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Bernoulli actions and infinite entropy

David Kerr and Hanfeng Li

Abstract. We show that, for countable sofic groups, a Bernoulli action with infinite entropy
base has infinite entropy with respect to every sofic approximation sequence. This builds on
the work of Lewis Bowen in the case of finite entropy base and completes the computation of
measure entropy for Bernoulli actions over countable sofic groups. One consequence is that
such a Bernoulli action fails to have a generating countable partition with finite entropy if the
base has infinite entropy, which in the amenable case is well known and in the case that the
acting group contains the free group on two generators was established by Bowen.
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1. Introduction

In [2] Lewis Bowen introduced a notion of entropy for measure-preserving actions
of countable sofic groups admitting a generating partition with finite entropy. This
measure entropy is defined relative to a given sofic approximation sequence for the
group and thus yields a collection of numerical invariants in general. For a Bernoulli
action with finite base entropy, Bowen showed that the sofic measure entropy is
equal to the base entropy for every choice of sofic approximation sequence. As a
consequence he was able to extend the entropy classification of Bernoulli actions
in the amenable setting, due to Ornstein for Z and to Ornstein and Weiss more
generally, to the class of all countable sofic groups having the property that any
two Bernoulli actions with the same base entropy are conjugate, which includes
all countable sofic groups containing an element of infinite order. Moreover, Bowen
demonstrated that Bernoulli actions with nontrivial bases over a given countable sofic
group containing the free group F2 are all weakly isomorphic [1], which enabled him
to conclude in [2] that Bernoulli actions with infinite entropy base over a countable
sofic group containing F2 do not admit a generating partition with finite entropy,
thereby answering a question of Weiss.

In [4] the present authors extended Lewis Bowen’s sofic measure entropy to gen-
eral measure-preserving actions of a countable sofic group on a standard probability
space by recasting the definition in operator-algebraic terms in a way that is reminis-
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cent of Rufus Bowen’s approach to topological entropy for Z-actions, which replaces
the analysis of set intersections with the counting of "-separated partial orbits. The
main goal of [4] was to introduce a topological version of sofic measure entropy
and establish a variational principle relating the two. In this note we respond to a
question that Bowen posed to the authors by showing that, for countable sofic groups,
a Bernoulli action with infinite entropy base has infinite entropy with respect to every
sofic approximation sequence. The argument makes use of Bowen’s finite entropy
lower bound and is carried out by representing the dynamics in a topological way.
It follows that the entropy of any Bernoulli action of a countable sofic group over a
standard base is equal to the base entropy, independently of the sofic approximation
sequence (Theorem 2.3). As a consequence, conjugate Bernoulli actions of a count-
able sofic group over standard bases have the same base entropy (Theorem 2.4), a
fact that Bowen proved under the assumption that the bases have finite entropy or that
the group is Ornstein, i.e., has the property that any two Bernoulli actions with the
same base entropy are conjugate. Another consequence is that a Bernoulli action of
a countable sofic group with an infinite entropy standard base does not admit a gen-
erating measurable partition with finite entropy (Theorem 2.6), which is well known
for countable amenable groups and, as mentioned above, was established by Bowen
for countable sofic groups containing F2 using a different argument based on the
weak isomorphism of Bernoulli actions. Note that there exist countable sofic groups
which are not amenable and do not contain F2. Indeed Ershov showed the existence
of a countable nonamenable residually finite torsion group [3], Corollary 8.5 (see
also [6]).

We now recall some terminology and notation pertaining to sofic measure entropy.
We refer the reader to [4] for more details. Let G be a countable sofic group. Let
† D f�i W G ! Sym.di /g1

iD1 be a sofic approximation sequence forG, i.e., fdig1
iD1

is a sequence of positive integers satisfying limi!1 di D 1 and the maps �i into the
permutation groups Sym.di / are asymptotically multiplicative and free in the sense
that

lim
i!1

1

di

ˇ̌fk 2 f1; : : : ; dig W �i;st .k/ D �i;s�i;t .k/g
ˇ̌ D 1

for all s; t 2 G and

lim
i!1

1

di

ˇ̌fk 2 f1; : : : ; dig W �i;s.k/ ¤ �i;t .k/g
ˇ̌ D 1

for all distinct s; t 2 G. The sofic measure entropy h†;�.X;G/ of a measure-
preserving action of G on a standard probability space .X;�/ with respect to †
is defined, roughly speaking, by measuring the exponential growth as i ! 1 of
the maximal cardinality of "-separated sets of approximately equivariant, approxi-
mately multiplicative, and approximately measure-preserving maps from L1.X;�/
into Cdi , where the latter is equipped with the uniform probability measure. Instead
of recalling the precise definition, which can be found as Definition 2.2 in [4], we will
give here an equivalent formulation more suited to our purpose, which requires us to
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endow our measure-theoretic framework with topological structure in order to facili-
tate certain approximations. We thus suppose thatX is a compact metrizable space,�
is a Borel probability measure onX , and ˛ is a continuous measure-preserving action
ofG onX . The notation ˛ will actually be reserved for the induced action on C.X/,
so that ˛g.f / for f 2 C.X/ and g 2 G will mean the function x 7! f .g�1x/, with
concatenation being used for the action on X . Let P be a finite partition of unity in
C.X/ and let d 2 N. On the set of unital homomorphisms from C.X/ to Cd we
define the pseudometric

�P ;1.';  / D max
p2P

k'.p/ �  .p/k1:

Let � be a map from G to the permutation group Sym.d/ of the set f1; : : : ; dg. We
also use � to denote the induced action on Cd Š C.f1; : : : ; dg/, i.e., for f 2 Cd

and s 2 G we write �s.f / to mean f B ��1
s . We write � for the uniform probability

measure on f1; : : : ; dg, and k � k2 for the norm f 7! �.jf j2/1=2 on Cd . Let F be a
nonempty finite subset of G, m 2 N and ı > 0. Define HomX

� .P ; F;m; ı; �/ to be
the set of all unital homomorphisms ' W C.X/ ! Cd such that

(i) j� B '.f / � �.f /j < ı for all f 2 PF;m,
(ii) k' B ˛s.f / � �s B '.f /k2 < ı for all f 2 P and s 2 F ,

where PF;m denotes the set of all products of the form ˛s1.p1/ : : : ˛sj .pj / where
1 � j � m, p1; : : : pj 2 P , and s1; : : : ; sj 2 F . The measure-preserving version of
Proposition 4.11 in [4] (which can be established using the same argument) and the
discussion in Section 5 of [4] together show that if P is dynamically generating in the
sense that there is no proper G-invariant unital C �-subalgebra of C.X/ containing
P , then

h†;�.X;G/ D sup
">0

inf
F

inf
m2N

inf
ı>0

lim sup
i!1

1

di
logN".HomX

� .P ; F;m; ı; �i /; �P ;1/

where N".�; �P ;1/ denotes the maximal cardinality of an "-separated subset with
respect to the pseudometric �P ;1 and F ranges over all nonempty finite subsets
of G.

Acknowledgements. The first author was partially supported by NSF grant DMS-
0900938, and the second author partially supported by NSF grant DMS-0701414.
We are grateful to Lewis Bowen for pointing out the references [3], [6].

2. Results

LetG be a countable sofic group and .X;�/ a standard probability space. Taking the
product Borel structure on XG and the product measure �G , we obtain a standard
probability space .XG ; �G/ on whichG acts by the shifts g �.xh/h2G D .xg�1h/h2G ,
and we refer to this as a Bernoulli action.
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The following lemma is a direct consequence of (and is easily seen to be equivalent
to) the lower bound for the sofic entropy of a Bernoulli action with finite entropy base
that is part of Theorem 8.1 in [2]. Recall that the entropy of a measurable partition
Q of a probability space .X;�/ is defined by

H�.Q/ D �
X
Q2Q

�.Q/ log�.Q/:

Lemma 2.1. LetG be a countable sofic group. Let† D f�i W G ! Sym.di /g1
iD1 be

a sofic approximation sequence for G. Let .X;�/ be a standard probability space.
Let R be a finite measurable partition of X . Then for every nonempty finite set
F � G and ı > 0 one has

lim sup
i!1

1

di
log

ˇ̌˚
ˇ 2 Rf1;:::;di g W
P
'2RF

ˇ̌ Q
g2F �.'.g// � �� T

g2F �i .g/ˇ�1.'.g//
�ˇ̌ � ı

�ˇ̌
� H�.R/:

Lemma 2.2. LetG be a countable sofic group. Let† D f�i W G ! Sym.di /g1
iD1 be

a sofic approximation sequence for G. Let .X;�/ be a standard probability space.
Let Q be a finite measurable partition of X . Then h†;�G .XG ; G/ � H�.Q/.

Proof. We can identify X with a Borel subset of Œ0; 1� such that the closures of the
atoms of Q are pairwise disjoint. Then � extends to a Borel probability measure �
on xX such that �.A/ D �.A/ for every measurable subset A ofX . It follows that the
Bernoulli actions .G;XG ; �G/ and .G; xXG ; �G/ are measurably isomorphic. Thus
h†;�G .XG ; G/ D h†;�G . xXG ; G/. Denote by xQ the partition of xX consisting of xQ
for Q 2 Q. Then H�.Q/ D H�. xQ/. Thus we may replace X and Q by xX and
xQ respectively. Therefore we will assume that X is a closed subset of Œ0; 1� and Q

is a closed and open partition of X . Equipped with the product topology, XG is a
compact metrizable space. The shift action of G on XG is continuous, and �G is a
Borel probability measure on XG . We write ˛ for this action as applied to C.XG/,
following the notational convention from the introduction.

Denote by p the coordinate function on X , i.e., p.x/ D x for x 2 X . Then
P ´ fp; 1 � pg is a partition of unity in C.X/ generating C.X/ as a unital C �-
algebra. Denote by e the identity element of G. Via the coordinate map XG ! X

sending .xg/g2G to xe , we will also think of P as a partition of unity in C.XG/.
Then P dynamically generatesC.XG/, and so according to the introduction we have

h†;�G .XG ; G/

D sup
">0

inf
F

inf
m2N

inf
ı>0

lim sup
i!1

1

di
logN".HomXG

�G .P ; F;m; ı; �i /; �P ;1/;
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where F ranges over all nonempty finite subsets ofG and the pseudometric �P ;1 on
the set of unital homomorphisms C.XG/ ! Cdi is given by

�P ;1.';  / D max
f 2P

k'.f / �  .f /k1:

Take an " > 0 which is smaller than the minimum over all distinctQ;Q0 2 Q of the
quantities minx2Q;y2Q0 jx � yj. Then it suffices to show

inf
F

inf
m2N

inf
ı>0

lim sup
i!1

1

di
logN".HomXG

�G .P ; F;m; ı; �i /; �P ;1/ � H�.Q/ � �

for every � > 0.
So let � > 0. Let F be a nonempty finite subset of G, m 2 N, and ı > 0.

Note that, for each f 2 PF;m, the value of x 2 XG under f depends only on the
coordinates of x at g for g 2 F . Thus we can find an 	 > 0 such that whenever the
coordinates of two points x; y 2 XG at g are within 	 of each other for each g 2 F ,
one has jf .x/ � f .y/j < ı=3 for all f 2 PF;m.

Take a finite measurable partition R of X finer than Q such that each atom
of R has diameter less than 	. For each R 2 R take a point xR in R. Let �
be a map from G to Sym.d/ for some d 2 N. For each ˇ 2 Rf1;:::;dg take a
map ‚ˇ W f1; : : : ; dg ! XG such that for each a 2 f1; : : : ; dg and g 2 F , the
coordinate of ‚ˇ .a/ at g is xˇ.�.g/�1a/. Then we have a unital homomorphism

.ˇ/ W C.XG/ ! Cd sending f to f B‚ˇ . Denote by Z the set of a in f1; : : : ; dg
such that �.e/�1�.g/�1a D �.g/�1a for all g 2 F . For everyˇ 2 Rf1;:::;dg, f 2 P

and a 2 Z, we have

.
.ˇ/.˛g.f ///.a/ D ˛g.f /.‚ˇ .a// D f .g�1‚ˇ .a//
D f ..‚ˇ .a//g/ D f .xˇ.�.g/�1a//;

and

.�.g/
.ˇ/.f //.a/ D .
.ˇ/.f //.�.g/�1a/ D f .‚ˇ .�.g/
�1a//

D f ..‚ˇ .�.g/
�1a//e/ D f .xˇ.�.e/�1�.g/�1a//

D f .xˇ.�.g/�1a//;

and hence
.
.ˇ/.˛g.f ///.a/ D .�.g/
.ˇ/.f //.a/:

When � is a good enough sofic approximation of G, one has 1 � jZj=d < ı2, and
hence

k
.ˇ/.˛g.f // � �.g/
.ˇ/.f /k2 < ı
for all ˇ 2 Rf1;:::;dg and f 2 P .

For each ' 2 RF , denote by Y' the set of x in XG whose coordinate at g is in
'.g/ for every g 2 F . Then fY' W ' 2 RF g is a Borel partition of XG . For each
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' 2 RF pick a y' 2 Y' such that the coordinate of y' at g is x'.g/ for each g 2 F .
By our choice of 	 and R, we have

sup
x2Y'

sup
f 2PF;m

jf .x/ � f .y'/j � ı=3

for every ' 2 RF . For every ˇ 2 Rf1;:::;dg and a 2 f1; : : : ; dg, define  ˇ;a 2 RF

by  ˇ;a.g/ D ˇ.�.g/�1a/. Note that the coordinates of ‚ˇ .a/ and y ˇ;a
at g are

the same for each g 2 F . For every ˇ 2 Rf1;:::;dg and ' 2 RF , one has
˚
a 2 f1; : : : ; dg W  ˇ;a D '

� D
\
g2F

˚
a 2 f1; : : : ; dg W  ˇ;a.g/ D '.g/

�

D
\
g2F

˚
a 2 f1; : : : ; dg W ˇ.�.g/�1a/ D '.g/

�

D
\
g2F

�.g/ˇ�1.'.g//:

Thus for every ˇ 2 Rf1;:::;dg and f 2 PF;m one has

�.
.ˇ/.f // D 1

d

dX
aD1


.ˇ/.f /.a/ D 1

d

dX
aD1

f .‚ˇ .a// D 1

d

dX
aD1

f .y ˇ;a
/

D
X
'2RF

f .y'/�
�˚
a 2 f1; : : : ; dg W  ˇ;a D '

��

D
X
'2RF

f .y'/�
� \
g2F

�.g/ˇ�1.'.g//
�
:

Let � be a strictly positive number satisfying � < ı=3 to be further specified in a
moment. Set

W D ˚
ˇ 2 Rf1;:::;dg W P

'2RF j Q
g2F �.'.g//��

� T
g2F �.g/ˇ�1.'.g//

�ˇ̌ � �
�
:

For every ˇ 2 W and f 2 PF;m one has, since 0 � f � 1,

�G.f / D
X
'2RF

Z
Y'

f d�G �ı=3

X
'2RF

�G.Y'/f .y'/

D
X
'2RF

f .y'/
Y
g2F

�.'.g//

�ı=3

X
'2RF

f .y'/�
� \
g2F

�.g/ˇ�1.'.g//
�

D �.
.ˇ/.f //:

Therefore, when � is a good enough sofic approximation of G, the homomorphism

.ˇ/ belongs to HomXG

�G .P ; F;m; ı/ for every ˇ 2 W .
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Letˇ 2 W . We estimate the number of � 2 W satisfying �P ;1.
.ˇ/; 
.�// < ".
Note that

�P ;1.
.ˇ/; 
.�// D max
a2f1;:::;dg

jp.‚ˇ .a// � p.‚� .a//j
D max
a2f1;:::;dg

jxˇ.�.e/�1a/ � x�.�.e/�1a/j
D max
a2f1;:::;dg

jxˇ.a/ � x�.a/j:

Thusˇ.a/ and �.a/must be contained in the same atom of Q for each a 2 f1; : : : ; dg.
ForQ 2 Q denote by RQ the set of atoms of R contained inQ. Thinking ofˇ as a

partition of f1; : : : ; dg indexed by R, we see that fTg2F �.g/ˇ�1.'.g// W ' 2 RF g
is a partition of f1; : : : ; dg. Let Q 2 Q, R 2 R, and g1 2 F . Then

�.g1/ˇ
�1.R/ D

[
'2RF

'.g1/DR

\
g2F

�.g/ˇ�1.'.g//;

and hence

�.ˇ�1.R// D �.�.g1/ˇ
�1.R// ��

X
'2RF

'.g1/DR

Y
g2F

�.'.g// D �.R/;

and

�.ˇ�1.RQ// D �
� [
R2RQ

�.g1/ˇ
�1.R/

�
��

X
'2RF

'.g1/2RQ

Y
g2F

�.'.g//

D �.
S

RQ/ D �.Q/:

Similarly, we have �.��1.R// �� �.R/ for everyR 2 R. The conclusion in the last
paragraph can be restated as saying that ˇ�1.RQ/ D ��1.RQ/ for every Q 2 Q.
Hence the number of possibilities for � is bounded above by

Q
Q2QMˇ;Q, where

listing the atoms of RQ as R1; : : : ; Rn we have

Mˇ;Q ´
X

j1;:::;jn

�jˇ�1.RQ/j
j1

��jˇ�1.RQ/j � j1
j2

�
: : :

�jˇ�1.RQ/j � Pn�1
kD1 jk

jn

�

D
X

j1;:::;jn

jˇ�1.RQ/jŠ
j1Šj2Š : : : jnŠ

;

where the sum ranges over all nonnegative integers j1; : : : ; jn such that jjk=d �
�.Rk/j � � for all 1 � k � n and

Pn
kD1 jk D jˇ�1.RQ/j. Setting 
.t/ D �t log t

for 0 � t � 1, for such j1; : : : ; jn we have, by Stirling’s approximation,

jˇ�1.RQ/jŠ
j1Šj2Š : : : jnŠ

� Cd exp
�� nX

kD1

.jk=d/ � 
.jˇ�1.RQ/j=d/

�
d

�
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for some constant C > 0 independent of jˇ�1.RQ/j and j1; : : : ; jn. Since the
function 
 is uniformly continuous, when � is small enough one has

nX
kD1


.jk=d/ � 
.jˇ�1.RQ/j=d/ <
X
R2RQ


.�.R// � 
.�.Q//C �=jQj

for all j1; : : : ; jn as above. Therefore

Mˇ;Q � Cd.2�d/jRQj exp
�� X
R2RQ


.�.R// � 
.�.Q//C �=jQj
�
d

�

for every Q 2 Q, and hence
Y
Q2Q

Mˇ;Q � C jQjd jQj.2�d/jRj exp
�
.H�.R/ �H�.Q/C �/d

�
:

Now we have

N".HomXG

�G .P ; F;m; ı; �/; �P ;1/

� jW j=max
ˇ2W

Y
Q2Q

Mˇ;Q

� jW jC�jQjd�jQj.2�d/�jRj exp
�
.�H�.R/CH�.Q/ � �/d�

:

Using Lemma 2.1 we thus obtain

lim sup
i!1

1

di
logN".HomXG

�G .P ; F;m; ı; �i /; �P ;1/

� �H�.R/CH�.Q/ � � C lim sup
i!1

1

di
log

ˇ̌˚
ˇ 2 Rf1;:::;di g W

P
'2RF

ˇ̌ Q
g2F �.'.g// � �� T

g2F �i .g/ˇ�1.'.g//
�ˇ̌ � �

�ˇ̌
� H�.Q/ � �;

as desired.

For a standard probability space .X;�/, the entropyH.�/ is defined as the supre-
mum ofH�.Q/over all finite measurable partitions Q ofX . In the caseH.�/ < C1,
the following theorem is Theorem 8.1 of [2] in conjunction with Theorem 3.6 of [4].
The case H.�/ D C1 is a consequence of Lemma 2.2. When G is amenable we
recover a standard computation of classical measure entropy, in view of [5].

Theorem 2.3. Let G be a countable sofic group. Let † be a sofic approximation
sequence forG. Let .X;�/ be a standard probability space. Then h†;�G .XG ; G/ D
H.�/.
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As a consequence of Theorem 2.3 we obtain the following result, which was
proved by Bowen in the case that H.�/ C H.�/ < C1 or G is a countable sofic
Ornstein group [2], Theorem 1.1 and Corollary 1.2. We note that it is not known
whether there are countably infinite groups that are not Ornstein.

Theorem 2.4. Let G be a countable sofic group. Let .X;�/ and .Y; �/ be standard
probability spaces. If .G;XG ; �G/ and .G; Y G ; �G/ are isomorphic, then H.�/ D
H.�/.

The next lemma follows from Proposition 5.3 of [2] (taking ˇ there to be the
trivial partition) and Theorem 3.6 of [4].

Lemma 2.5. Let G be a countable sofic group. Let † be a sofic approximation
sequence for G. Let G act on a standard probability space .X;�/ by measure-
preserving transformations. Let Q be a generating countable measurable partition
of X . Then h†;�.X;G/ � H�.Q/.

The following theorem is a consequence of Theorem 2.3 and Lemma 2.5. In the
case that G is amenable it is a well-known consequence of classical entropy theory,
and in the case that G contains the free group F2 it was proved by Bowen in [2],
Theorem 1.4. As mentioned in the introduction, there exist countable sofic groups
that lie outside of these two classes [3], [6].

Theorem 2.6. LetG be a countable sofic group. Let .X;�/ be a standard probability
spacewithH.�/ D C1. Then there is nogenerating countablemeasurable partition
Q of XG such thatH�G .Q/ < C1.

References

[1] L. Bowen, Weak isomorphisms between Bernoulli shifts. Israel J. Math. 183 (2010),
93–102.

[2] L. Bowen, Measure conjugacy invariants for actions of countable sofic groups. J. Amer.
Math. Soc. 23 (2010), 217–245. Zbl 1201.37005 MR 2552252

[3] M. Ershov, Golod-Shafarevich groups with property (T) and Kac-Moody groups. Duke
Math. J. 145 (2008), 309–339. Zbl 1162.20018 MR 2449949

[4] D. Kerr and H. Li, Entropy and the variational principle for actions of sofic groups.
Invent. Math., DOI 10.1007/s00222-011-0324-9. arXiv:1005.0399v3

[5] D. Kerr and H. Li, Soficity, amenability, and dynamical entropy. Amer. J. Math., to
appear.

[6] D. Osin, Rank gradient and torsion groups. Bull. London Math. Soc. 43 (2011), 10–16.
Zbl 05853304 MR 2765544

http://www.emis.de/MATH-item?1201.37005
http://www.ams.org/mathscinet-getitem?mr=2552252
http://www.emis.de/MATH-item?1162.20018
http://www.ams.org/mathscinet-getitem?mr=2449949
http://dx.doi.org/10.1007/s00222-011-0324-9
http://arxiv.org/abs/1005.0399v3
http://www.emis.de/MATH-item?05853304
http://www.ams.org/mathscinet-getitem?mr=2765544


672 D. Kerr and H. Li

Received June 17, 2010; revised July 24, 2010

D. Kerr, Department of Mathematics, Texas A&M University, College Station, TX 77843-
3368, U.S.A.

E-mail: kerr@math.tamu.edu

H. Li, Department of Mathematics, SUNY at Buffalo, Buffalo, NY 14260-2900, U.S.A.

E-mail: hfli@math.buffalo.edu


	Introduction
	Results

