
Groups Geom. Dyn. 5 (2011), 445–477
DOI 10.4171/GGD/134

Groups, Geometry, and Dynamics
© European Mathematical Society

Subspace arrangements and property T

Martin Kassabov�

To Fritz Grunewald on the occasion of his 60th birthday

Abstract. We reformulate and extend the geometric method for proving the Kazhdan property
T developed by Dymara and Januszkiewicz and used by Ershov and Jaikin. The main result
says that a group G generated by finite subgroups Gi has property T if the group generated by
each pair of subgroups has property T and sufficiently large Kazhdan constant. Essentially, the
same result was proven by Dymara and Januszkiewicz; however our bound for “sufficiently
large” is significantly better.

As an application of this result, we give exact bounds for the Kazhdan constants and the
spectral gaps of the random walks on any finite Coxeter group with respect to the standard
generating set, which generalizes a result of Bacher and de la Harpe.
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1. Introduction

One of the aims of this paper is to explain the author’s interpretation of the method for
proving property T developed by Dymara and Januszkiewicz in [11]. This method
reduces proving property T of a group G to “local representation theory” and geometry
of configurations of subspaces of a Hilbert space. Here by “local representation
theory” we mean studying the representations of (relatively) small subgroups in the
group G. The second part of this method can be reduced to an optimization problem
in some finite dimensional space, however in almost all cases the dimension is too
big and this problem can not be approached directly. Instead, methods from linear
algebra and graph theory are used (see [13], [14]). One unfortunate side effect is that
the simple geometric idea behind this approach gets “hidden” in the computations.

The main new result in this paper is a solution of the resulting optimization problem
in one (relatively easy) special case. In some sense, our solution is optimal, which

�The author was supported in part by the NSF grants DMS 0635607 and 0900932.
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allows us to obtain exact bounds for the Kazhdan constants and spectral gaps in
several situations (in the case of any finite Coxeter group with respect to the standard
generating set or the group SO.n/ for some specific generating set). The majority
of the results were known previously (see [2], [8]), however we were able to obtain
them almost without using any representation theory. In particular, we do neither
use the classification of the irreducible representations of symmetric groups nor any
character estimates.

Let us recall the definition of the Kazhdan property T: a unit vector v in a unitary
representation of a group G is called "-almost invariant under a generating set S if
kg.v/ � vk � " for any g 2 S . One way to construct almost invariant vectors is
to take small perturbations of invariant vectors. A group G has Kazhdan property
T if this is essentially the only way to construct almost invariant vectors. More
precisely:

Definition 1.1. The Kazhdan constant, denoted by �.G; S/, of a group G with respect
to a generating set S is the largest " such that the existence of an "-almost invariant
vector in a unitary representation implies the existence of an invariant vector. A
finitely generated discrete group G is said to have the Kazhdan property T if for some
(equivalently any) finite generating set S the Kazhdan constant is positive.

This definition can be extended to locally compact groups by replacing finite
generating set with a compact generating set.

It follows almost immediately from the above definition that any finite group has
property T. However, computing the Kazhdan constants even for finite groups is very
difficult and there are only a few cases where exact values are known [2]. It is well
known [4], [20] that many infinite groups also have property T; for example any lattice
in a high rank Lie group has property T, typical examples are the groups SLn.Z/ and
SLn.FpŒt �/ for n � 3. Usually this is proved using the representation theory of
the ambient Lie group [20], but this approach does not produce any bounds for the
Kazhdan constants of this groups. In the last ten years several algebraic methods
for proving property T have been developed [13], [18], [19], [23], [24]. One main
advantage of these methods is that they provide explicit bounds for the Kazhdan
constants of these groups, another is that these methods are applicable in a more
general setting.

One of the “smallest” groups which does not have property T is the infinite dihedral
group

D1 ' ha; b j a2 D b2 D 1i:
The failure of property T can be easily seen using 2-dimensional representations of
D1. Let la and lb be two different lines in the Euclidean plane R2. Such two lines
define a representation of D1 on R2, where the generators act as reflection along
these lines. Thus, the lines la and lb are the fixed subspaces of the subgroups of D1
generated by a and b.
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A quick computation shows that this representation does not contain any invariant
vectors but contains an "-almost invariant vector, where " D 2 sin '=2 (here ' denotes
the angle between the lines la and lb). Since the angle ' can be arbitrarily small, we see
that for any " > 0 there exists a representation of D1 with "-almost invariant vectors,
but without invariant vectors. In other words, the Kazhdan constant �.D1; fa; bg/ D
0 and the group D1 does not have property T.

This example suggests that a group G, generated by two (finite) subgroups G1

and G2, has property T if and only if there exists a universal bound for the angle
between the fixed spaces H G1 and H G2 for any (irreducible) representation H of
G. For example, if we replace D1 with Dn by adding the relation .ab/n D 1, then
the reflections along la and lb define representation of Dn if and only if � D k�=n,
k 2 Z, which prevents the angle between la D H G1 and lb D H G2 from being
arbitrarily small. Of course, this example is not useful since the group Dn is finite,
therefore it has property T.

Observation 2.1 allows us to generalize this situation to a group generated by
several subgroups, which can be used to show that some groups have property T
by solving a “geometric optimization” problem. Before explaining this reduction
and stating the main result in this paper, we need to look at the angle between two
subspaces from another viewpoint.

We say that the angle1 between two closed subspaces V1 and V2 is larger than
' if, for any vectors vi 2 Vi such that each vi is perpendicular to the intersection
V1 \ V2, the angle between v1 and v2 is larger than '. We need the condition
vi ? V1 \ V2 because we want to measure the angle between subspaces that have
nontrivial intersection. The motivating example for this definition is the geometric
angle between two planes in a 3-dimensional Euclidean space.

An equivalent way of saying this is that for any vector v 2 V there is a bound for
the distance d0.v/ from v to the intersection V1 \ V2 in terms of the distances di .v/

from v to Vi :

d0.v/2 � 1

1 � cos '
.d1.v/2 C d2.v/2/:

Similar bounds can be used to define angle between many subspaces. We say that
the angle ^.V1; V2; : : : ; Vn/ between the subspaces V1; : : : ; Vn is larger than ' if for

1In the theory of Hilbert spaces this angle is known as Friedrichs angle [7].
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any vector v the square of distance from v to the intersection
T

Vi is bounded by a
constant times the sum of the squares of the distances from v to each subspace, i.e.,

d.v;
T

Vi /
2 � Cn.'/

P
d.v; Vi /

2;

where Cn.'/ is an explicitly defined function. (See Section 3 for a precise definition
of the angle between several subspaces.) Our main result is a sufficient condition
when the angle between many subspaces is positive:

Theorem 1.2. Let Vi be n closed subspaces in a Hilbert space H . Suppose that for
any pair of indices 1 � i; j � n we have cos ^.Vi ; Vj / � "ij and the symmetric
matrix

A D

0
BBBBB@

1 �"12 �"13 : : : �"1n

�"21 1 �"23 : : : �"2n

�"31 �"32 1 : : : �"3n

:::
:::

:::
: : :

:::

�"n1 �"n2 �"n3 : : : 1

1
CCCCCA

is positive definite. Then the angle ^.V1; V2; : : : ; Vn/ � ' > 0, where the constant
' depends only on the matrix A.

Moreover, if the matrix A is not positive definite then there exist a Hilbert
space H and closed subspaces Vi such that cos ^.Vi ; Vj / � "ij , but the angle
^.V1; V2; : : : ; Vn/ is equal to 0.

Weaker forms of Theorem 1.2 were previously known: Dymara and Januszkiewicz
[11] proved an analogous statement if "ij � 12�n. This result was improved by
Ershov and Jaikin [13] to "ij � .n � 1/�1. Moreover, Ershov and Jaikin [13],
Theorem 5.9, also proved an analog of Theorem 1.2 in the case n D 3.

The applications of Theorem 1.2 are based on Observation 2.1. A group G gener-
ated by (finite) subgroups Gi has property T if and only if for any unitary representa-
tion of G in H there is a bound for the angle between the subspaces H Gi , which does
not depend on the representation H . This allows one to prove that G has property T
using only information from the representation theory of the groups generated by Gi

and Gj . Moreover, a quantitative version of this result (Theorem 5.1) can be used to
obtain good bounds for the Kazhdan constant and the spectral gap of the Laplacian;
see Theorems 6.1, 6.12 and 6.14. It is remarkable that in some cases the resulting
bounds are sharp.

Theorem 1.3. Let G be a finite Coxeter group with a generating set S . The spectral
gap and the Kazhdan constant �.G; S/ of G can be computed by considering only
the defining representation and are listed in Table 1. In particular, the spectral gap
of the Laplacian is equal to 4

n
sin2.�=2h/, where n D jS j and h denote the Coxeter

number of the group G.
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This generalizes results by Bacher and de la Harpe [2] and Bagno [3] and is one
of the few results that provide exact values for the Kazhdan constants of non-abelian
finite groups.

Another application of this method is a simplified2 proof of the following:

Theorem 1.4. The group SLn.FpŒt1; :::; tk�/ has property T if p � 5 and n � 3.

The condition n � 3 is necessary because the group SL2.FpŒt �/ does not have
property T. On the other side the condition p � 5 is redundant – it is even possible
to replace Fp with Z. However, removing the condition p � 5 (and replacing Fp

with Z) requires significant additional work, see [13] and [14]. Theorem 1.4 also can
be generalized to show that many Steinberg and Kac–Moody groups have Kazhdan
property T.

The proof of Theorem 1.2 can also be used to obtain good bounds for the spectral
gaps for some random walks on SLn.Fp/, SO.n/; see Theorems 6.12 and 6.14, which
in turn can be used to estimate the relaxation and the mixing times of these random
walks. Most of these results are only a slight improvement of previous results [8],
[9], [18], however the previous proofs involve completely different methods and use
“more complicated” representation theory (at least according to the author).

Notation. All the representations in this paper are assumed by unitary. Throughout
the paper H will denote an arbitrary Hilbert space. As usual h �; � i will denote the
scalar product in H and k � k will be the norm. We we use ^.v; w/ to denote the
angle between two nonzero vectors in H . For a closed subspace V , by V ? we will
denote the orthogonal complement of V in H and by PV W H ! H the orthogonal
projection on H ! V . The notation dV .v/ will be used for the distance between a
vector v 2 H and the subspace V , i.e., dV .v/ D kv � Pv.v/k. We almost never use
that H is a vector space over the complex number, thus we often consider H only
as a Euclidean space. This explains why most of the examples in the paper use finite
dimensional Euclidean spaces (over R); of course one can “lift” all these examples
to Hilbert spaces by tensoring with C.

Structure. In Section 2, we start with an observation, which connects property T and
geometry and use it to outline an approach to prove property T for some groups. The
notion of the angle between a collection of subspaces is defined Section 3, which also
contains many properties of this notion. The following Section 4 contains (relatively
easy) technical results about angles between three subspaces and their intersections.
These results are used in Section 5 to prove Theorem 1.2. The final Section 6 describes
several applications of Theorem 1.2.

2A similar proof in the case p > .n � 1/2 can be found in [13]. With a small modification one can
extend that proof to the general case.
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2. Strategy for proving property T

A key part of this geometric approach to property T is the following observation,
which allows us to relate property T to geometry.

Observation 2.1. Let G be a group and let Gi be a collection of n subgroups in
G such that G D hG1; : : : ; Gni. Then the Kazhdan constant �.G;

S
Gi / is strictly

positive if and only if there exists ˛ > 0 such that ^.H G1 ; H G2 ; : : : ; H Gn/ > ˛ for
any unitary representation H of G. In particular, if all Gi are finite subgroups and
there exists lower bound for the angle, then G has Kazhdan property T.

Proof. Suppose that ^.H G1 ; H G2 ; : : : ; H Gn/ > ˛ for any representation H of G.
Let H be arbitrary unitary representation of G and let v be a unit vector in H which
is "-almost invariant with respect to

S
Gi , for some sufficiently small ". Since each

Gi is a subgroup, the almost invariance under Gi implies that the distance from v

to the subspace H Gi is less than ". The bound for the angle between the subspaces
H Gi implies that

d\HGi .v/2 � C
P

dHGi .v/2 � C n"2;

for some constant C , which depends only on ˛ but not on the representation H . If
" is smaller than .C n/�1=2 then the distance between v and the space of G-invariant
vectors H G D T

H Gi is less than 1, therefore there exist nonzero vectors in H G .
This shows that if a representation H has an 1

2
p

C n
-almost invariant vector then H

has an invariant vector, which is equivalent to �.G;
S

Gi / � .C n/�1=2=2 > 0.
The other direction is similar. Suppose that there is no nontrivial lower bound for

the angle ^.H G1 ; H G2 ; : : : ; H Gn/, then for any C there exists a representation H

and a vector v such that

d\HGi .v/2 � C
P

dHGi .v/2 > 0:

However, the image Nv D v=d\HGi .v/CH G of the vector v=d\HGi .v/ in H=H G is
a unit vector which is a distance less than C �1=2 to each of the subspaces H Gi =H G .
Therefore Nv is 2C �1=2-almost invariant with respect to

S
Gi . However, if C is large

enough this contradicts with the condition �.G;
S

Gi / > 0.

The following outline3 shows one possible way to apply the above observation
and use it to prove that some groups G generated by subgroups Gi have property T,
more precisely that the Kazhdan constant �.G;

S
Gi / is positive.

Briefly the idea is first to extract enough information (steps 1 and 2) from the
“local representation theory” of the group G and translate this information to bounds

3This idea goes back to [11] and may be even further to [5], [6], [15]. However, these papers refer
to “unnecessary geometric objects”, at least according to the author, which makes these ideas difficult to
“extract”.
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on the angles between some of subspaces H Gi . Then, one applies “geometric”
arguments (step 3) to show that these conditions imply a bound for the angle between
all subspaces H Gi . Although the last step is “geometric” in most cases the proof has
an algebraic flavor and heavily uses linear algebra.

The first step in the approach is to study “local representation theory” of the group
G, i.e., one can consider the subgroups GJ D hSj 2J Gj i � G for some subsets
J � f1; : : : ; ng. If these groups have property T and there exist good bounds for
the Kazhdan constants �.GJ ;

S
j 2J Gj /, then one can apply Observation 2.1 and

translate these into bounds for the angles ^fH Gj j j 2 J g.
The second step (which is optional, but essential for some applications [13],

[14]) is to study the inclusions between the subgroup GJ and translate them into
conditions about the intersections of the subspaces H Gj . For example, the inclusion
G3 � hG1; G2i leads to the condition H G1 \ H G2 � H G3 .

The third and final step is to consider all possible configurations of subspaces Vi

in some Hilbert space H , which satisfy all the conditions found in the first two steps.
If one can prove that ^.V1; V2; : : : ; Vn/ � ˛ for any “allowed” configuration, then
we will get that ^.H G1 ; H G2 ; : : : ; H Gn/ � ˛ for any representation H , which by
Observation 2.1 implies that the group G has a variant of property T. In most cases
this geometric problem is best attacked using tools from linear algebra (and some
times graph theory).

Although the third step refers to subspaces in an arbitrary Hilbert space, it is
possible to reduce it to a question about subspaces in a finite dimensional Euclidean
space: the angle ^.V1; V2; : : : ; Vn/ is determined using the distances between a vector
v and the subspaces Vi (of course one needs to take a supremum over all vectors v).
However, since we work with only one vector at a time, without loss of generality
we can assume that the Hilbert space H is spanned by the projections vJ of v onto
the subspaces

T
j 2J Vj for all subsets J � f1; : : : ; ng, i.e., we can assume that

dim H � 2n.
Therefore, it is sufficient to consider all possible configurations of subspaces Vi

in a 2n-dimensional Euclidean space satisfying the conditions found in the first two
steps. Thus, the last step can be reduced to an optimization problem on some finite
dimensional space. Unfortunately, even for a small n, it is very difficult to formulate
this optimization problem and solve it directly; for example, proving Corollary 4.5
using this idea will involve considering configurations of three 3-dimensional sub-
spaces in a 6-dimensional Euclidean space. The resulting optimization problem
will involve optimizing function defined on a subset of 7 � 7 semi-positive def-
inite symmetric matrices, satisfying certain conditions. In short, the author does
not expect this reduction to be used in practice (unless it can be implemented on a
computer).

As we have already mentioned this approach for proving property T is not new
and there are several examples in the literature, where a similar program has been
carried out:
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Dymara and Januszkiewicz [11] essentially proved that ^.V1; V2; : : : ; Vn/ > ˛ >

0 if cos ^.Vi ; Vj / < " for any 1 � i; j � n and a sufficiently small ", i.e., if the
subspaces Vi are pairwise almost perpendicular. They combined this result with
bounds coming from the representation theory of rank 2 groups over finite fields to
prove that 2-spherical Kac–Moody groups have property T if the defining field is
finite and sufficiently large.

Ershov and Jaikin [13] proved a spectral criterion for property T for groups having
a decomposition as graph of groups. This criterion can be translated into the language
outlined above by considering the fixed subspaces of all vertex and edge groups. The
bounds for the co-distances at each vertex are equivalent to bounds for the angles be-
tween the edge spaces. Also, the graph of groups decomposition imposes restrictions
between the intersections of these subspaces.

Ershov and Jaikin also applied this spectral criterion to improve the result of
Dymara and Januszkiewicz mentioned above. They proved that if cos ^.Vi ; Vj / <

1
n�1

for any 1 � i; j � n then ^.V1; V2; : : : ; Vn/ > ˛ > 0 and obtained a precise
result in the case n D 3, which is used to prove a variant of Theorem 1.4. One of
the main results in this paper, Theorem 1.2, improves that result and provides some
geometric interpretation.

The main result in [13], Theorem 5.5, gives bounds for the Kazhdan constant for
groups “graded by root systems of type A2” with respect to the union of their root
subgroups. Its proof again “follows” the general outline described above, but this is
not easily seen since the conditions found in the first two steps are complicated and
can not be easily translated in a geometric language. Instead the proof is written in
an “algebraic” language and heavily uses linear algebra and graph theory. This result
is generalized in [14] for groups graded by arbitrary root systems.

3. Angle between subspaces

In this section we define the angle between two (and several) closed subspaces of a
Hilbert space. We start with a geometric definition, which is motivated by the standard
notion of angles between lines and planes in a 3-dimensional Euclidean space. Then,
we find an equivalent definition using the spectrum of certain operators, which later
will be used to define “angle” between several subspaces.4

3.1. Geometric definition. We start with the usual definition of an angle between
a vector and a closed subspace:

Definition 3.1. The angle ^.v; V / between a closed subspace V and a nonzero vector
v 2 H is defined to be the angle between v and its projection onto V (or �=2 if the

4It is not clear what is the precise geometric meaning of the angle between several subspaces. Our
definition is closely related to the notion of a co-distance used in [13], see Remark 3.22.
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projection is zero). Equivalently one can use

kPV .v/k D kvk cos ^.v; V /:

It is clear that ^.v; V / D 0 if and only if v 2 V . Notice that if we fix the subspace
V the function v ! ^.v; V / is a continuous function defined on H n f0g.

This definition can be extended to angles between two subspaces. There are
several natural ways, known as Friedrichs and Dixmier angles [7], to do that, which
are equivalent if the two subspaces have trivial intersection. Our approach is to
“ignore” the intersection by factoring it out, or equivalently by considering only the
orthogonal complement to the intersection. The definition used in this paper differs
from the similar one used in [11], [13].

Definition 3.2. Let V1 and V2 be two closed subspaces in a Hilbert space H . If
neither of the spaces Vi is contained in the other one, then the (Friedrichs) angle
between V1 and V2 (denoted by ^.V1; V2/) is defined to be the infimum of the angles
between nonzero vectors v1 and v2, where vi 2 Vi and vi ? .V1 \ V2/, i.e.,

cos ^.V1; V2/ D supfjhv1; v2ij j kvik D 1; vi 2 Vi ; vi ? .V1 \ V2/g:

Alternatively, one can define the angle as infimum of the angles between vector
and a subspace:

Lemma 3.3. The angle between V1 and V2 is equal to the infimum of the angles
between V2 and non-zero (or unit) vector in V1, which are perpendicular to the
intersection, i.e.,

^.V1; V2/ D inff^.v; V2/ j v 2 V1; v ? .V1 \ V2/g:

Proof. This follows from the observation that if v ? .V1 \ V2/ and v 2 V1 then
PV2

.v/ ? .V1 \ V2/.

Remark 3.4. We need the condition that neither of Vi is a subset of the other one,
because if V2 � V1 there are no vectors in V2 which are perpendicular to the inter-
section of V1 and V2. However, using Lemma 3.3 one can see that the angle “should
be equal” to �=2 in the case when V2 � V1 and V2 6D V1.

Corollary 3.5. Let v1 be a nonzero vector in V which is perpendicular to the inter-
section of V1 \ V2. Then

a) kPV2
.v1/k � kv1k cos ^.V1; V2/;
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b) kPV ?
2

.v1/k � kv1k sin ^.V1; V2/;

c) kPV2
.v1/k � kPV ?

2
.v1/k cot ^.V1; V2/.

The next result is well known consequence of the compactness of unit sphere in
a finite dimensional Hilbert space.

Lemma 3.6. If one of the subspaces V1 and V2 is finite dimensional then there exist
vectors v1; v2 ? .V1 \ V2/, vi 2 Vi , such that ^.V1; V2/ D ^.v1; v2/ > 0.

Proof. Assume that V1 is finite dimensional. By Lemma 3.3 the angle between V1

and V2 is equal to the infimum of the function � W v ! ^.v; V2/ defined on the unit
sphere in V1 \ .V1 \ V2/?. The function � is a continuous function with compact
domain therefore the infimum is achieved.

Corollary 3.7. If at least one of the subspaces Vi is finite dimensional, then the
angle ^.V1; V2/ is positive. It is not difficult to construct examples of two infinite
dimensional closed subspaces Vi with trivial intersection such that ^.V1; V2/ D 0.
It is easy to see that if ^.V1; V2/ > 0 then V1 C V2 is a closed subspace.

Remark 3.8. If the dimensions of V1, V2 and H are finite and fixed, then the angle
between the subspaces V1 and V2 can be considered as a function defined on the subset
of the product of two Grassmannians. It is important to notice that this function is
NOT continuous. The dimension of the intersection divides the domain into cells and
each cell is open in it closure. The restriction of the angle to each cell is a continuous
function, which tends to zero as one approaches the boundary of each cell.

The following lemma plays in central role in the rest of the paper; roughly speak-
ing it allows to exchange all subspace with their orthogonal complements. As a
consequence, we can replace intersections of subspaces with their sums.

Lemma 3.9. The angle between the orthogonal complements V ?
1 and V ?

2 is equal
to the angle between the subspaces V1 and V2.

Proof. Assume that ^.V1; V2/ > 0. Let v0
1 is a non-zero vector in V ?

1 which is

perpendicular to V ?
1 \ V ?

2 . Since
�
V ?

1 \ V ?
2

�? D V1 C V2 D V1 C V2 we have
v0

1 2 V1 C V2, i.e., one can write v0
1 D u1 C u2, where ui 2 Vi . Without loss of

generality, we can assume that u2 ? V1 \ V2. Let w0 be the unique vector of the
form v0

1 C �u2 which is perpendicular to u2.
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Claim 3.10. We have the inequality

kw0k � kv0
1k cos ^.V1; V2/:

Proof. The angle between v0
1 and u2 is not more

than

�=2 � ^.u2; V1/ � �=2 � ^.V1; V2/:

Therefore, the angle between w0 and v0
1 is at least

^.V1; V2/.

V1

V2

u1

u2 v0
1

w0

Notice that by the construction of u2 and w0 we have PV ?
2

.v0
1/ D PV ?

2
.w0/.

Therefore,
kPV ?

2
.v0

1/k � kw0k � kv0
1k cos ^.V1; V2/;

i.e., the angle between v0 and the subspaces V ?
2 is at least ^.V1; V2/. This shows

that ^.V ?
1 ; V ?

2 / � ^.V1; V2/. The opposite inequality follows from the symmetry,
thus we have that ^.V ?

1 ; V ?
2 / D ^.V1; V2/.

Remark 3.11. This lemma (and its proof) is essentially the same as [13], Lemma 2.4.
The statement is somehow cleaner because we do not need to check whether the
intersections of V1 \ V2 and V ?

1 \ V ?
2 are trivial or not. Exactly the same result can

be found in [7].

3.2. Spectral definition. Before generalizing the notion of angle to several sub-
spaces, we need to “replace” the geometric definition with an “algebraic” one.

Consider the addition operator

sum W V1 ˚ V2 ! H ; sum.v1; v2/ D v1 C v2;

and its “square” † D sum� B sum, where sum� W H ! V1 ˚V2 denotes the transpose
of the operator sum. It is easy to see that

sum�.v/ D .PV1
.v/; PV2

.v// and †.v1; v2/ D .PV1
.v1 C v2/; PV2

.v1 C v2//:

Here V1 ˚ V2 denotes the external direct sum of V1 and V2, which is naturally a
Hilbert space.

By definition, † is a positive self adjoint operator. The triangle inequality implies
that the norm of † is bounded above by 2, and the point 2 appears in the discrete
spectrum of † if and only if the subspaces V1 and V2 have nontrivial intersection.

Lemma 3.12. The spectrum of † is invariant under reflection at 1, i.e., � 2 Spec.†/

if and only if 2 � � 2 Spec.†/.



456 M. Kassabov

Proof. A direct computation shows that if .v1; v2/ is an eigenvector of † with eigen-
value � then .v1; �v2/ is also an eigenvector, but with eigenvalue 2 � �. This shows
that the discrete part of the spectrum of † is invariant under the reflection. Using
“approximate eigenvectors” one can obtain a similar result for the continuous part of
the spectrum.

Lemma 3.13. The spectrum of † is contained in

Œ1 � cos ^.V1; V2/; 1 C cos ^.V1; V2/� [ f0; 2g:
Moreover the points 1 ˙ cos ^.V1; V2/ are in the spectrum.

Proof. The eigenspace W2 corresponding to the eigenvalue 2 consists of all vectors
.v; v/ for v 2 V1 \ V2, similarly the eigenspace W0 corresponding to 0 consists
of all vectors .v; �v/ for v 2 V1 \ V2. Let w D .v1; v2/ 2 V1 ˚ V2 be a vector
perpendicular to W0 ˚ W2, i.e., v1; v2 ? V1 \ V2. Then

h†.w/; wi D kv1 C v2k2 D kv1k2 C kv2k2 C 2kv1k � kv2k cos.�/

� .1 C j cos.�/j/.kv1k2 C kv2k2/ � j cos.�/j.kv1k � kv2k/2

� .1 C j cos.�/j/kwk2;

where � denotes the angle between the vectors v1 and v2. Thus, on .W0 C W2/? the
operator † is bounded by 1 C cos ^.V1; V2/, i.e., the spectrum of † is contained in
Œ0; 1 C cos ^.V1; V2//� [ f2g. By Lemma 3.12 the interval .0; 1 � cos ^.V1; V2// is
also not part of the spectrum.

Let v1;i and v2;i be sequences of unit vectors, in V1 and V2 respectively, perpen-
dicular to V1 \ V2 such that ^.v1;i ; v2;i / ! ^.V1; V2/. By the above computation
we see that

h†.wi /; wi i ! .1 C cos ^.V1; V2//kwik2;

where wi D .v1;i ; v2;i /. Thus, the point 1 C cos ^.V1; V2/ is in Spec.†/.

Remark 3.14. The above two lemmas, together with the observation that for any two
closed subspaces V1 and V2 and any v 2 H one has the equality

k sum�
V1;V2

.v/k2 C k sum�
V ?

1
;V ?

2

.v/k2 D 2kvk2;

give an alternative proof of Lemma 3.9.

Lemma 3.13 allows us to define the angle between V1 and V2 using the spectral
gap of the operator †:

Definition 3.15. The angle ^.V1; V2/ 2 Œ0; �� between two subspaces V1 and V2 is
defined by

1 C cos ^.V1; V2/ D supfSpec.†/ n f2gg:
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Remark 3.16. This definition does not require that neither of the subspaces is con-
tained in the other one and allows us to define the angle between two subspaces in
these degenerate cases:

a) if V1 � V2 but V1 6D V2 then the spectrum of † consists 0, 1 and 2, therefore
^.V1; V2/ D �=2. Notice that this agrees with Lemma 3.3;

b) if V1 D V2 then the spectrum of † consists 0 and 2, therefore ^.V1; V2/ D � .

Remark 3.17. The following example shows why the angle is not a continuous
function on the product of the Grassmanianns: Let us consider the angle between a
plane and a line in a 3-dimensional space. If the line and the plane are in general
position then the angle is equal to the “geometrically defined one”, i.e., the angle
between the line and its projection onto the plane. However, if the line lies in the
plane the angle is equal to �=2.

In terms of the spectrum of † we have: if the line is not inside the plane then the
spectrum of † is f1 � cos �; 1; 1 C cos �g, when � goes to 0 the spectrum becomes
f0; 1; 2g and the spectral gap near 2 suddenly increases from 1 � cos � to 1.

Remark 3.18. Using the spectral definition of the angle between two subspaces it
is very easy to see why the angle ^.V1; V2/ is always positive if both V1 and V2 are
finite dimensional. In this case the domain of † is a finite dimensional vector space,
thus, Spec.†/ is a finite subset of Œ0; 2�, therefore it does not contain the interval
.2 � "; 2/ for some " > 0.

Remark 3.19. Another way to define the angle between V1 and V2 is to use the
spectrum of the operator †0 D P �BP where P W V1 ! V2 is the orthogonal projection
from V1 to V2. In the non-degenerate cases we have

cos ^.V1; V2/ D supfSpec.†0/ n f1gg:

The only reason we chose to use the operator † instead of †0 is to preserve the
symmetry between the two subspaces.

One minor difference is that if one uses the operator †0 to define the angle,
the “natural” extension of angle to the case V1 D V2 will give a different answer
^.V1; V2/ D �=2. In this paper, we will not deal with this degenerate case, so it does
not matter how one defines the angle if the two subspaces are equal.

3.3. Angle between several subspaces. An analog of Definition 3.15 can be used
to define an “angle” between a collection of several subspaces. It is not clear what the
exact geometric meaning of the angle defined below is; the definition is equivalent to
the one described in the Introduction, see Remark 3.25. The same notion is studied
in [1], where the authors define several ways to measure the “angle” between several
subspaces. Our definition of angle is the same as the Friedrichs number used in [1].
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Definition 3.20. Let V1; V2; : : : ; Vn be closed subspaces of a Hilbert space H . Let

sum W V1 ˚ V2 ˚ � � � ˚ Vn ! H ; sum.v1; v2; : : : ; vn/ D v1 C v2 C � � � C vn;

denote the addition operator. The “angle” ^.V1; V2; : : : ; Vn/ between the subspaces
fVig is defined by

1 C .n � 1/ cos ^.V1; V2; : : : ; Vn/ D supfSpec.†/ n fngg;
where † D sum� B sum. The reason of this unusual normalization is to make the
angle lying between 0 and �=2, unless all Vi are equal to each other.

Remark 3.21. The triangle inequality shows that Spec.†/ � Œ0; n�. The point n

is in the discrete part of Spec.†/ if and only if the intersection
T

Vi is not trivial.
Similarly, 0 is in the spectrum if and only if there exist vectors vi 2 Vi which are
linearly dependant. It can be shown that unless all Vi are the same, Spec.†/ contains
points in the interval Œ1; n/, i.e., ^.V1; V2; : : : ; Vn/ � �=2.

Remark 3.22. Our definition of angle is closely related to the notion of co-distance
used in [13]. If the intersection

T
Vi is trivial, one has

cos ^.V1; V2; : : : ; Vn/ D n�.V1; : : : ; Vn/ � 1

n � 1
;

where �.V1; : : : ; Vn/ denotes the co-distance between Vi as defined in [13].

Example 3.23. If the spaces Vi are pairwise orthogonal and have pairwise trivial
intersections, for example if the Vi are the coordinate lines in n-dimensional Euclidean
space, then ^.V1; V2; : : : ; Vn/ D �=2.

If the orthogonal complements of the Vi are pairwise orthogonal and have pairwise
trivial intersections, for example if the Vi are the coordinate hyperplanes in n-dimen-
sional Euclidean space, then cos ^.V1; V2; : : : ; Vn/ D 1 � 1

n�1
.

This example shows that the analog of Lemma 3.9 does not hold for n > 2, i.e.,
it is not true in general that ^.V1; V2; : : : ; Vn/ D ^.V ?

1 ; V ?
2 ; : : : ; V ?

n /.

3.4. Distance estimates. In this section we will assume that V1 and V2 are two
closed subspaces in H such that ^.V1; V2/ > 0. As mentioned before, this condition
implies that the subspace V1 C V2 is closed.

For a vector w 2 H with w0, w1, w2 and w12 we will denote the projections of w

onto the subspaces V1 \ V2, V1, V2 and V1 C V2, respectively. Similarly, with d0.w/,
d1.w/, d2.w/, d12.w/ we will denote the distances of w to these four subspaces.

Lemma 3.24. The distances di .w/ satisfy the inequality

d0.w/2 � 1

1 � cos ^.V1; V2/
.d1.w/2 C d2.w/2/:
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Moreover, if there exists a constant K > 0 such that d0.w/2 � K.d1.w/2 Cd2.w/2/

for any vector w 2 H , then

cos ^.V1; V2/ � 1 � K�1:

Proof. The vector w0 D w � w0 is perpendicular to the intersection V1 \ V2 which
is the eigenspace of sum B sum� corresponding to the eigenvalue 2. Since the spectra
of the operators sum B sum� and sum� B sum D † are almost the same (they might
differ only at 0) and w0 is perpendicular to the eigenspace corresponding to 2, we
have

hw0; sum B sum�.w0/i � .1 C cos ^.V1; V2//kw0k2:

The left-hand side is equal to

k sum�.w0/k2 D k.PV1
.w0/; PV2

.w0//kkPV1
.w0/k2 C kPV2

.w0/k2

D 2kw0k2 � .kw0k2 � kPV1
.w0/k2/ � .kw0k2 � kPV2

.w0/k2/

D 2d0.w/2 � d1.w/2 � d2.w/2:

Therefore, .1 � cos ^.V1; V2//d0.w/2 � d1.w/2 C d2.w/2.
The second part follows from the observation that for any " > 0 there exists a

vector w0 ? .V1 \ V2/ such that ksum�.w/k2 > .1 C cos ^.V1; V2/ � "/kwk2 and
by the above computation for such vector one has

.1 � cos ^.V1; V2/ � "/d0.w/2 � d1.w/2 C d2.w/2:

Remark 3.25. The previous proof can be generalized to the case of n subspaces. Let
di .w/ denote the distance between w and Vi , and d0.w/ the distance between w andT

Vi . Then we have

d0.w/2 � 1

.n � 1/.1 � cos ^.V1; V2; : : : ; Vn//

X
di .w/2:

Similarly, any bound of the form d0.w/2 � 1
.n�1/"

P
di .w/2 valid for all vectors

w 2 H implies that cos ^.V1; V2; : : : ; Vn/ � 1 � ".
This explains why the definition of the angle give in the introduction is equivalent

to the Definition 3.20, see [1] for a detailed proof.

One can obtain a slightly more precise estimate than in Lemma 3.24 using the
following lemma:

Lemma 3.26. The distance kw1 � w0k between the projection of w onto V1 and the
intersection V1 \ V2 is bounded by

kw1 � w0k � cos ^.V1; V2/d1.w/ C d2.w/

sin ^.V1; V2/
:
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Proof. Let w0 be the vector in V1 such that
w12 � w0 is in V2 and is perpendicular to
V1 \ V2. Then w1 � w0 D PV1

.w12 � w0/
and w12 � w1 D PV ?

1
.w12 � w0/, thus by

Corollary 3.5 we have

kw1 � w0k � cot ^.V1; V2/kw12 � w1k:

Similarly w12 � w2 D PV2
.w0 � w0/, i.e.,

kw0 � w0k � 1

sin ^.V1; V2/
kw12 � w2k:

Therefore,

kw1 � w0k � kw1 � w0k C kw0 � w0k
� cot ^.V1; V2/kw12 � w1k C 1

sin ^.V1; V2/
kw12 � w2k

� cot ^.V1; V2/d1.w/ C 1

sin ^.V1; V2/
d2.w/:

V1 V2

w12

w0

w1

w0

w2

The following improvement of Lemma 3.24 is a special case of Theorem 5.1:

Lemma 3.27. Let " D cos ^.V1; V2/ < 1. Then

a) d0.w/2 � �
d1.w/ d2.w/

� �
1 �"

�" 1

��1 �
d1.w/

d2.w/

�
I

b) kw12k2 � �kw1k kw2k� �
1 �"

�" 1

��1 �kw1k
kw2k

�
:

Proof. a) We have d0.w/2 D kw1 � w0k2 C d1.w/2. Lemma 3.26 gives us a bound
for kw1 � w0k2,

d0.w/2 �
�

cos ^.V1; V2/d1.w/ C d2.w/

sin ^.V1; V2/

�2

C d1.w/2

D 1

sin2 ^.V1; V2/

�
d1.w/2 C 2d1.w/d2.w/ cos ^.V1; V2/ C d2.w/2

�
;

which is equal to the bound in the statement of the lemma.
b) Follows from part a) applied to the subspaces V ?

1 and V ?
2 .

Remark 3.28. Part b) of the previous lemma implies that the subspace V1 C V2

is closed if ^.V1; V2/ > 0. The analog of this statement is not true for more than two
subspaces: there exist closed subspaces Vi such that ^.V1; V2; : : : ; Vn/ > 0, but V1 C
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V2C� � �CVn is not closed. However, Remark 3.25 implies that if ^.V1; V2; : : : ; Vn/ >

0, then V ?
1 C V ?

2 C � � � C V ?
n is closed and is equal to .

T
Vi /

?.

Remark3.29. The bounds in Lemma 3.26 and Corollary 3.27 do not make sense when
V1 D V2 and ^.V1; V2/ D � , because the matrix

�
1 1
1 1

�
is not invertible. However,

these bounds are still valid if one resolves the undefined fraction by taking the limit
^.V1; V2/ ! � . The resulting bounds

kw1 � w0k D 0; d0.w/2 D d1.w/2 D d2.w/2; kw12k2 D kw1k2 D kw2k2

hold by trivial geometric arguments.

4. Three subspaces

In this section we study the configuration of three subspaces in a Hilbert spaces H .
Corollary 4.5 gives a bound for the angle between the three subspaces in terms of the
angles between each pair. This result is a special case of Theorem 1.2.

4.1. Bounds for the angles. Let Vi be three closed subspaces in H such that 0 <

˛ij � ^.Vi ; Vj / and "ij D cos ˛ij . The next several lemmas give bounds for the
angles between intersections of the subspaces Vi . Similar results with weaker bounds
can be found in [11], [13]. Informally, these lemmas show that if Wi are three planes
in R3 such that ˛ij D ^.Wi ; Wj /, then the angle between two intersections of the
Vi ’s is bounded by the angle between the corresponding intersection of the Wi ’s.

Lemma 4.1. The angles ^.V1 C V2; V3/ and ^.V1 \ V2; V3/ satisfy the inequalities

a) cos2 ^.V1 C V2; V3/ � "2
13

C"2
23

C2"12"23"13

1�"2
12

I

b) cos2 ^.V1 \ V2; V3/ � "2
13 C "2

23 C 2"12"23"13

1 � "2
12

.

Proof. a) Let v3 2 V3 be a vector perpendicular to the intersection .V1 C V2/ \ V3.
By Lemma 3.27 we can bound the length of the projection PV1CV2

.v3/ of v3 onto
V1 C V2 using the length of the projections PV1

.v3/ and PV2
.v3/. However, v3 is

perpendicular to both V1 \ V3 and V2 \ V3, therefore we have

kPV1
.v3/k � "13kv3k and kPV2

.v3/k � "23kv3k:

Thus,

kPV1CV2
.v3/k2 � kv3k2

�
"13 "23

� �
1 �"12

�"12 1

��1 �
"13

"23

�

D "2
13 C "2

23 C 2"12"23"13

1 � "2
12

kv3k2:
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By definition, any bound of kPV1CV2
.v3/k=kv3k, which is independent of the vector

v3, is also a bound for cos ^.V1 C V2; V3/.
Part b) is an application of part a) to the subspaces V ?

i and of Lemma 3.9 several
times.

Lemma 4.2. The angles ^.V1 C V3; V2 C V3/ and ^.V1 \ V3; V2 \ V3/ satisfy the
inequalities

a) cos ^.V1 C V3; V2 C V3/ � "12C"13"23q
1�"2

13

q
1�"2

23

I

b) cos ^.V1 \ V3; V2 \ V3/ � "12C"13"23q
1�"2

13

q
1�"2

23

:

Proof. a) Let w1 and w2 be vectors in V1 C V3 and V2 C V3 that are perpendicular
to the intersection .V1 C V3/ \ .V2 C V3/ � V3 C .V1 \ V2/.

Observe that there is a canonical isomorphism between Vi \.Vi \V3 CV1 \V2/?
and .Vi CV3/\.V3 CV1 \V2/? given by v ! v �PV3CV1\V2

.v/. Using the inverse
of this isomorphism we can find vectors vi 2 Vi \ .Vi \ V3 C V1 \ V2/? such that
wi D vi � PV3CV1\V2

.vi /. Then we have

kwik2 D kvik2 � kPV3CV1\V2
.vi /k2 � �

1 � "2
i3

� kv2
i k

because ^.Vi ; V3/ � ^.Vi ; V3 C V1 [ V2/. Therefore

hw1; w2i D hv1 � PV3CV1\V2
.v1/; v2 � PV3CV1\V2

.v2/i
D hv1; v2i � hPV3CV1\V2

.v1/; PV3CV1\V2
.v2/i

� "12kv1k kv2k C kPV3CV1\V2
.v1/k kPV3CV1\V2

.v2/k
� ."12 C "13"23/ kv1k kv2k:

Therefore,
hw1; w2i

kw1k kw2k � "12 C "13"23q
1 � "2

13

q
1 � "2

23

:

Again, part b) can be obtained by applying part a) to the subspaces V ?
i and using

Lemma 3.9.

4.2. Relations with spherical geometry. All the bounds obtained in the previous
section are “sharp” and have an easy geometric interpretation. Let us start with the
observation that these bounds are nontrivial only if "ij satisfy the inequality

"2
12 C "2

23 C "2
13 C 2"12"23"13 < 1:

This condition is equivalent to the positive definiteness of the matrix0
@ 1 �"12 �"13

�"12 1 �"23

�"13 �"23 1

1
A ;



Subspace arrangements and property T 463

which in turn is equivalent to ˛12 C ˛23 C ˛13 > � .
Notice that this is equivalent to the existence of three unit vectors wi 2 R3 such

that hwi ; wj i D �"ij (such configuration of vectors is unique up to isometry of R3).
These vectors define three lines Wi D Rwi and three planes W 0

i D W ?
i .

It is a well-known fact from spherical geometry that the cosine of the angle between
the line W3 and the plane W1 C W2 is given by the formula in part a) of Lemma 4.1.
Similarly the cosine of the angle between the planes W1 C W3 and W2 C W3 is equal
to the expression in part a) of Lemma 4.2. The analogous formulas in parts b) of
these lemmas correspond to the angles between the intersections constructed starting
from the planes W 0

i .
One way to prove the second fact is the use of the Gram–Schmidt process. Let

w0
1 D w1 C �1w3 and w0

2 D w2 C �2w3 be the projections of w1 and w2 onto the
plane perpendicular to w3, where

�1 D �hw1; w3i
hw3; w3i D "13; �2 D �hw2; w3i

hw3; w3i D "23:

These vectors are in the planes W1 C W3 and W2 C W3 and by construction are
perpendicular to their intersection .W1 C W3/ \ .W2 C W3/ D W3. Therefore, the
angle between these vectors is equal to the angle between the two planes. A direct
computation shows that

cos ^.w0
1; w0

2/ D hw0
1; w0

2i
kw0

1k kw0
2k D � "12 C "13"23q

1 � "2
13

q
1 � "2

23

:

If ˛12 C ˛23 C ˛13 � � then the bounds in Lemmas 4.1 and 4.2 are trivial.
The reason for that is that it is possible to construct subspaces Vi in R3 such that
^.Vi ; Vj / � ˛ij , where the angles ^.V1; V2 \ V3/ and ^.V1 \ V3; V2 \ V3/ are
arbitrarily small.

4.3. Distance estimates. Let Vi be three subspaces in a Hilbert space H . For a
vector v 2 H let di .v/ denote the distance between v and the subspace Vi . Also let
d0.v/ denote the distance between v and the intersection

T
Vi .

Lemma 4.3. If "2
12 C "2

23 C "2
13 C 2"12"23"13 < 1, then

d0.v/2 � �
d1.v/ d2.v/ d3.v/

� 0
@ 1 �"12 �"13

�"12 1 �"23

�"13 �"23 1

1
A

�1 0
@d1.v/

d2.v/

d3.v/

1
A :

Proof. Let v3 D PV3
.v/ denote the projection of v on to V3. By construction we

have d0.v/2 D d3.v/2 C d0.v3/2, thus our goal is to bound the distance d0.v3/.
Let W1 D V1 \ V3 and W3 D V2 \ V3. Observe that W1 \ W2 D \Vi , hence by

Lemma 3.27 we can bound d0.v3/ using the distances between v3 and the subspaces
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W1 and W2, and the angle ^.W1; W2/. Lemmas 3.26 and 4.2 provide us with bounds
for all these. Substituting everything we obtain

d0.v/2 D d0.v3/2 C d3.v/2

� �
dW1

.v3/ dW2
.v3/

� �
1 �"

�" 1

��1 �
dW1

.v3/

dW2
.v3/

�
C d3.v/2;

where " D cos ^.W1; W2/,

dWi
.v3/ � cos ^.V1; V3/d3.v/ C di .v/

sin ^.V1; V3/

and

cos ^.W1; W2/ � cos ^.V1; V2/ C cos ^.V1; V3/ cos ^.V1; V3/

sin ^.V1; V3/ sin ^.V1; V3/
:

A long and boring computation shows that the resulting expression is exactly equal
to the formula in the statement of the lemma. The proof of Theorem 5.1 follows the
same idea and shows how to avoid doing this long computation.

Remark 4.4. The bound in the above lemma is sharp. Let W 0
i be the three planes in

R3 such that the angles between them are equal to ˛ij . It is easy to see that for any
three positive numbers di there exists a vector v 2 R3 such that dW 0

i
.v/ D di and

kvk2 is given by the formula above.

An immediate application of the above bound is the following corollary, which is
a special case of Theorem 1.2.

Corollary 4.5. If "2
12 C "2

23 C "2
13 C 2"12"23"13 < 1, then

1 � cos ^.V1; V2; V3/ � �

2
;

where � is the smallest eigenvalue of the (positive definite) matrix

A" D
0
@ 1 �"12 �"13

�"12 1 �"23

�"13 �"23 1

1
A :

In particular there is a (nontrivial) lower bound for ^.V1; V2; V3/ which depends
only on "ij .

5. Main result

5.1. Proof of Theorem 1.2. We start with a quantitative variant of Theorem 1.2 that
will be used in Section 6 to obtain bounds for the Kazhdan constants and spectral
gaps.
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Theorem 5.1. Let Vi be n closed subspaces of a Hilbert space H . Suppose that the
symmetric .n � n/-matrix

A D

0
BBBBB@

1 �"12 �"13 : : : �"1n

�"21 1 �"23 : : : �"2n

�"31 �"32 1 : : : �"3n

:::
:::

:::
: : :

:::

�"n1 �"n2 �"n3 : : : 1

1
CCCCCA ;

where "ij D cos ^.Vi ; Vj /, is positive definite. Then for any v 2 H we have

d0.v/2 � d t
vA�1dv;

where d0.v/ denotes the distance between v and
T

Vi , and dv is the column vector
with entries the distances dVi

.v/.

Proof. The proof is by induction on n. The base case n D 2 is Lemma 3.27. The
induction step follows the idea of Lemma 4.3. Let V 0

i D Vi \Vn and let v0 D PVn
.v/.

Using Lemma 4.2 one can bound the angles between V 0
i and apply these bounds to

form an .n � 1/ � .n � 1/-matrix A0. Also, the distances between v0 and V 0
i can

be bounded by Lemma 3.26 and these bounds can be combined in a vector d 0
v . In

order to complete the induction step we need to show that 1) the matrix A0 is positive
definite and 2) the equality

d t
vA�1dv D d 0t

v A0�1d 0
v C dVn

.v/2 (1)

holds. The matrix A can be written as the product

A D
�

Id �"n

0 1

� � QA 0

0 1

� �
Id 0

�"t
n 1

�
;

where QA is an .n � 1/ � .n � 1/-matrix with diagonal entries 1 � "2
in and the off

diagonal entries �"ij � "in"jn. Here "n denotes the column vector with entries "in.
The decomposition of A as a product implies that

d t
vA�1dv D d t

v

�
Id 0

"t
n 1

� � QA 0

0 1

��1 �
Id "n

0 1

�
dv D Qd t

v
QA�1 Qdv C dVn

.v/2;

where Qd is the vector defined by� Qdv

dn

�
D

�
Id "n

0 1

�
dv:

Equality (1) now follows from observations that are immediate consequences of the
definitions of A0 and d 0

v:
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(a) the matrices A0 and QA are related by A0 D D QAD, where D is a diagonal matrix

with entries 1=

q
1 � "2

in,

(b) the vectors d 0
v and Qdv satisfy d 0

v D D Qdv .

For this implies that

d 0t
v A0�1d 0

v D Qd 0t
v DA0�1D Qd 0

v D Qd t
v

QA�1 Qdv:

The first observation also proves that A0 is a positive definite matrix since QA is.

Remark 5.2. The geometric interpretation of the above theorem and its proof is the
following: let wi be unit vectors in Rn such that hwi ; wj i D �"ij (such vectors exist
since A is positive definite) and let w be a vector such that hw; wi i D dPVi

.v/. Then
d0.v/ � kwk.

The proof is by induction. The induction step uses the Gram–Schmidt process: one
projects the vectors wi onto the hyperplane perpendicular to wn and then “normalize”
the resulting vectors w0

i to have unit length. By the Lemma 4.2 the angle between
w0

i and w0
j is a bound for the angle between the intersections Vi \ Vn and Vj \

Vn. Similarly, by Lemma 3.26, the distance between the projection PVn
.v/ to the

intersection Vi \ Vn is bounded by
hw0;w0

i
i

kw0
i
k2 , where w0 is the projection of w onto the

hyperplane perpendicular to wn. The induction step is completed by

d0.v/2 D d0.PVn
.v//2 C dVn

.v/2 � kw0k2 C hw; wni2 D kwk2;

where the inequality follows by the induction assumption.

Remark 5.3. The inequality in Theorem 5.1 can be rephrased as follows.
The .n C 1/ � .n C 1/-matrix

B D
�

d0.v/2 d t
v

dv A

�
is not positive definite.

Proof of Theorem 1.2. If the matrix A is positive definite, then Theorem 5.1 applies.
Therefore, we have

d0.v/2 � d t
vA�1dv � 1

�

X
dVi

.v/2;

where � is the smallest eigenvalue of the matrix A. By Remark 3.25 this bound
implies that

cos ^.V1; V2; : : : ; Vn/ � 1 � �

n � 1
; i.e., ^.V1; V2; : : : ; Vn/ � ˛;

where ˛ D cos�1.1 � �
n�1

/. This completes the proof since � and ˛ depend only
on "ij .
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Remark 5.4. In the special case when all "ij D " are the same we obtain that
if " � 1

n�1
then ^.V1; V2; : : : ; Vn/ > ˛, where cos ˛ D n�2

n�1
C ", because the

smallest eigenvalue � of the matrix A is equal to 1 � .n � 1/", which is equivalent to
Corollary 5.3 from [13].

Example 5.5. If Vi are pairwise orthogonal subspaces in H then the matrix A is
equal to the identity matrix, and by Theorem 1.2 we have

cos ^.V1; V2; : : : ; Vn/ � 1 � 1

n � 1
:

In fact, by Example 3.23 equality holds if Vi are the coordinate hyperplanes in n-
dimensional Euclidean space.

5.2. Geometric interpretation. Theorem 1.2 can be rephrased as follows: Let 	

be a spherical simplex such the internal angle between any two faces Fi and Fj

is equal to ˛ij . Then the angle between any collection of subspaces Vi such that
^.Vi ; Vj / � ˛ij is bounded by

^.V1; V2; : : : ; Vn/ � ^. zF1; zF2; : : : ; zFn/ > 0;

where zFn is the affine subspace that contains the face Fi . A slight modification of the
proof also gives that a similar inequality holds for the angle between intersections of
the Vi ’s.

Theorem 5.1 has a similar interpretation: Let p be any point in the interior of the
simplicial cone defined by 	. Then for any v 2 H such that dVi

.v/ � d zFi
.p/ we

have that
d\Vi

.v/ � d\ zFi
.p/ D kpk:

6. Applications

6.1. Kazhdan constants and spectral gap for Coxeter groups. Let G be a finite
group generated by a symmetric set S , i.e., S D S�1. Let � W G ! U.L2.G//

denote the regular representation of the group G. The operator

	S D 1

jS j
X
s2S

.Id � �.s// W L2.G/ ! L2.G/

is called Laplacian5 on G. An equivalent way to define this operator is to take the
Laplacian of the Cayley graph of the group G with respect to the generating set S .

5The operator � can be defined even if the group is not finite, however in this setting there is no direct
connection between �S and a graph Laplacian. One can even define �� when G as a group and � is a
measure on G. In these more general situations there is also a connection between the spectral gap of �

(if positive) and the relaxation time of some random walk.
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This operator is positive definite and has an eigenvalue 0 with multiplicity 1 (the
eigenvector is the constant function). The smallest nontrivial eigenvalue �S of 	S is
called the spectral gap of the Laplacian and is closely related to the relaxation time
of the random walk on Cayley graph. Thus, a bound for the spectral gap can be used
to estimate the mixing time of this random walk.

A Coxeter group G generated by a set S D fs1; : : : ; sng is defined by numbers
mij � 2 and has a presentation

G ' hsi j s2
i D 1; .sisj /mij D 1i:

It is known that G has a defining representation on an n-dimensional vector space V

where each generator si acts as a reflection with respect to a hyperplane Vi . Moreover,
if G is finite there is a G-invariant Euclidean structure on V and the angle between
the hyperplanes Vi and Vj is equal to �=mij .

Theorem 6.1. Let G be a finite Coxeter group. Then the Kazhdan constant �.G; S/

and the spectral gap of the Laplacian can be computed using the defining represen-
tation of G.

Proof. The group G is generated by n subgroups Gi D f1; sig of order 2. From the
presentation of G it is clear that the group generated by Gi and Gj is the dihedral
group Dmij

. Therefore, for any unitary representation of G in H the angle between
H Gi and H Gj is bounded below by �=mij . It is a classical fact [16] that the finiteness
of the group G is equivalent to the positive definiteness of the matrix

A D

0
BBBBB@

1 �"12 �"13 : : : �"1n

�"21 1 �"23 : : : �"2n

�"31 �"32 1 : : : �"3n

:::
:::

:::
: : :

:::

�"n1 �"n2 �"n3 : : : 1

1
CCCCCA ;

where "ij D cos �=mij . This allows us to apply Theorem 5.1.
Let v be an "-almost invariant unit vector in H . Then, by Theorem 5.1, the

distance between v and the space of G-invariant vectors is bounded by

dHG .v/2 �
� "

2

�2

1tA�11;

where 1 is the column vector consisting of n ones, because each generator si moves v

by 2dHGi .v/ � ". Thus, if " < 2.1tA�11/�1=2 there is a nontrivial invariant vector
in H . This shows that �.G; S/ � "0 D 2.1tA�11/�1=2. However, it is easy to see
that equality holds because the defining representation of G contains a unit vector
which is "0-almost invariant.
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A similar argument can be used to obtain bounds for the spectral gap of the
Laplacian: the operator Id � �.si / is equal to two times the projection onto .H Gi /?.
Thus, for a vector v we have .Id � �.si /.v/ D 2P.HGi /?.v/, i.e.,

h	S .v/; vi D 1

jS j
X

h2P.HGi /?.v/; vi D 2

jS j
X

dHGi .v/2:

If the vector v has a trivial projection on the space of G-invariant vectors we have

kvk2 D dHG .v/2 � d t
vA�1dv � ��1kdvk2 D ��1

X
dHGi .v/2;

where � is the smallest eigenvalue of the matrix A. Combining the above inequalities
yields

h	S .v/; vi � 2

n
�kvk2;

i.e., the spectral gap of 	S is at least 2�
n

. Again, it is easy to see that equality holds
since the smallest eigenvalue of 	S in the defining representation is equal to 2�

n
.

Example 6.2. Let the Coxeter group G be of type An, i.e., G ' Sym.n C 1/ and S

consists of transpositions .1; 2/; .2; 3/; : : : ; .n; n C 1/. In this case the matrix A has
the form 0

BBBBB@

1 �1
2

0 : : : 0

�1
2

1 �1
2

: : : 0

0 �1
2

1 : : : 0
:::

:::
:::

: : :
:::

0 0 0 : : : 1

1
CCCCCA :

A standard computation shows that this matrix has eigenvalues �k D 2 sin2. k�
2nC2

/

with eigenvectors vk D .: : : sin k�i
nC1

: : : /t . Thus, the spectral gap of the Laplacian is

2�1

n
D 4

n
sin2 �

2n C 2
	 �2

n3
;

which implies that the relaxation time of the random walk on symmetric group is of
order n3.

The eigenvalues and the eigenvectors of A can be used to compute the value of
1tA�11, however it is easier6 to write down explicitly the matrix A�1, and calculate
that 1tA�11 D .n3 C 3n2 C 2n/=6, which implies that the Kazhdan constant of the
symmetric group is

�.Sym.n C 1/; f.1; 2/; .2; 3/; : : : ; .n; n C 1// D
r

24

n3 C 3n2 C 2n
:

6It is possible to bypass this computation by constructing in the defining representation a vector that at
the same distance forms each of the fixed subspaces and use it to evaluate 1t A�11.
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Remark 6.3. For any Coxeter group the smallest eigenvalue of the matrix A is equal
to 2 sin2 �

2h
, where h is the Coxeter number of G. This implies that the spectral gap

of 	S is equal to 2
n
.1 � cos �

h
/ D 4

n
sin2 �

2h
.

The Kazhdan constant � .G; S/ is equal to 2
�
1tA�11

��1=2
. In the simply laced

case the number M D 1tA�11 is equal to the Dynkin index [12] of the canonical
embedding of sl2 in the simple Lie algebra corresponding to the Coxeter group G,
and by [22] is equal to nh.h C 1/=6. We do not know of any similar formula in the
non-simply laced case. However, it is not difficult to compute the Kazhdan constant
in each case �.G; S/ D 2M �1=2, where M D 1tA�11 is given in Table 1.

Table 1. Kazhdan constants for Coxeter groups.

type rank Coxeter num. M order of M

An n n C 1 n.n C 1/.n C 2/=6 n3=6

Bn n 2n n.2n2 C 3.
p

2 � 1/n C 4 � 3
p

2/=3 2n3=3

Dn n 2.n � 1/ n.n � 1/.2n � 1/=3 2n3=3

E6 6 12 156

E7 7 18 399

E8 8 30 1240

F4 4 12 56 + 36
p

2

H3 3 10 31 C 12
p

5

H4 4 30 332 C 144
p

5

I2.m/ 2 m 2.1 � cos �
m

/�1 4m2=�2

Remark 6.4. Bacher and de la Harpe [2] computed the Kazhdan constant �.G; S/

when the Coxeter group G is of type7 An, i.e., G D Sym.nC1/. Their proof uses the
representation theory of the symmetric group and character estimates. Bounds for
the spectral gap of the Laplacian on the symmetric group were obtained by Diaconis
and Shahshahani [10], and Diaconis and Saloff-Coste [8].

Bagno [3] extended the methods from [2] to the case of Coxeter groups of types Bn

and Dn, but he was not able to compute the exact value of the Kazhdan constants. For
the exceptional Coxeter groups results of this type can be verified by long computation.

Remark 6.5. It seems that Theorem 6.1 can be generalized to classical finite com-
plex reflection groups. In order to do that one first needs to prove that for any unitary
representation of any rank 2 complex reflection group the angle between the fixed sub-
spaces of the two generating pseudo-reflection groups is the same as the angle in the

7They also considered the type I2.m/, when G is the dihedral group Dm.
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defining representation. Since this is clearly the case for the classical rank 2 complex
reflection groups, one can easily extend Theorem 6.1 to the groups of type Gm;p;n.

Remark6.6. One of the reasons why Theorem 6.1 gives exact bounds for the Kazhdan
constants and spectral gap is the existence of the defining representation, where each
“generating” subgroup fixes a hyperplane and the angles between these hyperplanes
are lower bounds for the angles between the fixed subspaces of these subgroups in
any unitary representation of the group G. Theorem 6.14 is another example where
a similar configuration of subspaces allows us to compute the exact value of the
spectral gap.

6.2. Property T for Steinberg groups. Theorem 5.1 can be used to prove property
T for groups G which have generating set S consisting of several (finite) subgroups,
S D S

Gi . Before applying it, one only needs to understand the representation
theory of the subgroups of G generated by any pair of Gi and Gj . One situation
where this method works nicely is the following:

Theorem 6.7. The Steinberg group Stn.Fpht1; : : : ; tki/ has property T, provided that
n � 3 and p � 5.

Proof. For an associative ring R the Steinberg group Stn.R/ is generated by the
elements xij .r/, where 1 � i 6D j � n and r 2 R subject to the defining relations

xij .r1/xij .r2/ D xij .r1 C r2/; Œxij .r/; xjk.s/� D xik.rs/; Œxij .r/; xkl.s/� D 1:

The group G D Stn.Fpht1; : : : ; tki/ contains n finite subgroups G1; : : : ; Gn: for
i D 1; : : : ; n � 1 the subgroup Gi consists of the elements xi;iC1.a � 1/ for a 2 Fp ,
and the group Gn consists of xn1.a01 C a1t1 C � � � C aktk/ for ai 2 Fp . An easy
computation by induction shows that the subgroups Gi generate the group G.

If i; j < n and ji � j j > 1 then the subgroups Gi and Gj commute. Thus
for any unitary representation of G the fixed subspaces are perpendicular, that is,
^.H Gi ; H Gj / D �=2. If j D i C 1 < n the Gi and Gj generate a Heisenberg
group Hp of order p3. It can be shown [13], Section 4, that in any representation of
Hp the angle between the fixed subspaces of any two non-central cyclic subgroups
of order p is larger than cos�1.p�1=2/, thus cos ^.H Gi ; H GiC1/ � p�1=2.

If one of the subgroups is Gn, the argument is almost the same: Gn commutes with
G2; : : : ; Gn�2 and the groups hG1; Gni and hGn�1; Gni are generalized Heisenberg
groups. Thus, we have obtained bounds for all angles ^.H Gi ; H Gj / and the matrix
A has the form 0

BBBBBBB@

1 �" 0 : : : 0 �"

�" 1 �" : : : 0 0

0 �" 1 : : : 0 0
:::

:::
:::

: : :
:::

:::

0 0 0 : : : 1 �"

�" 0 0 : : : �" 1

1
CCCCCCCA

; (2)
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where " D p�1=2. For p � 5 this matrix is positive definite and its smallest eigenvalue
is equal to 1 � 2", the corresponding eigenvector is .1; 1; : : : ; 1/t .

By Theorem 5.1 we have that

dHG .v/2 � 1

1 � 2p�1=2

X
dHGi .v/2:

for any v 2 H . If the unit vector v is "-almost invariant under the generating set
S

Gi

then dHGi .v/ � "=
p

2 for each i , because any unit vector in a unitary representation
of a group H is moved by more than

p
2 by some element in H . Thus

dHG .v/2 � 1

1 � 2p�1=2
� n"2

2
:

If " <

q
2.1�2p�1=2/

n
we have that dHG .v/ < 1, i.e., H has invariant vectors. This

shows that

�.G; [Gi / �
s

2.1 � 2p�1=2/

n
�

r
1

5n
> 0:

In particular G has the Kazhdan property T since
S

Gi is finite.

Remark 6.8. Theorem 6.7 can be generalized to (higher rank) Steinberg groups of
other types (over commutative rings) and the proof is essentially the same. The
groups Gi for i D 1; : : : ; n � 1 are part of the root subgroups corresponding to the
simple roots, and Gn is a subgroup of the root subgroup corresponding to the largest
negative root. In the simply laced case the matrix A is related to the Cartan matrix
corresponding to the extended Dynkin diagram. It will be positive definite if p � 5

and the smallest eigenvalue will be again equal to 1 � 2p�1=2.

Remark 6.9. One can use the method in the proof of Theorem 6.7 to show that
the simply laced Kac–Moody groups over finite fields corresponding to k-regular
graphs have property T if p � k2. These groups are generated by subgroups Gi ,
indexed by the vertices of the graph. Each group Gi is isomorphic to SL2.Fp/ and
the group generated by Gi and Gj is either isomorphic to SL2.Fp/ � SL2.Fp/ or
SL3.Fp/, depending on whether the vertices are connected or not. These conditions
lead to bounds for the angles between the fixed spaces for Gi . By Theorem 1.2 and
Observation 2.1 the positive definiteness of the matrix A" implies that the resulting
Kac–Moody group has property T. However, the matrix A" is positive definite because
its smallest eigenvalue is equal to 1 � kp�1=2 > 0.

Proof of Theorem 1.4. The group SLn.FpŒt1; : : : ; tk�/ is a quotient of the Steinberg
group Stn.Fpht1; : : : ; tki/, which has property T by Theorem 6.7. However, property
T is inherited by quotients, so SLn.FpŒt1; : : : ; tk�/ also has the Kazhdan property T.
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Remark 6.10. This is not the first proof that the group Stn.Fpht1; : : : ; tki/ has prop-
erty T. The case k D 1 is very old and goes back to Kazhdan [20]; in this case G

has T because it is a lattice in a high rank Lie group over Fp..t�1//. In the case
of commuting variables the author and N. Nikolov [19] have shown that the group
has property 
 , which is a weak form of property T. Also, in the commutative case
Y. Shalom [23] proved that G has T if k � n � 2. This condition was replaced by
Vaserstein [25] with n � 3. Recently Ershov and Jaikin [13] extended these results
by showing that Stn.Zht1; : : : ; tki/ has property T for n � 3.

Essentially, the same proof as above valid in the case p > n2 can also be found
in [13]. As mentioned in the introduction, the aim of this paper is not to prove new
results but to explain the author’s interpretation of the ideas in [11] and [13].

Remark 6.11. Using results about the relative property T one can also works with
group Gi which are not finite. This approach yields that the Steinberg groups Stn.R/

have property T if n � 3, the ring R is finitely generated and R does not have Fq as a
quotient, for q � 4. It is possible to remove the condition that R does not have small
quotients, however this requires significantly more complicated arguments instead of
Theorem 1.2; see [13], [14].

6.3. Spectral gaps andmixing times of some randomwalks. The proofs of the fol-
lowing two theorems are very similar to the proofs of Theorems 6.1 and Theorem 6.7
so that we will only sketch the main steps of the proofs.

Theorem 6.12. Let G denote the group SLn.Fp/ for n � 3 and p � 5, and let Gi;j

be the root subgroup Id C Fpeij inside G. The spectral gap of 	S is bounded by

a) 1=10n if S D G1;2 [ G2;3 [ � � � [ Gn�1;n [ Gn;1;
b) 1=10n if S D S

Gi;j ;
c) 1=200n if S D fId ˙ eij j ji � j j � 1.mod n/g.

These bounds imply that the random walks of SLn.Fp/ with respect to the generating
set described above have mixing time bounded by C n3 log p.

Proof. a) The proof is essentially the same as the one of Theorem 6.7. Every pair
of groups Gi and Gj either commute or generate a Heisenberg group. The resulting
matrix is the same as the one in (2) and its smallest eigenvalue is equal to 1�2p�1=2.
Now using that ˝

1
jGi j

P
g2Gi

.Id � �.g//v; v
˛ D d.v; H Gi /2

we obtain that the spectral gap of 	 is bounded by

	S >
1

n
.1 � 2p�1=2/ >

1

10n
:

b) This follows from part a) by decomposing the complete graph as union of n-
cycles and observing that the Laplacian is the average of the Laplacians corresponding
to the union of the root subgroups in each cycle.
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c) First, one uses Selberg’s theorem to bound the spectral gap of the Laplacian
on SL2.Fp/ with respect to the generating set consisting of Id ˙ e12 and Id ˙ e12.
This bound implies that if a vector v in any unitary representation of SLn.Fp/ is
"-almost invariant with respect to S then it is 20"-almost invariant with respect toS

ji�j jD1 Gij , which combined with part a) completes the proof.

Remark 6.13. Theorem 6.12 implies that the Kazhdan constant of SLn.Fp/ with
respect to the generating set S D S

Gi;j is bounded below by a function of order
n�1=2. A bound of this type was found in [18], however this argument gives a slightly
better constant. It is easy to construct representations of SLn.Fp/ with n�1=2-almost
invariant vectors which shows that there is an upper bound for the Kazhdan constant
of the same order.

Our final example is slightly different because it involves a compact Lie group. Let
G denote the group SO.n/ (with its standard action on Rn). This group contains the
subgroups Gij ' SO.2/ consisting of rotations in the coordinate plane spanfei ; ej g.
Kac [17] studied the random walk on SO.n/ with respect to

S
Gij . Maslen [21]

computed the spectral gap in the case S D fGij j 1 � i; j � ng, and Diaconis and
Saloff-Coste [9] obtained bounds in the case S D ˚

Gi;iC1 j 1 � i < n
�
. Since the

group G is not finite, one needs to slightly modify the definition of the Laplacian
	S . Instead of averaging over the generating set one uses an integral with respect to
some measure �. S is then a union of circles and � is just the average of the uniform
measures on each circle.

Theorem 6.14. The spectral gap of 	S is

a) equal to ı if S D S
1�i�n Gi;iC1;

b) bounded below by ı if S D S
1�i;j �nC1 Gij ,

where ı D 2
n

sin2
�

�
2nC2

� 	 �2

2n3 .

Remark 6.15. Part a) improves the bound found in [9] by a constant factor. On the
other hand, the bound in part b) is significantly weaker than the exact value of the
gap nC3

2n.nC1/
	 1

2n
; see [21], Theorem 2.1.

Proof. The proof of part a) is similar to Theorem 6.1 and Example 6.2. The measure
�Gij

on Gij is uniform, thusZ
�Gij

.Id � �.g//.v/ d� D P
.H

Gij /?.v/:

Therefore, if we denote Gi D Gi;iC1, we have

h	S .v/; vi D 1

n

X
hP.HGi /?.v/; vi D 1

n

X
dHGi .v/2:
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The group Gi and Gj commute if ji � j j > 1, so cos ^.H Gi ; H Gj / � 0 (the
representation H might not have any invariant vectors under Gi , in which case the
angle will be equal to �). If j D i C 1 the groups Gi and Gj generate a group
isomorphic to SO.3/. Using the representation theory of SO.3/ one can show [21],
Lemma 3.2, that cos ^.H Gi ; H Gj / � 1=2.

Thus, the matrix A is the same as in Example 6.2, and its smallest eigenvalue is
equal to � D 2 sin2

�
�

2nC2

�
, which implies that the spectral gap of 	S is bounded

below by
2

n
sin2

�
�

2n C 2

�
	 �2

2n3
:

Actually equality holds because the spectral gap of the Laplacian on the represen-
tation of SO.n C 1/ on the space of harmonic homogeneous polynomials of degree 2

is exactly equal to ı. This representation contains a subspace V of dimension n

which contains n hyperplanes H Gi , and the angle between H Gi and H Gj is either
�=2 or �=3.

Part b) follows immediately from part a) by writing the generating set as union of
several generating sets for part a).
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