H
q
�;ord.S

G
Kf
; zP� ˝Op/.	f .�; �; �//;

which depends “analytically” on the parameter � 2 xƒ�0
D f�g � .X�.T / ˝ Zp/;

this is what is called a Hida family.
We have to make it more precise what we mean by “depends analytically” on �.

To do this we introduce a ring of power series in the variables : : : ; ‚˛; : : : where ˛
runs through the set of simple roots, i D .: : : ; i˛; : : : / will be multi-indices:

I D fP1
iD0 ai

Q
˛ ‚

i˛
˛ j agi 2 Zp; ordp.ai / 	

P
i˛ �P

ordp.i˛Š/g:
This is a subring of the power series ring ZpŒŒ: : : ; ‚˛; : : : ��. Let Im be the image of
ƒ in the power series ring Z=pmŒŒ‚��, where ‚ D .: : : ; ‚˛; : : : /.

We consider maps f W G.Zp/! I which satisfy the standard Lipschitz condition
and

f .bg/ D
Y
.!.�˛.t//

�˛ .
�˛.t/

!.�˛.t/
/‚˛f .g/;
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where we observe that �˛.t/
!.�˛.t//

D 1C l˛.t/p and if x D l˛.t/ then

.1C xp/‚˛ D 1C px‚˛ C p2x2
�
‚˛

2

�
C � � � D 1C a1‚˛ C a2‚2˛ � � � 2 I:

If we now interpret X as the capital Greek letter chi D � and put X D .�;‚/ then
we just defined the induced module zPX and obviously we can write it as a projective
limit

PX D lim �PXŒm� :

We can define the cohomology groups H q�;�.SGKf
;PX/ D lim �H

q�;�.SGKf
;PXŒm�/

and Hecke operators T .tpk ; ut
pk
/ onH q�;�.SGKf

;PXŒm�/, and therefore we can define
the ordinary cohomology groups

H
q
�;ord.S

G
Kf
;PX/ D lim �H

q
�;ord.S

G
Kf
;PXŒm�/:

On these cohomology groups we have an action of the Hecke algebra H .p/. In
the paper with J. Mahnkopf we hope to prove

Theorem 4.7. Under the above assumptions (�0-tf) and (�0-Bc) the cohomology
H
q
�;ord.S

G
Kf
;PX/ is a free I-module of rank bq�;ord.�0/. Any � D .: : : ; �˛; : : : /,

�˛ 2 Zp , yields an ideal .‚ � �/ D .: : : ; ‚˛ � �˛; : : : / and for any � D .�; �/ we
get an isomorphism

H
q
�;ord.S

G
Kf
;PX/=.‚ � �/ ��!� H

q
�;ord.S

G
Kf
;P�/:

If we drop the assumption about non existence of torsion and replace it by an
assumption about constancy of Betti numbers on zƒ�0

(or in a neighborhood of �0 )
then we can formulate slightly weaker assertions.

If we have a � 2 ˆ which has minimal multiplicity and if � is admissible, then
we can find a projective (free?) I ˝ Op-submodule H q

�;ord.S
G
Kf
;PX/. Q	f .�; �// �

H
q
�;ord.S

G
Kf
;PX/˝Op of rank 1 such that for any � D .�; �/ we have

H
q
�;ord.S

G
Kf
;PX/	f .�; �; �/=.‚ � �/ ��!� H

q
�;ord.S

G
Kf
;P�/.�; 	f ; �/:

Of course Q	f W H .p/ ! Op, the ring Op D W.Fq/ is the Witt ring over Fq or in other
words the unramified extension of Zp with residue field Fq .

4.3. Some input from analysis and representation theory. In some cases the
theory of automorphic forms combined with our knowledge on the cohomology of
unitary .g; K1/-modules and on Eisenstein cohomology gives us some control over
the ordinary Betti numbers. This allows us to apply the last assertion in the subsection
above to obtain some information on the subsets Y �

�;� .
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A) The simplest case is the case of the group Gl2=Q and our modules Mn. Then
it is clear that n 7! b0

\;ord.n/ is not continuous in the point n D 0 and continuous

in all other points. We also know that b2
\;ord.n/ D 0 for all n. This implies that

n 7! �0
\;ord.n/ is discontinuous at n D 0 and this is the only discontinuity. Hence we

know that in this special case Y 0
\;0
D f.0; 0/g and Y �

\;i
D ; for � 6D 0 or i 6D 0.

We have other cases in which we have some control over the sets, for instance
those cases in which we know the vanishing of some Betti numbers in the � DŠ
cohomology. In this case all the cohomology is given by Eisenstein cohomology and
we only need to control the ordinary Eisenstein cohomology.

B) A first example is given by the group G=Q D RF=Q.Gl2=F / were F=Q is an
imaginary quadratic extension. Let OF be the ring of integers of F . For simplicity
we enlarge it by inverting the discriminantDF . Let us call the resulting ring O. Then
O=ZŒ1=DF � is an unramified extension and

G=ZŒ1=DF � D RO=ZŒ1=DF �.Gl2=O/:

The extension G �ZŒ1=DF � O D Gl2 �OGl2=O here the factors are labeled by
the two isomorphisms O ! O. For any pair n;m of positive integers we can define
the O-module Mn;m D .Mn ˝ O/ ˝O .Mm ˝ O/. On this module we have an
action of G �ZŒ1=DF � O where g D .g1; g2/ 2 G �ZŒ1=DF � .O/ acts on x1 ˝ x2 2
.Mn˝O/˝O .Mm˝O/ by g1x1˝ g2x2. (Again we ignore the possible variation
of the central character; see Remark on p. 398.)

Now we pick our prime p > 2, we also assume that p does not divide DF . We
choose a Kf � G.Af / such that Kp D G .Zp/ and we consider the cohomology

H
�

�;ord.S
G
Kf
; zMn;m ˝ Zp/:

Here we know thatH �

Š;
..SGKf

; zMn;m˝F / D 0 if we have n 6D m (See [Ha-Coh],
3.3) We conclude that in this case all the cohomology is given by Eisenstein coho-
mology and hence it is not difficult to see that the ordinary Betti numbers b��;ord.�/

are constant in the domain where n 6D m (The central character is inessential).
Therefore we see that the sets Y ��;� are contained in the set of � where n D m.

But on this diagonal we will have some jumps in the Betti numbers, i.e., we may
have b�

Š;ord.�0/ 6D 0 and then we have a discontinuity in �0 and unboundedness of
ordinary cohomology in a neighborhood of �0. This is actually the counter example
that was communicated to me by H. Hida and it actually it goes back to an argument
in Richard Taylor‘s thesis.

At this point we encounter another interesting question. We can restrict our
attention to the modules Mn;n or to say it differently we fix .i; i/ � .n; n/ modp
and then we take the closure �.i/ of these weights in 
 � X�.T / ˝ Zp . Now we
can ask the same question again:
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What is the locus of discontinuity of the functionsm��;ord.�/ when we restrict them
to�.i/, or, what amounts to the same, are there points where a Betti number b�

Š;ord.�/

jumps?

If we restrict the representations to G .1/ D RO=ZŒ1=DF �.Sl2=O/ then the repre-
sentations Mn;n are exactly those whose conjugate is isomorphic to their dual. (See
[Ha-Coh], Chap. 3, Sec. 3.3)

C) We get an analogous situation if we consider the group Sl3=Z. In this case
our dominant weights are of the form � D n˛�˛ C nˇ�ˇ . Again we know that the
inner Betti numbers vanish if n˛ 6D nˇ and then the computation of the Eisenstein
cohomology should yield that the sets Y �

�;ord are contained in the closure of the di-
agonal n˛ D nˇ . Therefore we can ask what happens if we restrict to the modules
Mn.�˛C�ˇ/, i.e., those which are self dual. Again we may ask whether the Betti
numbers b�

Š;ord.�/ are locally constant.

D) We may also consider the case of a group G=Q where G.1/ � R has an
anisotropic maximal torus. This means that G.1/.R/ has discrete series represen-
tations. In this case we know that we can find a union finite number of proper
linear subspaces

S
�H� D Z � X�.T / ˝ Q such that for any � 62 Z we

have H �
Š
.SGKf

;M�/ D 0 unless � D dim SGKf
=2. Combining this with some re-

sults on Eisenstein cohomology (see [Li-Schw]) this is good enough to prove that
the functions ��

�;ord are continuous in all points � 62 Z. This implies that all the
Y ��;� � xZ \ f�g ˝ .X�.T /˝ Zp/.

We will encounter cases where already the first component � 2 
 tells us that
xZ \ f�g ˝ .X�.T /˝ Zp D ; and therefore we can conclude Y ��;� D ;.

4.4. What is the arithmetic meaning of the “second term” in the constant term of
“cohomological”Eisenstein series? We refer to [Ha-Coh], Chap. 6, and [Ha-Bom2].
We consider rank one Eisenstein classes, i.e., we induce from “cuspidal” classes
! 2 H �

cusp.@PS
G
Kf
;M�/ on a maximal parabolic subgroup. These “cuspidal” classes

lie in some isotypical piece �1�
f (see [Ha-Bom2], 1.2.3). We construct an Eisen-
stein class Eis.!/, this is a class which is represented by a closed differential form
obtained from an infinite summation. To get the restriction of this class to the bound-
ary we have to compute its constant term. This constant term has two summands:
The first summand is basically our original class and the “second” term involves the
L-function of �1 � 
f (see loc.cit. 1.3).

It may happen that the second term is “zero in cohomology” and if this is the case
it seems to be totally uninteresting. But this impression is wrong as we will see later.

At first we discuss the case where this second term gives a non zero contribution
to cohomology. In this case the second term enters into the description of the global
cohomology in the cohomology of the boundary. From this we get rationality results
for special values ofL-functions (see [Ha-Bom2]). But our theorems above also allow
us to draw some more arithmetical consequences. We explain this in an example and
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refer to [Ha-Bom2].
The group is G D Sl3=Q we have the two maximal parabolic subgroups P=Q,

Q=Q. Since we want to say something about integral cohomology, we fix a level.
For simplicity we assume that Kf is the standard maximal compact subgroup. Let
M DM� be a Z-module of highest weight � D n˛�˛Cnˇ�ˇ . Let d D n˛CnˇC1.

Since the Manin–Drinfeld principle is available for Gl2=Q we get a rational de-
composition (see [Ha-Coh], Chap. 3, 5.5.2)

H 2.@SGKf
;MQ/ D H 2

Š .@S
G
Kf
;MQ/˚H 2

Eis.@S
G
Kf
;MQ/:

Now we invert certain primes, this are the primes which allow congruences be-
tween Š-cohomology and Eisenstein cohomology on Gl2, i.e., primes dividing certain
values �.�1 � k/. We get a ring R D ZŒ: : : ; 1=l; : : : � and a decomposition

H 2.@SGKf
;MR/ D H 2

Š .@S
G
Kf
;MR/

M
H 2

Eis.@S
G
Kf
;MR/:

Since the boundary has two strata which correspond to the two maximal parabolic
subgroups, we get

H 2
Š .@S

G
Kf
;MR/ D H 2

Š .@PS
G
Kf
;MR/

M
H 2
Š .@QS

G
Kf
;MR/:

We can find a (minimal) normal extension Q � F � C such that we can decompose
H 2
Š
.@SGKf

;MF / into absolutely irreducible modules and if we extend OF to a larger
ringR1 by inverting some more congruence primes we get (see [Ha-Bom2], [Ha-Coh]
Chap. 3, 1.2.3)

H 2
Š .@S

G
Kf
;MR1

/ D
M
	f

H 2
Š .@PS

G
Kf
;MR1

/.
Pf /˚H 2
Š .@QS

G
Kf
;MR1

/.

Q

f
/

D
M
	f

H 1
Š .S

Mˇ

K˛
f

;M.sˇ � �/R1
/.
f /

˚H 1
Š .S

Mˇ

K
ˇ

f

;M.s˛ � �/R1
/.
f j�P j�3/:

The Galois group Gal.F=Q/ acts on these cohomology groups via its action onR1 and
permutes the summands. We denote an individual summand byH 2

Š
.@SGKf

;MR1
/Œ
f �.

Notice that M.s˛ � �/ sits in degree one. The summands

H 1
Š .S

M˛

K˛
f

;M.sˇ � �/R1
/.
f /;H

1
Š .S

Mˇ

K
ˇ

f

;M.s˛ � �/R1
/.
f j�P j�3/

are projective R1 modules of rank 1.
The Eisenstein intertwining operator is a map

Eis W H 1
Š .S

M˛

K˛
f

;M.sˇ � �//C.
f /! H 2.SGKf
;MC/;
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and if we compose the Eisenstein intertwining operator with the restriction to the
boundary we get

r B Eis W H 1.S˛
K

M˛
f

;M.sˇ � �/C/.
f /

! H 1.S
M˛

K˛
f

;M.sˇ � �/C/.
f /
M

H 1.S
Mˇ

K
ˇ

f

;M.s˛ � �/C/.
f j�P j�3/:

The target of r is an isotypical submodule under the Hecke algebra, the summands
are one-dimensional C-vector spaces. These vector spaces are defined over F and
the image of the composition r B Eis is given by (see [Ha-Bom2])

Œ!�˝  f C .�1/d
2 C1


.
f /.�1/
nˇ

ƒ.f; nˇ C 1/
ƒ.f; nˇ C 2/T

loc
fin .Œ!�˝  f /:

Here f D f .
f / is the normalized Hecke eigenform attached to 
f and ƒ.f; s/ is
the motivic L-function attached to f , i.e., it is the Hecke L-function attached to f
completed by the �-factor at infinity. (See [Ha-Bom2], 2.1.4.)

In [Ha-Bom2] we explained that Œ!�˝ f 7! T loc
fin .Œ!�˝ f / is an isomorphism

between the two one-dimensional C-vector spaces

H 1.S˛
K

M˛
f

;M.sˇ � �//C/.
f / ��!� H 1.S
Mˇ

K
ˇ

f

;M.s˛ � �//C/.
f j�P j�3/;

which is the base extension of an isomorphism

T loc
fin W H 1

Š .S
M˛

K˛
f

;M.sˇ � �/OF Œ
1
N �/.
f / ��!� H 1

Š .S
M˛

K
ˇ

f

;M.s˛ � �/OF Œ
1
N �/.
f j�P j�3/:

This isomorphism was used to define the period 
.
f /, which is unique up to an
element in OF Œ

1
N
��.

The image

Im.H 2.SGKf
;MOF Œ

1
N � ! H 2.@SGKf

;MR1
// D H 2

global.S
G
Kf
;MOF Œ

1
N �/

intersected with the isotypical submodule

H 2
Š .@S

G
Kf
;MR1

/Œ
f � \H 2
global.S

G
Kf
;MOF Œ

1
N �/ D H 2

global.S
G
Kf
;MOF Œ

1
N �/.
f /

is a projective rank one OF Œ
1
N
�-submodule in the one-dimensional F -vector space

 f C .�1/d
2 C1


.
f /.�1/
nˇ

ƒ.f; nˇ C 1/
ƒ.f; nˇ C 2/T

loc
fin . f /:

We assume for simplicity that the number d D n˛ C nˇ C 1 D 10, 14, 16, 18,
20, 24, therefore the space of modular cusp forms describing the boundary coho-
mology is of dimension 1. Then 
f is defined over Q and H 2

Š
.@SGKf

;MR1
/.
f / D
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H 2
Š
.@SGKf

;MR1
/ and R1 D ZŒ 1

N
�, where N is the numerator of �.�1 � d/. We

choose an ordinary prime p for 
f , not dividing N . We know that the set ˆ consists
of one element. We can interpolate p-adically our weight � D n˛�˛ C nˇ�ˇ , i.e.,
we consider weights

Q� D .n˛ C .p � 1/z˛/�˛ C .nˇ C .p � 1/zˇ /�ˇ ; z˛; zˇ 2 N:

As usual we denote by Z.p/ the localization of Z at p, and we consider the
cohomology groups

H 1
Š .S

M˛

K˛
f

;M.sˇ � Q�/Z.p/
/;H 1

Š .S
Mˇ

K˛
f

;M.sˇ � Q�/Z.p/
/

as modules over the Hecke algebra. We know that we have a minimal finite nor-
mal extension F.�/ D F=Q such that these cohomology groups decompose into
absolutely irreducible H .p/-modules. For any OF 
 p 
 .p/ the OF;p-modules
H 1

ord;Š.S
M˛

K˛
f

; zM.sˇ � Q�/˝OF;p/,H 1
ord;Š.S

M˛

K
ˇ

f

; zM.s˛ � Q�/˝OF;p/ are free of rank one,

and H .p/ acts by the interpolating homomorphisms 
f .s˛ � Q�; �; �/, 
f .sˇ � Q�; �; �/
on these modules. The rings OF;p admit an embedding into Zp . Therefore we can
say

H 1
ord;Š.S

M˛

K
ˇ

f

; zM.s˛ � �/˝ Zp/ D H 1
ord;Š.S

M˛

K
ˇ

f

; zM.s˛ � �/˝ Zp/.
f .s˛ � Q�; �; �//;

H 1
ord;Š.S

M˛

K
ˇ

f

; zM.s˛ � Q�/˝ Zp/ D H 1
ord;Š.S

M˛

K
ˇ

f

; zM.s˛ � Q�/˝ Zp/.
f .sˇ � Q�; �; �//

are free Zp-modules of rank one. Because we have only one option for �, � we
introduce an abbreviation and call the modules on the right-hand side Zp.
f .s˛ � Q�//,
Zp.
f .sˇ � Q�//, respectively. They only differ by a twist and provide a modular cusp
form f . Q�/. (See [Ha-Bom2], 2.1.4.)

We construct a system of isomorphisms

�.
f ; Q�/ W Zp.
f .s˛ � Q�// ��!� Zp.
f .sˇ � Q�//;
we want that this system is compatible with the congruences or even better depends
analytically on Q�. This defines a system of periods 
.
f ; Q�/ and an identification
Hom.Zp.
f .s˛ � Q�//;Zp.
f .sˇ � Q�// D Zp . The choice of this system of periods is
delicate.

The cuspidal part of the cohomology of the boundary is given by

H 2
Š;ord.@S

G
Kf
; zMQ�/ D Zp.
f .s˛ � Q�//˚ Zp.
f .sˇ � Q�//:

Hence we can view H 2
global; ord.S

G
Kf
; zMQ� ˝ Qp/ as a point in P1.Qp/, it is the

point .1; c. Q�// where

cglobal. Q�/ D .�1/ Qd
2 C1


.
f ; Q�/.�1/ Qnˇ

ƒ.f . Q�/; Qnˇ C 1/
ƒ.f . Q�/; Qnˇ C 2/



438 G. Harder

it defines a line Hglobal. Q
f / � Z2p and we saw that

Hglobal. Q
f /=H 2
global.S

G
Kf
; zMZp

/. Q
f / ,! H 3
c;ord.S

G
Kf
; zMZp

/tors:

Since in our case we always have Qn˛ ¤ Qnˇ it follows that H 3
Š
.SGKf

; zMZp
/ D 0,

and simple arguments using Eisenstein cohomology show that the dimensions of
H
q
c;ord.S

G
Kf
; zMQp

/;H
q

\;ord.S
G
Kf
; zMQp

/ for q D 2; 3 are constant. Hence we can

apply our Theorem 4.6 and find that the torsion of H q
c;ord.S

G
Kf
; zMZp

/ is bounded.
Looking at the standard long exact sequence which relates the � D c, � D \,

� D @ cohomology we easily can derive congruences between the numbers c. Q�/.
These congruences will be of the following form:

If Q� D �0 C pm.p � 1/.z˛�˛ C zˇ�ˇ / then

cglobal. Q�/ � cglobal.�0/ mod pm
0

where we assume that cglobal.�0/ is integral and where pm�m0
is the exponent of the

torsion.

In our paper with J. Mahnkopf we hope to prove stronger results. Let us start from a
fixed highest weight of�0 D �˛�˛C�ˇ�ˇ , 0 � �˛; �ˇ < p�1. We assume that we do
not have any ordinary torsion in our cohomology groupsH �

�;ord.S
G
Kf
; zM�0

˝OF;.p//

for any value of the first �. Then we see of course that the above congruences become
more precise. But in the forthcoming paper we hope to prove that the cglobal. Q�/ are
p-adic analytic; more precisely we have a Taylor expansion

cglobal. Q�/ D cglobal..�˛ C .p � 1/z˛/�˛ C .�ˇ C .p � 1/zˇ /�ˇ /
D cglobal.�˛�˛ C �ˇ�ˇ /C c 0̨ .�0/.pz˛/C c0

ˇ .�0/.pzˇ /C � � �
� � � C cr;s.�0/prCszr˛zsˇ C � � � ;

where the coefficients cr;s 2 Zp satisfy the usual condition of moderate growth of
the form ordp.cr;srŠsŠ/ 	 0.

Since the proofs are not yet written I made some numerical experiments. We
assume that 
f is given by the modular form � of weight 12, which means that
�˛ C �ˇ D 9. In this case the primes 11 and 13 are ordinary. The prime 11 is not so
good because 11 � 1 D 10 and our coefficient system is M10. So we pick p D 13

and compute a list of eigenvalues for the first three modular forms in the Hida family,
namely f24 (f36 and f48, respectively) of weight 24 (36 and 48, respectively) (see
4.3 above).

Then we can compute the values

cglobal. Q�/ D cglobal.�˛�˛ C �ˇ�ˇ C .p � 1/z˛�˛ C .p � 1/zˇ /�ˇ /
where z˛; zˇ 2 N and for �˛ , �ˇ satisfying �˛ C �ˇ C .p � 1/.z˛ C zˇ /C 1 D d .



Interpolating coefficient systems 439

We computed cglobal. Q�/ for all these values of Q� and listed them according to
indices j D 1; 2; 3 : : : such that

d � j D �ˇ C 12zˇ D Qnˇ :

(This means the j -th member of the list is .�1/
Qd
2

C1

�.Q	f /
.�1/

Qnˇ

ƒ.f;QnˇC1/
ƒ.f;QnˇC2/ . Recall also that

our values are in a finite extension of Q and we have selected a split prime 13 over
13).

Of course at this point it is not clear what it means to compute these values,
because we have to specify the periods
.f / for f D �, f24, f36, f48. Here we do
something that might be considered problematic. We simply choose the periods by
the rule that the first cglobal. Q�/ in the list becomes 1, i.e.,

.�1/ Qd
2 C1


.
f ; Q�/.�1/d
ƒ.f . Q�/; d/

ƒ.f . Q�/; d C 1/ D 1:

Then we got the following lists of values mod 132 (for d D 10, 22, 34, 46, respec-
tively):

f1; 36; 14; 113; 70; 99; 3; 157; 108; 1g;
f1; 140; 66; 35; 122; 34; 29; 105; 17; 87; 35; 29; 68; 10; 66; 35; 5; 151; 29; 105; 134; 1g;
f1; 75; 118; 126; 5; 138; 55; 53; 17; 139; 126; 3; 159; 114; 118; 126; 57; 86; 55; 53; 43;
152; 113; 55; 107; 10; 118; 126; 109; 34; 55; 53; 160; 1g;

f1; 10; 1; 48; 57; 73; 81; 1; 17; 22; 48; 146; 81; 49; 1; 48; 109; 21; 81; 1; 43; 35; 35; 29;
29; 114; 1; 48; 161; 138; 81; 1; 69; 48; 22; 81; 146; 10; 1; 48; 44; 86; 81; 1; 17; 1g:

The reader will easily check that for j D 1; : : : ; 9 the j -th entry in the first list
is congruent the j -th entry in the second, third and fourth list, but this congruence
does not hold for j D 10. Furthermore we see that all entries in the second list are
congruent to the corresponding entry in the third list, again with the exception of the
last entry. These exceptions have a simple explanation. If we start from the highest
weights 9�˛ or 9�ˇ then these weights are not regular, they have to be exempted from
our considerations. This should raise some doubts whether we chose the right period.

Finally we notice that for j D 1; 2; : : : ; 8 our numerical data are consistent with
some “analyticity” or may be better with some differentiability, namely we have

cglobal.�0 C .p � 1/z˛�˛ C .p � 1/zˇ�ˇ /
D cglobal.�0/C c 0̨ .�0/pz˛ C c0

ˇ .�0/pzˇ mod p2:

But again we see that for j D 9 the congruence does not hold and the only way out
is that for this value of j we must have some ordinary torsion in H 3

c;ord.S
G
Kf
; QM�0

/

where �0 D �˛ C 8�ˇ :
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4.5. Denominators of Eisenstein classes. We come back to the question raised in
the headline of 4.4. We consider the case where the second term is zero in cohomology.
In this case this second term seems to be uninteresting. But this is not the case, we
have a lot of experimental evidence that it influences the denominator of the Eisenstein
class.

In this section our p is called `. At various occasions we discuss the conjec-
tural relationship between denominators of Eisenstein classes and special values of
L-functions. These special values enter in the second term of the constant term
of Eisenstein series. (See [Ha-MM], 3.1.4., 3.2.7, [1-2-3], [Ha-Bom2], [Ha-Coh],
Chap. 3, 5.5). The guiding principle is that the divisibility of such an special value
by a prime ` (or a power of `) should imply the divisibility of the denominator of an
Eisenstein cohomology class by ` (or a power of `.) To be a little bit more precise
we recall that the second term in the constant term essentially of the form

c.
f /T
loc1 .!1/T loc

fin . f /;

where the scalar factor c.
f / can be expressed in terms of special values of L-
functions attached to 
f , the object !1˝ f is essentially a differential form repre-
senting a cohomology class.

Let us look at the two examples G D Sl3=Z and G D Sp2=Z simultaneously. In
both cases the Hecke module 
f corresponds to a holomorphic modular form f of
some weight k and the scalar factor in front is essentially


.
f /
.�1/mƒ.f;m � 1/

ƒ.f;m/
; 
.
f /

.�1/mƒ.f;m � 1/
ƒ.f;m/

�0.�a/
�.�1 � a/ ;

respectively. Herem, a a certain positive integers, the number a is even and therefore
�.�1 � a/ 2 Q.

We discussed the first case already. In the second case the cohomology class of
T loc1 .!1/T loc

fin . f / will be trivial, it is essentially the operator T loc1 .!1/ which is
responsible for that. (Actually this is good, otherwise we could prove �0.�a/ 2 Q
and this is false as we all believe.) But the first factor in front – the ratio of the two
L values – is an algebraic number, let us assume it is even rational.

I believe that high powers of ` in the denominator of this rational number create
high powers of ` in the denominator of a certain Eisenstein class. These denomi-
nators in turn should create high congruences mod ` between eigenvalues of Hecke
operators on the Eisenstein class and an the eigenvalues on an eigenclass in the inner
cohomology.

At this point a side remark seems to be in order. If we look for primes dividing
the denominator we look for primes dividing 1

�.f /�.m/
ƒ.f;m/, where 
.f /˙ is a

suitably normalized period (see [1-2-3]). Once we found such a prime ` dividing this
number we hope that it does not divide the numerator 1

�.f /�.m�1/
ƒ.f;m� 1/. In all

our examples this turns out to be the case. But of course it is the ratio that matters.
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This last conclusion – namely that denominators create congruences – has to be
commented. So far I avoided to discuss a problem which may built up an obstacle
against this last conclusion.

To illustrate the problem we discuss the specific example in our contribution in
[1-2-3]. We consider the groupG=Z D Sp2=Z and the coefficient system M4;7 with
highest weight � D 4�ˇ C 7�˛ (here ˇ is the short root). In our special situation we
assume that R D Z.41/, then it is an easy exercise to see thatH 3.@.�nH2/; zM4;7˝
R/ D R. We write a sequence

0! H 3
Š .�nH2; zM4;7 ˝R/! H 3.�nH2; zM4;7 ˝R/
! H 3.@.�nH2/; zM4;7 ˝R/! 0;

and we assume exactness of this sequence. More or less by definition the exactness
of this sequence follows if we know that

H 4
c;ord.�nH2; zM4;7 ˝R/ D 0: (no torsion)

This is very likely to be the case, but we have very few tools to investigate the torsion,
except that we compute the cohomology explicitly.

In [1-2-3] we give a heuristic argument why we should expect a factor 41 in the
denominator, provided the above assumption (no torsion) is fulfilled. This heuristic
argument is based on the hope that their are no “exotic” mixed Tate motives (our mixed
Tate motives constructed in our case are not “exotic”). What we mean by “exotic”
mixed Tate motives is discussed in the note MixMot-Intro.pdf in www.math.uni-
bonn.de/people/harder/Manuscripts/Eisenstein/.

But if the assumption (no torsion) is not fulfilled then we can not exclude the
possibility that the image of

H 3.�nH2; zM4;7 ˝R/! H 3.@.�nH2/; zM4;7 ˝R/ D R:
is not surjective. If! 2 H 3.@.�nH2/; zM4;7˝R/ is a generator then its image under
the boundary map can be a non zero torsion element. Such an element will be called
an Eisenstein torsion class. If we now consider the Eisenstein class Eis.!/, then this
is a rational cohomology class and obviously it has a factor 41 in its denominator
because already its restriction to the boundary has this factor in its denominator. But
then this information is not interesting anymore, for instance it does not imply the
existence of congruences.

But there is a way out of this difficulty. In our discussion in [1-2-3] we had
a second assumption, namely that the prime ` dividing the special value of the L-
function should also be “large”. I think that this assumption can be replaced by the
assumption that the isotypical component 
f (For the notation see [Ha-Bom2]) in
H �.SM

KM
f

;M.w � �// should be ordinary at `. Under this assumption it seems to

be possible to use Theorem 4.6 to avoid the assumption (no torsion) and to prove
something which is weaker in a certain sense but covers a more general situation.
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We give a short outline of this strategy. We refer to the description of the coho-
mology of the boundary strata in [Ha-Bom2]. We define the ` ordinary cohomology

H
�

ord.@PS
G
Kf
;M�/ D H �

ord.P.Q/nG.A/=K1Kf ;M�/:

Now it is rather clear that we have an “ordinary” version of the van Est theorem. We
can define an ordinary sub-sheaf R�

ord	P�. zM/ � R�	P�. zM/, which is given by

R
�

ord	P�. zM/ D
M
w2W P

zM.w � �/ord:

We have a degenerating spectral sequence

H
p
ord.S

M

KM
f
.�f /

; R
�

ord	P�. zM//) H
pCq
ord .P.Q/nX � P.Af /=KPf .�f /;M�;RF

/:

We return to our example, we still have ` D 41. We interpolate our weight
Q� 2 ƒ�0

D .4C zˇ .`�1//�ˇ C .7C z˛.`�1//�˛ , here z˛ , zˇ are positive integers.
Since all these weights Q� are regular we know that the inner cohomologyH �.S;MQ�/
is concentrated in degree three (see [Li-Schw]) and the Eisenstein cohomology is
equal to the boundary cohomology in degrees � 	 3. In the subsequent paper with
Mahnkopf we will show that the Betti numbers Q� 7! b

q
�;ord.

Q�/ are constant if Q� varies.
Then it is also clear that we have the sequence

0! H 3
Š;ord.�nH2; zMQ� ˝OF;p/! H 3

\;ord.�nH2; zMQ� ˝OF;p/

r@�! H 3
ord.@.�nH2/; zMQ� ˝OF;p/!

whereH 3
ord.@.�nH2/; zMQ�˝OF;p/ is still a free module of rank 1 over OF;p. Assume

we find L-values ƒ. Qf ; 14C .41 � 1/ � a � 41b/= Q
C that are divisible by very high
powers of 41. Then we hope that our philosophy “No exotic mixed Tate motives”
implies that the Eisenstein class has a denominator which is divisible by a very high
power. Since the torsion inH 4

c;ord.�nH2; zMQ�˝OF;p/ stays bounded, this divisibility
implies some weaker but still high congruences between Siegel and elliptic modular
forms.

This is in a certain sense much weaker than conjecture in [1-2-3]; on the other
hand it is also much more general, it is an `-adic version of the conjecture in contrast
to a conjecture mod `.

At this point we raise the question to what extend such very high congruences also
imply large unramified field extensions, or wether it implies the existence of element
of high order in Selmer groups.

We did some computation for the modular form f22 and ` D 41. For d D 22 we
have `jcglobal.6�˛ C 13�ˇ /. (See [1-2-3]).The space of modular forms of weight 62
has dimension 4 and the Hecke operator T2 has the characteristic polynomial

P.T / D T 4 � 1 146 312 000T 3 � 6 156 169 255 669 690 368 T 2
C 2 540 887 466 526 178 560 442 368 000 T
C 3 583 176 547 297 492 565 952 659 077 522 784 256:
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Let O be the ring of integers of this field, then ZŒT �=.P.T // � O is not a maximal
order, even if we localize at `. The polynomial splits completely in Q`, the number
a D 7 929 938 323 029 is a root modulo `8 (we have to go that far in the approxima-
tion, this root is congruent to the root b D 6 275 082 596 639modulo `2!) The root a
(or better its `-adic limit ˛) defines an embedding O ,! Z` and hence an l ordinary
modular form f62 which is congruent to f22 modulo l (see 4.3).

For this modular form f62 we can produce the list of values cglobal.�˛�˛C�ˇ�ˇC
.` � 1/z˛�˛ C .` � 1/zˇ�ˇ / 2 Q`.

The characteristic polynomial splits completely in O and if we choose a prime
41 then we find a modular form f62 with coefficients in Z41 which is congruent
to f22 mod 41. This form can also be viewed as a form with coefficients in R and
we can compute the special values of its L-function and hence the values of cglobal.
The computations become a little bit messy, especially we had some difficulties to
compute real approximations of rational numbers to such a precision such that these
rational numbers could be identified. But we could verify

41jcglobal.6�˛ C 13�ˇ C 40�ˇ /;
as expected.

After all these speculations it becomes clear that the problem to understand the `-
ordinary torsion is fundamental. Especially it seems to be important to know whether
we can find explicit bounds for that part of the torsion which consists of eigenclasses
for the Hecke algebra and where the eigenvalues are eigenvalues of Eisenstein classes
mod ` (Eisenstein torsion classes).

Especially the Lemma 4.5 shows that we can find criteria that for a given � D
�
Œ1�
0 D �˛�˛ C �ˇ�ˇ we do not have Eisenstein torsion classes at all, i.e., for all

� 2 ƒ�0
D f�˛�˛ C �ˇ�ˇ C .` � 1/z˛�˛ C .` � 1/zˇ�ˇ g:

We resume the considerations at the end of 4.2. We consider the weight �0 D
6�˛C13�ˇ for Sl3. With a little bit of luck we should be able to verify such a criterion
for the cohomology H �

�;ord.S;
zM�0
˝ Z`/ where ` D 41. In any case it should be

possible to check this on a computer. Then this should in fact imply that again

cglobal.6�˛ C 13�ˇ C .` � 1/.z˛�˛ C zˇ�ˇ /
� cglobal.6�˛ C 13�ˇ /C a1`z˛ C b1`zˇ mod `2:

If this is true then our computations yielded the value a1 D 32 mod ` and then
we have the ordinary form f22C40�11 D f462 for which we should get

cglobal.6�˛ C 455�ˇ // � 0 mod `2:

This should yield a congruence mod 412 between f462 and a Siegel modular form in
S444;10.

I included these experimental computations because I know that Fritz was very in-
terested in this kind of questions. I was hoping that we could discuss them sometimes
in the future and I am very sad that this will not happen anymore.
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