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Abstract. This paper is connected with the problem of describing path metric spaces that are
homeomorphic to manifolds and biLipschitz homogeneous, i.e., whose biLipschitz homeo-
morphism group acts transitively.

Our main result is the following. Let X D G=H be a homogeneous manifold of a Lie
groupG and let d be a geodesic distance onX inducing the same topology. Suppose that there
exists a subgroup GS of G that acts transitively on X such that each element g 2 GS induces
a locally biLipschitz homeomorphism of the metric space .X; d/. Then the metric is locally
biLipschitz equivalent to a sub-Riemannian metric. Any such metric is defined by a bracket
generating GS -invariant sub-bundle of the tangent bundle.

The result is a consequence of a more general fact that requires a transitive family of
uniformly biLipschitz diffeomorphisms with a control on their differentials. It will be relevant
that the group acting transitively on the space is a Lie group and so it is locally compact, since,
in general, the whole group of biLipschitz maps, unlikely the isometry group, is not locally
compact.

Our method also gives an elementary proof of the following fact. Given a Lipschitz sub-
bundle of the tangent bundle of a Finsler manifold, both the class of piecewise differentiable
curves tangent to the sub-bundle and the class of Lipschitz curves almost everywhere tangent to
the sub-bundle give rise to the same Finsler–Carnot–Carathéodory metric, under the condition
that the topologies induced by these distances coincide with the manifold topology.
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1. Introduction

In the last twenty years there has been a surge of interest in the geometry of non-smooth
spaces and in their corresponding biLipschitz analysis. This movement arose from
the interaction between active areas of mathematics concerning the theory of analysis
on metric spaces [Sem96], [HK98], [Che99], [AK00], [LP01], [Hei01], [Laa02],
geometric analysis [GS92], [BGP92], [CC97] along with geometric group theory,
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rigidity, and quasiconformal homeomorphisms. One focus of this research has been
the study of mappings between non-Riemannian metric structures such as Carnot
groups and boundaries of hyperbolic groups [Pan89], [BM91], [MM95], [KL97],
[Gro99], [BP00], [KB02].

In the present paper, we focus on the rigidity of certain non-smooth metric struc-
tures on manifolds, namely, geodesic metrics on manifolds that have a transitive
group of biLipschitz homeomorphisms; for short they are called biLipschitz homo-
geneous geodesic manifolds. Every known example is locally biLipschitz equivalent
to a homogeneous spaceG=H equipped with a Carnot–Carathéodory metric; hereG
is a connected Lie group and H is a closed subgroup. Any such metric, also called
a sub-Riemannian metric, is defined by a bracket generating sub-bundle of the tan-
gent bundle, also known as completely non-holonomic distribution. For surveys of
this area, including how the jargon interchanges between sub-Riemannian geometry
and Carnot–Carathéodory geometry, see [BBI01], [Mon02] and the papers [Gro96],
[Mit85], [Bel96].

All of the2-dimensional examples, known so far, are locally biLipschitz equivalent
to the Euclidean plane. One may therefore ask whether these are in fact the only
examples. Our main goal in this paper is to show that under additional assumptions
this is indeed the case.

The motivation for this question comes from several sources. First, one can view
this as an analogue, in the biLipschitz category, of Hilbert’s fifth problem on the
characterization of Lie groups, solved in [MZ74], or the conjectural Bing–Borsuk
characterization of topological manifolds. Another source of motivation is the work
of Berestovskii [Ber88], [Ber89a], [Ber89b], who showed that a finite dimensional
geodesic metric space with transitive isometry group is isometric to an exampleG=H
as above, except that in the general case one has to use a Finsler–Carnot–Carathéodory
metric as opposed to a Riemann–Carnot–Carathéodory metric. In addition, a coarse
version of this question in the two dimensional case has arisen in several situations
in Geometric Group Theory, and is directly related with the problem considered. For
example in [KK06], with the purpose of analyzing 2-dimensional Poincaré duality
groups over commutative rings, Michael Kapovich and Bruce Kleiner studied quasi-
homogeneous quasi-planes, i.e., simply-connected metric cell complexes satisfying
a coarse Poincaré duality in dimension 2 on which the group of quasi-isometries acts
transitively. Quasi-planes also appeared in [KK05].

We consider length metrics since otherwise there are many metrics with transitive
isometry group that are not locally biLipschitz to the standard one, e.g., even on the
real line R, all distances d.s; t/ ´ d

pjs � t j, for d > 1, are translation invariant. In
fact, biLipschitz homogeneous curves have been studied deeply in [Bis01], [GH99].

We show that, locally, the examples mentioned above are the only examples if
the biLipschitz maps giving homogeneity come from a Lie group acting by diffeo-
morphisms. This assumption is equivalent to the space being homeomorphic to a
homogeneous space X D G=H , with G containing a transitive subgroup of biLips-
chitz homeomorphisms. To be precise, we prove the following:
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Theorem 1.1. Let G be a Lie group and H be a closed subgroup. Let X D G=H

be the corresponding homogeneous manifold equipped with a geodesic distance d
inducing its natural topology. Suppose that there exists a subgroup GS of G that
acts transitively onX , and that acts by maps that are locally biLipschitz with respect
to d . Then there exists a completely non-holonomic GS -invariant distribution such
that any Carnot–Carathéodory metric coming from it gives a metric that is locally
biLipschitz equivalent to d .

Notice that we do not assume uniform bounds on the biLipschitz constants. In-
deed, if one assumes that X is a geodesic metric space with a transitive group G of
L-biLipschitz homeomorphisms, then by taking the supremum over the G-orbit of
the distance function, and then the associated path metric, one gets an L-biLipschitz
equivalent metric with respect to which G acts by isometries. One can then ap-
ply Berestovskii’s result in [Ber89b] mentioned above. However, without the extra
hypothesis about uniformity of biLipschitz constants, the argument breaks down al-
together. Our work can be considered as the first step toward a coarse version of
Berestovskii’s result. In fact, the main steps of our proof and Berestovskii’s strategy
share some common features, although his method is more algebraic.

Our assumption is connected with the fact that, in general, the full group of
biLipschitz maps is not a locally compact group. On the other hand, as a consequence
of theAscoli–Arzelà Theorem, the isometry group of the spaceX is a locally compact
topological group. Berestovskii uses this fact in the case that the isometry group
acts transitively to apply the celebrated Gleason–Montgomery–Zippin Theorem and
subsequent work [MZ74], Chapter III. The result is a reduction to the case when the
action of the isometry group is topologically conjugate to a transitive smooth action
of a Lie group on a smooth manifold, in fact on a homogeneous space X D G=H .
Thus, in the case of biLipschitz homogeneous geodesic manifolds, we shall assume
that we already have a similar structure, in the sense that the biLipschitz maps giving
homogeneity are coming from a Lie group G acting on a quotient G=H .

Since the problem is in fact local, another formulation is as follows. Suppose that
we have a geodesic metric on a neighborhood of the origin in Rn, and a collection of
biLipschitz maps that sends the origin to any point in this neighborhood. Furthermore,
suppose that these biLipschitz maps are, in fact, elements of a smooth “local” action.
Then we can conclude that in a neighborhood of the origin this metric is biLipschitz
equivalent to a Carnot–Carathéodory metric. See the next section for more general
statements.

Here is a concrete application of Theorem 1.1.

Example (Affine maps giving homogeneity). Suppose that we have a geodesic dis-
tance on the plane such that for any two points there exists an affine map that is
locally biLipschitz with respect to the geodesic distance and sends the first point to
the second. Then we can conclude that the distance is locally biLipschitz equivalent
to the Euclidean one.
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Indeed, one can apply Theorem 1.1 whereG is the group of affine diffeomorphisms
and H D GL2.R/. The group GS is the intersection between G and the group of
maps that are locally biLipschitz with respect to d . The metric is in fact Riemannian
since there is no proper sub-Riemannian structures in dimension 2.

Several references [Ber88], [Gro96], [Mon02] state that in the definition of Carnot–
Carathéodory metrics, one gets the same metric when considering either piecewise
continuously differentiable, or Lipschitz (or absolutely continuous curves), as hori-
zontal curves. However, we could not find any proof of this fact in the literature. An
element of the proof of Theorem 1.1, detailed in step 5 below, can be used to give a
simple proof of this fact in the case that the two topologies are assumed to coincide.
See the Appendix for details.

Theorem 1.2. Let X be a Finsler manifold, equipped with a locally Lipschitz sub-
bundle (of the tangent bundle). Then both the class of piecewise C 1;1-curves tangent
to the sub-bundle and the class of Lipschitz curves almost everywhere tangent to the
sub-bundle give rise to the same Finsler–Carnot–Carathéodory metric, under the
condition that the topologies induced by these distances coincide with the manifold
topology.

1.1. An outline of the proof of Theorem 1.1. Step 1. Argue that we can assume
that the group G is embedded and closed in the homeomorphism group of the space
X D G=H . Thus, every time we will apply the Ascoli–Arzelà theorem, the limits of
C 0-converging subsequences will still be elements of the group and the convergence
will be, in fact, C1.

Step 2. Apply a Baire category argument to get a locally transitive set of elements
of the group that are C k close to idX and are uniformly biLipschitz with respect to
both the metric d and any Riemannian metric on X that we fixed.

Step 3. Prove that, locally, the distance d is greater than a multiple of some
smooth Riemannian distance. Therefore, the geodesics for d are Lipschitz maps for
the smooth distance; thus, they are differentiable almost everywhere.

Step 4. Define a sub-bundle of the tangent bundle related to the set of velocities
of the geodesics. Use it to define a Carnot–Carathéodory metric dCC. It will be easy
to argue that d � Constant � dCC locally.

Step 5. Prove that d � Constant � dCC locally.

1.2. Organization of the paper. In the next section, we discuss generalizations and
variations of Theorem 1.1., Indeed, steps 3, 4, and 5 above constitute a more general
fact, specified in Theorem 2.1, that implies Theorem 1.1. In Section 3, we show that
locally the distance d is greater than a multiple of any smooth distance. An immediate
consequence is the absolute continuity of geodesics: any curve that is rectifiable with
respect to the geodesic distance d is differentiable almost everywhere. In Section 4,
we define a subset of the tangent bundle, and prove that it is, in fact, a sub-bundle;
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this allows us to define an associated Carnot–Carathéodory metric. In Section 5,
we prove the biLipschitz equivalence between the geodesic metric d , and the newly
defined Carnot–Carathéodory metric. In Section 6, we complete steps 1 and 2 above
to show how Theorem 1.1 follows from Theorem 2.1. In Appendix 6.3, we repeat the
argument to prove Theorem 1.2.

Acknowledgements. It is a pleasure to thank the Department of Mathematics of
Yale University for the warm and friendly atmosphere that I am enjoying during
my Ph.D. program. Above all, I particularly wish to thank Bruce Kleiner for his
confidence and support.

2. The general criterion and some consequences

Theorem 1.1 is a consequence of a more general fact. Given a geodesic metric
on a domain in Rn, whenever there is a transitive family of uniformly biLipschitz
diffeomorphisms with a control on their differentials, the metric is locally biLipschitz
equivalent to a Carnot–Carathéodory metric. Namely, this conclusion can be reached
when there is a family F of C 2-diffeomorphisms and a base point p0 such that the
orbit F .p0/ is a neighborhood of p0, the elements of F are uniformly biLipschitz for
both the distance d and a fixed Riemannian metric, and the family of the differentials
has a uniform modulus of continuity.

We will denote by kAkLin.Rn/ the norm as linear operator of a matrixA 2 Lin.Rn/.

Theorem 2.1. Let N � Rn be a compact neighborhood of 0 2 Rn, equipped with
a geodesic distance d that induces the standard topology. Suppose that there exists
a family F � C 2.N;Rn/ of local C 2-diffeomorphisms satisfying:

Homogeneity: for any p 2 N , there is f 2 F , so that f .0/ D p.

Uniform biLipschitz: there exists k 2 R such that each f 2 F is a k-biLipschitz
map on N \ f �1.N /, with respect to both the Euclidean metric and the distance d .

Uniformmodulus of continuity of derivatives: the family fdf gf 2F has a uniform
modulus of continuity, i.e., there exists an increasing function � W Œ0;1/ ! Œ0;1/,
with �.0/ D 0, so that, for any f 2 F and x; y 2 N ,

k.df /x � .df /ykLin.Rn/ � �.jx � yj/: (1)

Then there exists an F -invariant, C 1-sub-bundle � � TN such that if d� is
any sub-Riemannian metric coming from �, then the geodesic metric d is locally
biLipschitz equivalent to d�.

The conclusion of the above theorem is that the regularity of the bundle is C 1.
However, we will prove that the distribution of Theorem 1.1 is smooth in Proposi-
tion 6.8.

The following variation shows how Theorem 2.1 can be used:
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Theorem 2.2. Let d be a geodesic metric on a neighborhood N of the origin in Rn.
Suppose that there exists a C 2-map

F W ƒ � U ! N; .�; p/ 7! F�.p/;

whereU � N � Rn andƒ � RN are neighborhoods of the origin, with the property
that, for some neighborhood of the origin ƒ0 � ƒ, the set

fF�.0/ W F� is biLipschitz with respect to d; � 2 ƒ0g
is a neighborhood of the origin. Then in a (possible smaller) neighborhood of the
origin the metric d is biLipschitz equivalent to a Carnot–Carathéodory metric.

Proof. Clearly, we may assume F0 D idU , and U and ƒ0 compact sets. We want to
show that the hypotheses of Theorem 2.1 apply. Indeed, first, since the map F is C 2,
the condition about the family of differentials having a uniform modulus of continuity
is immediately verified. Next, call m-biLipschitz those maps that are m-biLipschitz
with respect to both the Euclidean distance and the distance d , and consider the sets

Am ´ fp 2 U W F�.0/ D p; F�m-biLipschitz; � 2 ƒ0g:
Each Am is closed. Indeed, take F�j

.0/ 2 Am ! p, with F�j
an m-biLipschitz

map, then by Ascoli–Arzelà Theorem, some subsequence converges: F�j
! F

uniformly and F is still an m-biLipschitz map. Since here we have assumed ƒ0
compact, �j ! �1 2 ƒ0 up to subsequence, so F D F�1

, so p 2 Am, i.e.,
Am is closed. Thus, by the Baire Category Theorem, for some m 2 N, the set
fF�.0/ W F� m-biLipschitzg is a neighborhood of a point in U that we can assume to
be the origin. Theorem 2.1 can be applied to conclude.

We now give a generalization of Theorem 1.1 that points out the importance of
the assumption that the group acting transitively on the space is a Lie group and
so is locally compact. Notice that the whole group of biLipschitz maps, unlikely
the isometry group, is not in general locally compact. According to Montgomery–
Zippin’s work [MZ74], if a locally compact group acts continuously, effectively,
and transitively on a manifold, then it is a Lie group. Here and in what follows,
manifolds are supposed to be connected, however, Lie groups can have infinitely
many components. Thus, Theorem 1.1 yields the following generalization:

Theorem 2.3. Let .M; d/ be a manifold endowed with a geodesic metric (inducing
the same topology). Let G be a locally compact group with a countable base. Let
G �M ! M be a continuous, effective action ofG onM . Suppose that there exists
a subgroup of G acting transitively on M by biLipschitz maps (with respect to the
metric d ). Then .M; d/ is locally biLipschitz equivalent to a homogeneous space
equipped with a Carnot–Carathéodory metric.
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Proof. Following, [MZ74], any locally compact group G has the property of having
an open subgroup G0 < G that is the inverse limit of Lie groups; with the language
of Montgomery–Zippin’s book, G0 has property A.

First, we claim that, for any q 2 M , the orbitG0 � q of q underG0 is open. This is
because the projectionG ! G=H , whereH is the stabilizer of the action, is open and
the orbit action G=H ! M is a homeomorphism by a standard argument [Hel01],
Theorem 3.2, p. 121.

Now we show that the G0-action is still transitive. Indeed, fix a point p 2 M ,
suppose by contradiction that G0 � p ¤ M . Hence,

M D .G0 � p/F
.
S
q…G0�p G0 � q/

is a disjoint union of two non-empty open sets of M . This contradicts the fact that
M is connected.

Thus G0 satisfies the hypotheses of Montgomery–Zippin’s Theorem [MZ74],
p. 243, so G0 is a Lie group. Therefore G0 does not have small subgroups, thus
neither does G. By the Gleason–Yamabe Theorem, cf. [MZ74], Chapter III, G is a
Lie group. Theorem 1.1 can be applied to conclude.

3. The given metric is greater than a Riemannian metric

We now start the proof of Theorem 2.1. In particular this section is devoted to
showing that curves that are rectifiable with respect to the geodesic distance d , are
differentiable almost everywhere. To prove this we will show (cf. Proposition 3.3)
that the given metric d is locally greater than a Riemannian metric.

We begin with a couple of lemmas. The first asserts that, if we just wantC 1-maps,
we may assume continuity of the differentials when the evaluation at a base point goes
to the base point.

Lemma 3.1. Under the assumptions of Theorem 2.1, there exists a family ffpgp2N �
C 1.N;Rn/ with fp.0/ D p, that is uniformly biLipschitz, satisfies the condition that
the family fdfpg has a uniform modulus of continuity, and satisfies

Continuity of .dfp/0 at 0: the map

N ! Lin.Rn/; p 7! .dfp/0;

is continuous at p D 0. In other words,

k.df0/0 � .dfp/0kLin.Rn/ ! 0; as p ! 0: (2)

Proof. This is another application of the Baire Category Theorem. Set A0 ´ N .
For each j 2 N, let fV .j /m gm2N be a countable cover of Lin.Rn/ by balls of diameter
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< j�1, with respect to some fixed metric inducing the standard topology. Inductively
define sets Aj � Rn as follows. Let F be the family from Theorem 2.1 and let

Aj;m D fp 2 Aj W there exists f 2 F such that f .0/ D p; .df /0 2 V .j /m g:
ThenAj D S

mAj;m. By the Baire Category Theorem, there ismj 2 N so that there
exists a ballAjC1 of radius< j�1 in the closure ofAj;mj

. Let q be in the intersection
of the closures of the Aj ’s. By post-composing with a map that sends q to 0 we may
assume that q D 0.

For any p ¤ 0 in N , we have p 2 Aj n AjC1, for some j . Then we define fp
as follows. Since p 2 Aj , there exists sequences fpkg � Aj�1, ffkg � F such that

pk ! p, fk.0/ D pk , and .dfk/0 2 V .j�1/
mj �1

. Note that the functionsfk are uniformly
Lipschitz and converge at 0, and that the sequence f.dfk/0g is equicontinuous and
uniformly bounded at 0. Thus, by the Ascoli–Arzelà Theorem, a subsequence of ffkg
converges in the C 1-topology. Let fp be one such limit. We can apply this same
argument to any sequence ffpj

g with pj ! 0 and define f0 as one of the limits of
some sequence ffpji

g converging in the C 1-topology. All of the constructed maps

fp’s are C 1 and still are uniformly biLipschitz and their derivatives have uniform

modulus of continuity. Moreover, since
T
j V

.j /
mj

is a single point,

.dfp/0 ! .df0/0; as p ! 0:

The next lemma gives uniform control on the deviation of elements in the family
F from their linear approximations.

Lemma 3.2 (Uniform distortion control). If a family F has the property that the fam-
ily fdf gf 2F is equicontinuous, so (1) holds, then there exists an increasing function
!.t/ such that, for any element f 2 F and y 2 N ,

j.df /0.y/C f .0/ � f .y/j � !.jyj/; (3)

and !.t/
t

! 0 as t ! 0.

Proof. By assumption, there exists an increasing function � W Œ0;1/ ! Œ0;1/, with
�.0/ D 0, so that

k.df /x � .df /ykLin.Rn/ � �.jx � yj/
for any f 2 F and x; y 2 N . Let !.t/ ´ �.t/t . Thus we just need to show (3) for
any f 2 F and y 2 N . Consider the function t 2 R 7! f .ty/. By the fundamental
theorem of calculus and the chain rule,

f .y/ � f .0/ D
Z 1

0

d

dt
f .ty/ dt D

Z 1

0

.df /ty � y dt:
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So,

j.df /0.y/C f .0/ � f .y/j �
Z 1

0

j.df /0 � y � .df /ty � yj dt

�
Z 1

0

��.df /0 � .df /ty
�� jyj dt

�
Z 1

0

�.jtyj/jyj dt

�
Z 1

0

�.jyj/jyj dt D !.jyj/: �

This next proposition is the core of the paper. We get the first important relation
between the geodesic distance d and the Euclidean metric.

Proposition 3.3. Let .N; d/ satisfy the assumptions of Theorem 2.1. Then some
multiple of the distance d is greater than the Euclidean one, i.e., there exists C > 0

such that
kp � qk � C � d.p; q/ (4)

for any p; q 2 N .

Proof. It suffices to prove (4) forp, q in a neighborhoodV0 of the origin. Indeed, since
the family F acts transitively by k-biLipschitz maps with respect to both metrics,
it would follow that any point p 2 N has a neighborhood V where kq1 � q2k �
Ck2d.q1; q2/ for q1; q2 2 V . Let f 2 F so that f .0/ D p. Then, for any
q1; q2 2 V ´ f .V0/, we have

kq1�q2k � kkf �1.q1/�f �1.q2/k � Ckd.f �1.q1/; f �1.q2// � Ck2d.q1; q2/:

Now, since both distances are geodesic, we conclude that kp�qk � Ck2d.p; q/ for
all points p; q 2 N .

Suppose that (4) is not true. So there is a sequence of pairs of points pn, qn where
the ratio of the metrics is smaller and smaller,

d.pn; qn/

kpn � qnk <
1

n
;

for all n 2 N. We can assume that qn D 0 since we can move it to 0 using the
transitivity of k-biLipschitz maps. Indeed, let fn be a k-biLipschitz diffeomorphism
such that fn.qn/ D 0, for each n 2 N. Now,

1

n
>
d.pn; qn/

kpn � qnk �
1
k
d.fn.pn/; fn.qn//

kkfn.pn/ � fn.qn/k D 1

k2
d.fn.pn/; 0/

kfn.pn/k :
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After replacing pn with fn.pn/ and possibly changing indices, we get a sequence of
points pn 2 N with the property

d.pn; 0/

kpnk <
1

n
: (5)

Note that pn ! 0 as n ! 1. Indeed, pn is in the bounded set N , so d.pn; 0/ �
1
n

kpnk � 1
n

Diam.N / ! 0. Moreover, d gives the usual topology, so pn ! 0.
By Lemma 3.1, there is a neighborhood U of 0 such that

��.dfp/0 � .df0/0
��

Lin.Rn/
� 1

4
for all p 2 U:

Thus, since f0 D id, we have, for any vector v 2 R2,

k.dfp/0.v/ � vk � k.dfp/0 � IdkLin.Rn/kvk � 1

4
kvk for all p 2 U: (6)

All of the balls in the argument shall have the origin as center. Consider a Euclidean
ball of radiusR contained in the neighborhoodU . Since the topologies induced by the
two distances are the same, we can find a d -ball of radius r > 0 inside the Euclidean
one. We want to use the fact that the points pn go to zero, and are different from 0,
to construct a ‘pseudo’ geodesic as a chain of a controlled number of points, whose
final point H.pn/ will be outside the d ball of radius r .

Let ! be the function from Lemma 3.2 that controls the extent to which maps in
F fail to be linear at 0. Now, fix n 2 N so large that !.kpnk/ < 1

4
kpnk. Since pn

is now fixed, we will drop the subscript p D pn. Therefore by estimates (6) and (3),
we have

kp C f .0/ � f .p/k � 1

2
kpk for all f 2 F : (7)

Starting with f0 D id, by recurrence, for j 2 N, choose fj 2 F such that
fj .0/ D fj�1.p/. We claim that there exists j � 2R

kpk for which fj .p/ is not in the
Euclidean ball of radius R. In fact, each fj .p/ is quantitatively farther from 0 than
fj�1.p/. Indeed, we consider the projection �p.fj .p// of fj .p/ on the direction of
p and prove that

�p.fj .p// ´ hfj .p/jpi
kpk � j

2
kpk: (8)

We prove (8) by induction using the estimates (7) and the fact that hujvi � hwjvi �
ku � wk � kvk for all u; v; w 2 R2. For j D 1,

hfj .p/jpi � hp C pjpi � kf1.p/ � p � pk � kpk
� 2kpk2 � 1

2
kpk2 � 1

2
kpk2:
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Assume that (8) is proved for j . Then

hfjC1.p/jpi � hfj .p/C pjpi � kfjC1.p/ � fj .p/ � pk � kpk
� hfj .p/jpi C hpjpi � kfjC1.p/ � fjC1.0/ � pk � kpk
� j

2
kpk2 C kpk2 � 1

2
kpk2 � j C 1

2
kpk2:

Therefore, for j � ´ 2R
kpk , we have

hfj�.p/jpi
kpk � 2R

2kpkkpk D R:

So fj�.p/ is not in the Euclidean ball of radius R. Let H.p/ be the first point in the

sequence ffj .p/gj�

jD0 that leaves the ball. Such ball contains the ball of radius r with
respect to the distance d . Therefore,

r � d.H.pn/; 0/ �
j�X
jD0

d.fj .0/; fj .p//

�
j�X
jD0

kd.0; p/ � k.j � C 1/d.0; p/ � k
2R

kpkd.0; p/C kd.0; p/:

Consider now that p D pn satisfies (5), so we have

0 < r � k
2R

kpnkd.pn; 0/C kd.0; pn/ � 2kR

n
C kd.0; pn/:

But then we have a contradiction since the value r , on the left, is constant and greater
than 0, while the right-hand side goes to 0 as n ! 1.

Remark 3.4. From Proposition 3.3 we know that some dilation of the distance d
is greater than the Euclidean one. So, rescaling the metric d if necessary, we may
assume that k � k � d in N . From this we can conclude that any d -geodesic � is a
1-Lipschitz map with respect to the Euclidean distance, since

jt1 � t2j D d.�.t1/; �.t2// � k�.t1/ � �.t2/k:
More generally, if � is a d -rectifiable curve parametrized by (finite) speed, say smaller
than s, then

sjt1 � t2j � Ld .�.t1; t2// � d.�.t1/; �.t2// � k�.t1/ � �.t2/k:
In other words, � is an s-Lipschitz map with respect to the Euclidean distance, so
it is Lipschitz in each coordinate. At this point we are allowed to use a classical
fact in Lipschitz analysis, i.e., Rademacher’s Theorem: on R, any Lipschitz function
is differentiable almost everywhere. Hence any d -rectifiable curve is differentiable
almost everywhere, in particular, it is rectifiable with respect to the Euclidean distance.
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4. The construction of the Carnot–Carathéodory metric

To prove Theorem 1.1 we need to find a sub-bundle � of the tangent bundle. As a
result of Proposition 3.3 (cf. Remark 3.4), we know that any d -rectifiable curve is
differentiable almost everywhere, thus it makes sense to look at the set of velocities
of d -rectifiable curves. For any p 2 N , we can now define a subset of TpN as

�p ´ f P�.0/ W �.0/ D p; � d -rectifiable with finite speed and differentiable at 0g;
(9)

and we let � D S
p �p � TN .

In the next lemma we prove some properties of � such as the fact that it is a
sub-bundle, together with some control estimates, needed later, on some family of
curves � representative of �.

Lemma 4.1 (Control on curves � representing�). At any point p 2 N , the set�p is
a vector space whose dimension is independent of p. The set � D S

p �p � TN is
invariant under F . Moreover, there exists a special class of curves � and a constant
S > 0 with the following property: for any p 2 N and any v 2 �p , there exists
� 2 � such that �.0/ D p, P�.0/ D v, and for any t 2 R,

lengthd .�Œ0; t �/ � Skvkt: (10)

Moreover, there is also an increasing function !� W R ! R such that

k�.t/ � .�.0/C P�.0/t/k � !�.tk P�.0/k/ (11)

for any � 2 � , and !� .t/
t

! 0 as t ! 0.

Proof. Takew1; : : : ; wm 2 �0 a maximal set of linearly independent vectors coming
from paths �1; : : : ; �m. We may assume that the �j ’s are parametrized by finite d -
speed sj , and kwj k D k P�j .0/k D 1 and lengthd .�j Œ0; t �/ � sj t for all j D 1; : : : ; m

and all t where the curves are defined. Note that for each �j there is an increasing
function !j so that

k�j .t/ � .�j .0/C P�j .0/t/k � !j .t/:

Let S ´ maxj sj and !�.t/ ´ maxj f!j .t/g. Then each �j satisfies (10) and (11).
To prove that �0 is a vector space we will show that, for any v 2 Span.�0/, a

limit of “zig-zag” curves, constructed using the �j ’s, is still a rectifiable curve and
such limit has tangent at zero equal to v.

For simplicity of exposition, assume v D 1
2
.w1 C w2/. The zig-zag curves are

defined recursively by

	".t/ ´
´
�1.t/; 0 � t < ";

f�".n"/.�i .t � n"//; n" � t < .nC 1/";
(12)
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where i D n .mod 2/. Each curve 	".t/ is d -rectifiable with uniformly bounded
speed, i.e., (10) holds. By the Ascoli–Arzelà Theorem, the curves 	" converge, up to
subsequence. Moreover the limit, denoted by 	.t/ D 	 .v/.t/, is a d -rectifiable curve
parameterized with same finite speed. In other words, (10) holds for 	 .v/ too.

Figure 1. The zigzag curves converge to a curve whose tangent at the origin is parallel to the
sum of the two vectors w1 and w2.

For a better understanding of the curves 	".t/ and their limit, consider first the
easier case when the �j ’s were lines, �j .t/ D wj t , and the fp’s were translations, see
Figure 1 above. In this case, the zig-zag curve is

O	".t/ ´ "w1 C "w2 C "w1 C � � � C Ntwi ;
where t D n"C Nt and i D n .mod 2/. In the sum there are nC 1 terms. Thus,

O	".t/ D n

2
"w1 C n

2
"w2 C o."/ D t

2
w1 C t

2
w2 C o."/ D tv C o."/

is "-close to the line tv. Therefore, the curve O	.t/ ´ lim"!0 O	".t/ is such that

d O	
dt
.0/ D v:

Define now another auxiliary curve. Let fm ´ f�".m"/ and Mm be the matrix
.dfm/0. Set

OO	".t/ ´ "w1 C "M1w2 C "M2w1 C � � � C NtMiwi :

By (2), there is a neighborhood U of 0 where k.df /0 � Idk < ı for all f 2 F with
f .0/ 2 U , and so k.df /0k < 1C ı for all f 2 F . Let t� > 0 such that

	".t/; O	".t/; OO	".t/ 2 U for all t 2 Œ0; t��:
Then we have

k O	".t/ � OO	".t/k �
nX
iD1

kId �Mik"kwik � n"ı � t

"
"ı D tı:
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Also,

k	".t/ � OO	".t/k D ��fn.�i .Nt // � "w1 � "M1w2 � "M2w1 � � � � � NtMiwi
��

� kfn.�i .Nt // � .dfn/0�i .Nt / � fn.0/k
C k.dfn/0�i .Nt / � Nt .dfn/0 P�i .0/k
C kfn�1.�i�1.Nt // � "w1 � "M1w� � � � � NtMi�1wi�1k

´ I C II C III:

Consider the last equation as the sum of three terms: I, II, and III. Note that the first
term can be bounded, cf. (3), by

I � !.k�i .Nt /k/ � !."/:

The second term is bounded by

II � k.dfn/0kk�i .Nt / � Nt P�i .0/k � .1C ı/!� ."/:

Finally, the third term is similar to the initial term: the right-hand side in the calculation
above, except that we have one term less. Therefore, we can iterate the procedure
and get

k	".t/ � OO	".t/k � n.!."/C .1C ı/!� ."// � .t C 1/

�
!."/

"
C .1C ı/

!� ."/

"

�
:

We are now ready to calculate the derivative at 0 of 	.t/. Indeed, for all t 2 U ,����	.t/t � v
���� D lim

"!0

����	".t/t � v
����

� lim
"!0

����� O	".t/
t

� v
���� C

���� O	".t/ � OO	".t/
t

���� C
���� OO	".t/ � 	".t/

t

����
�

� 0C tı

t
C lim
"!0

t C 1

t

�
!."/

"
C .1C ı/

!� ."/

"

�
D ı:

Since ı is arbitrarily small, we have d�
dt
.0/ D v for t ! 0.

Therefore v 2 �0, i.e., �0 is a vector space.
From the transitive action of biLipschitz maps we have that � is invariant under

F , so the dimension of �p is constant.
The class � is defined to be the curves ffp B 	 .v/g for p in a neighborhood of the

origin and v 2 �0. Such curves satisfy inequality (11) for a suitable !� , since it is
true for the �j ’s that are in a finite number, so also for the zig-zag limits and finally
for all curves in � , using that (3) implies that the f ’s have a controlled distortion. For
a similar reason, the curves in � have uniform bound on the speed, i.e., (10) holds.
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From the previous lemma we have that, for each p 2 N , the set �p is a k-
dimensional plane. So the map p 7! .p;�p/ is a (not necessarily continuous)
section of the Grassmannian bundle. In the next subsection we will prove that this
map is C 1 and so � is a C 1-sub-bundle.

We have noticed, more than once, that the d -geodesics in our setting are Lipschitz
curves with respect to the Euclidean metric, therefore they are absolutely continuous
functions, i.e., they are differentiable almost everywhere and each curve is the integral
of its derivative that is a priori just anL1 function. On the other hand, each absolutely
continuous curve can be reparametrized to be Lipschitz with respect to the Euclidean
metric.

Definition 4.2. Fixing a distribution�, a curve is called horizontal if it is absolutely
continuous and it derivative lies in the distribution � wherever it exists.

We can now consider another distance on N . In the literature, this distance
has many different names: Carnot–Carathéodory metric, sub-Riemannian metric,
geometric control metric, nonholonomic mechanical metric.

dCC.p; q/ D infflengthk�k.	/ W 	 horizontal from p to qg; (13)

where lengthk�k denotes the length with respect to the Euclidean metric.

4.1. Continuity of the sub-bundle. To prove that the sub-bundle � is in fact a
C 1-sub-bundle, we will use a result that give a characterization of C 1-sub-manifold
as ambiently C 1-homogeneous compacta.

A set A � Rn is said to be ambiently C 1-homogeneous if for every pair of points
x; y 2 A, there exist neighborhoods Ox and Oy in Rn and a C 1-diffeomorphism

h W .Ox; Ox \ A; x/ ! .Oy ; Oy \ A; y/:
Theorem 4.3 ([RSŠ96]). Let A � Rn be compact. Then A is ambiently C 1-
homogeneous if and only if A is a C 1 submanifold of Rn.

The original proof of this result in [RSŠ96] requires the Rademacher Theorem.
Shchepin and Repovš [SR00] simplify the proof by eliminating the need to invoke
Rademacher.

Clearly, since the statement of Theorem 4.3 is local, the assumption of compact-
ness can be replaced by local compactness.

Proposition 4.4. Let � � TN be a (not necessarily continuous) distribution. Sup-
pose that F D ffpgp2N is a transitive family of local C 1-diffeomorphisms of N ,
fp.0/ D p, that leaves invariant �, i.e., .df /.�/ D � for any f 2 F . If the map
p 7! .dfp/0 is continuous at p D 0, then� is a continuous sub-bundle. If moreover
there is another transitive family of C 2-diffeomorphisms that leaves invariant �,
then � is a C 1-sub-bundle of the tangent bundle.
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Proof. The continuity of � at the origin is consequence of the continuity of p 7!
.dfp/0. Then continuity everywhere follows from the invariance under the transitive
family of C 1-diffeomorphisms.

Let us denote by h.p/ ´ �p the k-dimensional plane as an element in the k-
dimensional Grassmannian Grk.TpN/. We want to prove that h is a C 1-function.
Consider the map

	 W p 7! .p; h.p//;

i.e., the induced section of the Grassmannian bundle Grk.TN /.
First notice that, since we proved that � is continuous, h is continuous. Being 	

the graph of the continuous function h, the imageM ´ 	.N / is closed in Grk.TN /.
Now, if f isC 2, then its differential df induces aC 1-map f� of Grk.TN /. Moreover
if a family of C 2-diffeomorphisms acts transitively on N preserving �, the induced
maps on the Grassmannian bundle act transitively onM preservingM . Thus, we use
Theorem 4.3: since M is a closed, and so locally compact, subset of the manifold
Grk.TN / that is ambientlyC 1-homogeneous, it follows thatM is aC 1-sub-manifold
of Grk.TN /.

Let V � N be a neighborhood that trivializes the bundle

Grk.T V / D V � Rm:

Call � W V � Rm ! V the projection on the first space. Let M 0 ´ M \ .V � Rm/.
Since M is a C 1-manifold, it follows that


 ´ ��jTM 0 W TM 0 ! T V

is a bundle map. Now in case that there exists a point x 2 M 0 such that


x.TxM
0/ D TN; (14)

then, by the Implicit Function Theorem, in a neighborhood U of x, there is a C 1-
function Qh W U ! Rm such that, locally,

f.p; Qh.p// W p 2 U g D M D f.p; h.p// W p 2 U g:
Thus h D Qh and so h is C 1 on the neighborhood U . Using again that M is C 1-
homogeneous, we have that each point in M has a neighborhood on which h is C 1.

If (14) is not true for any x 2 M , we will arrive at a contradiction. Indeed, in this
case

dim.ker 
x/ > 0 for all x 2 M:
One can then find an open set A � M such that dim.ker 
a/ D c for all a 2 A,
for some constant c > 0. From general theory of sub-bundles [Ati67], we have that
ker 
 � TA � TM is a sub-bundle of TA � TM over A � M . From this we have
that locally there is a non-trivial sectionX W A ! ker 
. In other words,X is a vector
field on A such that Xa 2 ker.��jTaA/ for all a 2 A. This means that Xa is of the
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form .0;X
.2/
a / 2 TM � TRm. If now � is an integral curve for X , then we may

assume that � is not constant since X is non-trivial. However,

�.t/ D �.0/C
Z t

0

X�.t/dt D �.0/C
�
0;

Z t

0

X
.2/

�.t/
dt

�
:

But this contradicts the fact that M is a graph.

5. Proof of biLipschitz equivalence

In the previous section we used the fact that, by Proposition 3.3, the d -rectifiable
curves are differentiable almost everywhere to construct a distribution � coming
from the derivatives of such curves. Now, with the next result, we conclude the proof
of Theorem 2.1.

Theorem 5.1. Let .N; d/ satisfy the assumptions of Theorem 2.1. Let� be the distri-
bution defined above in (9). Let dCC be any Carnot–Carathéodory metric associated
to �. Then we have, locally,

1

L
dCC.p; q/ � d.p; q/ � LdCC.p; q/

for some L > 0.

Proof. We need to prove two inequalities.

5.1. The first inequality. This is straightforward. Given p 2 N , let �p be a d -
geodesic from 0 to p. Since by Proposition 3.3 the d distance is greater than the
Euclidean distance, �p is Lipschitz, thus it is differentiable almost everywhere. We
may parametrize �p by arc length with respect to d , so �p W Œ0; T � ! N , where
T ´ d.0; p/. We claim that k P�pk.t/ � 1, for almost every t . Indeed, for any point
t of differentiability,

k P�p.t/k D lim
h!0

k�p.t C h/ � �p.t/k
h

� lim
h!0

d.�p.t C h/; �p.t//

h
D h

h
D 1:

Therefore,

dCC.p; 0/ � lengthk�k.�p/ D
Z T

0

�� P�p.t/
�� dt �

Z T

0

1dt D T D d.0; p/:

5.2. The second inequality. Given a point p 2 N , we want to construct a d -
rectifiable curve 	 that starts at 0 and ends arbitrarily close to p, whose d -length is
close to the CC-distance of p from 0. This will be enough since the metric d gives
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the standard topology. To construct such a curve, we will use the curves of the family
� defined in Lemma 4.1. For any v 2 � there is a pre-chosen curve �v 2 � such
that P�v.0/ D v, and these curves have a common bound for the speed (10) and for
the distance from the linear approximation (11).

Take any � W Œ0; T � ! Rn that is a Lipschitz curve, almost everywhere tangent
to the distribution �, with �.0/ D 0, �.T / D p, i.e., one of the candidate curves
in the calculation of the CC-distance between 0 and p. We can suppose that � is
parametrized by arc length, i.e., k P�k D 1, so T D lengthk�k.�/. Our goal is to show
that T is greater than a fixed constant times d.0; p/.

Recall that � is C 1. Thus, in a neighborhood of 0, that we will still call N , we
can find a C 1-framing fX1; : : : ; Xkg of �, i.e., each Xj is a C 1-vector field and

�p D spanf.X1/p; : : : ; .Xk/pg for all p 2 N:
We may assume that f.X1/p; : : : ; .Xk/pg is an orthonormal basis of �p . Since N is
compact, for some C > 0, each vector field Xj is C -Lipschitz, i.e.,

k.Xj /q1
� .Xj /q2

k � C kq1 � q2k for all q1; q2 2 N:
A consequence is that if v 2 �q1

is such that kvk � 1 then there is w 2 �q2
with

kwk � 1 such that kv�wk � C kq1 � q2k : Indeed, since f.Xj /q1
g is an orthonormal

basis, there are numbers aj such that v D P
j aj .Xj /q1

with
P
j jaj j � 1: Thus

w ´ P
j aj .Xj /q2

satisfies

jv � wj �
X
j

jaj j k.Xj /q1
� .Xj /q2

k � Ckq1 � q2k:

What we conclude is that each v 2 �q1
with kvk � 1 has distance less than Ckq1 �

q2k from the unit ball in �q2
. Denoting by U.�q/ the unit ball in �q , we write

dist.U.�q2
/; U.�q2

// � Ckq1 � q2k: (15)

5.2.1. The construction of � . Take " > 0. Construct piece-by-piece a curve 	 in
the following way. Start at 0 D �.0/. After a suitable choice of a vector v0 2 �0, we
will take the curve �v0

.t/ 2 � , where� is the fixed family of curves from Lemma 4.1,
and then we will define the first piece of 	.t/ as, for 0 � t � ",

	.t/ ´ �v0
.t/: (16)

By (15), since k P�.t/k � 1 for a.e. t , we have that, for a.e. t � ",

dist.U.�0/; P�.t// � Ck�.t/k � C jt j � C";

since � is parametrized by arc length. Since the unit ball U.�0/ is convex, we have

dist.U.�0/; 1"
R "
0

P�.t/dt/ � C":
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Therefore there exists a v0 2 �0 with kv0k � 1 such that

���v0 � 1

"

Z "

0

P�.t/dt
��� � C": (17)

So for 0 � t � ", the curve 	 has been defined by (16).
For the inductive construction of 	 suppose that for any t � n", the value 	.t/

has been defined. We shall define 	 , for n" < t � .nC 1/", as

	.t/ ´ �vn
.t � n"/;

for a suitable choice of vn 2 ��.n"/ and its related �vn
2 � .

First note that limt!n"C 	.t/ D �vn
.n" � n"/ D �vn

.0/ D 	.n"/. Therefore
the new piece agrees with the previous one, i.e., the path is continuous. Moreover,
	..nC 1/"/ D �vn

."/: Then calculate the (right)-derivative at n":

d

dt
	.t/

ˇ̌̌
tDn"C

D P�vn
.n" � n"/ D P�vn

.0/ D vn:

Again using (15), we have that there existswn 2 ��.n"/ with kwnk � 1 such that

���wn � 1

"

Z .nC1/"

n"

P�.t/dt
��� � C":

Also, since
dist.U.��.n"//; wn/ � C k	.n"/ � �.n"/k ;

there exists a vector vn 2 ��.n"/ with kvnk � 1 such that

kwn � vnk � Ck	.n"/ � �.n"/k:
So ���vn � 1

"

Z .nC1/"

n"

P�.t/dt
��� � Ck	.n"/ � �.n"/k C C": (18)

Let us now estimate k�.T / � 	.T /k. We will show that we have a system of the
following type:´

k�."/ � 	."/k � o."/;

k�.n"/ � 	.n"/k � .1C C"/k�..nC 1/"/ � 	..nC 1/"/k C o."/
(19)

for all n 2 N, where o."/
"

! 0 as " ! 0. Observe that a sequence of the form

´
a1 D ˛;

an D ˇan�1 C ˛
(20)
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has solution an D ˛.ˇn�1 C � � � C 1/ D ˛ 1�ˇn

1�ˇ : So, from (19),

k�.T / � 	.T /k D
�����

�
T

"
"

�
� 	

�
T

"
"

� ����
� o."/

1 � .1 � "C /T
"

1 � .1 � "C /
' o."/

"
.1 � eCT / �! 0; as " ! 0:

One big triangular inequality. Now let us do the calculation showing (19). The
case n D 1 is shown by considering the following four curves and comparing them
at time t D ":

(1) �.t/,
(2) t 1

"

R "
0

P�.s/ds,
(3) tv0,
(4) 	.t/ D �v0

.t/.

Step by step,

1 and 2: At time ", the curves are at the same point, by the Fundamental Theorem
of Calculus.

2 and 3: By (17), we have���"v0 � "1
"

Z "

0

P�.t/dt
��� � C"2:

3 and 4: Since � 2 � , by (11) we have k"v0 � �v0
."/k < !�.kv0k"/ < !�."/.

Thus putting everything altogether with the triangle inequality we obtain

k�."/ � 	."/k � C"2 C !�."/:

For n > 1, more estimates are needed. We compare the following five curves at
time t D .nC 1/":

(1) �.t/,

(2) .t � n"/1
"

R .nC1/"
n"

P�.t/dt C �.n"/,

(3) .t � n"/1
"

R .nC1/"
n"

P�.t/dt C 	.n"/,
(4) .t � n"/vn C 	.n"/,
(5) 	.t/ D �vn

.t � n"/.
Step by step,

1 and 2: At time .nC 1/", as before, the curves are at the same point:

�..nC 1/"/ D �.n"/C "
1

"

Z .nC1/"

n"

P�.t/dt:
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2 and 3: One is just a translations of the other by k�.n"/ � 	.n"/k :
3 and 4: As before, by (18),

���"vn � "1
"

Z .nC1/"

n"

P�.t/dt
��� � C" k	.n"/ � �.n"/k C C"2:

4 and 5: From (11), the distance between the fourth and fifth curve is

k"vn C 	.n"/ � �vn
."/k D k" P�vn

.0/C �vn
.0/ � �vn

."/k � !�.kvnk"/ � !�."/:

Thus, putting everything together with the triangle inequality:

k�..nC 1/"/ � 	..nC 1/"/k � C"2 C k�.n"/ � 	.n"/k
C "Ck	.n"/ � �.n"/k C !�."/

� .1C "C /k�.n"/ � 	.n"/k C C"2 C !�."/:

Thus, with the terminology of the system (20), ˇ D 1C"C and ˛ D C"2C!�."/ D
o."/: Then, as we observed after (20), k�.T / � 	.T /k ! 0, as " ! 0. This shows
that we can choose " to have 	.T / as close to �.T / as we want.

Now we calculate d.0; 	.T //:

d.0; 	.T // �
X
n<T="

d.	.n"/; 	..nC 1/"//

D
X

d.�vn
.0/; �vn

."//

�
T="X
1

Skvnk"

�
T="X
1

S" D S"
T

"
D ST D S lengthk�k.�/;

where we used, in this order, the triangle inequality, the definition of 	 , i.e., the
fact that �vn

.t/ D 	.n" C t /, that �vn
is d -rectifiable parametrized by (uniformly)

bounded speed, i.e., (10) holds, and, finally, the bound for kvnk.

6. The case of biLipschitz maps coming from a Lie group action

We now describe how Theorem 1.1 can be proved using Theorem 2.1. What we need
to show is that the properties of the transitive action can be improved, i.e., steps 1 and
2 of the outlined argument in the introduction can be done. Let G,H , and d be as in
Theorem 1.1.
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6.1. Getting a closed and embedded subgroup of Homeo(G/H). Any element of
G induces a diffeomorphism ofG=H . Without loss of generality, we can assume that
G acts effectively, so that it may be viewed as a subgroup of Diff.G=H/: the space of
all C1-diffeomorphisms ofG=H equipped with the C1-topology given by uniform
convergence on compact sets of the functions together with all of their derivatives. So
G has two different natural topologies: the first one as a subset of Diff.G=H/ and the
second one (weaker) as a subset of Homeo.G=H/: the space of all homeomorphisms
of G=H equipped with the C 0-topology, i.e., uniform convergence on compact sets.
The first topology is more helpful since it gives control on the derivatives, however,
the second one is easier to control by category arguments.

The following proposition tells us that we may assume that the inclusion � W G ,!
Homeo.G=H/ is an embedding and that �.G/ is closed. In other words, for any
sequence of elements of G, viewed as a sequence of maps on G=H , that converges
uniformly on compact sets, the limit map is still an element of �.G/, and the con-
vergence is, in fact, as elements of G, and so the sequence converges as maps in
Diff.G=H/.

In general a Lie groupG acting onG=H can fail to have the above property. Here
is an example. Let G be the group of isometries of R4 generated by the translations
and a non-closed 1-parameter subgroup of O.4/. So G is a connected Lie group of
dimension 5, acting on R4. Thus, to have a group that is closed in Homeo.R4/, one
has to extend the group to a bigger group, in this case the closure of G in Isom.G/.
What is not trivial in general is that such larger group can be chosen to be still a Lie
group.

Proposition 6.1. LetG be a Lie group andH be a closed subgroup. Then there exists
a Lie group yG that extends the action of G onG=H and is embedded in Homeo.G=H/
as a closed set. (Moreover, G=H D yG= yH , for some closed subgroup yH .)

The rest of this section is devoted to the proof of Proposition 6.1. Let X be the
homogeneous spaceG=H . After taking the quotient ofG by the kernel of the action,
we can suppose G acts effectively on X . Then we can replace G by its universal
cover, so it is a simply connected Lie group acting onX effectively in a neighborhood
of the identity e 2 G.

LetV denote the subspace of vector fields onX that corresponds to the Lie algebra
ofG. In other words, for each � 2 L.G/ ´ TeG, the one-parameter subgroup ofG,

t 7! exp.t�/ 2 G;
acts on X by translation. So, for any x 2 X and t 2 R, we can consider the flow
on X ,

ˆ�.t; x/ ´ exp.t�/ � x:
Differentiating we obtain a vector field on X that gives the above flow: for x 2 X ,

�.x/ ´ d.exp.t�/ � x/tD0 2 TxX: (21)
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Abusing terminology the vector field is still called � since we can identify V and
L.G/. Indeed, V is isomorphic to L.G/ as vector spaces (and even the bracket
operation, up to sign, is preserved, as shown in [Hel01]). In particular, we point out
that there is also a one-to-one correspondence of the above flows with elements in V
(or L.G/). Indeed,

if ˆ�.t; �/ D ˆ�0.t; �/ 2 Homeo.X/ for all t 2 R then � D � 0 2 V; (22)

because of the local effectivity of the action: for t small enough, exp.t�/ � x D
exp.t� 0/ � x 2 G=H implies exp.t�/ D exp.t� 0/ 2 G and then t� D t� 0 2 L.G/

since exp is a local diffeomorphism at the origin in L.G/.
The vectors in the Lie algebra of H correspond to those vector fields in V that

vanish at the origin Œe� 2 X :

� 2 L.H/ () exp.t�/ 2 H for all t 2 R

() exp.t�/Œe� D Œe� for all t 2 R

() ˆ�.t; Œe�/ D Œe� for all t 2 R

() �.Œe�/ D 0:

(23)

Note that if g 2 G, then the translation 
g W X �! X , induced by the left transla-
tion, xH 7! gxH , preserves the vector fields in V ; this is just another manifestation
of the adjoint representation1 ofG: we have the formula g exp.�/g�1 D exp.adg �/,
see [Kna02], p. 53, so adg � 2 L.G/ is the push-forward vector field. However, we
shall be interested in the fact that 
g preserves the flows of vector fields in V ; indeed,
we get g exp.t�/ D exp.t adg �/g and so


g.ˆ�.t; x/// D ˆadg �.t; 
g.x//: (24)

The new group yG extending the action ofG will come from the set of homeomor-
phisms of X , that, as the elements of G in (24), preserve the flows of vector fields in
V .

If fgkg � G is a sequence that converges as maps in Homeo.X/ uniformly on
compact sets to a homeomorphism f W X �! X , then we claim that f also preserves
V , in the sense that for any � 2 V the flow ˆ�.t; x/ is conjugated by f to the flow
ˆ�0.t; x/ for some � 0 2 V; i.e., for any t 2 R, the diagram

ˆ�.t; �/ W X
f

��

�� X

f

��
ˆ�0.t; �/ W X �� X

1The map h 7! g�1hg is differentiable and fixes the origin. Its differential at the origin is a homo-
morphism of the Lie algebra called adg . The map

G ! GL.TeG/; g 7! adg;

is a representation ofG inside the algebra homomorphisms of the Lie algebra.
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commutes. Since, because of (24), anyg 2 G preservesV , the claim is a consequence
of the more general lemma:

Lemma 6.2. The space of homeomorphisms preserving V is C 0-closed.

Proof. Let fgkgk2N be a sequence of homeomorphisms (not necessarily coming from
the G action) preserving V , i.e., for any � 2 V and any k there exists a �k 2 V such
that the diagram

ˆ�.t; �/ W X
gk

��

�� X

gk

��
ˆ�k

.t; �/ W X �� X

commutes. If gk ! f in Homeo.X/, then the above diagram (for fixed � and t ),
converges uniformly on compact sets to

ˆ�.t; �/ W X
f

��

�� X

f

��
ˆ1.t; �/ W X �� X .

Recall that L.G/ is finite dimensional, so, after passing to a subsequence, either
�k converges in direction, i.e., the sequence of unit vectors �kk�kk converges to some
v1 or is zero for all k. In the second case, there is nothing else to prove since, for
any k, gk is the identity, and so is the limit. In the first case, we can complete v1 to a
basis v1; : : : ; vn of L.G/. Defining Tk ´ k�kk, write �k D Tk

Pn
jD1 akj vj . Thus,

for j D 2; : : : n, akj ! 0 and ak1 ! 1 as k ! 1.
Note that ˆ�.0; �/ D Id, and so ˆ1.0; �/ D Id. Pick p 2 X . Since ˆ1 is

continuous in t , for any " > 0, there exists ı such that

Diam.ˆ1.Œ0; ı�; p// < ":

We denoted by Diam the diameter of a set with respect to some fixed metric on X
inducing the same topology. Similarly, Nbhd".A/ denotes the "-neighborhood with
respect to the auxiliary distance. Now, by uniform convergence, for any " > 0, there
exists K 2 N such that

ˆ�k
.Œ0; ı�; p/ � Nbhd".ˆ1.Œ0; ı�; p//

for any k > K. Therefore,

ˆ�k
.Œ0; ı�; p/ � Nbhd2".p/: (25)

We may assume that p is not a fixed point of the vector field v1. Take a time t > 0
such that q ´ ˆv1

.t; p/ ¤ p. Suppose that we choose " < jp � qj=3. Assume by
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contradiction that Tk ! 1. Take k big enough such that t
Tk
< ı. For sk D t

Tk
very

small, we have

ˆ�k
.sk; p/ D ˆTk

Pn
j D1 akj vj

.sk; p/

D ˆPn
j D1 akj vj

.Tksk; p/

D ˆPn
j D1 akj vj

.t; p/ ! ˆv1
.t; p/ D q:

But this contradicts (25), which says that, for all k, the points ˆ�k
.sk; p/ lie in a

neighborhood of p and so, by our choice of ", outside the ball B.q; "
3
/, and therefore

they cannot converge to q.
From the contradiction we deduce that the sequence �k is bounded. Thus, after

passing to a subsequence, it converges to some � 0 and ˆ1 has to be the flow of � 0
(by uniqueness of limit). In particular � 0 is uniquely determined by ˆ1 by (22). We
proved that every subsequence has a convergent sub-subsequence, and the limit is
independent of the choice of the subsequence; therefore �k actually converges to a
fixed � 0 2 V , giving the conclusion of the lemma.

By (22), the vector field � 0 of the lemma is uniquely determined by ˆ1 and so
by f and �. Therefore we have a well-defined function f� W V ! V such that

f .ˆ�.t; x/// D f̂��.t; f .x//:

Note that this induced map on the space V is functorial, i.e., f� B g� D .f B g/�
for any such maps f and g. If g is an element in G, then g� D adg , so g� is a Lie
algebra homomorphisms of V . Now, suppose that gk 2 Homeo.X/ have the similar
property that the maps � 7! .gk/�� are Lie algebra homomorphisms of V . Then if
gk ! f in Homeo.X/, the map � 7! f�� is also a Lie algebra homomorphism of
V , because f�� D limk!1.gk/��. In other words, fixing a base forL.G/, the maps
.gk/� are square matrices converging pointwise to a square matrix f�.

Moreover, if the origin Œe� 2 X is preserved by f , then f� preserves L.H/, i.e.,

if f .Œe�/ D Œe� then f�.L.H// D L.H/I (26)

the reason is just the characterization (23): � 2 L.H/ if and only if �.Œe�/ D 0 if
and only if, for every t 2 R, Œe� D f .Œe�/ D f .ˆ�.t; Œe�// D f̂��.t; f .Œe�// D
f̂��.t; Œe�/ if and only if f��.Œe�/ D 0 if and only if f�� 2 L.H/.

We can consider the group HomeoV of homeomorphisms that preserve V , in the
sense of the lemma above and induce a Lie algebra homomorphism on V .

Definition 6.3 (HomeoV ). The set HomeoV is the group of homeomorphisms f 2
Homeo.X/ such that there exists a Lie algebra homomorphism f� W L.G/ ! L.G/

with the property f .ˆ�.t; x/// D f̂��.t; f .x//, or, explicitly, for all t 2 R, � 2 V ,
and x 2 X ,

f .exp.t�/x/ D exp.tf��/f .x/: (27)
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Lemma 6.2 just says that the closure ofG in Homeo.X/ is contained in HomeoV ,
and, more generally, HomeoV is closed in Homeo.X/.

Lemma 6.4. The group HomeoV is generated by left translations by elements of G
and automorphisms ofG that fixH . In particular, any element f 2 HomeoV can be
written uniquely as the composition of a translation and such an automorphism. In
fact, if Œg� D f .Œe�/, with g 2 G, then

f D 
g B Oƒad�1
g Bf�

; (28)

where 
g is the translation by g and Oƒad�1
g Bf�

is the map induced on the quotient by

the (unique) group automorphism of G with differential ad�1
g B f�.

Proof. We first argue that if a map f 2 HomeoV fixes Œe� and f� D IdV then in
fact f D idX . Indeed, we claim that the set of fixed points F ´ fgH 2 G=H W
f .gH/ D gH g is non-empty, closed and open, and so it is all of G=H , i.e., the
function f is the identity. Indeed, F is non-empty since the class of the identity is in
it by assumption and it is closed since it is defined by a closed relation. The fact that
F is open is a consequence of exp being locally invertible. Indeed, take any g0 that is
close enough to g 2 F so that it can be written as g0 D exp.�/g for some � 2 L.G/.
Then

f .g0H/ D f .exp.�/gH/ D exp.f��/f .gH/ D exp.�/gH D g0H:

It is a classical fact, [Kna02], p. 49, that since G is simply connected, for any
(Lie algebra) homomorphism  of L.G/, there exists a unique smooth (group) ho-
momorphism ƒ of G such that .dƒ /e D  . Moreover, in our setting, when ƒ 
is H -invariant (so it passes to the quotient X D G=H ), then ƒ 2 HomeoV and we
point out that .ƒ /� D  . Indeed, since ƒ is a homomorphism,

ƒ .exp.t�/x/ D ƒ .exp.t�//ƒ .x/ D exp.t �/f .x/:

Suppose now thatf W X ! X is any map belonging to HomeoV . Takeg 2 G such
that Œg� D f .Œe�/ and pre-compose f by the translation 
�1

g , so that .
�1
g Bf /.Œe�/ D

Œe�. Take the automorphism ƒ W G ! G whose induced automorphism V ! V is
the inverse of .
�1

g B f /�. Explicitly, we take ƒ D ƒ..	�1
g /�Bf�/�1 D ƒf �1

� Badg
.

Moreover, 
�1
g B f fixes the origin and so .
�1

g B f /� fixes L.H/, and soƒ fixesH .

Therefore, passing to the quotient G=H , we have a homeomorphism Oƒ W X ! X .
Then Oƒ B 
�1

g B f W X ! X fixes Œe� 2 X and maps each left invariant vector field

to itself, i.e., . Oƒ B 
�1
g B f /� D Id. Hence, from what we showed at the beginning

of the proof, Oƒ B 
�1
g B f is the identity, i.e., f D 
g B Oƒ�1: The uniqueness comes

from the fact that the intersection between translations and automorphisms is trivial.
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Lemma 6.5. The group HomeoV is a Lie group of diffeomorphisms and the inclusion
HomeoV ,! Homeo.X/ is an embedding with closed image.

Proof. The previous lemma says that every element of HomeoV is a diffeomorphism.
In fact, the lemma is claiming more: observe that the group of left translations and the
group of automorphisms ofG fixingH are both Lie groups; the first one is equivalent
to G itself, and the second one is a closed subgroup of Aut.G/ and Aut.G/ is a Lie
group since automorphisms of a Lie group come from automorphisms of the Lie
algebra, i.e., linear transformations of a finite dimensional vector space. Let K1 be
the group of left translations and K2 be the group of automorphisms of G fixing H .
The previous lemma says that as sets HomeoV D K1K2: Note that K1 is normal in
HomeoV . Indeed, for any 
g 2 K1 left translation by g 2 G and any � 2 K2, we
have

.��1 B 
g B �/.xH/ D .��1 B 
g/.�.x/�.H//
D ��1.g�.x/H/
D ��1.g/.��1 B �/.x/��1.H/
D ��1.g/xH D 

�1.g/.xH/:

So ��1 B 
g B � 2 K1. Thus, we have HomeoV D K1 ÌK2 is a semi-direct product
of Lie groups, so it is a Lie group.

Now the fact that the inclusion has closed image is just Lemma 6.2. However,
we must show that it is an embedding. This comes from the fact that V is finite
dimensional and every sequence of matrices converges C1 as soon as it converges
point-wise. Indeed, take fk 2 HomeoV ; we need to show that, under the hypothesis
that ffkgk converges in Homeo.X/, it converges in HomeoV . (Recall that Homeo.X/
has the C 0 topology, but HomeoV has the C1 one.) Since fk 2 HomeoV , there are
associated maps .fk/� 2 GL.V /. The proof of Lemma 6.2 shows that for any � 2 V
the sequence .fk/�� converges to f��, where f 2 HomeoV is the C 0-limit of fk .
Since f.fk/�gk are linear endomorphisms of the finite dimensional vector space V
that converge pointwise, the convergence is in fact in C1.V /.

So, since by assumption we have fk
C0

��! f , in particular we have convergence

at the point Œe� D H , i.e., gkH ´ fk.H/
G=H���! f .H/ μ gH , for some gk 2 G.

This means that there exist hk 2 H such that gkhk
G�! g. Call g0 ´ gkhk , so

Œg0
k
� D Œgk� D fk.Œe�/, thus we can use the formula (28) and have

fk D 
g0
k

Bƒad�1

g0
k

Bf�
:

Now, since g0
k

G�! g, we have 
g0
k

C1

��! 
g and ad�1
g0

k

C1

��! ad�1
g . From this last

formula and from the fact that .fk/�
C1

��! f�, we know that, defining Ofk ´ 
�1
g0

k

B
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fk D ƒad�1

g0
k

Bf�
, we have that Ofk C1

��! 
�1
g B f , and so that ffkgk is converging in

the C1-topology.

End of the proof of Proposition 6.1. Consider the space V of vector fields given by
(21). Let yG ´ HomeoV be the group as in Definition 6.3, of the homeomorphisms
of the homogeneous space preserving V in the sense of (27) and inducing homomor-
phisms on the algebra. Then from Lemma 6.5, we know that yG extends the action
of G, consists of C1-diffeomorphisms, is a Lie group and is a closed, embedded
subgroup of Homeo.X/.

Remark 6.6. By Proposition 6.1, without loss of generality we may assume that G
has the following property: as soon as a sequence of elements gn 2 G converges as
maps of X in the C 0-topology, the limit is a map coming from G, the convergence
is also in the topology of G itself, and, moreover, since the action is smooth, the
sequence also converges in the C1-topology.

6.2. Getting uniformly biLipschitz maps close to the identity. Remember that
G acts by diffeomorphisms on G=H . Suppose now that, for any two points in a
neighborhood of the identity, there is an element of G, sending the first point to the
second one, that is biLipschitz with respect to the geodesic metric d . The following
lemma tells us that, by staying enough close to the origin Œe�, we may assume that
these elements of G give maps that are uniformly biLipschitz and are C1-close to
the identity as much as we want. Such argument is based on the Baire Category
Theorem and has been used several times in the theory of homogenous compacta,
e.g. in [MNP98], Theorem 3.1, or [Hoh85], Theorem 6.1.

Lemma 6.7. Let d be a metric on a homogeneous space X D G=H inducing the
usual topology. Suppose that G is closed and embedded in Homeo.G=H/. Let U
be a compact neighborhood of the origin Œe� 2 G=H where the elements of G that
are biLipschitz with respect to the metric d , act transitively. Then there exists a
constant k such that, for any " > 0, there exists a smaller neighborhood U" of the
origin where the elements of G that are k-biLipschitz with respect to both a fixed
Riemannian metric onX and the metric d and are " close to the identity with respect
to a fixed C1-distance act transitively.

Proof. The groupG can be seen as a subset of Diff.G=H/. Since the action is smooth,
the topology of G is the same as that of any of those induced by any C1.G=H/-
distance.2 Fix one such distance and fix " > 0. Consider a cover ofG by a countable

2We recall that fn converges to f in C1.X/ if, for any p 2 X , for any charts 
 and  at p and
f .p/ respectively, for any compactK � Rn inside the domain of 
, and any multi-index ˛ 2 Nn, we
have that the associated seminorm goes to zero, i.e.,

sup
K

D˛.
�1 B fn B 
 � 
�1 B f B 
/ �! 0:
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number of closed balls Dn for n 2 N. We will say later how to choose the cover
depending on ". So G D S

n2N Dn with Dn closed. Since any element of G is
smooth, it is in particular locally biLipschitz with respect to any Riemannian metric
on X . Fix one such Riemannian metric. We will use the term m-biLipschitz to
describe to maps that are m-biLipschitz for both the Riemannian metric and the
metric d , and the set of such maps will be denoted as biLipm. We denote by 0 the
origin Œe� 2 U . Now consider the orbit set of 0 in U under m-biLipschitz maps in
Dn, i.e.,

An;m ´ .Dn \ biLipm/0

´ fp 2 U j f .0/ D p for some m-biLipschitz map f 2 Dng:
By transitivity, we have U D S

n;m2N An;m:We claim that the An;m are closed.
Indeed, take pj 2 An;m converging to p 2 U . Choose the fj 2 Dn such that
fj .0/ D pj : The fj ’s are m-biLipschitz and fj .0/ D pj converges. The Ascoli–
Arzelà argument implies that, after passing to a subsequence, the fj converge to
some f , uniformly on compact sets and the limit function ism-biLipschitz (for both
metrics). Since G is assumed to be closed in Homeo.G=H/, it follows that f 2 G.
From Remark 6.6, the convergence is in theC1-topology, so, sinceDn isC1-closed,
the limit function belongs to it and its value at 0 is p. Therefore, f .0/ D p for an
f 2 Dn \ biLipm. In other words, p 2 An;m, so An;m is closed.

The Baire Category Theorem implies that one of theAn;m has non-empty interior.
So there exists a compact V � U , which is a neighborhood of some point q, such that
V � A Nn; xm for some Nn; xm 2 N. Consider fq 2 D Nn \ biLip xm such that fq.0/ D q.

We claim that we can takeU" ´ f �1
q .V / as our new neighborhood and k ´ xm4

as our required constant. Indeed, for any points p1; p2 2 f �1
q .V /, for i D 1; 2,

fq.pi / 2 V � A Nn; xm, so there exists fi 2 D Nn \ biLip xm such that fi .0/ D fq.pi /.
Thus

p2 D .f �1
q B f2 B f �1

1 B fq/.p1/
and f �1

q B f2 B f �1
1 B fq 2 G is k-biLipschitz. Moreover, f �1

q B f2 B f �1
1 B fq

is " close to the identity in Diff.G=H/, if we had previously made a good choice
of the cover fDng, considering that the function h B f B g�1 B h�1 is continuous in
f; g; h 2 G.

Now we explain how to choose the cover, given ". Consider the map

C1.X/ � C1.X/ ! C1.X/; .g; h/ 7! g B h B g�1:

It is continuous and sends C1.X/ � fidg to the identity function. Given a fixed ",
there exists a neighborhood V1 of the identity in C1.X/ such that C1.X/�V1 goes

In general, if .�n/n2N is a sequence of seminorms defining a (locally convex) topological vector space
E , then

d.x; y/ D
1X

nD1

1

2n

�n.x � y/
1C �n.x � y/

is a metric defining the same topology.
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into the "-neighborhood of the identity function (the convergence is in C1.X/ with
respect to the C1-metric that we fixed). Now consider the map

C1.X/ � C1.X/ ! C1.X/; .g; h/ 7! g B h�1:

It is continuous and sends the diagonal � to the identity function. Given the neigh-
borhood V1 of before, there exists a neighborhood V2 of � that is sent by the map
into V1.

So if we had chosen the cover so that Dn � Dn � V2 for any n 2 N, then
f Bg�1 2 V1 for any f; g 2 Dn. Thus for any h 2 Dn, we have that hBf Bg�1 Bh�1
lies in an "-neighborhood of the identity. This was what was left to prove.

6.3. The end of the proof of Theorem 1.1 using Theorem 2.1. We can focus on a
neighborhood N of a point in the manifold that, after fixing a coordinate chart, is a
neighborhood of 0 in Rn. We can also transfer the geodesic metric imposing that the
chart is an isometry. From now on we will identify the neighborhood in the manifold
and that one in Rn.

We need to construct now a family of maps. The idea is to use Lemma 6.7 to select,
for each p in the neighborhood, a biLipschitz diffeomorphism fp whose differential
d.fp/ differs from the identity by an error that depends only on d.0; p/, and that
tends to zero, as d.0; p/ tends to zero.

Consider the neighborhoodsU1=n given by Lemma 6.7, we can suppose thatN D
U1. Note that

T
n U1=n D f0g. For p D 0, choose f0 D Id; for p 2 U1=n nU1=.nC1/,

Lemma 6.7 gives the existence of a k-biLipschitz map fp so that fp.0/ D p and
which is 1=n close to the identity.

We need to show that the hypotheses of Theorem 2.1 apply. Since uniformly
biLipschitz homogeneity is clear, we have left to show that condition (1) holds. It is
satisfied, since in N the second derivatives of the f ’s are equibounded, say by C , soˇ̌̌ @fi

@xj
.x/ � @fi

@xj
.y/

ˇ̌̌
�

Z jx�yj

0

d

dt

@fi

@xj

�
x C t

x � y
jx � yj

�
dt

�
Z jx�yj

0

nX
kD1

@2fi

@xk@xj

�
x C t

x � y
jx � yj

�
.x � y/k
jx � yj dt

� nC jx � yj:
Hence all of the hypotheses of Theorem 2.1 apply. Thus, there exists a sub-

bundle � � TN , defined explicitly in (9), such that if d� is any sub-Riemannian
metric coming from �, then the geodesic metric d is locally biLipschitz equivalent
to d�. The fact that � is invariant under the action of a transitive subset of a Lie
group, will imply, by next proposition, that � is not just C 1, but in fact smooth.

Proposition 6.8. Assume that S is a set of elements of a Lie groupG that is transitive
on the space X ´ G=H . Let� be a distribution on X preserved by the action of S .
Then � must be real analytic.
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Proof. Since S � G preserves the distribution �, any product of its elements does.
CallGS the group generated by S . ConsiderG1 ´ xGS the closure ofGS inG. The
set G1 is a Lie group and it preserves the distribution � too.

Fix a point p 2 X . Look at the orbit map of p under G1,

ˆ W G1 ! X; g 7! g.p/:

This is a smooth map, so we can take the derivative at the identity, i.e., the differential
from the tangent space at the identity L ´ TeG1, the Lie algebra, and the tangent at
p, TpX ,

dˆe W L ! TpX:

Since this map is surjective, we can find a subspaceW of the Lie algebra of G1 such
that the orbit map restricted to this subspace is an isomorphism of vector spaces,

dˆejW W W ! TpX:

Moreover, exp.W / is, locally, an analytic sub-variety. The orbit map ˆ restricted to
exp.W / gives an analytic map

ˆjexp.W / W exp.W / ! X:

By the Implicit Function Theorem, this is locally an analytic isomorphism.
From the hypothesis we know that, for any g 2 G1, �g.p/ D g�p: Now, g D

exp.v/, for some v 2 W , so we have the formula

�.exp.v//.p/ D exp.v/�p:

For any other point q 2 X , let ˆ�1
loc be a local inverse of ˆ in a neighborhood of q,

so q D ˆ.exp.v// D .exp.v//.p/ and exp.v/ D ˆ�1
loc .q/. Then

�q D �.exp.v//.p/ D exp.v/�p D ˆ�1
loc .q/�p:

This implies that � is smooth because �q depends analytically on q.

Appendix: Equality of piecewise C 1;1 and Lipschitz Carnot–Carathéodory
metrics

One can define the Carnot–Carathéodory distance using as horizontal curves either
Lipschitz curves tangent almost everywhere or piecewiseC 1;1-curves, i.e.,C 1-curves
with Lipschitz derivative, tangent to the distribution. We prove now that piece-
wise C 1;1-horizontal curves or Lipschitz horizontal curves yield to the same Carnot–
Carathéodory distances, when they both induce the manifold topology.
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TheoremA.1. LetX be aFinslermanifold and let� be a locally Lipschitz sub-bundle
of the tangent bundle. Let dC

1;1

CC and dLip
CC be the Finsler–Carnot–Carathéodory met-

rics where the horizontal curves are chosen to be the class of curves that are, respec-
tively, piecewise C 1;1 and Lipschitz, tangent to the distribution almost everywhere.
Suppose that the two topologies induced by the two distances are the same as the
topology of the manifold. Then the distances are the same, i.e., dC

1;1

CC D d
Lip
CC .

Proof. The fact that dC
1;1

CC � d
Lip
CC is obvious since all piecewise C 1;1-curves are

Lipschitz. A priori, the infimum over all of the Lipschitz curve can be strictly smaller.
Since both metrics are path metrics, it suffices to prove the statement locally. So

we may suppose that we are in Rn with a fixed norm k � k. In general, the space could
be covered by small balls in which charts give a .1C "/-biLipschitz approximations.
The " goes to zero as the diameters of the balls go to zero.

Take � W Œ0; T � ! Rn to be a Lipschitz curve, almost everywhere tangent to the
distribution �, with �.0/ D 0, �.T / D p, i.e., one of the candidate to calculate the
Lipschitz CC-distance between 0 and p. We can suppose that � is parametrized by
arclength, i.e., k P�k D 1 a.e., so T D length.�/.

We will construct a sequence of piecewise C 1;1-curves whose length is smaller
than or equal to the length of �, going from 0 to a sequence of points that converges
to p. Since the topologies are the same, this will give the conclusion.

Take " > 0. Construct piece-by-piece a curve 	 in a way similar to that of
Section 5.2. Start at 0 D �.0/. After a suitable choice of a vector v0 2 �0, we will
take a curve �v0

.t/, as the next Lemma A.2 says, and then we will define the first
piece of 	.t/ as

	.t/ ´ �v0
.t/

for 0 � t � ". Each curve 	 that we will construct will have length less than 2T . On
the Euclidean ball of radius 2T , the distribution � is C -Lipschitz for some C > 0.
By the same discussion that in Section 5.2 led us to (15), we have that there exists
v0 2 �0 with kv0k � 1 such that

���v0 � 1

"

Z "

0

P�.t/dt
��� � C": (A.1)

For the inductive construction of 	 suppose that 	.t/ has been defined for any
t � n". We shall define 	 , for n" < t � .nC 1/", as

	.t/ ´ �vn
.t � n"/;

for a suitable choice of vn 2 ��.n"/ and its related �vn
.t/ given by Lemma A.2.

Take wn 2 ��.n"/ with kwnk � 1 such that

���wn � 1

"

Z .nC1/"

n"

P�.t/dt
��� � C":
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Since � is C -Lipschitz, there exists a vector vn 2 ��.n"/ with kvnk � 1 such
that

kwn � vnk � Ck	.n"/ � �.n"/k:
So ���vn � 1

"

Z .nC1/"

n"

P�.t/dt
��� � Ck	.n"/ � �.n"/k C C": (A.2)

To estimate k�.T / � 	.T /k, one uses system (19). The strategy of the proof for
bounding the terms in system (19) is the same as that one in Section 5.2, except that
instead of using (11), one uses Lemma A.2. Also, estimates (17) and (18) are replaced
by (A.1) and (A.2).

The conclusion is that, as we observed after (20), k�.T / � 	.T /k ! 0 as " ! 0.
This shows that we can choose " to have 	.T / as close as we want to �.T /.

Now we calculate the length of 	.0; T /:

length.	Œ0; T �/ �
X
n<T="

length.	Œn"/; 	..nC 1/"�/

D
X

length.�vn
Œ0; "�/

�
T="X
1

kvnk "

�
T="X
1

" D "
T

"
D T D length.�Œ0; T �/;

where we used, in this order, the triangle inequality, the definition of 	 , and that �vn

is parametrized by (uniformly) bounded speed, as Lemma A.2 says.

Lemma A.2. Given v 2 � there exists a C 1;1-curve �v starting at v tangent to the
distribution �, parametrized by speed smaller than kvk and such that

k�v.t/ � Œ�v.0/C P�v.0/t �k � Ct2:

Proof. Extend v to a vector field X � � using the orthogonal projection:

Xp ´ ��p
.v/:

The sub-bundle � is C -Lipschitz, thus X has the properties of being C -Lipschitz,
v 2 X and kXpk � kvk. Let �v be the integral curve ofX starting at v, i.e., P�v.0/ D v

and P�v.t/ D X�v.t/. Then

length.�vŒ0; t �/D
Z t

0

P�v.s/ds �
Z t

0

k P�v.s/kds D
Z t

0

kX�v.t/kds �
Z t

0

kvkds D tkvk:
In other words, �v is of speed smaller than kvk. The rest of the conclusion of the
lemma is clear: sinceX isC -Lipschitz, it is differentiable a.e. with derivative bounded
by C . Thus �v is a C 2-curve a.e. with second derivative bounded by C .
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