Groups Geom. Dyn. 5 (2011), 501–507 DOI 10.4171/GGD/136

Groups, Geometry, and Dynamics © European Mathematical Society

Powers in finite groups

Nikolay Nikolov and Dan Segal

For Fritz Grunewald on his 60th birthday

Abstract. If G is a finitely generated profinite group then the verbal subgroup G^q is open. In a d-generator finite group every product of qth powers is a product of $f(d, q)$ qth powers.

Mathematics Subject Classification (2010). 20E20, 20F20.

Keywords. Power subgroups, verbal width, profinite groups.

1. Introduction

1.1. The main result. For a group H and positive integer q the qth power subgroup is

$$
H^q = \langle h^q \mid h \in H \rangle.
$$

Every element of H^q is a product of qth powers; let us say that H^q has *width* n if each such element is equal to a product of n qth powers (we don't assume that n is minimal).

[The](#page-6-0)orem 1. Let $q, d \in \mathbb{N}$. Then there exists $f = f(d, q)$ such that H^q has width f *whenever* H *is a* d*-generator finite group.*

Straightforward arguments show that this is equivalent to

Corollary 1. If G is a finitely generated profinite group and $q \in \mathbb{N}$ then the (alge*braically defined*) *subgroup* G^q *has finite width, and is closed in* G *.*

Together with the positive solution of the Restricted Burnside Problem ([Z1], [Z2]) this in turn implies

Corollary 2. If G is a finitely generated profinite group then G^q is open in G for *every* $q \in \mathbb{N}$ *.*

502 N. Nikolov and D. Segal

The deduction of the corollaries from Theorem 1 is explained in [NS], §1, and in Chapter 4 of [W]. Theorem 1 strengthens [NS], Theorem 1.8 and Corollary 2 generalizes [NS], Th[eo](#page-0-0)rem 1.5.

For $q, d \in \mathbb{N}$ let

 $\beta(d, q)$

denote the order of the d -generator restricted Burnside group of exponent q ; this is the maximal order of any finite d -generator of exponent dividing q . The minimal size of a generating set for a group H is denoted $d(H)$ [.](#page-6-0) [If](#page-6-0) H is finite and $d(H) \le d$ then $|H \cdot H^q| \le R(d, a)$ so by Schreier's formula we have $d(H^q) \le R(d, a)$. Taking $|H : H^q| \leq \beta(d, q)$, so by Schreier's formula we have $d(H^q) \leq d\beta(d, q)$. Taking

$$
\delta(d,q) = d\beta(d,q) \cdot f(d,q)
$$

we see that Theorem 1 implies

Theorem 2. Let $q, d \in \mathbb{N}$. Then there exists $\delta = \delta(d, q)$ such that H^q can be *generated by* δ *qth powers in* [H](#page-6-0) *whenever* H *is a d-generator finite group.*

1.2. [W](#page-0-0)ider implications. The main results of [NS] show that certain verbal subgroups are necessarily closed in a finitely generated profinite group, namely those associated to a locally finite word or to a simple commutator. This list can now be extended:

Theorem 3. *If* G *is a finitely generated profinite group and* w *is a non-commutator wor[d](#page-6-0) [the](#page-6-0)n the ve[rbal](#page-6-0) subgroup* $w(G)$ *is open in* G *.*

This greatly generalizes [NS], Theorem 1.3. It follows immediately from Corollary 2 since $w(G)$ contains G^q where $q = \lfloor \mathbb{Z}/w(\mathbb{Z}) \rfloor$. Taking G to be the free profinite group on d generators and w any non-commutator word, we may infer the existence of $f(d, w)$ and $\delta(d, w)$ such that if H is any d[-g](#page-6-0)enerator finite group, then

- every product of w-values or their inverses in H is equal to such a product of length $f(d, w)$,
- the verbal subgroup $w(H)$ is generated by $\delta(d, w)$ w-values

(cf. [NS], $\S1$, or [W], $\S4.1$).

Let us say that a group word w is *good* if $w(G)$ is closed in G whenever G is a fin[itely](#page-6-0) generated profinite group. The word $w = w(x_1,...,x_k)$ may be considered as an element of the free group F on $\{x_1, \ldots, x_k\}$. Recall that w is a *commutator word* if $w \in F'$, the derived group of F. It is shown in [JZ] that if $1 \neq w \in F''(F')^p$
then $w(G)$ is not closed in the free pro- n group G on two generators (n being any then $w(G)$ is *not* closed in the free pro-p group G on two generators (p being any prime). Thus for a non-trivial word w ,

$$
w \notin F' \implies w \text{ good} \implies w \notin F''(F')^p \text{ for all } p.
$$

The first implication is certainly strict, since simple commutators are good; whether the second implication is reversible is an intriguing open question, discussed at length in [W], Chapter 4.

Powers in finite groups 503

This paper should be seen as a sequel to [NS], which contains all the difficult arguments needed for Theorem 1. In particular, that paper establishes (1) a weaker version of this theorem, restated below as Proposition 1, and (2) an implicit proof that Theorem 1 would follow from Theorem 2; this is sketched i[n §4](#page-6-0) below. As we shall see, Theorem 2 can in tur[n b](#page-0-0)e deduced quite easily from (1) and another result in [NS].

The original mot[ivati](#page-6-0)on for [NS] was to establ[ish](#page-0-0) that every subgroup of finite index in a finitely generated profinite group is open ('Serre's problem'). This of course fol[low](#page-6-0)s at once from Corollary 2, and our initial strategy was indeed an attempt to prove the latter. Our failure to do so forced us to dev[elo](#page-0-0)p machinery for dealing with other verbal subgroups; this did the [job](#page-0-0) just as well, and in [fact](#page-6-0) b[etter,](#page-6-0) in the sense that the resul[tin](#page-6-0)g proof was independent of the solution of the Restricted Burnside Problem. Moreover, as far as we know, all the machinery of [NS] is needed to complete the proof of Theorem 1.

The main results all depend on the classification of finite simple groups, which underpins much of $[NS]$. The proof of Theorem 1 also relies on the solution of the Restricted Burnside Problem. This is inevitable: indeed, Jaikin shows in §5.1 of [JZ] how a positive solution to the Restricted Burnside Problem for a prime power exponent p^n can be deduced directly from Corollary 1 with $q = p^{n+1}$.

Earlier special cases of Theorem 1 were established in [MZ], [SW] (for simple groups) and [S] (for soluble groups).

2. Preliminary results

Henceforth all [grou](#page-6-0)ps are assumed to be finite. We fix a positive integer q . For a group G and $m \in \mathbb{N}$ we write

$$
G_q = \{g^q \mid g \in G\},
$$

\n
$$
G_q^{*m} = \{h_1 h_2 \dots h_m \mid h_1, \dots, h_m \in G_q\}.
$$

Thus G^q has width m precisely when $G^q = G_q^{*m}$.
The largest integer k such that G involves the all

The largest integer k such that G involves the alternating group $Alt(k)$ as a section is denoted $\alpha(G)$.

Proposition 1 ([NS], Theorem 1.8). Let $d, k \in \mathbb{N}$. Then there exists $h = h(k, d, q)$ such that G^q has width h whenever G is a d-generator finite group with $\alpha(G) \leq k$.

The next result is a slight weakening of [NS], Proposition 10.1:

Proposition 2. *There exist* $m = m(q)$ *and* $C(q)$ *with the following property: if* N *is a perfect normal subgroup of* G *and* $N/Z(N) \cong S_1 \times \cdots \times S_n$ *where each* S_i *is a non-abelian simple group with* $|S_i| > C(q)$ *then*

$$
N\cdot G_q^{*m}=G_q^{*m}.
$$

504 N. Nikolov and D. Segal

We also need two simple lemmas. The first is a mild extension of a well-known result due to Gaschütz [G]; the proof given (for example) in [FJ], Lemma 15.30, adapts easily to yield this version:

Lemma 1. Let $X \subseteq G$ and $N \leq G$. Suppose that

$$
G = N \langle X, y_1, \ldots, y_n \rangle
$$

with $n \geq d(G)$ *. Then there exist* $a_1, \ldots, a_n \in N$ *such that* $G = \langle X, a_1y_1, \ldots, a_ny_n \rangle$.

Lemma 2. Let $N \triangleleft G$. Then G has a subgroup L with $NL = G$ and $\alpha(L) \le \max\{\alpha(G/N) \mid A\}$. $max{\{\alpha(G/N), 4\}}$.

Proof. Let S be a Sylow 2-subgroup of N and put $L = N_G(S)$. Then $NL = G$ by the Frattini argument. If $\alpha(L) \ge 5$ then $\alpha(L) = \max{\{\alpha(G/N), \alpha(L \cap N)\}}$. The result follows since $L \cap N$ is an extension of a 2-group by a group of odd order. result follows since $L \cap N$ is an extension of a 2-group by a group of odd order.

3. Generators

Fix $k \geq 5$ such that $k! > 2C(q)$, and let C denote the class of all groups G with $\alpha(G) \leq k$. Put $m = m(q)$.

Propos[i](#page-2-0)tion 3. Let G be a d-generator group. Then $G = \langle X \cup Y \rangle$ where $|X| \le d$, $|Y| \le d$, $X \subset G^{*m}$ and $|Y| \in \mathcal{C}$ $|Y| \leq d$, $X \subseteq G_q^{*m}$ and $\langle Y \rangle \in \mathcal{C}$.

Proof. Let N be a minimal normal subgroup of G. Arguing by induction on the order of G, we may suppose that $G = N \langle X' \cup Y' \rangle$ where $|X'| \leq d$, $|Y'| \leq d$, $X' \subseteq G_q^{*m}$
and $N \langle Y' \rangle / N \in \mathcal{C}$. Applying Lemma 2 to the group $N \langle Y' \rangle$, we obtain a set Y^* with and $N \langle Y' \rangle / N \in \mathcal{C}$. Applying Lemma 2 to the group $N \langle Y' \rangle$, we obtain a set Y^* with $|Y^*| = |Y'|$ such that $N \langle Y^* \rangle = N \langle Y' \rangle$ and $\langle Y^* \rangle \in \mathcal{C}$. Then $G = N \langle Y' \rangle + |Y^* \rangle$ $|Y^*| = |Y'|$ such that $N \langle Y^* \rangle = N \langle Y' \rangle$ and $\langle Y^* \rangle \in \mathcal{C}$. Then $G = N \langle X' \cup Y^* \rangle$.
Say $Y' = \{Y, \dots, Y\}$ and $Y^* = \{y, \dots, y\}$ (allowing repeats if pecessary) Say $X' = \{x_1, \ldots, x_d\}$ and $Y^* = \{y_1, \ldots, y_d\}$ (allowing repeats if necessary).

Case 1. Suppose that $N \notin \mathcal{C}$. By Lemma 1, there exist $a_1, \ldots, a_d \in N$ such that $G = \langle Y^*, a_1x_1, \ldots, a_d x_d \rangle$. As $N \notin \mathcal{C}, N$ must be a direct product of non-abelian simple groups of order exceeding $C(q)$. It follows by Proposition 2 that $a_i x_i \in G_q^{*m}$
for each i. The result follows with $X = \{a, x_i\}$, $X = Y^*$ for each *i*. The result follows with $X = \{a_1x_1, \ldots, a_d x_d\}, Y = Y^*$.

Case 2. Suppose that $N \in \mathcal{C}$. Applying Lemma 1 again we find $a_1, \ldots, a_d \in N$ such that $G = \langle X', a_1y_1, \dots, a_dy_d \rangle$. Put $Y = \{a_1y_1, \dots, a_dy_d\}$. Then $\langle Y \rangle \le N / Y^* \rangle \in \mathcal{C}$ and the result follows with $X = Y'$ $N \langle Y^* \rangle \in \mathcal{C}$ and the result follows with $X = X'.$

We can now prove Theorem 2. Let H be a d -generator group. According to Proposition 3,

$$
H = \langle X \cup Y \rangle
$$

Powers in finite groups 505

where $|X| \le d$, $|Y| \le d$, $X \subseteq H_q^{*m}$ and $\langle Y \rangle \in \mathcal{C}$. We apply Proposition 1 to the group $T = \langle Y \rangle$: this shows that group $T = \langle Y \rangle$: this shows that

$$
T^q = T_q^{*h}
$$

where $h = h(k, d, q)$. Put $\beta = |T : T^q|$; then $\beta \le \beta(d, q)$, and we have $T^q = \langle Z \rangle$
where $|Z| \le d\beta$ where $|Z| \leq d\beta$.
Let \int_{S} .

Let $\{s_1, s_2, \ldots, s_{\beta}\}\$ be a transversal to the cosets of T^q in T, put

$$
P = \langle X \cup Z \rangle,
$$

$$
K = \langle P^{s_1}, \dots, P^{s_\beta} \rangle.
$$

Then $K \triangleleft H = KT$ and $|H : K| \leq |T : T^q| = \beta$. Since $H^q = \langle H_q \rangle \geq K$, it follows that $H^q = K/W$ for some subset W of H, of size at most log, β follows that $H^q = K \langle W \rangle$ for some subset W of H_q of size at most log₂ β .

Now each element of Z is a product of h qth powers in T and each element of X is a product of m qth powers in [H](#page-1-0); as H^q is generated by W together with β conjugates of $X \cup Z$, [it](#page-6-0) [fo](#page-0-0)llows that H^q can be gen[erat](#page-6-0)ed by

$$
\log_2 \beta + \beta (dm + d\beta h)
$$

 q th powers in H .

4. Products of powers

In the terminology of [W], Theorem 2 says that the word x^q is d-restricted for every d. Given this, Theorem 1 becomes a special case of [W], Theorem 4.7.9. However it seems worthwhile to make this note self-contained modulo the paper [NS], so in this section we sketch the deduction [of Th](#page-6-0)eorem 1.

This is an application of the main technical result of [NS]; to state it we need

Definition. Let G be a finite group and K a normal subgroup. Then K is *a ceptable* if

- (i) $K = [K, G]$ and
 \vdots whenever Z_{ℓ}
- (ii) whenever $Z < N \le K$ are normal subgroups of G, the factor N/Z is not of the form S or S \times S for a non-abelian simple group S the form S or $S \times S$ for a non-abelian simple group S.

The 'Key Theorem' stated in [NS], §2, is

Proposition 4. Let K be an acceptable normal subgroup of $G = \langle g_1, \ldots, g_\delta \rangle$. Then

$$
K = \left(\prod_{i=1}^{\delta} [K, g_i]\right)^{*f_1} \cdot K_q^{*f_2}
$$

where f_1 *and* f_2 *depend only on q and 8.*

506 N. Nikolov and D. Segal

(For a subset X of K we write X^{*f} for the set $\{x_1x_2 \ldots x_f \mid x_1, \ldots, x_f \in X\}$.)

Let H be a d-generator group and set $G = H^q$. As before, we have $d(G) \le$ $-dR(d, a)$. Now G has a series of characteristic subgroups $d' = d\beta(d, q)$. Now G has a series of characteristic subgroups

$$
K_1 \geq K_3 \geq K_4 \geq K_5
$$

such that

- K_5 is acceptable in G ,
- K_3 is perfect and $K_4/K_5 = Z(K_3/K_5)$,
- K_3/K_4 is a direct product of non-abelian simple groups of order exceeding $C(q)$,
- K_1/K_3 is soluble,
- $|G: K_1| \leq \gamma = \gamma(d', q),$

where $\gamma(d', q)$ $\gamma(d', q)$ $\gamma(d', q)$ depends only on d' and q. The proof, which is quite straightforward (given the classification of finite simple groups), appea[rs](#page-2-0) in [NS], §2 (see Proof of Theorem 1.6).

According to Theorem 2 there exist $g_1, \ldots, g_\delta \in H_q$ such that $G = \langle g_1, \ldots, g_\delta \rangle$
exp $\delta = \delta(d, q)$. Then $[h, g_1] \in H^{*2}$ for any $h \in H$ and each is so applying where $\delta = \delta(d, q)$. Then $[h, g_i] \in H_q^{*2}$ for any $h \in H$ and each i, so applying Proposition 4 we deduce that

$$
K_5 \subseteq H_q^{*(2\delta f_1 + f_2)}.
$$

Proposition 2 s[h](#page-0-0)ows [t](#page-0-0)hat $K_3 \subseteq H_q^{*m} \cdot K_5$. Now let $k' \ge \max\{5, q + 2\}$ $k' \ge \max\{5, q + 2\}$ $k' \ge \max\{5, q + 2\}$ be such that $k'! > 2\gamma(d', q)$. Then $\alpha(H/K_3) \le k'$; thus Proposition 1 gives

$$
H^q \subseteq H_q^{*h} \cdot K_3
$$

where $h = h(k', d, q)$. Putting everything together we get $H^q \subseteq H_q^{*f}$ where

$$
f = h + m + 2\delta f_1 + f_2,
$$

a number that depends o[nly on](http://www.emis.de/MATH-item?0625.12001) d and q[. This compl](http://www.ams.org/mathscinet-getitem?mr=0868860)etes the proof of Theorem 1.

Added in proof. The authors have recently improved the main results of [NS], yielding an alternative approach t[o Theorems 1, 2](http://www.emis.de/MATH-item?0071.25202) [and 3. See '](http://www.ams.org/mathscinet-getitem?mr=0083993)Generators and commutators in finite groups; abstract quotients of compact groups', $arXiv:1102.3037v1$ [math.GR].

References

- [FJ] M. D. Fried and M. Jarden, *Field arithmetic*. Ergeb. Math. Grenzgeb. (3) 11, Springer-Verlag, Berlin 1986. Zbl 0625.12001 MR 0868860
- [G] W. Gaschütz, Zu einem von B. H. und H. Neumann gestellten Problem. *Math. Nachr.* **14** (1955), 249–252. Zbl 0071.25202 MR 0083993

Powers in finite groups 507

- [JZ] A. Jaikin-Zapirain, On the verb[al](http://www.emis.de/MATH-item?0890.20014) [width](http://www.emis.de/MATH-item?0890.20014) [of](http://www.emis.de/MATH-item?0890.20014) [finite](http://www.emis.de/MATH-item?0890.20014)[ly](http://www.ams.org/mathscinet-getitem?mr=1443588) [generated](http://www.ams.org/mathscinet-getitem?mr=1443588) [p](http://www.ams.org/mathscinet-getitem?mr=1443588)ro-p groups. *Rev. Mat. Iberoa[mericana](http://www.emis.de/MATH-item?1030.20017)* **24** (20[08\), 617–630.](http://www.ams.org/mathscinet-getitem?mr=1756331) Zbl 1158.20012 MR 2459206
- [MZ] C. Martinez and E. Zelmanov, Products of powers in finite simple groups. *Israel J. Math.* **96** (1996), 469–479. Zbl 0890.20013 MR 1433702
- [NS] N. Nikolov and D. Segal, On finitely generated pr[ofinite](http://www.emis.de/MATH-item?1198.20001) [groups,](http://www.emis.de/MATH-item?1198.20001) [I:](http://www.emis.de/MATH-item?1198.20001) [strong](http://www.ams.org/mathscinet-getitem?mr=2547644) [compl](http://www.ams.org/mathscinet-getitem?mr=2547644)eteness and uniform bounds. *Ann. of Math.* (2) **165** (2007), 171–238. Zbl 1126.20018 MR 2276769
- [SW] J. Saxl and J. S. Wilson, A note on powers in simple groups. *Math. Proc. Cambridge Philos. Soc.* **122** (1997), 91–94. Zbl 0890.20014 MR 1443588
- [S] [D. Segal, Clos](http://www.ams.org/mathscinet-getitem?mr=1119009)ed subgroups of profinite groups. *Proc. London Math. Soc.* (3) **81** [\(2000\),](http://www.emis.de/MATH-item?0752.20017) 29–54. Zbl 1030.20017 MR 1756331
- [W] D. Segal, *Words: notes on verbal width in groups*. London Math. Soc. Lecture Note Ser. 361, Cambridge University Press, Cambridge 2009. Zbl 1198.20001 MR 2547644
- [Z1] E. I. Zel'manov, Solution of the restricted Burnside problem for groups of odd exponent. *Izv. Akad. Nauk SSSR Ser. Mat.* **54** (1990), 42–59; English transl. *Math. USSR-Izv.* **36** (1991), 41–60. Zbl 0704.20030 MR 1044047
- [Z2] E. I. Zel'manov, A solution of the restricted Burnside problem for 2-groups. *Mat. Sb.* 182 (1991), 568–592; English transl. *Math. USSR-Sb.* **72** (1992), 543–565. Zbl 0752.20017 MR 1119009

Received September 21, 2009

N. Nikolov, Department of Mathematics, Imperial College, London SW7 2AZ, UK E-mail: n.nikolov@imperial.ac.uk

D. Segal, All Souls College, Oxford OX1 4AL, UK

E-mail: dan.segal@all-souls.ox.ac.uk