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Abstract. We generalise earlier results of John Cremona and the author on the reduction theory
of binary forms, whose zeros give point clusters in P 1, to point clusters in projective spaces
P n of arbitrary dimension. In particular, we show how to find a reduced representative in
the SL.n C 1; Z/-orbit of a given cluster. As an application, we show how one can find a
unimodular transformation that produces a small equation for a given smooth plane curve.
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1. Introduction

In this paper, we generalise the results of [8] on the reduction theory of binary forms,
which describe positive zero-cycles in P 1, to positive zero-cycles (or point clusters)
in projective spaces of arbitrary dimension. This should have applications to more
general projective varieties in P n, by associating a suitable positive zero-cycle to
them in an PGL.n C 1/-invariant way. We discuss this in the case of (smooth) plane
curves.

The basic problem motivating this work is as follows. Consider projective varieties
over Q in some P n, with fixed discrete invariants. On this set, there is an action of
SL.n C 1; Z/ by linear substitution of the coordinates. We would like to be able to
select a specific representative of each orbit, which we will call reduced, in a way
that is as canonical as possible. Hopefully, this representative will then also allow a
description as the zero set of polynomials with fairly small integer coefficients.

Recall the main ingredients of the approach taken in [8]. The key role is played
by a map z from binary forms of degree d into the symmetric space of SL.2; R/

(which is the hyperbolic plane H in this case) that is equivariant with respect to the
action of SL.2; Z/. We then define a form F to be reduced if z.F / is in the standard
fundamental domain for SL.2; Z/ in H . In order to make the map z as canonical as
possible, we use a larger group than SL.2; Z/, namely SL.2; C/; we then look for
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a map z from binary forms with complex coefficients into the symmetric space HC

for SL.2; C/ that is SL.2; C/-equivariant and commutes with complex conjugation.
This map restricted to real forms will have image contained in H and satisfy our
initial requirement.

Now there are in general many possible such maps z (for exceptions, see Re-
mark 12 below). We therefore need to pick one of them. In [8] this is achieved by a
geometric property: we define a function on HC , depending on F , that measures how
far a point is from the roots of F (up to an arbitrary additive constant); the covariant
z.F / is then the unique point in HC minimising this distance. This is essentially the
same approach (but in a different interpretation) as that used by Julia in his thesis [5],
who works out what z.F / is for F of degree 3 or 4, but defines it more generally. He
did not prove that his covariant is always well-defined, though. Julia was building on
previous work by Hermite [3], [4]. For a more detailed discussion, see [8].

In our more general situation, we work with the space Hn;R of positive definite
quadratic forms in n C 1 variables, modulo scaling, and the space Hn;C of positive
definite Hermitian forms in nC1 variables, modulo scaling (by positive real factors).
There is a natural action of complex conjugation on Hn;C; the subset fixed by it can
be identified with Hn;R.

We use the formula for the distance function mentioned above to obtain a similar
function on Hn;C , depending on a collection of points in P n.C/. Under a suitable
condition on the point cluster or zero-cycle Z, this distance function has a unique
critical point, which provides a global minimum. We assign this point to Z as its
covariant z.Z/, thus solving our problem.

2. Basics

In all of the paper, we fix n � 0.
We consider the group G D SL.n C 1; C/ and its natural action on forms (ho-

mogeneous polynomials) in n C 1 variables X0; : : : ; Xn by linear substitutions; this
action will be on the right:

F.X0; X1; : : : ; Xn/ � .aij /0�i;j �n D F
� Pn

j D0 a0j Xj ; : : : ;
Pn

j D0 anj Xj

�
:

The same action is used for Hermitian forms in X0; : : : ; Xn. A Hermitian form can be
considered as a bihomogeneous polynomial of bidegree .1; 1/ in two sets of variables
X0; : : : ; Xn and xX0; : : : ; xXn, where the action on the second set is through the complex
conjugate of the matrix. The form Q is Hermitian if Q. xX I X/ D xQ.X I xX/, where
xQ denotes the form obtained from Q by replacing the coefficients with their complex

conjugates. Hermitian forms can also be identified with Hermitian matrices, i.e.,
matrices A such that A> D xA, where A corresponds to Q if Q.x/ D NxAx>; then
the action of G is given by A � � D N�>A� .
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The group G also acts on coordinates .�0; : : : ; �n/ on the right via the contragre-
dient representation,

.�0; : : : ; �n/ � � D .�0; : : : ; �n/��>:

These actions are compatible in the sense that

.Q � �/.x � �/ D Q.x/

for Hermitian forms Q and coordinate vectors x.

3. Point clusters

The actions described above induce actions of PSL.n C 1; C/ D PGL.n C 1; C/ on
projective schemes over C and points in projective space P n.C/. The first specialises
and the second generalises to an action on positive zero-cycles.

Definition 1. A positive zero-cycle or point cluster is a formal sum Z D Pm
j D1 Pj

of points Pj 2 P n. The number m of points is the degree of Z, written deg Z. If
L � P n is a linear subspace, we let ZjL be the sum of those points in Z that lie in L.

Definition 2. Let Z be a point cluster in P n.

(1) Z is split if there are two disjoint and nonempty linear subspaces L1; L2 of P n

such that Z D ZjL1
C ZjL2

. Otherwise, Z is non-split.
(2) Z is semi-stable if for every linear subspace L � P n, we have

.n C 1/ deg ZjL � .dim L C 1/ deg Z:

(3) Z is stable if for every linear subspace ; ¤ L ¨ P n, we have

.n C 1/ deg ZjL < .dim L C 1/ deg Z:

Remark 3. Note that a split point cluster cannot be stable.
If we identify the cluster Z D Pm

j D1 Pj , where Pj D .aj 0 W aj1 W � � � W ajn/, with
the form F.Z/ D Qm

j D1.aj 0x0 C aj1x1 C � � � C ajnxn/ (up to scaling), then Z is
(semi-)stable if and only if F.Z/ is (semi-)stable in the sense of Geometric Invariant
Theory; see [7].

If n D 1, then the notions of stable and semi-stable defined here coincide with
those defined in [8] (in Def. 4.1 and before Prop. 5.2) for binary forms.

Definition 4. Let Zm denote the set of point clusters of degree m in P n.C/, Zsst
m

the subset of semi-stable and Zst
m the subset of stable point clusters. We denote by

Zm.R/ etc. the subset of point clusters fixed by complex conjugation, which acts viaP
j Pj 7! P

j
xPj .
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For notational convenience, for a point cluster Z and �1 � k � n we define

'Z.k/ D maxfdeg ZjL W L � P n a k-dimensional linear subspaceg:
Then Z is semi-stable if and only if 'Z.k/ � kC1

nC1
deg Z for all 0 � k � n, and Z

is stable if and only if the inequality is strict for 0 � k < n.
We let hP; P 0i D xP .P 0/> denote the standard Hermitian inner product on row

vectors and kP k2 D hP; P i the corresponding norm. The next lemma is the basis
for most of what follows.

Lemma 5. Let Z 2 Zm. Fix row vectors Pj , j 2 f1; : : : ; mg, representing the points
in Z, such that kPj k2 D 1. Then there is a constant c > 0 such that for every positive
definite Hermitian matrix Q with eigenvalues 0 < �0 � �1 � � � � � �n, we have

mY
j D1

� xPj QP >
j

� � c

nY
kD0

�
'Z.k/�'Z.k�1/

k
:

Proof. Let B D b0; : : : ; bn be a unitary basis of CnC1. Let Ek D hb0; : : : ; bki the
subspace generated by the first k C 1 basis vectors. By definition of 'Z , the set
†.B/ � Sm of permutations � with the following property is nonempty:

P�.j / … Ek if j > 'Z.k/:

Define k� .j / D minfk W �.j / � 'Z.k/g; then P�.j / … Ek� .j /�1 if � 2 †.B/.
Write Pj D Pn

iD0 �j ibi and define

f� .B/ D
mY

j D1

� nX
iDk� .j /

j��.j /;i j2
�

D
mY

j D1

� nX
iDk� .j /

jhP�.j /; bi ij2
�

and
f .B/ D maxff� .B/ W � 2 Smg:

It is clear that f� is continuous on the set of unitary bases and that f� .B/ > 0 if
� 2 †.B/. This implies that f is continuous and positive. Since the set of all unitary
bases (i.e., U.n C 1/) is compact, there is some c > 0 such that f .B/ � c for all B .

Now let Q be a positive definite Hermitian matrix as in the statement of the
Lemma. Let B D b0; : : : ; bn be a unitary basis of eigenvectors of Q such that
bj Q D �j bj . We then have for � 2 Sm and using notation introduced above

mY
j D1

� xPj QP >
j

� D
mY

j D1

� xP�.j /QP >
�.j /

� D
mY

j D1

� nX
iD0

�i j��.j /;i j2
�

�
mY

j D1

�
�k� .j /

nX
iDk� .j /

j��.j /;i j2
�

D f� .B/

mY
j D1

�k� .j / D f� .B/

nY
kD0

�
'Z.k/�'Z.k�1/

k
:
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Taking the maximum over all � 2 Sm now shows that

mY
j D1

� xPj QP >
j

� � f .B/

nY
kD0

�
'Z.k/�'Z.k�1/

k
� c

nY
kD0

�
'Z.k/�'Z.k�1/

k
: �

4. The covariant

Definition 6. Let zZm denote the set of point clusters of degree m with a choice of
coordinates for the points, up to scaling the coordinates of the points with factors
whose product is 1. We will call zZ 2 zZm a point cluster with scaling. We define zZst

m

and zZsst
m analogously.

For � 2 C� and zZ 2 zZm, we write � zZ for the cluster with scaling that we obtain
by scaling one of the points in zZ by �. This defines an action of C� on zZm such that
the quotient C�n zZm is Zm. If zZ 2 QZm, then we write Z for the image of zZ in Zm.

Definition 7. For a point cluster with scaling zZ 2 zZm, pick a representative
Pm

j D1 Pj

with row vectors Pj . Then, for Q 2 Hn;C , represented by a Hermitian matrix, we
define

D zZ.Q/ D D. zZ; Q/ D
mX

j D1

log. xPj QP >
j / � m

n C 1
log det Q:

D. zZ; Q/ is clearly invariant under scaling of Q, and it does not depend on the
choice of representative for zZ. Note also that for � 2 G,

D. zZ � �; Q � �/ D D. zZ; Q/:

Furthermore, we have D.
NzZ; xQ/ D D. zZ; Q/ and D.� zZ; Q/ D log j�j2 CD. zZ; Q/.

This function generalises the distance function used in Prop. 5.3 of [8]. We will
now proceed to show that for stable clusters, there is a unique form Q 2 Hn;C that
minimises this distance.

To that end, we now identify Hn;C with the set of positive definite Hermitian
matrices of determinant 1. This is a real n.n C 2/-dimensional submanifold of the
space of all complex .n C 1/ � .n C 1/-matrices. SL.n C 1; C/ acts transitively on
this space, and the tangent space T at the identity matrix I consists of the Hermitian
matrices of trace zero. We say that a twice continuously differentiable function on
Hn;C is convex if its second derivative is positive semidefinite, and strictly convex
if its second derivative is positive definite. Then the usual conclusions on convex
functions apply.

Lemma 8. Let zZ 2 zZm be a point cluster with scaling.

(1) The function D zZ is convex.
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(2) If Z is non-split, then D zZ is strictly convex.

(3) If Z is semi-stable, then D zZ is bounded from below.

(4) If Z is stable, then the sets fQ 2 Hn;C W D zZ.Q/ � Bg are compact for all
B 2 R.

Proof. Since scaling zZ only changes D zZ by an additive constant, we can assume
that zZ D P1 C � � � C Pm with row vectors Pj satisfying kPj k2 D 1.

(1) Since D zZ.Q � �/ D D zZ���1.Q/, we can assume that Q D I . We compute
the second derivative at � D 0 of � 7! f .�/ D D zZ.exp.�A//, where A ¤ 0 is a
Hermitian trace-zero matrix (i.e., A 2 T ). We have

D zZ.exp.�A// D
X

j

log.1 C xPj AP >
j � � C NPj A2P >

j � �2=2 C : : : /

D
X

j

. xPj AP >
j � � C . xPj A2P >

j � . xPj AP >
j /2/ � �2=2 C : : : /

The second derivative therefore is
X

j

. xPj A2P >
j � . xPj AP >

j /2/ D
X

j

.kPj
xAk2kPj k2 � jhPj

xA; Pj ij2/ � 0

by the Cauchy–Schwarz inequality. This shows that the second derivative is positive
semidefinite, whence the first claim.

(2) As in (1), it suffices to consider the case Q D I , since the condition for Z to
be non-split is invariant under the action of SL.n C 1; C/. The second derivative in
(1) vanishes exactly when Pj is an eigenvector of A, for all j . Since Z is non-split,
this is only possible if A is a scalar matrix: the Pj must all be in the same eigenspace,
and their span is the whole space. But A ¤ 0 has trace zero, so A cannot be a scalar
matrix. So the second derivative at I must be positive definite.

(3) By Lemma 5, we find some c > 0 such that for Q 2 Hn;C with eigenvalues
�0 � � � � � �n, we have

mY
j D1

� xPj QP >
j

� � c

nY
kD0

�
'Z.k/�'Z.k�1/

k
:

With 'Z.k/ � .k C 1/ m
nC1

, we obtain

D zZ.Q/ � log c C
nX

kD0

.'Z.k/ � 'Z.k � 1// log �k

D log c C m log �n �
nX

kD1

'Z.k � 1/.log �k � log �k�1/
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� log c C m log �n � m

n C 1

nX
kD1

k.log �k � log �k�1/

D log c C m

n C 1

nX
kD0

log �k

D log c

(recall that
P

k log �k D log det Q D 0).
(4) We now use that 'Z.k/ � .k C 1/ m

nC1
� 1

nC1
for 0 � k � n � 1. The

computation in the proof of (3) above then yields

D zZ.Q/ � log c C m log �n �
nX

kD1

'Z.k � 1/.log �k � log �k�1/

� log c C m log �n

� m

n C 1

nX
kD1

k.log �k � log �k�1/ C 1

n C 1

nX
kD1

.log �k � log �k�1/

D log c C 1

n C 1
.log �n � log �0/:

So D zZ.Q/ � B implies that �n=�0 is bounded, but this implies that the subset of
Q 2 Hn;C satisfying D zZ.Q/ � B is also bounded. Since it is obviously closed, it
must be compact.

Remark 9. Note that if Z is not stable, then there are sets fQ W D zZ.Q/ � Bg that
are not compact. Indeed, there is a linear subspace L0 � CnC1 of some dimension
0 < k C 1 < n C 1 containing at least .k C 1/m=.n C 1/ points of Z. Let L1 be its
orthogonal complement. Let Q� be the Hermitian matrix with eigenvalue ��.n�k/

on L0 and eigenvalue �kC1 on L1. Then we have for � � 1 that

D zZ.Q�/ � const.C .k C1/
m

n C 1
log ��.n�k/ C .n�k/

m

n C 1
log �kC1 D const. I

but the set fQ� W � � 1g is not relatively compact.
We also see that D zZ is not bounded from below when Z is not semi-stable, since

using the corresponding strict inequality, we find with a similar argument that

D zZ.Q�/ � const. � " log �

for some " > 0.

Corollary 10. If zZ 2 zZst
m, then the function D zZ has a unique critical point z.Z/

on Hn;C , and at this point D zZ achieves its global minimum log �. zZ/ (for some
�. zZ/ 2 R>0).
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Proof. By Lemma 8, we know that D zZ is strictly convex and also that for all B the
set fQ 2 Hn;C W D zZ.Q/ � Bg is compact. The first property implies that every
critical point must be a local minimum. By the second property, there exists a global
minimum. If there were two distinct local minima, then on a path joining the two,
there would have to be a local maximum, but then the second derivative would not be
positive definite in this point, a contradiction. Hence there is a unique local minimum,
which must then also be the global minimum and the unique critical point.

Since D� zZ D log j�j2 C D zZ , the minimising point in Hn;C does not depend on
the scaling, so it only depends on Z, and the notation z.Z/ is justified.

Note that we have �.� zZ/ D j�j2�. zZ/.
Corollary 10 defines z W Zst

m ! Hn;C and � W zZst
m ! R>0. The latter extends to

� W zZm �! R�0

with the definition �. zZ/ D infQ2Hn;C exp.D. zZ; Q//. By Lemma 8 (3) we have

�. zZ/ > 0 if zZ 2 zZsst
m , and by the preceding remark, �. zZ/ D 0 if zZ is not semi-

stable.

Corollary 11. The function z W Zst
m ! Hn;C is SL.n C 1; C/-equivariant. It also

satisfies z. NZ/ D z.Z/. In particular, z restricts to z W Zst
m.R/ ! Hn;R.

The function � W zZm ! R�0 is invariant under SL.n C 1; C/ and under complex
conjugation.

Proof. The first statement follows from the invariance of D (under the action of both
SL.n C 1; C/ and complex conjugation) and the uniqueness of z.Z/. The second
statement follows from the invariance of D.

Remark 12. In some cases the point z.Z/ is uniquely determined by symmetry
considerations. Namely if the point cluster Z 2 Zst

m is stabilised by a subgroup of
SL.n C 1; C/ that fixes a unique point in Hn;C , then z.Z/ must be this point. See
Lemma 3.1 in [8] for a precise statement. This observation facilitates the numer-
ical computation of z.Z/, since it eliminates the need for finding numerically the
minimum of the distance function on Hn;C .

Example 13. Consider a sum Z of nC2 points in general position in P n.C/. Then Z

is stable. Since PGL.nC1; C/ acts transitively on .nC2/-tuples of points in general
position, we can assume that the points in Z are the coordinate points together with the
point .1 W � � � W 1/. Let this specific cluster be Z0. The stabiliser of Z0 in PGL.n C 1/

is isomorphic to the symmetric group SnC2; its preimage � in SL.n C 1; C/ acts
irreducibly on CnC1. By Schur’s lemma, there is a unique (up to scaling) �-invariant
positive definite Hermitian form. It can be checked that

Q0.x0; : : : ; xn/ D
nX

iD0

jxi j2 C
X

0�i<j �n

jxi � xj j2 D .n C 2/

nX
iD0

jxi j2 �
ˇ̌ˇ

nX
iD0

xi

ˇ̌ˇ2
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is invariant under � , hence z.Z0/ D Q0. In general, we just have to find a matrix �

such that Z0 � ��> D Z; then

z.Z/ D z.Z0 � ��>/ D Q0 � ��>:

Note that Z0 � ��> D P
j P0;j � if Z0 D P

j P0;j and we think of the P0;j as row
vectors. So if Z D P

j Pj , then the rows of � are coordinate vectors for the first
n C 1 points in Z, scaled in such a way that their sum is a coordinate vector for the
last point.

5. Reduction of point clusters

We can now define when a point cluster is reduced.

Definition 14. Let Z 2 Zst
m.R/. We say that Z is LLL-reduced, resp., Minkowski-

reduced if the positive definite real quadratic form corresponding to z.Z/ is LLL-
reduced, resp., Minkowski-reduced.

By definition, there is an essentially unique Minkowski-reduced representative
in the SL.n C 1; Z/-orbit of a given point cluster Z 2 Zst

m.R/. On the other hand,
for computational purposes, it is usually more convenient to work with LLL-reduced
representatives. In order to find an LLL-reduced representative of Z’s orbit, we
compute the covariant Q D z.Z/. Then we use the LLL algorithm [6] to find
� 2 SL.n C 1; Z/ such that Q � � is LLL-reduced. Then Z � � is an LLL-reduced
representative of the orbit of Z.

Example 15. We can use our results to reduce pencils of quadrics in three variables
whose generic member is smooth. These correspond to four points in general position
in P 2. We illustrate the method with a concrete example. Let

Q1.x; y; z/ D 857211194051x2 � 10879213981695xy � 1296007209476xz

C 34518126244996y2 C 8224075847095yz C 489854396055z2;

Q2.x; y; z/ D 2274418654562x2 � 28865567091425xy � 3438665984061xz

C 91586146842213y2 C 21820750429746yz C 1299719350945z2

be a pair of quadrics. We first determine a good basis of the pencil spanned by Q1

and Q2 by reducing the binary cubic

det.xM1 C yM2/ D 27348x3 C 215720x2y C 567184xy2 C 497080y3

with the approach described in [8]. Here M1 and M2 are the matrices of second
partial derivatives of Q1 and Q2, respectively. This suggests the new basis

Q0
1 D �21Q1 C 8Q2; Q0

2 D �8Q1 C 3Q2
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with already somewhat smaller coefficients; the new binary cubic is

�4x3 C 88x2y C 112xy2 � 24y3:

Now we find the four points of intersection numerically. We obtain

P1 D .0:3038054131 C 0:0003625989i W �0:0712511408 C 0:0000571409i W 1/;

P2 D .0:3038054131 � 0:0003625989i W �0:0712511408 � 0:0000571409i W 1/;

P3 D .0:3038639670 C 0:0003672580i W �0:0712419135 C 0:0000578751i W 1/;

P4 D .0:3038639670 � 0:0003672580i W �0:0712419135 � 0:0000578751i W 1/;

and from this a matrix � 2 SL.3; C/ that brings these points in standard position:

��1 D
0
@�13584:01 � 1762:69i 3186:66 C 407:04i �44719:72 � 5748:66i

8318:54 C 10882:75i �1945:84 � 2556:21i 27338:35 C 35854:08i

14176:55 C 2104:80i �3324:73 � 486:76i 46662:58 C 6870:37i

1
A :

From this, we obtain a matrix representing z.P1 C P2 C P3 C P4/ as

N�
0
@ 3 �1 �1

�1 3 �1

�1 �1 3

1
A �> D

0
@ 241474533625:0 �1532325529959:9 �182541212588:9

�1532325529959:9 9723681808257:5 1158352212636:4

�182541212588:9 1158352212636:4 137990925143:2

1
A

(For the actual computation, more precision is needed than indicated by the numbers
above.) An LLL computation applied to this Gram matrix suggests the transformation
given by

g D
0
@ 3780 19276 �12561

�889 �4515 2953

12463 63400 �41405

1
A

and indeed, if we apply the corresponding substitution to Q0
1 and Q0

2, we obtain the
nice and small quadrics

2x2 � xy C xz C 2z2 and �2xz C 3y2 � yz C 2z2:

6. Reduction of ternary forms

In this section, we apply the reduction theory of point clusters to ternary forms. The
idea is to associate to a ternary form, or rather, to the plane curve it defines, a stable
point cluster in a covariant way. This should be a purely geometric construction
working over any base field of characteristic zero.
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We will only consider irreducible ternary forms F of degree d . Assume that the
curve defined by F has r nodes and no other singularities; then its genus is

g D 1
2
.d � 1/.d � 2/ � r;

and by [2], Exercise IV.4.6, p. 337, the number of inflection points is

6.g � 1/ C 3d D 3d.d � 2/ � 6r:

We let Z.F / be the sum of the inflection points, counted with multiplicity. When
is Z.F / stable? The first condition is that the multiplicity of any point must be less
than d.d � 2/ � 2r . Now the multiplicity is 2 less than the order of tangency of
the inflectional tangent, so it is at most d � 2. Hence the condition is satisfied if
d � 2 < d.d � 2/ � 2r , i.e., if 0 < .d � 1/.d � 2/=2 � r D g. The second condition
is that the multiplicities of points on a line add up to less than 2d.d � 2/ � 4r . Since
there are at most d points on the curve on a line, this sum is at most d.d � 2/. Hence
the condition is satisfied if r < d.d � 2/=4.

In any case, if F defines a nonsingular plane curve of positive genus, then Z.F /

is stable, and we can set z.F / D z.Z.F //. We then define F to be reduced if z.F /

is reduced (i.e., if Z.F / is reduced).

Example 16. If F is a nonsingular cubic, then it defines a smooth curve C of genus 1,
with Jacobian elliptic curve E. The 3-torsion subgroup EŒ3� acts on C by linear
automorphisms of the ambient P 2. The preimage of EŒ3� in SL.3; C/ is a nonabelian
group � of order 27 that acts irreducibly on C3. Therefore there is a unique Q 2 H2;C

that is invariant under the action of EŒ3�. This Q is then z.F /. If we know explicit
matrices MT 2 SL.3; C/ for T 2 EŒ3� that give the action of EŒ3� on P 2, then we
can compute a representative of Q as a Hermitian matrix as

Q D
X

T 2EŒ3�

MT
>

MT ;

compare [1], §6.
We get the same result if we consider the cluster of inflection points on C , since

this cluster (which is a principal homogeneous space for the action of EŒ3�) is invariant
under the same group � . Numerically, however, the method using the action of EŒ3�

seems to be more stable. See [1], §6, for some more discussion and details.

In general, we have to find the inflection points numerically and then find the
minimum of D zZ , also numerically. This can be done by a steepest descent method.
We will illustrate this by reducing a ternary quartic.
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Example 17. Let

F.x; y; z/ D 390908548757x4 � 1083699236751x3y C 835578482044x3z

C 1126610184312x2y2 � 1737329379412x2yz

C 669777678687x2z2 � 520542386163xy3

C 1204081445939xy2z � 928398396271xyz2

C 238611653627xz3 C 90192376558y4 � 278168756247y3z

C 321720059816y2z2 � 165373310794yz3 C 31877479532z4:

We compute the inflection points as the intersection points of F D 0 and H D 0,
where H is the Hessian of F . This gives 24 coordinate vectors and defines the point
cluster zZ. We then use a steepest descent method to find (an approximation to) z.Z/,
represented by the matrix

0
@ 367751:9942 �254909:8720 196557:1210

�254909:8720 176692:9800 �136245:3974

196557:1210 �136245:3974 105056:8935

1
A :

LLL applied to this Gram matrix suggests the transformation
0
@ �7 23 �89

�34 118 �443

�31 110 �408

1
A ;

which turns F into

3x4�3x3yC3x3zCx2y2�2x2z2Cxy2z�xyz2�2xz3C3y4�3y3zCy2z2�3z4:
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